Science.gov

Sample records for signaling ameliorates disease

  1. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  2. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice.

    PubMed

    Dau, Alejandro; Gladding, Clare M; Sepers, Marja D; Raymond, Lynn A

    2014-02-01

    In the YAC128 mouse model of Huntington disease (HD), elevated extrasynaptic NMDA receptor (Ex-NMDAR) expression contributes to the onset of striatal dysfunction and atrophy. A shift in the balance of synaptic-extrasynaptic NMDAR signaling and localization is paralleled by early stage dysregulation of intracellular calcium signaling pathways, including calpain and p38 MAPK activation, that couple to pro-death cascades. However, whether aberrant calcium signaling is a consequence of elevated Ex-NMDAR expression in HD is unknown. Here, we aimed to identify calcium-dependent pathways downstream of Ex-NMDARs in HD. Chronic (2-month) treatment of YAC128 and WT mice with memantine (1 and 10mg/kg/day), which at a low dose selectively blocks Ex-NMDARs, reduced striatal Ex-NMDAR expression and current in 4-month old YAC128 mice without altering synaptic NMDAR levels. In contrast, calpain activity was not affected by memantine treatment, and was elevated in untreated YAC128 mice at 1.5months but not 4months of age. In YAC128 mice, memantine at 1mg/kg/day rescued CREB shut-off, while both doses suppressed p38 MAPK activation to WT levels. Taken together, our results indicate that Ex-NMDAR activity perpetuates increased extrasynaptic NMDAR expression and drives dysregulated p38 MAPK and CREB signaling in YAC128 mice. Elucidation of the pathways downstream of Ex-NMDARs in HD could help provide novel therapeutic targets for this disease.

  3. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  4. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats

    PubMed Central

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-01-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2′-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats. PMID:27656623

  5. A novel disease-modifying antirheumatic drug, iguratimod, ameliorates murine arthritis by blocking IL-17 signaling, distinct from methotrexate and leflunomide.

    PubMed

    Luo, Qiong; Sun, Yang; Liu, Wen; Qian, Cheng; Jin, Biao; Tao, Feifei; Gu, Yanhong; Wu, Xingxin; Shen, Yan; Xu, Qiang

    2013-11-15

    Iguratimod, a novel disease-modifying antirheumatic drug, which is now used in clinics in China and Japan, has been confirmed as a highly efficacious and safe drug for rheumatoid arthritis therapy. The antiarthritic mechanism of iguratimod, especially compared with that of the classical disease-modifying antirheumatic drugs, has not been elucidated. In this study, we conducted a comparative analysis of the antiarthritic effects of iguratimod and two reference drugs, methotrexate and leflunomide. We found that iguratimod dose dependently and potently inhibited arthritic inflammation of the synovium in collagen-induced arthritis and predominantly targeted IL-17 signaling. Consistent with its effects in vivo, iguratimod significantly suppressed the expression of various proinflammatory factors triggered by IL-17 in the cultured fibroblast-like synoviocytes. The inhibition of IL-17 signaling by iguratimod was further linked to a decrease in the mRNA stability of related genes and a reduction in phosphorylation of MAPKs. Iguratimod mainly targets Act1 to disrupt the interaction between Act1 and TRAF5 and IKKi in the IL-17 pathway of synoviocytes. Together, our results suggest that iguratimod yields a strong improvement in arthritis via its unique suppression of IL-17 signaling in fibroblast-like synoviocytes. This feature of iguratimod is different from those of methotrexate and leflunomide. This study may be helpful for further understanding the unique antiarthritic mechanism of iguratimod in patients with rheumatoid arthritis.

  6. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    SciTech Connect

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  7. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms

    PubMed Central

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-01-01

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)—a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms. PMID:26194911

  8. STAT6 deficiency ameliorates Graves' disease severity by suppressing thyroid epithelial cell hyperplasia

    PubMed Central

    Jiang, Xuechao; Zha, Bingbing; Liu, Xiaoming; Liu, Ronghua; Liu, Jun; Huang, Enyu; Qian, Tingting; Liu, Jiajing; Wang, Zhiming; Zhang, Dan; Wang, Luman; Chu, Yiwei

    2016-01-01

    Signal transducer and activator of transcription 6 (STAT6) is involved in epithelial cell growth. However, little is known regarding the STAT6 phosphorylation status in Graves' disease (GD) and its role in thyroid epithelial cells (TECs). In this study, we found that STAT6 phosphorylation (p-STAT6) was significantly increased in TECs from both GD patients and experimental autoimmune Graves' disease mice and that STAT6 deficiency ameliorated GD symptoms. Autocrine IL-4 signalling in TECs activated the phosphorylation of STAT6 via IL-4 R engagement, and the downstream targets of STAT6 were Bcl-xL and cyclin D1. Thus, the IL-4-STAT6-Bcl-xL/cyclin D1 pathway is crucial for TEC hyperplasia, which aggravates GD. More importantly, in vitro and in vivo experiments demonstrated that STAT6 phosphorylation inhibited by AS1517499 decreased TEC hyperplasia, thereby reducing serum T3 and T4 and ameliorating GD. Thus, our study reveals that in addition to the traditional pathogenesis of GD, in which autoantibody TRAb stimulates thyroid-stimulating hormone receptors and consequently produces T3, T4, TRAb could also trigger TECs producing IL-4, and IL-4 then acts in an autocrine manner to activate p-STAT6 signalling and stimulate unrestricted cell growth, thus aggravating GD. These findings suggest that STAT6 inhibitors could be potent therapeutics for treating GD. PMID:27906181

  9. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    PubMed

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.

  10. Telmisartan Ameliorates Fibrocystic Liver Disease in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease

    PubMed Central

    Yoshihara, Daisuke; Kugita, Masanori; Sasaki, Mai; Horie, Shigeo; Nakanishi, Koichi; Abe, Takaaki; Aukema, Harold M.; Yamaguchi, Tamio; Nagao, Shizuko

    2013-01-01

    Human autosomal recessive polycystic kidney disease (ARPKD) produces kidneys which are massively enlarged due to multiple cysts, hypertension, and congenital hepatic fibrosis characterized by dilated bile ducts and portal hypertension. The PCK rat is an orthologous model of human ARPKD with numerous fluid-filled cysts caused by stimulated cellular proliferation in the renal tubules and hepatic bile duct epithelia, with interstitial fibrosis developed in the liver. We previously reported that a peroxisome proliferator activated receptor (PPAR)-γ full agonist ameliorated kidney and liver disease in PCK rats. Telmisartan is an angiotensin receptor blocker (ARB) used widely as an antihypertensive drug and shows partial PPAR-γ agonist activity. It also has nephroprotective activity in diabetes and renal injury and prevents the effects of drug-induced hepatotoxicity and hepatic fibrosis. In the present study, we determined whether telmisartan ameliorates progression of polycystic kidney and fibrocystic liver disease in PCK rats. Five male and 5 female PCK and normal control (+/+) rats were orally administered 3 mg/kg telmisartan or vehicle every day from 4 to 20 weeks of age. Treatment with telmisartan decreased blood pressure in both PCK and +/+ rats. Blood levels of aspartate amino transferase, alanine amino transferase and urea nitrogen were unaffected by telmisartan treatment. There was no effect on kidney disease progression, but liver weight relative to body weight, liver cystic area, hepatic fibrosis index, expression levels of Ki67 and TGF-β, and the number of Ki67- and TGF-β-positive interstitial cells in the liver were significantly decreased in telmisartan-treated PCK rats. Therefore, telmisartan ameliorates congenital hepatic fibrosis in ARPKD, possibly through the inhibition of signaling cascades responsible for cellular proliferation and interstitial fibrosis in PCK rats. The present results support the potential therapeutic use of ARBs for the

  11. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease.

    PubMed

    Yoshihara, Daisuke; Kugita, Masanori; Sasaki, Mai; Horie, Shigeo; Nakanishi, Koichi; Abe, Takaaki; Aukema, Harold M; Yamaguchi, Tamio; Nagao, Shizuko

    2013-01-01

    Human autosomal recessive polycystic kidney disease (ARPKD) produces kidneys which are massively enlarged due to multiple cysts, hypertension, and congenital hepatic fibrosis characterized by dilated bile ducts and portal hypertension. The PCK rat is an orthologous model of human ARPKD with numerous fluid-filled cysts caused by stimulated cellular proliferation in the renal tubules and hepatic bile duct epithelia, with interstitial fibrosis developed in the liver. We previously reported that a peroxisome proliferator activated receptor (PPAR)-γ full agonist ameliorated kidney and liver disease in PCK rats. Telmisartan is an angiotensin receptor blocker (ARB) used widely as an antihypertensive drug and shows partial PPAR-γ agonist activity. It also has nephroprotective activity in diabetes and renal injury and prevents the effects of drug-induced hepatotoxicity and hepatic fibrosis. In the present study, we determined whether telmisartan ameliorates progression of polycystic kidney and fibrocystic liver disease in PCK rats. Five male and 5 female PCK and normal control (+/+) rats were orally administered 3 mg/kg telmisartan or vehicle every day from 4 to 20 weeks of age. Treatment with telmisartan decreased blood pressure in both PCK and +/+ rats. Blood levels of aspartate amino transferase, alanine amino transferase and urea nitrogen were unaffected by telmisartan treatment. There was no effect on kidney disease progression, but liver weight relative to body weight, liver cystic area, hepatic fibrosis index, expression levels of Ki67 and TGF-β, and the number of Ki67- and TGF-β-positive interstitial cells in the liver were significantly decreased in telmisartan-treated PCK rats. Therefore, telmisartan ameliorates congenital hepatic fibrosis in ARPKD, possibly through the inhibition of signaling cascades responsible for cellular proliferation and interstitial fibrosis in PCK rats. The present results support the potential therapeutic use of ARBs for the

  12. Deficient leptin signaling ameliorates systemic lupus erythematosus lesions in MRL/Mp-Fas lpr mice.

    PubMed

    Fujita, Yoshimasa; Fujii, Takao; Mimori, Tsuneyo; Sato, Tomomi; Nakamura, Takuji; Iwao, Haruka; Nakajima, Akio; Miki, Miyuki; Sakai, Tomoyuki; Kawanami, Takafumi; Tanaka, Masao; Masaki, Yasufumi; Fukushima, Toshihiro; Okazaki, Toshiro; Umehara, Hisanori

    2014-02-01

    Leptin is secreted by adipocytes, the placenta, and the stomach. It not only controls appetite through leptin receptors in the hypothalamus, it also regulates immunity. In the current study, we produced leptin-deficient MRL/Mp-Fas(lpr) mice to investigate the potential role of leptin in autoimmunity. C57BL/6J-ob/ob mice were backcrossed with MRL/Mp-Fas(lpr) mice, which develop human systemic lupus erythematosus (SLE)-like lesions. The effects of leptin deficiency on various SLE-like manifestations were investigated in MRL/Mp-Fas(lpr) mice. The regulatory T cell population in the spleen was analyzed by flow cytometry, and the effects of leptin on regulatory T cells and Th17 cells were evaluated in vitro. Compared with leptin-producing MRL/Mp-Fas(lpr) mice, leptin-deficient MRL/Mp-Fas(lpr) mice showed less marked splenomegaly and a particularly low population of CD3(+)CD4(-)CD8(-)B220(+) T cells (lpr cells). Their serum concentrations of Abs to dsDNA were lower, and renal histological changes at age 20 wk were ameliorated. Regulatory T cells were increased in the spleens of leptin-deficient MRL/Mp-Fas(lpr) mice. Leptin suppressed regulatory T cells and enhanced Th17 cells in vitro. In conclusion, blockade of leptin signaling may be of therapeutic benefit in patients with SLE and other autoimmune diseases.

  13. Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling.

    PubMed

    Lu, Miaomiao; Yin, Nanchang; Liu, Wei; Cui, Xiangfei; Chen, Shuo; Wang, Ermin

    2017-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, partly because of the lack of effective treatments for DN. Curcumin has been shown to exert strong antifibrotic effects in DN, but the underlying mechanisms are not well characterized. In this study, we sought to determine the effects of curcumin on diabetic renal disease in db/db mice and characterize the underlying mechanism of action. We administered curcumin to db/db mice for 16 weeks. In comparison to mock-treated db/db mice, curcumin-treated mice showed diminished renal hypertrophy, reduced mesangial matrix expansion, and a lower level of albuminuria. Furthermore, the upregulated protein and mRNA expressions of collagen IV and fibronectin in the renal cortices of the db/db mice were inhibited by curcumin treatment. Additionally, curcumin treatment was associated with significant reductions in mature interleukin-1β, cleaved caspase-1, and NLRP3 protein levels in the renal cortices of db/db mice as well as in HK-2 cells exposed to high glucose concentration. In summary, curcumin, a potent antifibrotic agent, is a promising treatment for DN, and its renoprotective effects appear to be mediated by the inhibition of NLRP3 inflammasome activity.

  14. Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling

    PubMed Central

    Yin, Nanchang; Liu, Wei; Cui, Xiangfei; Chen, Shuo; Wang, Ermin

    2017-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, partly because of the lack of effective treatments for DN. Curcumin has been shown to exert strong antifibrotic effects in DN, but the underlying mechanisms are not well characterized. In this study, we sought to determine the effects of curcumin on diabetic renal disease in db/db mice and characterize the underlying mechanism of action. We administered curcumin to db/db mice for 16 weeks. In comparison to mock-treated db/db mice, curcumin-treated mice showed diminished renal hypertrophy, reduced mesangial matrix expansion, and a lower level of albuminuria. Furthermore, the upregulated protein and mRNA expressions of collagen IV and fibronectin in the renal cortices of the db/db mice were inhibited by curcumin treatment. Additionally, curcumin treatment was associated with significant reductions in mature interleukin-1β, cleaved caspase-1, and NLRP3 protein levels in the renal cortices of db/db mice as well as in HK-2 cells exposed to high glucose concentration. In summary, curcumin, a potent antifibrotic agent, is a promising treatment for DN, and its renoprotective effects appear to be mediated by the inhibition of NLRP3 inflammasome activity. PMID:28194406

  15. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats.

    PubMed

    Ying, Changjiang; Mao, Yizhen; Chen, Lei; Wang, Shanshan; Ling, Hongwei; Li, Wei; Zhou, Xiaoyan

    2017-03-27

    Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and

  16. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease.

    PubMed

    Cheung, Wai W; Mak, Robert H

    2012-11-01

    Aberrant melanocortin signaling has been implicated in the pathogenesis of wasting in chronic kidney disease (CKD). Previously, we demonstrated that agouti-related peptide (AgRP), a melenocortin-4 receptor antagonist, reduced CKD-associated cachexia in CKD mice. Our previous studies with AgRP utilized dual energy X-ray (DXA) densitometry to assess the body composition in mice (Cheung W, Kuo HJ, Markison S, Chen C, Foster AC, Marks DL, Mak RH. J Am Soc Nephrol 18: 2517-2524, 2007; Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. J Clin Invest 115: 1659-1665, 2005). DXA is unable to differentiate water content in mice, and fluid retention in CKD may lead to an overestimate of lean mass. In this study, we employed quantitative magnetic resonance technique to evaluate body composition change following central administration of AgRP in a CKD mouse model. AgRP treatment improved energy expenditure, total body mass, fat mass, and lean body mass in CKD mouse. We also investigated the effect of CKD-associated cachexia on the signaling pathways leading to wasting in skeletal muscle, as well as whether these changes can be ameliorated by central administration of AgRP. AgRP treatment caused an overall decrease in proinflammatory cytokines, which may be one important mechanism of its effects. Muscle wasting in CKD may be due to the activation of proteolytic pathways as well as inhibition of myogenesis and muscle regeneration processes. Our results suggest that these aberrant pathological pathways leading to muscle wasting in CKD mice were ameliorated by central administration of AgRP.

  17. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease.

    PubMed

    Liu, Shing-Hwa; Wu, Cheng-Tien; Huang, Kuo-How; Wang, Ching-Chia; Guan, Siao-Syun; Chen, Li-Ping; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is an important pathogenic feature in chronic kidney disease and end-stage renal disease, regardless of the initiating insults. A recent study has shown that CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is involved in acute ischemia/reperfusion-related acute kidney injury through oxidative stress induction. However, the influence of CHOP on chronic kidney disease-correlated renal fibrosis remains unclear. Here, we investigated the role of CHOP in unilateral ureteral obstruction (UUO)-induced experimental chronic tubulointerstital fibrosis. The CHOP knockout and wild type mice with or without UUO were used. The results showed that the increased expressions of renal fibrosis markers collagen I, fibronectin, α-smooth muscle actin, and plasminogen activator inhibitor-1 in the kidneys of UUO-treated wild type mice were dramatically attenuated in the kidneys of UUO-treated CHOP knockout mice. CHOP deficiency could also ameliorate lipid peroxidation and endogenous antioxidant enzymes depletion, tubular apoptosis, and inflammatory cells infiltration in the UUO kidneys. These results suggest that CHOP deficiency not only attenuates apoptotic death and oxidative stress in experimental renal fibrosis, but also reduces local inflammation, leading to diminish UUO-induced renal fibrosis. Our findings support that CHOP may be an important signaling molecule in the progression of chronic kidney disease.

  18. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling

    PubMed Central

    Kedzierski, Lukasz; Tate, Michelle D; Hsu, Alan C; Kolesnik, Tatiana B; Linossi, Edmond M; Dagley, Laura; Dong, Zhaoguang; Freeman, Sarah; Infusini, Giuseppe; Starkey, Malcolm R; Bird, Nicola L; Chatfield, Simon M; Babon, Jeffrey J; Huntington, Nicholas; Belz, Gabrielle; Webb, Andrew; Wark, Peter AB; Nicola, Nicos A; Xu, Jianqing; Kedzierska, Katherine

    2017-01-01

    Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza. DOI: http://dx.doi.org/10.7554/eLife.20444.001 PMID:28195529

  19. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  20. Acanthoic acid, a diterpene in Acanthopanax koreanum, ameliorates the development of liver fibrosis via LXRs signals.

    PubMed

    Bai, Ting; Yao, You-li; Jin, Xue-jun; Lian, Li-hua; Li, Qian; Yang, Ning; Jin, Quan; Wu, Yan-ling; Nan, Ji-xing

    2014-07-25

    Liver X receptors (LXRs)-mediated signals in acanthoic acid (AA) ameliorating liver fibrosis were examined in carbon tetrachloride (CCl4)-induced mice and TGF-β stimulated hepatic stellate cells (HSCs). AA was isolated from the root of Acanthopanax koreanum Nakai (Araliaceae). CCl4-treated mice were intraperitoneally injected with 10% CCl4 in olive oil (2 mL/kg for 8 weeks). In AA treated groups, mice were intragastrically administrated with AA (20 mg/kg or 50 mg/kg) 3 times per week for 8 weeks. Administration of AA reduced serum aminotransferase and tissue necrosis factor-α (TNF-α) levels evoked by CCl4, and the reverse of liver damage was further confirmed by histopathological staining. Administration of AA reduced the expression of fibrosis markers and regulated the ratio of MMP-13/TIMP-1, further reversed the development of liver fibrosis. TGF-β (5 ng/ml) was added to activate HSC-T6 cells for 2 h, and then treated with AA (1, 3, or 10 μmol/l) for 24 h before analysis. Cells were collected and proteins were extracted to detect the expressions of LXRs. AA could inhibit the expression of α-SMA stimulated by TGF-β and increase the expression of LXRβ. In vivo and in vitro experiments, AA could modulate liver fibrosis induced by CCl4-treatment via activation of LXRα and LXRβ, while inhibit HSCs activation only via activation of LXRβ. Acanthoic acid might ameliorate liver fibrosis induced by CCl4 via LXRs signals.

  1. Functionally diverse reef-fish communities ameliorate coral disease

    PubMed Central

    Raymundo, Laurie J.; Halford, Andrew R.; Maypa, Aileen P.; Kerr, Alexander M.

    2009-01-01

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs. PMID:19805081

  2. Functionally diverse reef-fish communities ameliorate coral disease.

    PubMed

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  3. Inhibition of MEK1 Signaling Pathway in the Liver Ameliorates Insulin Resistance

    PubMed Central

    Ueyama, Atsunori; Ban, Nobuhiro; Fukazawa, Masanori; Hirayama, Tohru; Takeda, Minako; Yata, Tatsuo; Muramatsu, Hiroyasu; Hoshino, Masaki; Yamamoto, Marii; Matsuo, Masao; Kawashima, Yuka; Iwase, Tatsuhiko; Kitazawa, Takehisa; Kushima, Youichi; Yamada, Yuichiro; Kawabe, Yoshiki

    2016-01-01

    Although mitogen-activated protein kinase kinase (MEK) is a key signaling molecule and a negative regulator of insulin action, it is still uncertain whether MEK can be a therapeutic target for amelioration of insulin resistance (IR) in type 2 diabetes (T2D) in vivo. To clarify whether MEK inhibition improves T2D, we examined the effect of continuous MEK inhibition with two structurally different MEK inhibitors, RO5126766 and RO4987655, in mouse models of T2D. RO5126766 and RO4987655 were administered via dietary admixture. Both compounds decreased blood glucose and improved glucose tolerance in doses sufficient to sustain inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation downstream of MEK in insulin-responsive tissues in db/db mice. A hyperinsulinemic-euglycemic clamp test showed increased glucose infusion rate (GIR) in db/db mice treated with these compounds, and about 60% of the increase was attributed to the inhibition of endogenous glucose production, suggesting that the liver is responsible for the improvement of IR. By means of adenovirus-mediated Mek1 shRNA expression, we confirmed that blood glucose levels are reduced by suppression of MEK1 expression in the liver of db/db mice. Taken together, these results suggested that the MEK signaling pathway could be a novel therapeutic target for novel antidiabetic agents. PMID:26839898

  4. Rasagiline Ameliorates Olfactory Deficits in an Alpha-Synuclein Mouse Model of Parkinson's Disease

    PubMed Central

    Petit, Géraldine H.; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik

    2013-01-01

    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease. PMID:23573275

  5. Reduction of Synaptojanin 1 Ameliorates Synaptic and Behavioral Impairments in a Mouse Model of Alzheimer's Disease

    PubMed Central

    McIntire, Laura Beth J.; Berman, Diego E.; Myaeng, Jennifer; Staniszewski, Agnieszka; Arancio, Ottavio

    2012-01-01

    Decades of research have correlated increased levels of amyloid-β peptide (Aβ) with neuropathological progression in Alzheimer's disease (AD) patients and transgenic models. Aβ precipitates synaptic and neuronal anomalies by perturbing intracellular signaling, which, in turn, may underlie cognitive impairment. Aβ also alters lipid metabolism, notably causing a deficiency of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phospholipid that regulates critical neuronal functions. Haploinsufficiency of the gene encoding synaptojanin 1 (Synj1), a major PI(4,5)P2 phosphatase in the brain, provided protection against PI(4,5)P2 breakdown and electrophysiological deficits attributable to Aβ. Based on these data, we tested whether reduction of Synj1 could rescue cognitive deficits and Aβ-induced morphological alterations of synapses. We found that hemizygous deletion of Synj1 in the context of a mouse model expressing the Swedish mutant of amyloid precursor protein rescues deficits in learning and memory without affecting amyloid load. Synj1 heterozygosity also rescued PI(4,5)P2 deficiency in a synaptosome-enriched fraction from the brain of Tg2576 mice. Genetic disruption of Synj1 attenuated Aβ oligomer-induced changes in dendritic spines of cultured hippocampal neurons, sparing mature spine classes, which corroborates the protective role for Synj1 reduction against Aβ insult at the synapse. These results indicate that Synj1 reduction ameliorates AD-associated behavioral and synaptic deficits, providing evidence that Synj1 and, more generally, phosphoinositide metabolism may be promising therapeutic targets. Our work expands on recent studies identifying lipid metabolism and lipid-modifying enzymes as targets of AD-associated synaptic and behavioral impairment. PMID:23115165

  6. FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy.

    PubMed

    Zhu, Shenglong; Wu, Yunzhou; Ye, Xianlong; Ma, Lei; Qi, Jianying; Yu, Dan; Wei, Yuquan; Lin, Guangxiao; Ren, Guiping; Li, Deshan

    2016-09-01

    The aim of this study is to evaluate the role of fibroblast growth factor 21 (FGF21) in nonalcoholic fatty liver disease (NAFLD) and seek to determine if its therapeutic effect is through induction of autophagy. In this research, Monosodium L-glutamate (MSG)-induced obese mice or normal lean mice were treated with vehicle, Fenofibrate, and recombinant murine FGF21, respectively. After 5 weeks of treatment, metabolic parameters including body weight, blood glucose and lipid levels, hepatic and fat gene expression levels were monitored and analyzed. Also, fat-loaded HepG2 cells were treated with vehicle or recombinant murine FGF21. The expression levels of proteins associated with autophagy were detected by western blot, real-time PCR, and transmission electron microscopy (TEM). Autophagic flux was monitored by laser confocal microscopy and western blot. Results showed that FGF21 significantly reduced body weight (P < 0.01) and serum triglyceride, improved insulin sensitivity, and reversed hepatic steatosis in the MSG model mice. In addition, FGF21 significantly increased the expression of several proteins related to autophagy both in MSG mice and fat-loaded HepG2 cells, such as microtubule associated protein 1 light chain 3, Bcl-2-interacting myosin-like coiled-coil protein-1 (Beclin-1), and autophagy-related gene 5. Furthermore, the evidence of TEM revealed an increased number of autophagosomes and lysosomes in the model cells treated with FGF21. In vitro experimental results also showed that FGF21 remarkably increased autophagic flux. Taken together, FGF21 corrects multiple metabolic parameters on NAFLD in vitro and in vivo by inducing autophagy.

  7. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    PubMed

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  8. Kinase signalling in Huntington's disease.

    PubMed

    Bowles, Kathryn R; Jones, Lesley

    2014-01-01

    Alterations in numerous signal transduction pathways and aberrant activity of specific kinases have been identified in multiple cell and mouse models of Huntington's disease (HD), as well as in human HD brain. The balance and integration of a network of kinase signalling pathways is paramount for the regulation of a wide range of cellular and physiological processes, such as proliferation, differentiation, inflammation, neuronal plasticity and apoptosis. Unbalanced activity within these pathways provides a potential mechanism for many of the pathological phenotypes associated with HD, such as transcriptional dysregulation, inflammation and ultimately neurodegeneration. The characterisation of aberrant kinase signalling regulation in HD has been inconsistent and may be a result of failure to consider integration between multiple signalling pathways, as well as alterations that may occur over time with both age and disease progression. Collating the information about the effect of mHTT on signalling pathways demonstrates that it has wide ranging effects on multiple pro- and anti-apoptotic kinases, resulting in the dysregulation of numerous complex interactions within a dynamic network.

  9. N-acetylcysteine Ameliorates Prostatitis via miR-141 Regulating Keap1/Nrf2 Signaling.

    PubMed

    Wang, Liang-Liang; Huang, Yu-Hua; Yan, Chun-Yin; Wei, Xue-Dong; Hou, Jian-Quan; Pu, Jin-Xian; Lv, Jin-Xing

    2016-04-01

    Chronic prostatitis was the most common type of prostatitis and oxidative stress was reported to be highly elevated in prostatitis patients. In this study, we determined the effect of N-acetylcysteine (NAC) on prostatitis and the molecular mechanism involved in it. Male Sprague-Dawley rats were divided into three groups: control group (group A, n = 20), carrageenan-induced chronic nonbacterial prostatitis (CNP) model group (group B, n = 20), and carrageenan-induced CNP model group with NAC injection (group C, n = 20). Eye score, locomotion score, inflammatory cell count, cyclooxygenase 2 (COX2) expression, and Evans blue were compared in these three groups. The expression of miR-141 was determined by quantitative real-time PCR (qRT-PCR). Moreover, protein expressions of Kelch-like ECH-associated protein-1 (Keap1) and nuclear factor erythroid-2 related factor 2 (Nrf2) and its target genes were examined by Western blot. Luciferase reporter assay was performed in RWPE-1 cells transfected miR-141 mimic or inhibitor and the plasmid carrying 3'-UTR of Keap1. The value of eye score, locomotion score, inflammatory cell count, and Evans blue were significantly decreased in group C, as well as the expression of COX2, when comparing to that of group B. These results indicated that NAC relieved the carrageenan-induced CNP. Further, we found that NAC increased the expression of miR-141 and activated the Keap1/Nrf2 signaling. Luciferase reporter assay revealed that miR-141 mimic could suppress the activity of Keap1 and stimulate the downstream target genes of Nrf2. In addition, miR-141 inhibitor could reduce the effect of NAC on prostatitis. NAC ameliorates the carrageenan-induced prostatitis and prostate inflammation pain through miR-141 regulating Keap1/Nrf2 signaling.

  10. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    PubMed

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  11. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective.

    PubMed

    Valor, Luis M

    2015-02-01

    Transcriptional dysregulation in Huntington's disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.

  12. Phytosphingosine derivatives ameliorate skin inflammation by inhibiting NF-κB and JAK/STAT signaling in keratinocytes and mice.

    PubMed

    Kim, Byung-Hak; Lee, Ji Min; Jung, Yong-Gyu; Kim, Sanghee; Kim, Tae-Yoon

    2014-04-01

    Phytosphingosine is abundant in plants and fungi and is found in mammalian epidermis, including the stratum corneum. Phytosphingosine and its derivatives N-acetyl phytosphingosine and tetraacetyl phytosphingosine are part of the natural defense system of the body. However, these molecules exhibit strong toxicities at high concentrations. We synthesized phytosphingosine derivatives, mYG-II-6 ((Z)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid) and fYG-II-6 ((E)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid), to increase efficacy and decrease toxicity, and the biological activities of the derivatives in the inflammatory response were examined. Both YG-II-6 compounds effectively suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory skin damage and inflammatory response in a mouse model. In addition, topical application of fYG-II-6 suppressed ear swelling and psoriasiform dermatitis in the ears of IL-23-injected mice. Anti-inflammatory and antipsoriatic activities of the phytosphingosine derivatives inhibited NF-κB, JAK/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK) signaling. Finally, the YG-II-6 compounds induced programmed cell death in keratinocytes and mouse skin and were less toxic than phytosphingosine. Our study demonstrated that the phytosphingosine-derived YG-II-6 compounds have much stronger biological potencies than the lead compounds. The YG-II-6 compounds ameliorated inflammatory skin damage. Thus, YG-II-6 compounds are potential topical agents for treating chronic inflammatory skin diseases, such as psoriasis.

  13. Huntington's Disease and Striatal Signaling.

    PubMed

    Roze, Emmanuel; Cahill, Emma; Martin, Elodie; Bonnet, Cecilia; Vanhoutte, Peter; Betuing, Sandrine; Caboche, Jocelyne

    2011-01-01

    Huntington's Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.

  14. Green tea epigallo-catechin-galleate ameliorates the development of obliterative airway disease.

    PubMed

    Liang, Olin D; Kleibrink, Bjoern E; Schuette-Nuetgen, Katharina; Khatwa, Umakanth U; Mfarrej, Bechara; Subramaniam, Meera

    2011-09-01

    Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting this may offer therapeutic benefits. As a potent anti-inflammatory agent, epigallo-catechin-galleate (EGCG), a green tea catechin, has been very effective in ameliorating inflammation in a variety of diseases, providing the rationale for its use in this study in a murine heterotopic tracheal allograft model of OB. Mice treated with EGCG had reduced inflammation, with significantly less neutrophil and macrophage infiltration and significantly reduced fibrosis. On further investigation into the mechanisms, inflammatory cytokines keratinocyte (KC), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α), involved in neutrophil recruitment, were reduced in the EGCG-treated mice. In addition, monocyte chemokine monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by EGCG treatment. Antifibrotic cytokine interferon-γ-inducible protein-10 (IP-10) was increased and profibrotic cytokine transforming growth factor-β (TGF-β) was reduced, further characterizing the antifibrotic effects of EGCG. These findings suggest that EGCG has great potential in ameliorating the development of obliterative airway disease.

  15. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  16. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway.

    PubMed

    Di, Ting-Ting; Ruan, Zhi-Tong; Zhao, Jing-Xia; Wang, Yan; Liu, Xin; Wang, Ying; Li, Ping

    2016-03-01

    The flavonoid astilbin is the major active component extracted from the rhizome of Smilax glabra, which has been widely used in China to treat inflammatory and autoimmune diseases, Psoriasis is a common chronic inflammatory disease in which T helper 17 (Th17) cells play an important role, provoking inflammation. We employed an imiquimod (IMQ)-induced psoriasis-like mouse model to investigate the effect of astilbin in inflammation. Mice were administered 25 to 50mg/kg astilbin. Inflammation of psoriasis-like lesions was assessed by histology, circulating levels of T cells were assessed by flow cytometry and cytokines by bead-based immunoassay. Jak/Stat3 in isolated T cells was assessed by Western blotting and RORγt expression was assessed by RT-PCR. Administration of astilbin ameliorated IMQ-induced keratinocyte proliferation, infiltration of CD3+ cells to psoriatic lesions and ameliorated elevations in circulating CD4+ and CD8+ T cells and inflammatory cytokines (IL-17A, TNF-α, IL-6, IFN-γ and IL-2). In vitro, astilbin inhibited Th17 cell differentiation and IL-17 secretion of isolated T cells, and inhibited Jak/Stat3 signaling in Th17 cells, while up-regulating Stat3 inhibitor SCOSE3 expression in psoriatic lesions. Thus, astilbin likely alleviates psoriasis-like skin lesions by inhibiting Th17 related inflammation. Astilbin represents as an interesting candidate drug for immunoregulation of psoriasis.

  17. Cathepsin E Deficiency Ameliorates Graft-versus-Host Disease and Modifies Dendritic Cell Motility

    PubMed Central

    Mengwasser, Jörg; Babes, Liane; Cordes, Steffen; Mertlitz, Sarah; Riesner, Katarina; Shi, Yu; McGearey, Aleixandria; Kalupa, Martina; Reinheckel, Thomas; Penack, Olaf

    2017-01-01

    Microbial products influence immunity after allogeneic hematopoietic stem cell transplantation (allo-SCT). In this context, the role of cathepsin E (Ctse), an aspartate protease known to cleave bacterial peptides for antigen presentation in dendritic cells (DCs), has not been studied. During experimental acute graft-versus-host disease (GVHD), we found infiltration by Ctse-positive immune cells leading to higher Ctse RNA- and protein levels in target organs. In Ctse-deficient allo-SCT recipients, we found ameliorated GVHD, improved survival, and lower numbers of tissue-infiltrating DCs. Donor T cell proliferation was not different in Ctse-deficient vs. wild-type allo-SCT recipients in MHC-matched and MHC-mismatched models. Furthermore, Ctse-deficient DCs had an intact ability to induce allogeneic T cell proliferation, suggesting that its role in antigen presentation may not be the main mechanism how Ctse impacts GVHD. We found that Ctse deficiency significantly decreases DC motility in vivo, reduces adhesion to extracellular matrix (ECM), and diminishes invasion through ECM. We conclude that Ctse has a previously unrecognized role in regulating DC motility that possibly contributes to reduced DC counts and ameliorated inflammation in GVHD target organs of Ctse-deficient allo-SCT recipients. However, our data do not provide definite proof that the observed effect of Ctse−/− deficiency is exclusively mediated by DCs. A contribution of Ctse−/−-mediated functions in other recipient cell types, e.g., macrophages, cannot be excluded. PMID:28298913

  18. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease.

    PubMed

    Matsunaga, Naoya; Ikeda, Eriko; Kakimoto, Keisuke; Watanabe, Miyako; Shindo, Naoya; Tsuruta, Akito; Ikeyama, Hisako; Hamamura, Kengo; Higashi, Kazuhiro; Yamashita, Tomohiro; Kondo, Hideaki; Yoshida, Yuya; Matsuda, Masaki; Ogino, Takashi; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Nakao, Takaharu; Yasuda, Kaori; Doi, Atsushi; Amamoto, Toshiaki; Aramaki, Hironori; Tsuda, Makoto; Inoue, Kazuhide; Ojida, Akio; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-11-01

    Chronic kidney disease (CKD) is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2) ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif) ligand 2 (Ccl2) was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx) mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK), did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  19. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice

    PubMed Central

    Kishi, Noriyuki; MacDonald, Jessica L.; Ye, Julia; Molyneaux, Bradley J.; Azim, Eiman; Macklis, Jeffrey D.

    2016-01-01

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816

  20. Reducing Timp3 or Vitronectin Ameliorates Disease Manifestations in CADASIL Mice

    PubMed Central

    Capone, Carmen; Cognat, Emmanuel; Ghezali, Lamia; Baron-Menguy, Céline; Aubin, Déborah; Mesnard, Laurent; Stöhr, Heidi; Domenga-Denier, Valérie; Nelson, Mark T.; Joutel, Anne

    2017-01-01

    Objective CADASIL is a genetic paradigm of cerebral small vessel disease caused by NOTCH3 mutations that stereotypically lead to the extracellular deposition of NOTCH3 ectodomain (Notch3ECD) on the vessels. TIMP3 and vitronectin are 2 extracellular matrix proteins that abnormally accumulate in Notch3ECD-containing deposits on brain vessels of mice and patients with CADASIL. Herein, we investigated whether increased levels of TIMP3 and vitronectin are responsible for aspects of CADASIL disease phenotypes. Methods Timp3 and vitronectin expression were genetically reduced in TgNotch3R169C mice, a well-established preclinical model of CADASIL. A mouse overexpressing human TIMP3 (TgBAC-TIMP3) was developed. Disease-related phenotypes, including cerebral blood flow (CBF) deficits, white matter lesions, and Notch3ECD deposition, were evaluated between 6 and 20 months of age. Results CBF responses to neural activity (functional hyperemia), topical application of vasodilators, and decreases in blood pressure (CBF autoregulation) were similarly reduced in TgNotch3R169C and TgBAC-TIMP3 mice, and myogenic responses of brain arteries were likewise attenuated. These defects were rescued in TgNotch3R169C mice by haploinsufficiency of Timp3, although the number of white matter lesions was unaffected. In contrast, haploinsufficiency or loss of vitronectin in TgNotch3R169C mice ameliorated white matter lesions, although CBF responses were unchanged. Amelioration of cerebrovascular reactivity or white matter lesions in these mice was not associated with reduced Notch3ECD deposition in brain vessels. Interpretation Elevated levels of TIMP3 and vitronectin, acting downstream of Notch3ECD deposition, play a role in CADASIL, producing divergent influences on early CBF deficits and later white matter lesions. PMID:26648042

  1. Celastrol ameliorates Cd-induced neuronal apoptosis by targeting NOX2-derived ROS-dependent PP5-JNK signaling pathway.

    PubMed

    Xu, Chong; Wang, Xiaoxue; Gu, Chenjian; Zhang, Hai; Zhang, Ruijie; Dong, Xiaoqing; Liu, Chunxiao; Hu, Xiaoyu; Ji, Xiang; Huang, Shile; Chen, Long

    2017-04-01

    Celastrol, a plant-derived triterpene, has neuroprotective benefit in the models of neurodegenerative disorders that are characterized by overproduction of reactive oxygen species (ROS). Recently, we have reported that cadmium (Cd) activates c-Jun N-terminal kinase (JNK) pathway leading to neuronal cell death by inducing ROS inactivation of protein phosphatase 5 (PP5), and celastrol prevents Cd-activated JNK pathway against neuronal apoptosis. Therefore, we hypothesized that celastrol could hinder Cd induction of ROS-dependent PP5-JNK signaling pathway from apoptosis in neuronal cells. Here, we show that celastrol attenuated Cd-induced expression of NADPH oxidase 2 (NOX2) and its regulatory proteins (p22(phox) , p40(phox) , p47(phox) , p67(phox) , and Rac1), as well as the generation of ROS in PC12 cells and primary neurons. Also, N-acetyl-l-cysteine, a ROS scavenger, potentiated celastrol's inhibition of the events in the cells triggered by Cd, implying neuroprotection by celastrol via blocking Cd-evoked NOX2-derived ROS. Further research revealed that celastrol was involved in the regulation of PP5 inactivation and JNK/c-Jun activation induced by Cd, as celastrol prevented Cd from reducing PP5 expression, and over-expression of wild-type PP5 or dominant negative c-Jun strengthened celastrol's inhibition of Cd-induced phosphorylation of JNK and/or c-Jun, as well as apoptosis in neuronal cells. Of importance, inhibiting NOX2 with apocynin or silencing NOX2 by RNA interference enhanced the inhibitory effects of celastrol on Cd-induced inactivation of PP5, activation of JNK/c-Jun, ROS, and apoptosis in the cells. Furthermore, we noticed that expression of wild-type PP5 or dominant negative c-Jun, or pretreatment with JNK inhibitor SP600125 reinforced celastrol's suppression of Cd-induced NOX2 and its regulatory proteins, and consequential ROS in neuronal cells. These findings indicate that celastrol ameliorates Cd-induced neuronal apoptosis via targeting NOX2-derived

  2. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  3. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation

    PubMed Central

    Liu, Wen; Jiang, Chunhong; Yang, Xiaoling; Sun, Yang; Guo, Wenjie; Xu, Qiang

    2016-01-01

    In this study, we attempted to explore the effect and possible mechanism of Andrographolide on OVA-induced asthma. OVA challenge induced significant airway inflammatory cell recruitment and lung histological alterations, which were ameliorated by Andrographolide. The protein levels of cytokines in bron-choalveolar fluid (BALF) and serum were reduced by Andrographolide administration as well as the mRNA levels in lung tissue. Mechanically, Andrographolide markedly hampered the activation of nuclear factor-κB (NF-κB) and NLRP3 inflammasome both in vivo and vitro thus decreased levels of TNF-α and IL-1β. Finally, we confirmed that ROS scavenging was responsible for Andrographolide's inactivation of NF-κB and NLRP3 inflammasome signaling. Our study here revealed the effect and possible mechanism of Andrographolide on asthma, which may represent a new therapeutic approach for treating this disease. PMID:27793052

  4. Ameliorating effect of luteolin on memory impairment in an Alzheimer's disease model

    PubMed Central

    WANG, HUIMIN; WANG, HUILING; CHENG, HUIXIN; CHE, ZHENYONG

    2016-01-01

    Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorder. It is characterized by the formation of amyloid plaques and neurofibrillary tangles in the brain, the degeneration of cholinergic neurons and neuronal cell death. The present study aimed to investigate the effect of luteolin, a flavonoid compound, on memory impairment in a streptozotocin (STZ)-induced Alzheimer's rat model. Morris water maze and probe tests were performed to examine the effect of luteolin treatment on cognition and memory. The effect of luteolin on CA1 pyramidal layer thickness was also examined. The results demonstrated that luteolin significantly ameliorated the spatial learning and memory impairment induced by STZ treatment. STZ significantly reduced the thickness of CA1 pyramidal layer and treatment of luteolin completely abolished the inhibitory effect of STZ. Our results suggest that luteolin has a potentially protective effect on learning defects and hippocampal structures in AD. PMID:27035793

  5. Wnt signaling in kidney tubulointerstitium during disease.

    PubMed

    Maarouf, Omar H; Ikeda, Yoichiro; Humphreys, Benjamin D

    2015-02-01

    The evolutionary conserved Wnt signaling transduction pathway plays essential roles in a wide array of biologic processes including embryonic development, branching morphogenesis, proliferation and carcinogenesis. Over the past ten years it has become increasingly clear that Wnt signaling also regulates the response of adult organs to disease processes, including kidney disease. This review will focus on the growing literature implicating important roles for Wnt signaling during disease in two separate kidney compartments: the tubular epithelium and the interstitium.

  6. Estrogen amelioration of Aβ-induced defects in mitochondria is mediated by mitochondrial signaling pathway involving ERβ, AKAP and Drp1.

    PubMed

    Sarkar, Saumyendra; Jun, Sujung; Simpkins, James W

    2015-08-07

    Perturbations in dynamic properties of mitochondria including fission, fusion, and movement lead to disruption of energy supply to synapses contributing to neuropathology and cognitive dysfunction in Alzheimer׳s disease (AD). The molecular mechanisms underlying these defects are still unclear. Previously, we have shown that ERβ is localized in the mitochondria and ERβ knock down disrupts mitochondrial functions. Because a selective ERβ modulator (DPN) can activate PKA, and localized PKA signaling in the mitochondrial membrane regulates mitochondrial structure and functions, we reasoned that ERβ signaling in the mitochondrial membrane rescues many of the mitochondrial defects caused by soluble Aβ oligomer. We now report that DPN treatment in primary hippocampal neurons attenuates soluble Aβ-oligomer induced dendritic mitochondrial fission and reduced mobility. Additionally, Aβ treatment reduced the respiratory reserve capacity of hippocampal neuron and inhibited phosphorylation of Drp1 at its PKA site, which induces excessive mitochondrial fission, and DPN treatment ameliorates these inhibitions. Finally, we discovered a direct interaction of ERβ with a mitochondrial resident protein AKAP1, which induces the PKA-mediated local signaling pathway involved in increased oxidative phosphorylation and inhibition of mitochondrial fission. Taken together, our findings highlight the possibility that ERβ signaling pathway may be a useful mitochondria-directed therapeutic target for AD.

  7. Notch signaling in cerebrovascular diseases (Review)

    PubMed Central

    Cai, Zhiyou; Zhao, Bin; Deng, Yanqing; Shangguan, Shouqin; Zhou, Faming; Zhou, Wenqing; Li, Xiaoli; Li, Yanfeng; Chen, Guanghui

    2016-01-01

    The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases. PMID:27574001

  8. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling.

    PubMed

    Sahu, Bidya Dhar; Kumar, Jerald Mahesh; Sistla, Ramakrishna

    2016-02-01

    Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)-DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease.

  9. Depletion of Alveolar Macrophages Ameliorates Virus-Induced Disease following a Pulmonary Coronavirus Infection

    PubMed Central

    Hartwig, Stacey M.; Holman, Kaitlyn M.; Varga, Steven M.

    2014-01-01

    Coronaviruses cause respiratory disease in humans that can range from mild to severe. However, the pathogenesis of pulmonary coronavirus infections is poorly understood. Mouse hepatitis virus type 1 (MHV-1) is a group 2 coronavirus capable of causing severe morbidity and mortality in highly susceptible C3H/HeJ mice. We have previously shown that both CD4 and CD8 T cells play a critical role in mediating MHV-1-induced disease. Here we evaluated the role of alveolar macrophages (AM) in modulating the adaptive immune response and subsequent disease. Depletion of AM using clodronate liposomes administered prior to MHV-1 infection was associated with a significant amelioration of MHV-1-induced morbidity and mortality. AM depletion resulted in a decreased number of virus-specific CD4 T cells in the lung airways. In addition, a significant increase in the frequency and total number of Tregs in the lung tissue and lung airways was observed following MHV-1 infection in mice depleted of AM. Our results indicate that AM play a critical role in modulating MHV-1-induced morbidity and mortality. PMID:24608125

  10. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.

    PubMed

    Ruiz, Stacey; Pergola, Pablo E; Zager, Richard A; Vaziri, Nosratola D

    2013-06-01

    Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.

  11. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles.

    PubMed

    Park, Dae-Ryoung; Park, Kwang-Hyun; Kim, Byung-Ju; Yoon, Chung-Su; Kim, Uh-Hyun

    2015-04-01

    Muscle contraction and insulin induce glucose uptake in skeletal muscle through GLUT4 membrane translocation. Beneficial effects of exercise on glucose homeostasis in insulin-resistant individuals are known to be due to their distinct mechanism between contraction and insulin action on glucose uptake in skeletal muscle. However, the underlying mechanisms are not clear. Here we show that in skeletal muscle, distinct Ca(2+) second messengers regulate GLUT4 translocation by contraction and insulin treatment; d-myo-inositol 1,4,5-trisphosphate/nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose/NAADP are main players for insulin- and contraction-induced glucose uptake, respectively. Different patterns of phosphorylation of AMPK and Ca(2+)/calmodulin-dependent protein kinase II were shown in electrical stimuli (ES)- and insulin-induced glucose uptake pathways. ES-induced Ca(2+) signals and glucose uptake are dependent on glycolysis, which influences formation of NAD(P)-derived signaling messengers, whereas insulin-induced signals are not. High-fat diet (HFD) induced a defect in only insulin-mediated, but not ES-mediated, Ca(2+) signaling for glucose uptake, which is related to a specifically lower NAADP formation. Exercise decreases blood glucose levels in HFD-induced insulin resistance mice via NAADP formation. Thus we conclude that different usage of Ca(2+) signaling in contraction/insulin-stimulated glucose uptake in skeletal muscle may account for the mechanism by which exercise ameliorates glucose homeostasis in individuals with type 2 diabetes.

  12. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease.

    PubMed

    Deng, Yulei; Wei, Jing; Cheng, Jia; Zhong, Ping; Xiong, Zhe; Liu, Aiyi; Lin, Lin; Chen, Shengdi; Yan, Zhen

    2016-06-28

    The loss of synaptic structure and function has been linked to the cognitive impairment of Alzheimer's disease (AD). Dysregulation of the actin cytoskeleton, which plays a key role in regulating the integrity of synapses and the transport of synaptic proteins, has been suggested to contribute to the pathology of AD. In this study, we found that glutamate receptor surface expression and synaptic function in frontal cortical neurons were significant diminished in a familial AD (FAD) model, which was correlated with the reduction of phosphorylated cofilin, a key protein regulating the dynamics of actin filaments. Injecting a cofilin dephosphorylation inhibitory peptide to FAD mice led to the partial rescue of the surface expression of AMPA and NMDA receptor subunits, as well as the partial restoration of AMPAR- and NMDAR-mediated synaptic currents. Moreover, the impaired working memory and novel object recognition memory in FAD mice were partially ameliorated by injections of the cofilin dephosphorylation inhibitory peptide. These results suggest that targeting the cofilin-actin signaling holds promise to mitigate the physiological and behavioral abnormality in AD.

  13. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes.

    PubMed

    Kang, Ok-Hwa; Kim, Sung-Bae; Mun, Su-Hyun; Seo, Yun-Soo; Hwang, Hyeong-Chil; Lee, Young-Mi; Lee, Ho-Seob; Kang, Dae-Gil; Kwon, Dong-Yeul

    2015-03-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by the hepatic manifestation of metabolic syndrome and is the leading cause of chronic liver disease. Steatohepatitis plays a critical role in the process resulting in liver fibrosis and cirrhosis. Puerarin is a herbal product widely used in Asia, and is believed to have therapeutic benefits for alleviating the symptoms of steatohepatitis. The present study was designed to investigate the effects and mechanisms of action of puerarin in reducing lipid accumulation in oleic acid (OA)-treated HepG2 cells. Hepatocytes were treated with OA with or without puerarin to observe lipid accumulation by Oil Red O staining. We also examined hepatic lipid contents (e.g., triacylglycerol and cholesterol) following treatment with puerarin. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were used to measure sterol regulatory element binding protein (SREBP)-1, fatty acid synthase (FAS), peroxisome proliferator-activated receptor α (PPARα) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) protein and mRNA expression, respectively. Our results revealed that puerarin suppressed OA-induced lipid accumulation, and reduced the triacylglycerol and cholesterol levels. Furthermore, puerarin decreased the expression levels of lipogenic enzymes, such as FAS and SREBPs, and increased the expression levels of PPARα, which are critical regulators of hepatic lipid metabolism through the AMPK signaling pathway. These results indicate that puerarin has the same ability to activate AMPK, and reduce SREBP-1 and FAS expression, thus inhibiting hepatic lipogenesis and increasing hepatic antioxidant activity. We found that puerarin exerted a regulatory effect on lipid accumulation by decreasing lipogenesis in hepatocytes. Therefore, puerarin extract may have therapeutic benefits in the treatment of fatty liver and lipid-related metabolic disorders.

  14. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    PubMed Central

    Jang, Yoo-Na; Han, Yoon-Mi; Kim, Hyun-Min; Jeong, Jong-Min

    2017-01-01

    To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs) given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ), phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase (p-ACC), malonyl-CoA decarboxylase (MCD), medium chain acyl-CoA dehydrogenase (MCAD), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1), fatty acid synthase (FAS), and tumor necrosis factor-alpha (TNF-α). Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660). Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway. PMID:28386270

  15. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    PubMed

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD.

  16. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    PubMed

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-05

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  17. Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer's disease

    PubMed Central

    HU, ZHIYING; YANG, YANG; GAO, KEQIANG; RUDD, JOHN A.; FANG, MARONG

    2016-01-01

    Ovarian hormones, including progesterone (P4) and 17 β-estradiol (E2), have been shown to affect memory functions; however, the underlying mechanism whereby ovarian hormone replacement therapy may decrease the risk of Alzheimer's disease (AD) is currently unclear. The present study aimed to investigate the effects of P4 and E2 on spatial and learning memory in an ovariectomized rat model of AD. β-amyloid (Aβ) or saline were stereotaxically injected into the hippocampus of the rats and, after 1 day, ovariectomy or sham operations were performed. Subsequently, the rats were treated with P4 alone, E2 alone, or a combination of P4 and E2. Treatment with E2 and/or P4 was shown to improve the learning and memory functions of the rats, as demonstrated by the Morris water maze test. In addition, treatment with E2 and P4 was associated with increased expression levels of choline acetyltransferase and 5-hydroxytryptamine receptor 2A (5-HT2A), and decreased expression levels of the glial fibrillary acidic protein in the hippocampus of the rats. Furthermore, E2 and P4 treatment significantly attenuated neuronal cell apoptosis, as demonstrated by terminal deoxynucleotidyl transferase dUTP nick end labeling assays; thus suggesting that the ovarian hormones were able to protect against Aβ-induced neuronal cell toxicity. The results of the present study suggested that the neuroprotective effects of P4 and E2 were associated with amelioration of the cholinergic deficit, suppression of apoptotic signals and astrogliosis, and upregulation of 5-HT2A expression levels. Therefore, hormone replacement therapy may be considered an effective strategy for the treatment of patients with cognitive disorders and neurodegenerative diseases. PMID:26889223

  18. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

    PubMed Central

    Powis, Rachael A.; Karyka, Evangelia; Boyd, Penelope; Côme, Julien; Jones, Ross A.; Zheng, Yinan; Szunyogova, Eva; Groen, Ewout J.N.; Hunter, Gillian; Thomson, Derek; Wishart, Thomas M.; Becker, Catherina G.; Parson, Simon H.; Martinat, Cécile; Azzouz, Mimoun; Gillingwater, Thomas H.

    2016-01-01

    The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA. PMID:27699224

  19. Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats

    PubMed Central

    Ali, Badreldin H.; Adham, Sirin A.; Al Za’abi, Mohammed; Waly, Mostafa I.; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine – induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered. PMID:25909514

  20. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats.

    PubMed

    Ali, Badreldin H; Adham, Sirin A; Al Za'abi, Mohammed; Waly, Mostafa I; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine - induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered.

  1. Loss of Polo ameliorates APP-induced Alzheimer’s disease-like symptoms in Drosophila

    PubMed Central

    Peng, Fei; Zhao, Yu; Huang, Xirui; Chen, Changyan; Sun, Lili; Zhuang, Luming; Xue, Lei

    2015-01-01

    The amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer’s disease (AD). Despite extensive studies, little is known about the regulation of APP’s functions in vivo. Here we report that expression of human APP in Drosophila, in the same temporal-spatial pattern as its homolog APPL, induced morphological defects in wings and larval NMJ, larva and adult locomotion dysfunctions, male choice disorder and lifespan shortening. To identify additional genes that modulate APP functions, we performed a genetic screen and found that loss of Polo, a key regulator of cell cycle, partially suppressed APP-induced morphological and behavioral defects in larval and adult stages. Finally, we showed that eye-specific expression of APP induced retina degeneration and cell cycle re-entry, both phenotypes were mildly ameliorated by loss of Polo. These results suggest Polo is an important in vivo regulator of the pathological functions of APP, and provide insight into the role of cell cycle re-entry in AD pathogenesis. PMID:26597721

  2. Loss of Polo ameliorates APP-induced Alzheimer's disease-like symptoms in Drosophila.

    PubMed

    Peng, Fei; Zhao, Yu; Huang, Xirui; Chen, Changyan; Sun, Lili; Zhuang, Luming; Xue, Lei

    2015-11-24

    The amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer's disease (AD). Despite extensive studies, little is known about the regulation of APP's functions in vivo. Here we report that expression of human APP in Drosophila, in the same temporal-spatial pattern as its homolog APPL, induced morphological defects in wings and larval NMJ, larva and adult locomotion dysfunctions, male choice disorder and lifespan shortening. To identify additional genes that modulate APP functions, we performed a genetic screen and found that loss of Polo, a key regulator of cell cycle, partially suppressed APP-induced morphological and behavioral defects in larval and adult stages. Finally, we showed that eye-specific expression of APP induced retina degeneration and cell cycle re-entry, both phenotypes were mildly ameliorated by loss of Polo. These results suggest Polo is an important in vivo regulator of the pathological functions of APP, and provide insight into the role of cell cycle re-entry in AD pathogenesis.

  3. Special low-protein foods ameliorate postprandial off in patients with advanced Parkinson's disease.

    PubMed

    Barichella, Michela; Marczewska, Agnieszka; De Notaris, Roberta; Vairo, Antonella; Baldo, Cinzia; Mauri, Andrea; Savardi, Chiara; Pezzoli, Gianni

    2006-10-01

    Protein intake interferes with levodopa therapy. Patients with advanced Parkinson's disease (PD) should restrict daily protein intake and shift protein intake to the evening. For further reduction of protein intake in the first part of the day, special low-protein products (LPP) should be used instead of normal food products at breakfast and lunch. We studied the efficacy of LPP on postprandial off periods, in PD patients on levodopa therapy. The methods included a randomized, cross-over, single-blind, pilot clinical trial comparing a 2-month balanced diet with a 2-month LPP diet in 18 PD patients with motor fluctuations. The off phases were significantly shorter after LPP diet than after balanced diet (postprandial off, 49 +/- 73 min vs. 79 +/- 72 min and total off, 164 +/- 148 min vs. 271 +/- 174 min, both P < 0.0001). Moreover, a reduction in total off time during LPP diet (3.3 +/- 2.7 hr vs. 4.7 +/- 3.3 hr, P < 0.0001), occurred also in the 9 patients who did not experience subjective benefit. No significant changes in hematological and biochemical variables or body composition were recorded; a slight reduction in body weight (mean, -1.8%) was observed. Consumption of LPP in the first part of the day ameliorates off periods in PD patients, but additional studies including pharmacokinetics are needed.

  4. The Green Tea Catechin Epigallocatechin Gallate Ameliorates Graft-versus-Host Disease

    PubMed Central

    Westphal, Sabine; McGeary, Aleixandria; Rudloff, Sandra; Wilke, Andrea; Penack, Olaf

    2017-01-01

    Allogeneic hematopoetic stem cell transplantation (allo-HSCT) is a standard treatment for leukemia and other hematologic malignancies. The major complication of allo-HSCT is graft-versus-host-disease (GVHD), a progressive inflammatory illness characterized by donor immune cells attacking the organs of the recipient. Current GVHD prevention and treatment strategies use immune suppressive drugs and/or anti-T cell reagents these can lead to increased risk of infections and tumor relapse. Recent research demonstrated that epigallocatechin gallate (EGCG), a component found in green tea leaves at a level of 25–35% at dry weight, may be useful in the inhibition of GVHD due to its immune modulatory, anti-oxidative and anti-angiogenic capacities. In murine allo-HSCT recipients treated with EGCG, we found significantly reduced GVHD scores, reduced target organ GVHD and improved survival. EGCG treated allo-HSCT recipients had significantly higher numbers of regulatory T cells in GVHD target organs and in the blood. Furthermore, EGCG treatment resulted in diminished oxidative stress indicated by significant changes of glutathione blood levels as well as glutathione peroxidase in the colon. In summary, our study provides novel evidence demonstrating that EGCG ameliorates lethal GVHD and reduces GVHD-related target organ damage. Possible mechanisms are increased regulatory T cell numbers and reduced oxidative stress. PMID:28103249

  5. Apoptotic signaling through Fas and TNF receptors ameliorates GVHD in mobilized peripheral blood grafts.

    PubMed

    Mizrahi, K; Yaniv, I; Ash, S; Stein, J; Askenasy, N

    2014-05-01

    Mobilized peripheral blood (mPB) is a prevalent source of hematopoietic progenitors for transplantation; however, allogeneic and haploidentical transplants are often accompanied by severe GVHD. Following the observation that murine GVHD is ameliorated by pretransplant donor cell exposure to Fas-ligand (FasL) without host-specific sensitization, we assessed the susceptibility of mPB cells to spontaneous and receptor-induced apoptosis as a possible approach to GVHD prophylaxis. Short incubation for 4 h resulted in spontaneous apoptosis of 50% of the T and B lymphocytes and 60% myeloid cells. Although expression of Fas and TNF-R1 was proportionate to fractional apoptosis, cell death was dominated by spontaneous apoptosis. Functional assays revealed that the death receptors modulated mPB graft composition as compared with incubation in medium, without detectable quantitative variations. Removal of dead cells increased the frequency of mPB myeloid progenitors (P<0.001 vs medium), and recipients of mPB exposed to death ligands displayed reduced GVHD (P<0.01 vs medium) and improved survival following lipopolysacharide stimulation. mPB grafts exposed to the apoptotic challenge retained SCID reconstituting potential and graft versus tumor activity. These data emphasize that short-term exposure of mPB grafts to an apoptotic challenge is effective in reduction of GVHD effector activity.

  6. Intracerebroventricular Infusion of Angiotensin-(1-7) Ameliorates Cognitive Impairment and Memory Dysfunction in a Mouse Model of Alzheimer's Disease.

    PubMed

    Uekawa, Ken; Hasegawa, Yu; Senju, Satoru; Nakagata, Naomi; Ma, Mingjie; Nakagawa, Takashi; Koibuchi, Nobutaka; Kim-Mitsuyama, Shokei

    2016-04-23

    This work was performed to test our hypothesis that angiotensin-(1-7) can ameliorate cognitive impairment and cerebrovascular reactivity in 5XFAD mice, a useful model of Alzheimer's disease. 5XFAD mice received intracerebroventricular infusion of (1) vehicle, (2) angiotensin-(1-7), or (3) angiotensin-(1-7)+A779, a specific Mas receptor antagonist, for 4 weeks. Angiotensin-(1-7), through Mas receptor, significantly ameliorated cognitive impairment in 5XFAD mice. As estimated by acetazolamide-induced increase in cerebral blood flow, angiotensin-(1-7), through Mas receptor, enhanced cerebrovascular reactivity in 5XFAD mice. In conclusion, angiotensin-(1-7)/Mas receptor axis improves cognitive function and cerebrovascular function in a mouse model of Alzheimer's disease.

  7. N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway.

    PubMed

    Zhang, Ping; Guo, Zhen-Fang; Xu, Yu-Ming; Li, Yu-Sheng; Song, Jing-Gui

    2016-10-01

    N-Butylphthalide (NBP) has been known to have potential neuroprotective effects in Alzheimer's disease and stroke animal models. Hepatocyte-growth factor (HGF), with strong angiogenic properties, exerted protective role in brain injury. The present study was aimed to investigate the possible anti-inflammatory effects of NBP on the brain injury of rats with cerebral ischemia reperfusion (IR) and astrocytes activation induced by lipopolysaccharide (LPS) treatment. Our results showed that cerebral IR induced brain damage with down-regulation of HGF and astrocytes activation. NBP treatment significantly increased HGF expression and activated cMet/PI3K/AKT signaling pathway, stimulating mTOR activity and suppressing apoptosis in brain tissues. Also NBP inhibited pro-inflammatory cytokines expression, including IL-6, IL-1β, and TNFα, via TLR4/NF-κB suppression. Anti-HGF treatment enhanced TLR4 expression while HGF could suppress TLR4 activation and its down-streaming signals, attenuating inflammation finally. Notably, NBP up-regulated HGF and down-regulated TLR4 expression significantly in the astrocytes combined with the treatment of TLR4 inhibitor than the cells only treated with TLR4 inhibitor, suggesting that NBP could further suppress TLR4 activation, suggesting that NBP might impede TLR4 through up-regulating HGF expression. These results suggested that NBP treatment significantly ameliorated cerebral IR-induced brain injury by inhibiting TLR4/NF-κB-associated inflammation regulated by HGF.

  8. Inhibition of cereblon by fenofibrate ameliorates alcoholic liver disease by enhancing AMPK.

    PubMed

    Kim, Yong Deuk; Lee, Kwang Min; Hwang, Seung-Lark; Chang, Hyeun Wook; Kim, Keuk-Jun; Harris, Robert A; Choi, Hueng-Sik; Choi, Won-Sik; Lee, Sung-Eun; Park, Chul-Seung

    2015-12-01

    Alcohol consumption exacerbates alcoholic liver disease by attenuating the activity of AMP-activated protein kinase (AMPK). AMPK is activated by fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, and inhibited by direct interaction with cereblon (CRBN), a component of an E3 ubiquitin ligase complex. Based on these preliminary findings, we investigated that CRBN would be up-regulated in the liver by alcohol consumption and that CRBN deficiency would ameliorate hepatic steatosis and pro-inflammatory responses in alcohol-fed mice by increasing AMPK activity. Wild-type, CRBN and PPARα null mice were fed an alcohol-containing liquid diet and administered with fenofibrate. Gene expression profiles and metabolic changes were measured in the liver and blood of these mice. Expression of CRBN, cytochrome P450 2E1 (CYP2E1), lipogenic genes, pro-inflammatory cytokines, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were increased in the Lieber-DeCarli alcohol-challenged mice. Fenofibrate attenuated the induction of CRBN and reduced hepatic steatosis and pro-inflammatory markers in these mice. Ablation of the gene encoding CRBN produced the same effect as fenofibrate. The increase in CRBN gene expression by alcohol and the reduction of CRBN expression by fenofibrate were negated in PPARα null mice. Fenofibrate increased the recruitment of PPARα on CRBN gene promoter in WT mice but not in PPARα null mice. Silencing of AMPK prevented the beneficial effects of fenofibrate. These results demonstrate that activation of PPARα by fenofibrate alleviates alcohol-induced hepatic steatosis and inflammation by reducing the inhibition of AMPK by CRBN. CRBN is a potential therapeutic target for the alcoholic liver disease.

  9. Disease implication of hyper-Hippo signalling

    PubMed Central

    Wang, Shu-Ping

    2016-01-01

    The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. PMID:27805903

  10. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    PubMed Central

    Wu, Xu; Gu, Wenyu; Lu, Huan; Liu, Chengying; Yu, Biyun; Xu, Hui; Tang, Yaodong

    2016-01-01

    Obstructive sleep apnea (OSA) associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered tissue damage. Receptor for advanced glycation end product (RAGE) and its ligand high mobility group box 1 (HMGB1) are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE), the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1) normal air (NA), (2) CIH, (3) CIH+sRAGE, and (4) NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6), apoptotic (Bcl-2/Bax), and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK) signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways. PMID:27688824

  11. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    PubMed Central

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  12. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    PubMed

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  13. Lysophosphatidylinositol Signalling and Metabolic Diseases

    PubMed Central

    Arifin, Syamsul A.; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  14. Plumbagin Ameliorates CCl4-Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway

    PubMed Central

    Chen, Si; Chen, Yi; Chen, Bi; Cai, Yi-jing; Zou, Zhuo-lin; Wang, Jin-guo; Lin, Zhuo; Wang, Xiao-dong; Fu, Li-yun; Hu, Yao-ren; Chen, Yong-ping; Chen, Da-zhi

    2015-01-01

    Epidermal growth factor (EGF) and its signaling molecules, EGFreceptor (EGFR) and signal transducer and activator of transcription factor 3 (STAT3), have been considered to play a role in liver fibrosis and cirrhosis. Plumbagin (PL) is an extracted component from the plant and has been used to treat different kinds of cancer. However, its role in regulation of EGFR and STAT3 during liver fibrosis has not been investigated. In this study, the effects of PL on the regulation of EGFR and STAT3 were investigated in carbon tetrachloride (CCl4) induced liver fibrosis and hepatic stellate cells (HSC-T6). PL significantly attenuated liver injury and fibrosis in CCl4 treated rats. At concentrations of 2 to 6 μM, PL did not induce significant cytotoxicity of HSC-T6 cells. Moreover, PL reduced phosphorylation of EGFR and STAT3 in both fibrotic liver and heparin-binding EGF-like growth factor (HB-EGF) treated HSC-T6 cells. Furthermore, PL reduced the expression of α-SMA, EGFR, and STAT3 in both fibrotic liver and HB-EGF treated HSC-T6 cells. In conclusion, plumbagin could ameliorate the development of hepatic fibrosis through its downregulation of EGFR and STAT3 in the liver, especially in hepatic stellate cells. PMID:26550019

  15. Knockdown of toll-like receptor 4 signaling pathways ameliorate bone graft rejection in a mouse model of allograft transplantation

    PubMed Central

    Hsieh, Jeng-Long; Shen, Po-Chuan; Wu, Po-Ting; Jou, I-Ming; Wu, Chao-Liang; Shiau, Ai-Li; Wang, Chrong-Reen; Chong, Hao-Earn; Chuang, Shu-Han; Peng, Jia-Shiou; Chen, Shih-Yao

    2017-01-01

    Non-union occurring in structural bone grafting is a major problem in allograft transplantation because of impaired interaction between the host and graft tissue. Activated toll-like receptor (TLR) induces inflammatory cytokines and chemokines and triggers cell-mediated immune responses. The TLR-mediated signal pathway is important for mediating allograft rejection. We evaluated the effects of local knockdown of the TLR4 signaling pathway in a mouse segmental femoral graft model. Allografts were coated with freeze-dried lentiviral vectors that encoded TLR4 and myeloid differentiation primary response gene 88 (MyD88) short-hairpin RNA (shRNA), which were individually transplanted into the mice. They were assessed morphologically, radiographically, and histologically for tissue remodeling. Union occurred in autografted but not in allografted mice at the graft and host junctions after 4 weeks. TLR4 and MyD88 expression was up-regulated in allografted mice. TLR4 and MyD88 shRNAs inhibited TLR4 and MyD88 expression, which led to better union in the grafted sites. More regulatory T-cells in the draining lymph nodes suggested inflammation suppression. Local inhibition of TLR4 and MyD88 might reduce immune responses and ameliorate allograft rejection. PMID:28393847

  16. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

    PubMed

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-01-04

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

  17. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice

    PubMed Central

    Arumugam, Paritha I.; Mullins, Eric S.; Shanmukhappa, Shiva Kumar; Monia, Brett P.; Loberg, Anastacia; Shaw, Maureen A.; Rizvi, Tilat; Wansapura, Janaka; Degen, Jay L.

    2015-01-01

    Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide “gapmer” to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FIIlox/− mice (constitutively carrying ∼10% normal FII) and FIIWT mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies. PMID:26286849

  18. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    PubMed Central

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  19. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice.

    PubMed

    Arumugam, Paritha I; Mullins, Eric S; Shanmukhappa, Shiva Kumar; Monia, Brett P; Loberg, Anastacia; Shaw, Maureen A; Rizvi, Tilat; Wansapura, Janaka; Degen, Jay L; Malik, Punam

    2015-10-08

    Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide "gapmer" to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FII(lox/-) mice (constitutively carrying ∼10% normal FII) and FII(WT) mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies.

  20. Ameliorative effects of sodium bentonite on phagocytosis and Newcastle disease antibody formation in broiler chickens during aflatoxicosis.

    PubMed

    Ibrahim, I K; Shareef, A M; Al-Joubory, K M

    2000-10-01

    The ameliorative effect of graded levels of dietary sodium bentonite (0.2, 0.4 and 0.6 per cent wt/wt of feed) on in vitro-impaired phagocytosis and suppressed immune response to Newcastle disease vaccine during aflatoxicosis (AF) in broiler chicks was investigated. Both percentage and mean of phagocytic activities were decreased significantly (P < 0.05) in chicks fed 2.5 mg aflatoxin per kg feed. The addition of sodium bentonite was significantly effective in ameliorating the negative effect of AF on the percentage and mean of phagocytosis. The presence of AF alone in the diet depressed the immune response of chicks as measured by haemagglutination inhibition (HI) test. Sodium bentonite was also effective in ameliorating the suppressive effect of AF on the HI -titre in chicks vaccinated against Newcastle disease. The best results obtained when sodium bentonite was added at the rate of 0.4 per cent wt/wt of feed to the AF-containing diets.

  1. Amelioration of acute graft-versus-host disease by NKG2A engagement on donor T cells.

    PubMed

    Kawamura, Hiroki; Yagita, Hideo; Nisizawa, Tetsuro; Izumi, Nakako; Miyaji, Chikako; Vance, Russell E; Raulet, David H; Okumura, Ko; Abo, Toru

    2005-08-01

    Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic bone marrow transplantation, which is caused by donor T cells specific for host alloantigens. In a murine model, we found that donor T cells expressed a natural killer cell inhibitory receptor, CD94/NKG2A, during the course of aGVHD. Administration of an anti-NKG2A mAb markedly inhibited the expansion of donor T cells and ameliorated the aGVHD pathologies. These results suggested that the CD94/NKG2A inhibitory receptor expressed on host-reactive donor T cells can be a novel target for the amelioration of aGVHD.

  2. Wnt signaling in development and disease.

    PubMed

    Freese, Jennifer L; Pino, Darya; Pleasure, Samuel J

    2010-05-01

    The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years, it has become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review, we turn to the ways that defects in Wnt signaling lead to neurologic disease.

  3. Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture

    PubMed Central

    Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Wicks, Shawna E.; Bermudez, Estrellita M.; Mendoza, Tamra M.; Ribnicky, David; Cefalu, William T.; Mynatt, Randall L.

    2014-01-01

    Aims Bioactives of Artemisia dracunculus L. (termed PMI 5011) have been shown to improve insulin action by increasing insulin signalling in skeletal muscle. However, it has not known if PMI 5011’s effects are retained during an inflammatory condition. We examined the attenuation of insulin action and whether PMI 5011 enhances insulin signalling in the inflammatory environment with elevated cytokines. Methods Muscle cell cultures derived from lean, overweight and diabetic obese subjects were used. Expression of pro-inflammatory genes and inflammatory response of human myotubes were evaluated by RT-PCR. Insulin signalling and activation of inflammatory pathways in human myotubes were evaluated by Multiplex protein assays. Results We found increased gene expression of MCP1 and TNFα, and basal activity of the NFkB pathway in myotubes derived from diabetic-obese subjects as compared to myotubes derived from normal-lean subjects. In line with this, basal Akt phosphorylation (Ser473) was significantly higher, while insulin-stimulated phosphorylation of Akt (Ser473) was lower in myotubes from normal-overweight and diabetic-obese subjects compared to normal-lean subjects. PMI 5011 treatment reduced basal phosphorylation of Akt and enhanced insulin-stimulated phosphorylation of Akt in the presence of cytokines in human myotubes. PMI 5011 treatment led to an inhibition of cytokine-induced activation of inflammatory signalling pathways such as Erk1/2 and IkBα-NFkB and moreover, NFkB target gene expression, possibly by preventing further propagation of the inflammatory response within muscle tissue. Conclusions PMI 5011 improved insulin sensitivity in diabetic-obese myotubes to the level of normal-lean myotubes despite the presence of pro-inflammatory cytokines. PMID:24521217

  4. RNA interference against discoidin domain receptor 2 ameliorates alcoholic liver disease in rats.

    PubMed

    Luo, Zheng; Liu, Huimin; Sun, Xiaomeng; Guo, Rong; Cui, Ruibing; Ma, Xiangxing; Yan, Ming

    2013-01-01

    Discoidin domain receptor 2 (DDR2) is involved in fibrotic disease. However, the exact pathogenic implications of the receptor in early alcoholic liver disease are still controversial. We constructed plasmid vectors encoding short-hairpin RNA against DDR2 to investigate its role in alcoholic liver disease in an immortalized rat hepatic stellate cell line, HSC-T6, and in rats by MTT, RT-PCR and western blot analyses; immunohistochemistry and electron microscopy. Alcohol-induced upregulation of DDR2 was associated with the expression of matrix metalloproteinase 2, the transforming growth factor β1 signaling pathway and tissue inhibitor of metalloproteinase 1; collagen deposition; and extracellular matrix remodeling. Inhibition of DDR2 decreased HSC-T6 cell proliferation and liver injury in rats with 10-week-induced alcoholic liver disease. DDR2 may have an important role in the pathogenesis of early-stage alcoholic liver disease. Silencing DDR2 may be effective in preventing early-stage alcoholic liver disease.

  5. Amelioration of Inflammatory Cytokines Mix Stimulation: A Pretreatment of CD137 Signaling Study on VSMC

    PubMed Central

    Zhong, Wei; Li, Xiao Yang; Wang, Zhong Qun; Shao, Chen; Wang, Cui Ping; Chen, Rui

    2017-01-01

    Previous studies showed little CD137 expressed in normal vascular smooth muscle cells (VSMCs) and it is important to find a valid way to elevate it before studying its function. The level of CD137 was detected by RT-PCR, western blot, and flow cytometry, respectively. CD137 signaling activation was activated by agonist antibody and measured through phenotype transformation indicators and cell functions. Proteins in supernatants were detected by ELISA. The total CD137 elevates under different concentrations of CM treatment. Among these, 25 ng/ml CM treatment increases the CD137 expression mostly. However, flow cytometry demonstrates that 10 ng/ml CM elevates surface CD137 more significantly than other concentrations and reaches the peak at 36 h. At 10 ng/ml, but not 25 ng/ml CM pretreatment, the levels of phenotype related proteins such as SM-MHC, α-SMA, and calponin decrease while vimentin and NFATc1 increase, suggesting that VSMCs undergo phenotype transformation. Transwell, CCK-8 assay, and ELISA showed that the ability of VSMCs viability, migration, and IL-2 and IL-6 secretion induced by CD137 signaling was significantly enhanced by the pretreatment of 10 ng/ml CM. This research suggested that 10 ng/ml CM pretreatment is more reasonable than other concentrations when exploring CD137 function in VSMCs. PMID:28280290

  6. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression.

    PubMed

    Ou, Yu; Ren, Zhiheng; Wang, Jianhui; Yang, Xuegan

    2016-03-05

    The therapeutic potential and molecular mechanism of phycocyanin from Spirulina on alloxan-induced diabetes mice was investigated. In the experiment, 4-week treatment of phycocyanin at the dose of 100 and 200 mg/kg body weight in alloxan-induced diabetes mice resulted in improved metrics in comparison with alloxan-induced diabetes group. These metrics include blood glucose levels, glycosylated serum protein (GSP), glycosylated hemoglobin (GHb) and fasting serum insulin (FINS) levels. As its molecular mode of action, phycocyanin leads to the increase of IRS-1 tyrosine phosphorylation and the decrease of IRS-1 serine phosphorylation, also accompany with increased level of Akt phosphorylation on Ser473 in the liver and pancreas in diabetic mice. In addition, phycocyanin treatment enhanced the glucokinase (GK) level in the liver and pancreas, and the glucokinase regulatory protein (GKRP) level in the liver in diabetic mice. The results suggest that phycocyanin ameliorates alloxan-induced diabetes mellitus in mice by activating insulin signaling pathway and GK expression in pancreas and liver in diabetic mice.

  7. Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway.

    PubMed

    Wang, Yujue; Chen, Guang; Yu, Xiangdong; Li, Yunchao; Zhang, Li; He, Zongze; Zhang, Nannan; Yang, Xiuping; Zhao, Yansheng; Li, Na; Qiu, Hong

    2016-08-01

    Ischemic stroke can activate multiple transcription factors and cause inflammatory reactions, which involve pattern recognition receptors with immunostimulatory effects. Toll-like receptor 4 (TLR4) is one of the receptors related to innate immunity and several inflammatory reactions. The promising anti- inflammatory activity of salvianolic acid B (SAB) had been previously reported, but its effect on ischemic stroke remains unknown. An oxygen-glucose deprivation and reoxygenation (OGD/R) model in vitro and a middle cerebral artery occlusion (MCAO) model in vivo were used in this paper, and the results showned that SAB remarkably increased the viabilities of PC12 cells and primary cortical neurons after OGD/R injury and notably prevented cerebral ischemia/reperfusion (I/R) injury. SAB also significantly ameliorated NeuN release from primary cortical neurons. Further research indicated that the neuroprotection of SAB was completed through inhibiting the TLR4/MyD88/TRAF6 signaling pathway. The blocking of TLR4 by SAB also restrained NF-kB transcriptional activity and pro-inflammatory cytokine responses (IL-1β, IL-6, and TNF-α). These findings supply a new insight that will aid in clarifying the effect of SAB against cerebral I/R injury and provide the development of SAB as a potential candidate for treating ischemic stroke.

  8. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors

    PubMed Central

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.

    2015-01-01

    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  9. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling

    PubMed Central

    Liu, Shenbin; Li, Qian; Zhang, Meng-Ting; Mao-Ying, Qi-Liang; Hu, Lang-Yue; Wu, Gen-Cheng; Mi, Wen-Li; Wang, Yan-Qing

    2016-01-01

    Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1β protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1β maturation and Pro-IL-1β synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1β by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes. PMID:27381056

  10. Amelioration of Experimental Autoimmune Encephalomyelitis by Plumbagin through Down-Regulation of JAK-STAT and NF-κB Signaling Pathways

    PubMed Central

    Bai, Yang; Li, Zhen; Liu, Lande; Luo, Jian; Liu, Mingyao; Chen, Huaqing

    2011-01-01

    Plumbagin(PL), a herbal compound derived from roots of the medicinal plant Plumbago zeylanica, has been shown to have immunosuppressive properties. Present report describes that PL is a potent novel agent in control of encephalitogenic T cell responses and amelioration of mouse experimental autoimmune encephalomyelitis (EAE), through down-regulation of JAK-STAT pathway. PL was found to selectively inhibit IFN-γ and IL-17 production by CD4+ T cells, which was mediated through abrogated phosphorylation of JAK1 and JAK2. Consistent with IFN-γ and IL-17 reduction was suppressed STAT1/STAT4/T-bet pathway which is critical for Th1 differentiation, as well as STAT3/ROR pathway which is essential for Th17 differentiation. In addition, PL suppressed pro-inflammatory molecules such as iNOS, IFN-γ and IL-6, accompanied by inhibition of IκB degradation as well as NF-κB phosphorylation. These data give new insight into the novel immune regulatory mechanism of PL and highlight the great value of this kind of herb compounds in probing the complex cytokine signaling network and novel therapeutic targets for autoimmune diseases. PMID:22066025

  11. Linker molecules between laminins and dystroglycan ameliorate laminin-alpha2-deficient muscular dystrophy at all disease stages.

    PubMed

    Meinen, Sarina; Barzaghi, Patrizia; Lin, Shuo; Lochmüller, Hanns; Ruegg, Markus A

    2007-03-26

    Mutations in laminin-alpha2 cause a severe congenital muscular dystrophy, called MDC1A. The two main receptors that interact with laminin-alpha2 are dystroglycan and alpha7beta1 integrin. We have previously shown in mouse models for MDC1A that muscle-specific overexpression of a miniaturized form of agrin (mini-agrin), which binds to dystroglycan but not to alpha7beta1 integrin, substantially ameliorates the disease (Moll, J., P. Barzaghi, S. Lin, G. Bezakova, H. Lochmuller, E. Engvall, U. Muller, and M.A. Ruegg. 2001. Nature. 413:302-307; Bentzinger, C.F., P. Barzaghi, S. Lin, and M.A. Ruegg. 2005. Matrix Biol. 24:326-332.). Now we show that late-onset expression of mini-agrin still prolongs life span and improves overall health, although not to the same extent as early expression. Furthermore, a chimeric protein containing the dystroglycan-binding domain of perlecan has the same activities as mini-agrin in ameliorating the disease. Finally, expression of full-length agrin also slows down the disease. These experiments are conceptual proof that linking the basement membrane to dystroglycan by specifically designed molecules or by endogenous ligands, could be a means to counteract MDC1A at a progressed stage of the disease, and thus opens new possibilities for the development of treatment options for this muscular dystrophy.

  12. Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor β1 production and downstream signal transduction.

    PubMed

    Zheng, Long; Zhang, Chao; Li, Long; Hu, Chao; Hu, Mushuang; Sidikejiang, Niyazi; Wang, Xuanchuan; Lin, Miao; Rong, Ruiming

    2017-04-01

    Previous studies have demonstrated the potential antifibrotic effects of baicalin in vitro, via examination of 21 compounds isolated from plants. However, its biological activity and underlying mechanisms of action in vivo remain to be elucidated. The present study aimed to evaluate the effect of baicalin on renal fibrosis in vivo, and the potential signaling pathways involved. A unilateral ureteral obstruction (UUO)‑induced renal fibrosis model was established using Sprague‑Dawley rats. Baicalin was administrated intraperitoneally every 2 days for 10 days. The degree of renal damage and fibrosis was investigated by histological assessment, and detection of fibronectin and collagen I mRNA expression levels. Epithelial‑mesenchymal transition (EMT) markers, transforming growth factor-β1 (TGF-β1) levels and downstream phosphorylation of mothers against decapentaplegic 2/3 (Smad2/3) were examined in vivo and in an NRK‑52E rat renal tubular cell line in vitro. Baicalin was demonstrated to markedly ameliorate renal fibrosis and suppress EMT, as evidenced by reduced interstitial collagen accumulation, decreased fibronectin and collagen I mRNA expression levels, upregulation of N‑ and E‑cadherin expression levels, and downregulation of α‑smooth muscle actin and vimentin expression. Furthermore, baicalin decreased TGF‑β1 expression levels in serum and kidney tissue following UUO, and suppressed Smad2/3 phosphorylation in rat kidney tissue. In vitro studies identified that baicalin may inhibit the phosphorylation of Smad2/3 under the same TGF‑β1 concentration. In conclusion, baicalin may protect against renal fibrosis, potentially via inhibition of TGF‑β1 production and its downstream signal transduction.

  13. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism.

    PubMed

    Hontecillas, Raquel; Roberts, Paul C; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2013-06-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.

  14. Sex Steroid Signaling: Implications for Lung Diseases

    PubMed Central

    Sathish, Venkatachalem; Martin, Yvette N.; Prakash, Y.S.

    2015-01-01

    There is increasing recognition that the sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine. PMID:25595323

  15. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis

    PubMed Central

    Miller, Katharina J.; Raulefs, Susanne; Kong, Bo; Steiger, Katja; Regel, Ivonne; Gewies, Andreas; Kleeff, Jörg; Michalski, Christoph W.

    2015-01-01

    Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas. PMID:26618925

  16. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling

    PubMed Central

    Yu, Liming; Gong, Bing; Duan, Weixun; Fan, Chongxi; Zhang, Jian; Li, Zhi; Xue, Xiaodong; Xu, Yinli; Meng, Dandan; Li, Buying; Zhang, Meng; Bin Zhang; Jin, Zhenxiao; Yu, Shiqiang; Yang, Yang; Wang, Huishan

    2017-01-01

    Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and the underlying mechanisms remain unknown. We hypothesize that melatonin ameliorates MI/R injury in type 1 diabetic rats by preserving mitochondrial function via AMPK-PGC-1α-SIRT3 signaling pathway. Both our in vivo and in vitro data showed that melatonin reduced MI/R injury by improving cardiac function, enhancing mitochondrial SOD activity, ATP production and oxidative phosphorylation complex (II, III and IV), reducing myocardial apoptosis and mitochondrial MDA, H2O2 generation. Importantly, melatonin also activated AMPK-PGC-1α-SIRT3 signaling and increased SOD2, NRF1 and TFAM expressions. However, these effects were abolished by Compound C (a specific AMPK signaling blocker) administration. Additionally, our cellular experiment showed that SIRT3 siRNA inhibited the cytoprotective effect of melatonin without affecting p-AMPK/AMPK ratio and PGC-1α expression. Taken together, we concluded that melatonin preserves mitochondrial function by reducing mitochondrial oxidative stress and enhancing its biogenesis, thus ameliorating MI/R injury in type 1 diabetic state. AMPK-PGC1α-SIRT3 axis plays an essential role in this process. PMID:28120943

  17. TGF-β signalling and liver disease.

    PubMed

    Fabregat, Isabel; Moreno-Càceres, Joaquim; Sánchez, Aránzazu; Dooley, Steven; Dewidar, Bedair; Giannelli, Gianluigi; Ten Dijke, Peter

    2016-06-01

    The transforming growth factor-beta (TGF-β) family signalling pathways play essential roles in the regulation of different cellular processes, including proliferation, differentiation, migration or cell death, which are essential for the homeostasis of tissues and organs. Because of the diverse and pleiotropic TGF-β functions, deregulation of its pathways contributes to human disease. In the case of the liver, TGF-β signalling participates in all stages of disease progression, from initial liver injury through inflammation and fibrosis, to cirrhosis and cancer. TGF-β has cytostatic and apoptotic effects in hepatocytes, promoting liver differentiation during embryogenesis and physiological liver regeneration. However, high levels of TGF-β, as a consequence of chronic liver damage, result in activation of stellate cells to myofibroblasts and massive hepatocyte cell death, which contributes to the promotion of liver fibrosis and later cirrhosis. During liver tumorigenesis, TGF-β may behave as a suppressor factor at early stages; however, there is strong evidence that overactivation of TGF-β signalling might contribute to later tumour progression, once cells escape from its cytostatic effects. For these reasons, targeting the TGF-β signalling pathway is being explored to counteract liver disease progression. In this review, we aim to shed light on the state-of-the-art in the signalling pathways induced by TGF-β that are involved in different stages of liver physiology and pathology.

  18. Causal Drift, Robust Signaling, and Complex Disease

    PubMed Central

    Wagner, Andreas

    2015-01-01

    The phenotype of many regulatory circuits in which mutations can cause complex, polygenic diseases is to some extent robust to DNA mutations that affect circuit components. Here I demonstrate how such mutational robustness can prevent the discovery of genetic disease determinants. To make my case, I use a mathematical model of the insulin signaling pathway implicated in type 2 diabetes, whose signaling output is governed by 15 genetically determined parameters. Using multiple complementary measures of a parameter’s importance for this phenotype, I show that any one disease determinant that is crucial in one genetic background will be virtually irrelevant in other backgrounds. In an evolving population that drifts through the parameter space of this or other robust circuits through DNA mutations, the genetic changes that can cause disease will vary randomly over time. I call this phenomenon causal drift. It means that mutations causing disease in one (human or non-human) population may have no effect in another population, and vice versa. Causal drift casts doubt on our ability to infer the molecular mechanisms of complex diseases from non-human model organisms. PMID:25774510

  19. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    PubMed Central

    Fu, Amy K. Y.; Hung, Kwok-Wang; Yuen, Michael Y. F.; Zhou, Xiaopu; Mak, Deejay S. Y.; Chan, Ivy C. W.; Cheung, Tom H.; Zhang, Baorong; Fu, Wing-Yu; Liew, Foo Y.; Ip, Nancy Y.

    2016-01-01

    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD. PMID:27091974

  20. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease.

    PubMed

    Southwell, Amber L; Franciosi, Sonia; Villanueva, Erika B; Xie, Yuanyun; Winter, Laurie A; Veeraraghavan, Janaki; Jonason, Alan; Felczak, Boguslaw; Zhang, Weining; Kovalik, Vlad; Waltl, Sabine; Hall, George; Pouladi, Mahmoud A; Smith, Ernest S; Bowers, William J; Zauderer, Maurice; Hayden, Michael R

    2015-04-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disease with no disease-modifying therapy currently available. In addition to characteristic motor deficits and atrophy of the caudate nucleus, signature hallmarks of HD include behavioral abnormalities, immune activation, and cortical and white matter loss. The identification and validation of novel therapeutic targets that contribute to these degenerative cellular processes may lead to new interventions that slow or even halt the course of this insidious disease. Semaphorin 4D (SEMA4D) is a transmembrane signaling molecule that modulates a variety of processes central to neuroinflammation and neurodegeneration including glial cell activation, neuronal growth cone collapse and apoptosis of neural precursors, as well as inhibition of oligodendrocyte migration, differentiation and process formation. Therefore, inhibition of SEMA4D signaling could reduce CNS inflammation, increase neuronal outgrowth and enhance oligodendrocyte maturation, which may be of therapeutic benefit in the treatment of several neurodegenerative diseases, including HD. To that end, we evaluated the preclinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody, which prevents the interaction between SEMA4D and its receptors, in the YAC128 transgenic HD mouse model. Anti-SEMA4D treatment ameliorated neuropathological signatures, including striatal atrophy, cortical atrophy, and corpus callosum atrophy and prevented testicular degeneration in YAC128 mice. In parallel, a subset of behavioral symptoms was improved in anti-SEMA4D treated YAC128 mice, including reduced anxiety-like behavior and rescue of cognitive deficits. There was, however, no discernible effect on motor deficits. The preservation of brain gray and white matter and improvement in behavioral measures in YAC128 mice treated with anti-SEMA4D suggest that this approach could represent a viable therapeutic strategy for the treatment of HD. Importantly, this work

  1. Suplatast tosilate ameliorates airway hyperreactivity and inflammation through inhibition of the GATA‑3/IL‑5 signaling pathway in asthmatic rats.

    PubMed

    Tan, Yupin; Li, Yun; Liu, Dan; Zhong, Lili

    2013-07-01

    Airway hyperreactivity and inflammation are important factors in the aggravation of lung function. Suplatast tosilate (IPD) is a novel and unique anti‑asthma clinical compound. However, the mechanisms of IPD action in the inhibition of asthma remain to be elucidated. The present study aimed to investigate the role of the GATA binding protein 3 (GATA‑3)/interleukin (IL)‑5 signaling pathway in IPD‑induced inhibition of asthma. Sprague‑Dawley rats were sensitized by intraperitoneal injection with ovalbumin (OVA) to establish an animal model of asthma. IPD was administered continuously (C‑IPD) or at a later stage (L‑IPD). Budesonide (BUD) was used as a positive control. Airway resistance and the expression of genes at the mRNA and protein levels were measured. Morphological changes in lung tissue and the percentage of eosinophils (EOS) in peripheral blood were observed and correlation analysis was performed. The results revealed that sensitization by OVA significantly increased airway resistance and the percentage of EOS in peripheral blood and induced significant inflammatory changes in lung tissue, as demonstrated by thick epithelium, goblet cell hyperplasia and submucosal cell infiltration. In addition, sensitization by OVA was found to markedly upregulate IL‑5 mRNA and protein expression. Airway resistance was found to positively correlate with the expression of IL‑5 in the rat lung tissues. Sensitization by OVA was also observed to markedly enhance GATA‑3 protein expression and GATA‑3 levels were found to positively correlate with airway resistance and IL‑5 levels. Similar to the effect of BUD, treatment with C‑IPD or L‑IPD was found to significantly attenuate OVA‑induced increases in airway resistance and the percentage of EOS in peripheral blood. Notably, treatment with C‑IPD or L‑IPD markedly reduced the OVA-induced expression of IL‑5 and GATA‑3. In the present study, IPD intervention was demonstrated to ameliorate airway

  2. HYDROGEN-RICH MEDIUM AMELIORATES LIPOPOLYSACCHARIDE-INDUCED BARRIER DYSFUNCTION VIA RHOA-MDIA1 SIGNALING IN CACO-2 CELLS.

    PubMed

    Yang, Tao; Wang, Lu; Sun, Ruiqiang; Chen, Hongguang; Zhang, Hongtao; Yu, Yang; Wang, Yanyan; Wang, Guolin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. This study was aimed to investigate whether H2 could modulate lipopolysaccharide (LPS)-stimulated dysfunction of the intestinal barrier and whether RhoA-mDia1 signaling is involved. Caco-2 cells were exposed to different concentrations of LPS (1 μg/mL-1 mg/mL). The permeability of the intestinal barrier was evaluated by transepithelial resistance (TER) and fluorescein-isothiocyanate-dextran flux. Expression and distribution of occludin and E-cadherin were analyzed by Western blot and immunofluorescence. RhoA activity was measured by G-Lisa assay, and mDia1 expression was assessed by Western blot. LPS (100 μg/mL) decreased TER and increased fluorescein-isothiocyanate-dextran flux, which were alleviated by H2-rich medium. Also, H2 down-regulated LPS-induced oxidative stress. Moreover, H2 improved the down-regulated expression and redistribution of occludin and E-cadherin caused by LPS. Additionally, H2 alleviated LPS-caused RhoA activation, and the beneficial effects of H2 on barrier were counteracted by RhoA agonist CN03. Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling.

  3. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease.

    PubMed

    Teixeira-Castro, Andreia; Jalles, Ana; Esteves, Sofia; Kang, Soosung; da Silva Santos, Liliana; Silva-Fernandes, Anabela; Neto, Mário F; Brielmann, Renée M; Bessa, Carlos; Duarte-Silva, Sara; Miranda, Adriana; Oliveira, Stéphanie; Neves-Carvalho, Andreia; Bessa, João; Summavielle, Teresa; Silverman, Richard B; Oliveira, Pedro; Morimoto, Richard I; Maciel, Patrícia

    2015-11-01

    Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.

  4. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease

    PubMed Central

    Teixeira-Castro, Andreia; Kang, Soosung; da Silva Santos, Liliana; Silva-Fernandes, Anabela; Neto, Mário F.; Brielmann, Renée M.; Bessa, Carlos; Duarte-Silva, Sara; Miranda, Adriana; Oliveira, Stéphanie; Neves-Carvalho, Andreia; Bessa, João; Summavielle, Teresa; Silverman, Richard B.; Oliveira, Pedro; Morimoto, Richard I.

    2015-01-01

    Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease. PMID:26373603

  5. Chrysin Ameliorates Chemically Induced Colitis in the Mouse through Modulation of a PXR/NF-κB Signaling Pathway

    PubMed Central

    Dou, Wei; Zhang, Jingjing; Zhang, Eryun; Sun, Aning; Ding, Lili; Chou, Guixin; Mani, Sridhar

    2013-01-01

    Targeted activation of pregnane X receptor (PXR) in recent years has become a therapeutic strategy for inflammatory bowel disease. Chrysin is a naturally occurring flavonoid with anti-inflammation activity. The current study investigated the role of chrysin as a putative mouse PXR agonist in preventing experimental colitis. Pre-administration of chrysin ameliorated inflammatory symptoms in mouse models of colitis (dextran sodium sulfate– and 2,4,6-trinitrobenzene sulfonic acid–induced) and resulted in down-regulation of nuclear transcription factor κB (NF-κB) target genes (inducible NO synthase, intercellular adhesion molecule-1, monocyte chemotactic protein-1, cyclooxygenase 2, tumor necrosis factor-α, and interleukin 6) in the colon mucosa. Chrysin inhibited the phosphorylation/degradation of inhibitor κBα (IκBα), which correlated with the decrease in the activity of myeloperoxidase and the levels of tumor necrosis factor–α and interleukin 6 in the colon. Consistent with the in vivo results, chrysin blocked lipopolysaccharide -stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7. Furthermore, chrysin dose-dependently activated human/mouse PXR in reporter gene assays and up-regulated xenobiotic detoxification genes in the colon mucosa, but not in the liver. Silencing of PXR by RNA interference demonstrated necessity of PXR in mediating chrysin’s ability to induce xenobiotic detoxification genes and NF-κB inactivation. The repression of NF-κB transcription activity by chrysin was confirmed by in vitro PXR transduction. These findings suggest that the effect of chrysin in preventing chemically induced colitis is mediated in large part by a PXR/NF-κB pathway. The data also suggest that chrysin or chrysin-like flavonoids could be further developed as intestine-specific PXR activators. PMID:23536316

  6. Desmosome regulation and signaling in disease

    PubMed Central

    Broussard, Joshua A.; Getsios, Spiro

    2015-01-01

    Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure. PMID:25693896

  7. Desmosome regulation and signaling in disease.

    PubMed

    Broussard, Joshua A; Getsios, Spiro; Green, Kathleen J

    2015-06-01

    Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.

  8. Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways

    PubMed Central

    Jang, Se-Eun; Hyam, Supriya R; Jeong, Jin-Ju; Han, Myung Joo; Kim, Dong-Hyun

    2013-01-01

    Background and Purpose The gallnut of Rhus chinensis MILL and its main constituent penta-O-galloyl-β-D-glucose (PGG) inhibited NF-κB activation in LPS-stimulated peritoneal and colonic macrophages. Here we have investigated PGG mechanisms underlying anti-inflammatory effects of PGG in vitro and in vivo. Experimental Approach Male C57BL/6 mice (18–22 g, 6 weeks old) were used to prepare peritoneal and colonic macrophages and for the induction of colitis by intrarectal administration of 2,3,4-trinitrobenzene sulphonic acid (TNBS). A range of inflammatory markers and transcription factors were evaluated by elisa, immunoblotting, flow cytometry and confocal microscopy. Key Results Expression of Toll-like receptor (TLR)-4 or Lipopolysaccharide (LPS) binding to TLR-4 in LPS-stimulated peritoneal macrophages was not affected by PGG. However PGG inhibited binding of an anti-MyD88 antibody to peritoneal macrophages, but did not reduce binding of anti–IL-1 receptor-associated kinase (IRAK1) and IRAK4 antibodies to the macrophages with or without transfection with MyD88 siRNA. PGG potently reduced the activation of IRAK1, NF-κB, and MAPKs in LPS- or pepetidoglycan-stimulated peritoneal and colonic macrophages. PGG suppressed IL-1β, TNF-α and IL-6 in LPS-stimulated peritoneal macrophages, while increasing expression of the anti-inflammatorycytokine IL-10. Oral administration of PGG inhibited colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis, along with reducing NF-κB activation and IL-1β, TNF-α, and IL-6 levels, whereas it increased IL-10. Conclusions and Implications PGG reduced activation of NF-κB and MAPK signalling pathways by directly interacting with the MyD88 adaptor protein. PGG may ameliorate inflammatory diseases such as colitis. PMID:23941302

  9. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells

    PubMed Central

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.

    2016-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  10. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer's disease.

    PubMed

    Ji, Zhi-Hong; Xu, Zhong-Qi; Zhao, Hong; Yu, Xin-Yu

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory decline and cognitive impairment. Amyloid beta (Aβ) has been proposed as the causative role for the pathogenesis of AD. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. Daucosterol palmitate (DSP), a plant steroid with anti-glutamate excitotoxicity effect, was isolated from the anti-aging traditional Chinese medicinal herb Alpinia oxyphylla Miq. in our previous study. Based on the anti-glutamate excitotoxicity effect of DSP, in this study we investigated potential benefit and mechanism of DSP in ameliorating learning and memory impairment in AD model rats. Results from this study showed that DSP administration effectively ameliorated Aβ-induced learning and memory impairment in rats, markedly inhibited Aβ-induced hippocampal ROS production, effectively prevented Aβ-induced hippocampal neuronal damage and significantly restored hippocampal synaptophysin expression level. This study suggests that DSP may be a potential candidate for development as a therapeutic agent for AD cognitive decline.

  11. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats

    PubMed Central

    Qiu, Xiang; Gao, Dan-Hong; Xiang, Xiao; Xiong, Yu-Fang; Zhu, Teng-Shi; Liu, Lie-Gang; Sun, Xiu-Fa; Hao, Li-Ping

    2015-01-01

    AIM: To investigate the therapeutic effects of lutein against non-alcoholic fatty liver disease (NAFLD) and the related underlying mechanism. METHODS: After 9 d of acclimation to a constant temperature-controlled room (20 °C-22 °C) under 12 h light/dark cycles, male Sprague-Darley rats were randomly divided into two groups and fed a standard commercial diet (n = 8) or a high-fat diet (HFD) (n = 32) for 10 d. Animals receiving HFD were then randomly divided into 4 groups and administered with 0, 12.5, 25, or 50 mg/kg (body weight) per day of lutein for the next 45 d. At the end of the experiment, the perinephric and abdominal adipose tissues of the rats were isolated and weighed. Additionally, serum and liver lipid metabolic condition parameters were measured, and liver function and insulin resistance state indexes were assessed. Liver samples were collected and stained with hematoxylin eosin and Oil Red O, and the expression of the key factors related to insulin signaling and lipid metabolism in the liver were detected using Western blot and real-time polymerase chain reaction analyses. RESULTS: Our data showed that after being fed a high-fat diet for 10 d, the rats showed a significant gain in body weight, energy efficiency, and serum total cholesterol (TC) and triglyceride (TG) levels. Lutein supplementation induced fat loss in rats fed a high-fat diet, without influencing body weight or energy efficiency, and decreased serum TC and hepatic TC and TG levels. Moreover, lutein supplementation decreased hepatic levels of lipid accumulation and glutamic pyruvic transaminase content, and also improved insulin sensitivity. Lutein administration also increased the expression of key factors in hepatic insulin signaling, such as insulin receptor substrate-2, phosphatidylinositol 3-kinase, and glucose transporter-2 at the gene and protein levels. Furthermore, high-dose lutein increased the expression of peroxisome proliferators activated receptor-α and sirtuin 1

  12. Activation of mitochondrial function and Hb expression in non-haematopoietic cells by an EPO inducer ameliorates ischaemic diseases in mice

    PubMed Central

    Hsu, Pei-Lun; Horng, Lin-Yea; Peng, Kang-Yung; Wu, Chia-Ling; Sung, Hui-Ching; Wu, Rong-Tsun

    2013-01-01

    Background and Purpose Many organs suffer from ischaemic injuries that reduce their ability to generate sufficient energy, which is required for functional maintenance and repair. Erythropoietin (EPO) ameliorates ischaemic injuries by pleiotropic effects. The aim of this study was to investigate the effect and mechanism of a small molecule EH-201, and found it as a potent EPO inducer and its effect in non-haematopoietic cells for therapeutic potential in ischemic disorders. Experimental Approach Mice kidney slices, primary hepatocytes, primary cardiomyocytes and C2C12 myoblasts were treated with EH-201. The effects of this treatment on EPO, Hb expression and mitochondrial biogenesis were analysed. In vivo, doxorubicin-induced cardiomyopathic mice were treated with EH-201. The mice were subjected to an endurance test, electrocardiography and echocardiography, and a histological examination of the isolated hearts was performed. EH-201 was also administered to cisplatin-induced nephropathic mice. Key Results In non-haematopoietic cells, EH-201 was potent at inducing EPO. EH-201 also stimulated mitochondrial biogenesis and enhanced the expression of Hb by a mechanism dependent on EPO-mediated signalling. In mechanistic studies, using EPO and EPO receptor-neutralizing antibodies, we confirmed that EH-201 enhances EPO-EPOR autocrine activity. EH-201 robustly increased the endurance performance activity of healthy and cardiomyopathic mice during hypoxic stress, enhanced myocardial mitochondrial biogenesis and Hb expression, and also improved cardiac function. EH-201 ameliorated anaemia and renal dysfunction in nephropathic mice. Conclusions and Implications The enhancement and recovery of cellular functions through the stimulation of mitochondrial activity and Hb production in non-haematopoietic cells by an inducer of endogenous EPO has potential as a therapeutic strategy for ischaemic diseases. PMID:23530756

  13. Electroacupuncture Ameliorates Learning and Memory and Improves Synaptic Plasticity via Activation of the PKA/CREB Signaling Pathway in Cerebral Hypoperfusion

    PubMed Central

    Lu, Min; Guo, Ya-Bi; Zhang, Feng-Xia; Liu, Hua

    2016-01-01

    Electroacupuncture (EA) has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are ill-understood. The present study was undertaken to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following EA and to investigate the role of PKA/CREB pathway. We used a rat 2-vessel occlusion (2VO) model and delivered EA at Baihui (GV20) and Dazhui (GV14) acupoints. Morris water maze (MWM) task, electrophysiological recording, Golgi silver stain, Nissl stain, Western blot, and real-time PCR were employed. EA significantly (1) ameliorated the spatial learning and memory deficits, (2) alleviated long-term potentiation (LTP) impairment and the reduction of dendritic spine density, (3) suppressed the decline of phospho-CREB (pCREB) protein, brain-derived neurotrophic factor (BDNF) protein, and microRNA132 (miR132), and (4) reduced the increase of p250GAP protein of 2VO rats. These changes were partially blocked by a selective protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide (H89), suggesting that the PKA/CREB pathway is potentially involved in the effects of EA. Moreover, any significant damage to the pyramidal cell layer of CA1 subregion was absent. These results demonstrated that EA could ameliorate learning and memory deficits and alleviate hippocampal synaptic plasticity impairment of cerebral hypoperfusion rats, potentially mediated by PKA/CREB signaling pathway. PMID:27829866

  14. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis

    PubMed Central

    Lund, Maria E.; Greer, Judith; Dixit, Aakanksha; Alvarado, Raquel; McCauley-Winter, Padraig; To, Joyce; Tanaka, Akane; Hutchinson, Andrew T.; Robinson, Mark W.; Simpson, Ann M.; O’Brien, Bronwyn A.; Dalton, John P.; Donnelly, Sheila

    2016-01-01

    Helminth parasites secrete molecules that potently modulate the immune responses of their hosts and, therefore, have potential for the treatment of immune-mediated human diseases. FhHDM-1, a 68-mer peptide secreted by the helminth parasite Fasciola hepatica, ameliorated disease in two different murine models of autoimmunity, type 1 diabetes and relapsing-remitting immune-mediated demyelination. Unexpectedly, FhHDM-1 treatment did not affect the proliferation of auto-antigen specific T cells or their production of cytokines. However, in both conditions, the reduction in clinical symptoms was associated with the absence of immune cell infiltrates in the target organ (islets and the brain tissue). Furthermore, after parenteral administration, the FhHDM-1 peptide interacted with macrophages and reduced their capacity to secrete pro-inflammatory cytokines, such as TNF and IL-6. We propose this inhibition of innate pro-inflammatory immune responses, which are central to the initiation of autoimmunity in both diseases, prevented the trafficking of autoreactive lymphocytes from the periphery to the site of autoimmunity (as opposed to directly modulating their function per se), and thus prevented tissue destruction. The ability of FhHDM-1 to modulate macrophage function, combined with its efficacy in disease prevention in multiple models, suggests that FhHDM-1 has considerable potential as a treatment for autoimmune diseases. PMID:27883079

  15. Huntington’s Disease and Striatal Signaling

    PubMed Central

    Roze, Emmanuel; Cahill, Emma; Martin, Elodie; Bonnet, Cecilia; Vanhoutte, Peter; Betuing, Sandrine; Caboche, Jocelyne

    2011-01-01

    Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction. PMID:22007160

  16. CYLD-Mediated Signaling and Diseases

    PubMed Central

    Mathis, Bryan J.; Lai, Yimu; Qu, Chen; Janicki, Joseph S.; Cui, Taixing

    2015-01-01

    The conserved cylindromatosis (CYLD) codes for a deubiquitinating enzyme and is a crucial regulator of diverse cellular processes such as immune responses, inflammation, death, and proliferation. It directly regulates multiple key signaling cascades, such as the Nuclear Factor kappa B [NF-kB] and the Mitogen-Activated Protein Kinase (MAPK) pathways, by its catalytic activity on polyubiquitinated key intermediates. Several lines of emerging evidence have linked CYLD to the pathogenesis of various maladies, including cancer, poor infection control, lung fibrosis, neural development, and now cardiovascular dysfunction. While CYLD-mediated signaling is cell type and stimuli specific, the activity of CYLD is tightly controlled by phosphorylation and other regulators such as Snail. This review explores a broad selection of current and past literature regarding CYLD’s expression, function and regulation with emerging reports on its role in cardiovascular disease. PMID:25342597

  17. Targeting the TGFβ signalling pathway in disease

    PubMed Central

    Akhurst, Rosemary J.; Hata, Akiko

    2012-01-01

    Many drugs that target transforming growth factor-β (TGFβ) signalling have disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome. Here, we consider why the TGFβ signalling pathway is a drug target, the potential clinical applications of TGFβ inhibition, the issues arising with anti-TGFβ therapy and how these might be tackled using personalized approaches to dosing, monitoring of biomarkers as well as brief and/or localized drug-dosing regimens. PMID:23000686

  18. IRE1 signaling exacerbates Alzheimer's disease pathogenesis.

    PubMed

    Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Espinoza, Sandra; Ardiles, Álvaro O; Medinas, Danilo B; Salazar, Claudia; Foley, Andrew; Gajardo, Ivana; Thielen, Peter; Iwawaki, Takao; Scheper, Wiep; Soto, Claudio; Palacios, Adrian G; Hoozemans, Jeroen J M; Hetz, Claudio

    2017-03-24

    Altered proteostasis is a salient feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid β oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.

  19. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    PubMed

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  20. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    PubMed Central

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  1. Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1

    PubMed Central

    Dutta, Naibedya; Ghosh, Suvranil; Jana, Manas; Ganguli, Arnab; Komarov, Andrei; Paul, Soumyadip; Dwivedi, Vibha; Chatterjee, Subhrangsu; Jana, Nihar R.; Lakhotia, Subhash C.; Chakrabarti, Gopal; Misra, Anup K.; Mandal, Subhash C.; Pal, Mahadeb

    2016-01-01

    Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide. PMID:27835876

  2. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats.

    PubMed

    Kieffer, Dorothy A; Piccolo, Brian D; Vaziri, Nosratola D; Liu, Shuman; Lau, Wei L; Khazaeli, Mahyar; Nazertehrani, Sohrab; Moore, Mary E; Marco, Maria L; Martin, Roy J; Adams, Sean H

    2016-05-01

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.

  3. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  4. Berberine ameliorates renal injury by regulating G proteins-AC- cAMP signaling in diabetic rats with nephropathy.

    PubMed

    Tang, Li Qin; Wang, Feng Ling; Zhu, Ling Na; Lv, Fei; Liu, Sheng; Zhang, Shan Tang

    2013-06-01

    Diabetic nephropathy (DN) is a progressive kidney disease that is caused by injury to glomerulus and glomerular mesangial cells (MCs) proliferation play a critical role in the pathogenesis of DN. The current studies were undertaken to investigate the protective effects and the possible molecular mechanism of berberine on streptozotocin (STZ)-induced DN rats. Male Wistar rats were randomly assigned to normal control and DN groups of comparable age. Three DN groups received 50, 100 and 200 mg/kg of berberine for 8 weeks via daily intragastrically, respectively. The G proteins-adenylyl cyclase (AC)-cAMP signaling pathway and glomerular MCs proliferation were examined in STZ-induced diabetic rat kidney. Enhanced MCs proliferation and remarkable renal injury were concomitant with activation of Gαi and inhibition of Gαs and cAMP in DN model group. Berberine treatment for 8 weeks abolished the above changes by upregulating the expression of Gαs protein and downregulating the expression of Gαi protein, increasing cAMP level, and inhibiting MCs proliferation compared with model group. Taken together, for the first time, these results demonstrated that berberine can relieve renal injury in DN rats through mediating G proteins-AC-cAMP signaling pathway and inhibiting the abnormal proliferation of MCs by increasing cAMP level, suggesting that berberine could be a potential therapeutic agent for the treatment of DN.

  5. Cyclic Nucleotide Signaling in Polycystic Kidney Disease

    PubMed Central

    Wang, Xiaofang; Ward, Christopher J.; Harris, Peter C.; Torres, Vicente E.

    2013-01-01

    Increased levels of 3’–5’-cyclic adenosine monophosphate (cAMP) stimulate cell proliferation and fluid secretion in polycystic kidney disease (PKD). Since hydrolytic capacity of phosphodiesterases (PDE) far exceeds maximum rate of synthesis by adenylyl cyclases (AC), cellular levels of cAMP are more sensitive to PDE inhibition than to AC activity changes. We have used enzymatic, western blot, immunohistochemistry, PCR and biochemical assays to study activity and expression of PDE families and isoforms and expression of downstream effectors of cAMP signaling in wildtype and PKD rat and mouse kidneys. The results indicate: 1) Species specific differences in PDE expression; higher PDE activity in kidneys from mice compared to rats; higher contribution of PDE1, relative to PDE4 and PDE3, to total PDE activity of kidney lysate and lower PDE1, PDE3 and PDE4 activities in murine cystic compared to wildtype kidneys. 2) Reduced levels of several PDE1, PDE3 and PDE4 proteins despite mRNA upregulation, possibly due to increased protein degradation. 3) Increased cGMP levels in polycystic kidneys, suggesting in vivo downregulation of PDE1 activity. 4) Additive stimulatory effect of cAMP and cGMP on cystogenesis in vitro. 5) Upregulation of cAMP-dependent protein kinase (PKA) subunits Iα and IIβ, PKare, CREB-1 mRNA, and CREM, ATF-1 and ICER proteins in cystic compared to wildtype kidneys. In summary, the results of this study suggest that alterations in cyclic nucleotide catabolism may render the cystic epithelium particularly susceptible to factors acting on Gs coupled receptors, account at least in part for the upregulation of cyclic nucleotide signaling in PKD, and contribute substantially to the progression of this disease. PMID:19924104

  6. Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells.

    PubMed

    Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen; Mead, Paul E; Smeltzer, Matthew P; Weiss, Mitchell J; Wilber, Andrew; Persons, Derek A

    2015-01-01

    Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans.

  7. Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen; Mead, Paul E; Smeltzer, Matthew P; Weiss, Mitchell J; Wilber, Andrew; Persons, Derek A

    2015-01-01

    Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans. PMID:26665131

  8. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    PubMed Central

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  9. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice

    PubMed Central

    Wang, Zigao; Xiong, Lu; Wan, Wenbin; Duan, Lijie; Bai, Xiaojing; Zu, Hengbing

    2017-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis. PMID:28228716

  10. Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.

    PubMed

    Saini, Janmeet S; Corneo, Barbara; Miller, Justine D; Kiehl, Thomas R; Wang, Qingjie; Boles, Nathan C; Blenkinsop, Timothy A; Stern, Jeffrey H; Temple, Sally

    2017-01-21

    Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.

  11. Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats

    PubMed Central

    Chen, Xu-Jia; Liu, Wen-Jing; Wen, Meng-Liang; Liang, Hong; Wu, Shao-Mei; Zhu, Yun-Zhen; Zhao, Jiang-Yuan; Dong, Xiang-Qian; Li, Ming-Gang; Bian, Li; Zou, Cheng-Gang; Ma, Lan-Qing

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, which has no standard treatment available. Panax notoginseng saponines (PNS) have recently been reported to protect liver against hepatocyte injury induced by ethanol or high fat diet (HFD) in rats. Compound K and ginsenoside Rh1 are the main metabolites of PNS. In this study, we evaluated the effects of CK and Rh1 on NAFLD. Rats fed HFD showed significant elevations in liver function markers, lipids, glucose tolerance, and insulin resistance. Treatment with CK or Rh1 either alone or in combination dramatically ameliorated the liver function impairment induced by HFD. Histologically, CK and Rh1 significantly reversed HFD-induced hepatocyte injury and liver fibrosis. In vitro experiments demonstrated that treatment with CK or Rh1 alone or in combination markedly induced cell apoptosis, and inhibited cell proliferation and activation in HSC-T6 cells. Additionally, CK and Rh1, either alone or in combination, also repressed the expression of fibrotic factors TIMP-1, PC-I, and PC-III. Taken together, our results demonstrate that CK and Rh1 have positive effects on NAFLD via the anti-fibrotic and hepatoprotective activity. PMID:28106137

  12. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease

    PubMed Central

    Caccamo, Antonella; Maldonado, Monica A.; Bokov, Alex F.; Majumder, Smita; Oddo, Salvatore

    2010-01-01

    Cognitive dysfunction and memory loss are common features of Alzheimer's disease (AD). Abnormalities in the expression profile of immediate early genes that play a critical role in memory formation, such as the cAMP-response element binding protein (CREB), have been reported in the brains of AD patients. Here we show that amyloid-β (Aβ) accumulation, which plays a primary role in the cognitive deficits of AD, interferes with CREB activity. We further show that restoring CREB function via brain viral delivery of the CREB-binding protein (CBP) improves learning and memory deficits in an animal model of AD. Notably, such improvements occur without changes in Aβ and tau pathology, and instead are linked to an increased level of brain-derived neurotrophic factor. The resulting data suggest that Aβ-induced learning and memory deficits are mediated by alterations in CREB function, based on the finding that restoring CREB activity by directly modulating CBP levels in the brains of adult mice is sufficient to ameliorate learning and memory. Therefore, increasing CBP expression in adult brains may be a valid therapeutic approach not only for AD, but also for various brain disorders characterized by alterations in immediate early genes, further supporting the concept that viral vector delivery may be a viable therapeutic approach in neurodegenerative diseases. PMID:21149712

  13. Signaling pathway cross talk in Alzheimer's disease.

    PubMed

    Godoy, Juan A; Rios, Juvenal A; Zolezzi, Juan M; Braidy, Nady; Inestrosa, Nibaldo C

    2014-03-28

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer's disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed "anti-ageing pathways", for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.

  14. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress.

  15. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model.

    PubMed

    Singer, Oded; Marr, Robert A; Rockenstein, Edward; Crews, Leslie; Coufal, Nicole G; Gage, Fred H; Verma, Inder M; Masliah, Eliezer

    2005-10-01

    In Alzheimer disease, increased beta-secretase (BACE1) activity has been associated with neurodegeneration and accumulation of amyloid precursor protein (APP) products. Thus, inactivation of BACE1 could be important in the treatment of Alzheimer disease. In this study, we found that lowering BACE1 levels using lentiviral vectors expressing siRNAs targeting BACE1 reduced amyloid production and the neurodegenerative and behavioral deficits in APP transgenic mice, a model of Alzheimer disease. Our results suggest that lentiviral vector delivery of BACE1 siRNA can specifically reduce the cleavage of APP and neurodegeneration in vivo and indicate that this approach could have potential therapeutic value for treatment of Alzheimer disease.

  16. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin–related liver disease in mice

    PubMed Central

    Guo, Shuling; Booten, Sheri L.; Aghajan, Mariam; Hung, Gene; Zhao, Chenguang; Blomenkamp, Keith; Gattis, Danielle; Watt, Andrew; Freier, Susan M.; Teckman, Jeffery H.; McCaleb, Michael L.; Monia, Brett P.

    2013-01-01

    Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease. PMID:24355919

  17. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice.

    PubMed

    Guo, Shuling; Booten, Sheri L; Aghajan, Mariam; Hung, Gene; Zhao, Chenguang; Blomenkamp, Keith; Gattis, Danielle; Watt, Andrew; Freier, Susan M; Teckman, Jeffery H; McCaleb, Michael L; Monia, Brett P

    2014-01-01

    Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.

  18. Anti-Tumor Necrosis Factor Ameliorates Joint Disease in Murine Collagen- Induced Arthritis

    NASA Astrophysics Data System (ADS)

    Williams, Richard O.; Feldmann, Marc; Maini, Ravinder N.

    1992-10-01

    There is considerable evidence implicating tumor necrosis factor α (TNF-α) in the pathogenesis of rheumatoid arthritis. This evidence is based not only on the universal presence of TNF-α in arthritic joints accompanied by the upregulation of TNF-α receptors but also on the effects of neutralizing TNF-α in joint cell cultures. Thus, neutralization of TNF-α in vitro results in inhibition of the production of interleukin 1, which like TNF-α, is believed to contribute to joint inflammation and erosion. To determine the validity of this concept in vivo, the effect of administering TNF-neutralizing antibodies to mice with collagen-induced arthritis has been studied. This disease model was chosen because of its many immunological and pathological similarities to human rheumatoid arthritis. TN3-19.12, a hamster IgG1 monoclonal antibody to murine TNF-α/β, was injected i.p. into mice either before the onset of arthritis or after the establishment of clinical disease. Anti-TNF administered prior to disease onset significantly reduced paw swelling and histological severity of arthritis without reducing the incidence of arthritis or the level of circulating anti-type II collagen IgG. More relevant to human disease was the capacity of the antibody to reduce the clinical score, paw swelling, and the histological severity of disease even when injected after the onset of clinical arthritis. These results have implications for possible modes of therapy of human arthritis.

  19. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria.

    PubMed

    Ibrahim, Mohamed X; Sayin, Volkan I; Akula, Murali K; Liu, Meng; Fong, Loren G; Young, Stephen G; Bergo, Martin O

    2013-06-14

    Several progeroid disorders, including Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (ZMPSTE24 deficiency), arise when a farnesylated and methylated form of prelamin A accumulates at the nuclear envelope. Here, we found that a hypomorphic allele of isoprenylcysteine carboxyl methyltransferase (ICMT) increased body weight, normalized grip strength, and prevented bone fractures and death in Zmpste24-deficient mice. The reduced ICMT activity caused prelamin A mislocalization within the nucleus and triggered prelamin A-dependent activation of AKT-mammalian target of rapamycin (mTOR) signaling, which abolished the premature senescence of Zmpste24-deficient fibroblasts. ICMT inhibition increased AKT-mTOR signaling and proliferation and delayed senescence in human HGPS fibroblasts but did not reduce the levels of misshapen nuclei in mouse and human cells. Thus, targeting ICMT might be useful for treating prelamin A-associated progeroid disorders.

  20. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease.

    PubMed

    Xie, Chang; Gong, Xue-Min; Luo, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-03-01

    Niemann-Pick type C (NPC) disease is a fatal inherited neurodegenerative disorder caused by loss-of-function mutations in the NPC1 or NPC2 gene. There is no effective way to treat NPC disease. In this study, we used adeno-associated virus (AAV) serotype 9 (AAV9) to deliver a functional NPC1 gene systemically into NPC1(-/-) mice at postnatal day 4. One single AAV9-NPC1 injection resulted in robust NPC1 expression in various tissues, including brain, heart, and lung. Strikingly, AAV9-mediated NPC1 delivery significantly promoted Purkinje cell survival, restored locomotor activity and coordination, and increased the lifespan of NPC1(-/-) mice. Our work suggests that AAV-based gene therapy is a promising means to treat NPC disease.

  1. Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice.

    PubMed

    Ende, N; Chen, R; Ende-Harris, D

    2001-01-01

    Having had success in extending the life of mice with a transgene for amyotropic lateral sclerosis (SOD1) mice and Huntington's disease (Hdexon1), we administered megadoses of human umbilical cord blood mononuclear cells to mice with Alzheimer's disease. These mice have an over-expression of human Alzheimer amyloid precursor protein (APP), die early and develop a CNS disorder that includes neophobia. When given 110 x 10(6) human umbilical cord blood mononuclear cells, these mice (HuAPP 695.SWE) had considerable extension of life with a p value of 0.001 when compared to control animals.

  2. Multifunctional Liposomes Reduce Brain β-Amyloid Burden and Ameliorate Memory Impairment in Alzheimer's Disease Mouse Models

    PubMed Central

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Re, Francesca

    2014-01-01

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood–brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1–42 (−33%), assessed by ELISA, and the number and total area of plaques (−34%) detected histologically. Also, brain Aβ oligomers were reduced (−70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [11C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood–brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease. PMID:25319699

  3. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models.

    PubMed

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Masserini, Massimo; Re, Francesca

    2014-10-15

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood-brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1-42 (-33%), assessed by ELISA, and the number and total area of plaques (-34%) detected histologically. Also, brain Aβ oligomers were reduced (-70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [(11)C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood-brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease.

  4. Aging accentuates and bone marrow transplantation ameliorates metabolic defects in Fabry disease mice

    PubMed Central

    Ohshima, Toshio; Schiffmann, Raphael; Murray, Gary J.; Kopp, Jeffrey; Quirk, Jane M.; Stahl, Stefanie; Chan, Chi-Chao; Zerfas, Patricia; Tao-Cheng, Jung-Hwa; Ward, J. M.; Brady, Roscoe O.; Kulkarni, Ashok B.

    1999-01-01

    Fabry disease is an X-linked metabolic disorder caused by a deficiency of α-galactosidase A (α-Gal A). The enzyme defect leads to the systemic accumulation of glycosphingolipids with α-galactosyl moieties consisting predominantly of globotriaosylceramide (Gb3). In patients with this disorder, glycolipid deposition in endothelial cells leads to renal failure and cardiac and cerebrovascular disease. Recently, we generated α-Gal A gene knockout mouse lines and described the phenotype of 10-week-old mice. In the present study, we characterize the progression of the disease with aging and explore the effects of bone marrow transplantation (BMT) on the phenotype. Histopathological analysis of α-Gal A −/0 mice revealed subclinical lesions in the Kupffer cells in the liver and macrophages in the skin with no gross lesions in the endothelial cells. Gb3 accumulation and pathological lesions in the affected organs increased with age. Treatment with BMT from the wild-type mice resulted in the clearance of accumulated Gb3 in the liver, spleen, and heart with concomitant elevation of α-Gal A activity. These findings suggest that BMT may have a potential role in the management of patients with Fabry disease. PMID:10339603

  5. PHOSPHOLIPASE A2 REDUCTION AMELIORATES COGNITIVE DEFICITS IN MOUSE MODEL OF ALZHEIMER’S DISEASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuronal expression of familial Alzheimer’s disease (AD)-mutant human amyloid precursor proteins (hAPP) and hAPP-derived amyloid-' (A') peptides causes synaptic dysfunction, inflammation, and abnormal cerebrovascular tone in transgenic mice. Fatty acids are involved in these processes, but their con...

  6. Newcastle disease virus (NDV) induces protein oxidation and nitration in brain and liver of chicken: Ameliorative effect of vitamin E.

    PubMed

    Venkata Subbaiah, Kadiam C; Valluru, Lokanatha; Rajendra, Wudayagiri; Ramamurthy, Chiteti; Thirunavukkarusu, Chinnasamy; Subramanyam, Rajagopal

    2015-07-01

    The present study was aimed at investigating the therapeutic efficacy of vitamin E on oxidative injury in brain and liver of Newcastle disease virus (NDV) challenged chickens. We have analyzed the xanthine oxidase (XOD) activity; uric acid (UA) levels and superoxide radical generation by using electron spin resonance spectroscopy. Further, protein oxidation, nitration and apoptosis were evaluated in the brain and liver of the control, NDV-infected and NDV+Vit. E treated groups. A significant elevation was observed in XOD activity and UA levels in brain (p<0.001) and liver (p<0.05) of NDV infected birds when compared to controls. Further, significant increase in the production of superoxides, enhanced intracellular protein carbonyls and nitrates were observed in the brain and liver of NDV-infected birds over healthy subjects. Apoptosis studies also suggested that a larger number of TUNEL positive cells were observed in brain and a moderately in liver of NDV-infected chickens. However, all these perturbations were significantly ameliorated in NDV+Vit. E treated chickens as compared to NDV-infected birds. Taken together, our results suggested that NDV-induced neuronal and hepatic damage at least in part mediates oxidative stress and on the other hand, supplementation of vitamin E mitigates NDV-induced oxidative damage thereby protects brain and liver of chickens. These findings could provide new insights into the understanding of NDV pathogenesis and therapeutic effects of dietary antioxidants.

  7. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice

    PubMed Central

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  8. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice.

    PubMed

    Ma, Tuo; Gong, Kai; Ao, Qiang; Yan, Yufang; Song, Bo; Huang, Hongyun; Zhang, Xiufang; Gong, Yandao

    2013-01-01

    Recent studies suggest that transplantation of mesenchymal stem cells might have therapeutic effects in preventing pathogenesis of several neurodegenerative disorders. Adipose-derived mesenchymal stem cells (ADSCs) are a promising new cell source for regenerative therapy. However, whether transplantation of ADSCs could actually ameliorate the neuropathological deficits in Alzheimer's disease (AD) and the mechanisms involved has not yet been established. Here, we evaluated the therapeutic effects of intracerebral ADSC transplantation on AD pathology and spatial learning/memory of APP/PS1 double transgenic AD model mice. Results showed that ADSC transplantation dramatically reduced β-amyloid (Aβ) peptide deposition and significantly restored the learning/memory function in APP/PS1 transgenic mice. It was observed that in both regions of the hippocampus and the cortex there were more activated microglia, which preferentially surrounded and infiltrated into plaques after ADSC transplantation. The activated microglia exhibited an alternatively activated phenotype, as indicated by their decreased expression levels of proinflammatory factors and elevated expression levels of alternative activation markers, as well as Aβ-degrading enzymes. In conclusion, ADSC transplantation could modulate microglial activation in AD mice, mitigate AD symptoms, and alleviate cognitive decline, all of which suggest ADSC transplantation as a promising choice for AD therapy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.

  9. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer's disease.

    PubMed

    Yamazaki, Hiromitsu; Jin, Yu; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2015-11-16

    The present study investigated the effect of adipose-derived stem cell-conditioned medium (ASC-CM) on behavioral disorders in 5xFAD transgenic mice, a model of Alzheimer's disease (AD). The immobility time in the tail suspension and forced swim tests for 5xFAD mice was shorter than that for wild-type mice. Intravenous injection with ASC-CM restored the shortened immobility time for 5xFAD mice to the normal levels or to an extent, being still persistent 4 weeks after injection. ASC-CM significantly suppressed phosphorylation of Akt at Ser473 and glycogen synthase kinase 3β (GSK-3β) at Ser9 in the hypothalamus of 5xFAD mice, without affecting Tau phosphorylation, as compared with that for control 5xFAD mice without ASC-CM injection. ASC-CM did not affect cell surface localization of the N-methyl-d-aspartate (NMDA) receptor subunits NR1, -2A, and -2B both in the hippocampus and hypothalamus of 5xFAD mice. The results of the present study show that ASC-CM ameliorates antidepression-related behaviors in 5xFAD mice, perhaps by inhibiting Akt and activating GSK-3β.

  10. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease.

    PubMed

    Zumkehr, Joannee; Rodriguez-Ortiz, Carlos J; Cheng, David; Kieu, Zanett; Wai, Thin; Hawkins, Charlesice; Kilian, Jason; Lim, Siok Lam; Medeiros, Rodrigo; Kitazawa, Masashi

    2015-07-01

    Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Aβ pathology. In primary neuron and astrocyte coculture, naturally secreted Aβ species significantly downregulate GLT-1 steady-state and expression levels. Taken together, our data strongly suggest that GLT-1 restoration is neuroprotective and Aβ-induced astrocyte dysfunction represented by a functional loss of GLT-1 may serve as one of the major pathological links between Aβ and tau pathology.

  11. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway.

    PubMed

    Huang, Junying; Chen, Zhiquan; Li, Jie; Chen, Qiuhong; Li, Jingyan; Gong, Wenyan; Huang, Jiani; Liu, Peiqing; Huang, Heqing

    2017-02-23

    Activation of casein kinase 2 (CK2) is closely linked to the body disturbance of carbohydrate metabolism and inflammatory reaction. The renal chronic inflammatory reaction in the setting of diabetes is one of the important hallmarks of diabetic renal fibrosis. However, it remains unknown whether CK2 influences the process of diabetic renal fibrosis. The current study is aimed to investigate if CK2α ameliorates renal inflammatory fibrosis in diabetes via NF-κB pathway. To explore potential regulatory mechanism of CK2α, the expression and activity of CK2α, which were studied by plasmid transfection, selective inhibitor, small-interfering RNA (siRNA) and adenovirus infection in vitro or in vivo, were analyzed by means of western blotting (WB), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The following findings were observed: (1) Expression of CK2α was upregulated in kidneys of db/db and KKAy diabetic mice; (2) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed high glucose-induced expressions of FN and ICAM-1 in glomerular mesangial cells (GMCs); (3) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression not only restrained IκB degradation, but also suppressed HG-induced nuclear accumulation, transcriptional activity and DNA binding activity of NF-κB in GMCs; (4) Treatment of TBB or CK2α RNAi adenovirus infection ameliorated renal fibrosis in diabetic animals; (5) Treatment of TBB or CK2α RNAi adenovirus infection suppressed IκB degradation and NF-κB nuclear accumulation in glomeruli of diabetic animals. This study indicates the essential role of CK2α in regulating the diabetic renal pathological process of inflammatory fibrosis via NF-κB pathway, and inhibition of CK2α may serve as a promising therapeutic strategy for diabetic nephropathy.

  12. Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease

    PubMed Central

    2013-01-01

    Background Camel milk (CM) is gaining increasing recognition due to its beneficial effects in the control and prevention of multiple health problems. The current study aimed to investigate the effects of CM on the hepatic biochemical and cellular alterations induced by a high-fat, cholesterol-rich diet (HCD), specifically, non-alcoholic fatty liver disease (NAFLD). Methods Seventy male Wistar rats were divided into four groups: the Control (C) Group fed a standard diet; the Control + camel milk (CCM) Group fed a standard diet and CM, the Cholesterol (Ch) Group fed a HCD with no CM, and the Cholesterol + camel milk (ChM) Group fed a HCD and CM. The following parameters were investigated in the studied groups; basal, weekly random and final fasting blood glucose levels, intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT), serum insulin, serum lipids, liver functions, lipid peroxidation products, the antioxidant activity of catalase (CAT) and the levels of reduced glutathione (GSH). In addition, HOMA-IR as an index of insulin resistance (IR) and the histopathology of the hepatic tissue were assessed. Results The Ch Group developed features similar to those of non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis; inflammatory cellular infiltration in liver tissue; altered liver functions; and increased total cholesterol, triglycerides, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, atherogenic index (AI), blood glucose, IR, and malondialdehyde (MDA) levels. Additionally, feeding the HCD to animals in the Ch Group decreased CAT activity and the GSH and high-density lipoprotein (HDL) cholesterol levels. Camel milk intake for eight weeks decreased hepatic fat accumulation and inflammatory cellular infiltration, preserved liver function, increased the GSH levels and CAT activity, decreased the MDA levels, and ameliorated the changes in the lipid profile, AI, and IR in animals from the Ch

  13. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.

  14. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice

    PubMed Central

    Hartmann, Phillipp; Chen, Peng; Wang, Hui J.; Wang, Lirui; McCole, Declan F.; Brandl, Katharina; Stärkel, Peter; Belzer, Clara; Hellerbrand, Claus; Tsukamoto, Hidekazu; Ho, Samuel B.; Schnabl, Bernd

    2013-01-01

    The intestinal mucus layer protects the epithelium from noxious agents, viruses, and pathogenic bacteria present in the gastrointestinal tract. It is composed of mucins, predominantly mucin-2 (Muc2), secreted by goblet cells of the intestine. Experimental alcoholic liver disease requires translocation of bacterial products across the intestinal barrier into the systemic circulation, which induces an inflammatory response in the liver and contributes to steatohepatitis. We investigated the roles of the intestinal mucus layer, and in particular Muc2, in development of experimental alcohol-associated liver disease in mice. We studied experimental alcohol-induced liver disease, induced by the Tsukamoto-French method (which involves continuous intragastric feeding of an isocaloric diet or alcohol) in wild-type and Muc2−/− mice. Muc2−/− mice showed less alcohol-induced liver injury and steatosis that developed in wild-type mice. Most notably, Muc2−/− mice had significantly lower plasma levels of lipopolysaccharide than wild-type mice after alcohol feeding. In contrast to wild-type mice, Muc2−/− mice were protected from alcohol-associated microbiome changes that are dependent on intestinal mucins. The anti-microbial proteins Reg3b and Reg3g were expressed at significantly higher levels in the jejunum of Muc2−/− mice fed the isocaloric diet or alcohol, compared with wild-type mice. Consequently, Muc2−/− mice showed increased killing of commensal bacteria and prevented intestinal bacterial overgrowth. Conclusion: Muc2−/− mice are protected from intestinal bacterial overgrowth and dysbiosis in response to alcohol feeding. Subsequently, lower amounts of bacterial products such as endotoxin translocate into the systemic circulation, decreasing liver disease. PMID:23408358

  15. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice.

    PubMed Central

    Norflus, F; Tifft, C J; McDonald, M P; Goldstein, G; Crawley, J N; Hoffmann, A; Sandhoff, K; Suzuki, K; Proia, R L

    1998-01-01

    The GM2 gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the GM2 activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from approximately 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of beta-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed beta-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the GM2 gangliosidoses. PMID:9576752

  16. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

    PubMed Central

    Schiffer, Mario; Teng, Beina; Gu, Changkyu; Shchedrina, Valentina A.; Kasaikina, Marina; Pham, Vincent A.; Hanke, Nils; Rong, Song; Gueler, Faikah; Schroder, Patricia; Tossidou, Irini; Park, Joon-Keun; Staggs, Lynne; Haller, Hermann; Erschow, Sergej; Hilfiker-Kleiner, Denise; Wei, Changli; Chen, Chuang; Tardi, Nicholas; Hakroush, Samy; Selig, Martin K.; Vasilyev, Aleksandr; Merscher, Sandra; Reiser, Jochen; Sever, Sanja

    2015-01-01

    Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD. PMID:25962121

  17. Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-κB signaling pathways in alloxan-induced mice

    PubMed Central

    Yuan, Yong-Liang; Guo, Chang-Run; Cui, Ling-Ling; Ruan, Shi-Xia; Zhang, Chun-Feng; Ji, De; Yang, Zhong-Lin; Li, Fei

    2015-01-01

    Background Many synthesized drugs with clinical severe side effects have been used for diabetic nephropathy (DN) treatment. Therefore, it is urgent and necessary to identify natural and safe agents to remedy DN. Timosaponin B-II (TB-II), a major steroidal saponin constituent in Anemarrhena asphodeloides Bunge, exhibits various activities, including anti-inflammatory and hypoglycemic functions. However, the anti-DN effects and potential mechanism(s) of TB-II have not been previously reported. Purpose To investigate the effect of TB-II on DN in alloxan-induced diabetic mice. Methods TB-II was isolated and purified from A. asphodeloides Bunge using macroporous adsorption resin and preparative high-performance liquid chromatography. The effect of TB-II on DN was evaluated in alloxan-induced diabetic mice using an assay kit and immunohistochemical determination in vivo. The expression of mammalian target of rapamycin (mTOR), thioredoxin-interacting protein (TXNIP), and nuclear transcription factor-κB (NF-κB) signaling pathways was also measured using Western blot analysis. Results TB-II significantly decreased the blood glucose levels and ameliorated renal histopathological injury in alloxan-induced diabetic mice. In addition, TB-II remarkably decreased the levels of renal function biochemical factors, such as kidney index, blood urea nitrogen, serum creatinine, urinary uric acid, urine creatinine, and urine protein, and it reduced lipid metabolism levels of total cholesterol and triglycerides and the levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-α in alloxan-induced mice. Furthermore, TB-II inhibited the expression of mTOR, TXNIP, and NF-κB. Conclusion The results revealed that TB-II plays an important role in DN via TXNIP, mTOR, and NF-κB signaling pathways. Overall, TB-II exhibited a prominently ameliorative effect on alloxan-induced DN. PMID:26664046

  18. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease.

  19. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    PubMed

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  20. Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice.

    PubMed

    Kölling, Malte; Kaucsar, Tamas; Schauerte, Celina; Hübner, Anika; Dettling, Angela; Park, Joon-Keun; Busch, Martin; Wulff, Xaver; Meier, Matthias; Scherf, Kristian; Bukosza, Nóra; Szénási, Gábor; Godó, Mária; Sharma, Amit; Heuser, Michael; Hamar, Peter; Bang, Claudia; Haller, Hermann; Thum, Thomas; Lorenzen, Johan M

    2017-01-04

    Diabetic nephropathy is the main cause of end-stage renal disease. MicroRNAs are powerful regulators of the genome, and global expression profiling revealed miR-21 to be among the most highly regulated microRNAs in kidneys of mice with diabetic nephropathy. In kidney biopsies of diabetic patients, miR-21 correlated with tubulointerstitial injury. In situ PCR analysis showed a specific enrichment of miR-21 in glomerular cells. We identified cell division cycle 25a (Cdc25a) and cyclin-dependent kinase 6 (Cdk6) as novel miR-21 targets in mesangial cells. miR-21-mediated repression of Cdc25a and Cdk6 resulted in impaired cell cycle progression and subsequent mesangial cell hypertrophy. miR-21 increased podocyte motility by regulating phosphatase and tensin homolog (Pten). miR-21 antagonism in vitro and in vivo in streptozotocin-induced diabetic mice decreased mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria, and fibrotic- and inflammatory gene expression. In conclusion, miR-21 antagonism rescued various functional and structural parameters in mice with diabetic nephropathy and, thus, might be a viable option in the treatment of patients with diabetic kidney disease.

  1. Exosome Secretion Ameliorates Lysosomal Storage of Cholesterol in Niemann-Pick Type C Disease*

    PubMed Central

    Strauss, Katrin; Goebel, Cornelia; Runz, Heiko; Möbius, Wiebke; Weiss, Sievert; Feussner, Ivo; Simons, Mikael; Schneider, Anja

    2010-01-01

    Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis. PMID:20554533

  2. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.

    PubMed

    Zheng, Dong; Cao, Qi; Lee, Vincent W S; Wang, Ya; Zheng, Guoping; Wang, YuanMin; Tan, Thian Kui; Wang, Changqi; Alexander, Stephen I; Harris, David C H; Wang, Yiping

    2012-05-01

    Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4+CD25- T cells into Foxp3+ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.

  3. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    SciTech Connect

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai; Devaraj, Halagowder; NiranjaliDevaraj, Sivasithamparam

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  4. Vildagliptin ameliorates biochemical, metabolic and fatty changes associated with non alcoholic fatty liver disease

    PubMed Central

    Hussain, Mazhar; Majeed Babar, Muhammad Zafar; Hussain, Muhammad Shahbaz; Akhtar, Lubna

    2016-01-01

    Objective: To determine the effect of Vildagliptin in non-alcoholic, fatty liver disease patients with dyslipidemia. Methods: A randomized placebo controlled trial was conducted at outpatient clinic of Medical Unit-I of Sheikh Zayed Medical College/Hospital, Rahim Yar Khan, in which fifty eight patients of NAFLD with dyslipidemia were divided in to two, case and control groups. The case group was given tablet Vildagliptin 50mg twice a day for twelve weeks and control group was given placebo in same way. Body weight, body mass index (BMI), lipid profile, liver enzymes and ultrasound finding of fatty liver were assayed before and after treatment. Results: After 12 weeks treatment of vildagliptin there was significant improvement in following parameters. Body weight and BMI decreased significantly from 88 ± 11 to79 ± 12 kg (p0.036) and 30±4to 27±5 kg/m2 (p 0.005) respectively. Notable reduction in the value of TC, TG and LDL-C (TC:252±24 to 220±20mg/dl (p 0.031); TG: 190±24 to115±22 mg/dl (p 0.005); LDL-C 160±15 to 145±13mg/dl (p 0.004). HDL-C level increased significantly from 29±5to45±4 mg/dl (p 0.001). There was remarkable reduction in aminotransferases level (ALT: 78± 17 to 48±14IU/L (p 0.036). AST: 63.3±13 to41±11IU/L (p 0.002). There was overall 65.5% improvement in fatty liver grading on ultrasound with vildagliptin while non significant effects were seen in placebo group in all of the above parameters. Conclusion: Vildagliptin exhibited beneficial effects in non-alcoholic fatty liver disease, Non-diabetic patients with dyslipidemia. PMID:28083033

  5. AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model.

    PubMed

    Hassan, Wail M; Merin, David A; Fonte, Virginia; Link, Christopher D

    2009-08-01

    Multiple neurodegenerative diseases are causally linked to aggregation-prone proteins. Cellular mechanisms involving protein turnover may be key defense mechanisms against aggregating protein disorders. We have used a transgenic Caenorhabditis elegans Alzheimer's disease model to identify cellular responses to proteotoxicity resulting from expression of the human beta amyloid peptide (Abeta). We show up-regulation of aip-1 in Abeta-expressing animals. Mammalian homologues of AIP-1 have been shown to associate with, and regulate the function of, the 26S proteasome, leading us to hypothesize that induction of AIP-1 may be a protective cellular response directed toward modulating proteasomal function in response to toxic protein aggregation. Using our transgenic model, we show that overexpression of AIP-1 protected against, while RNAi knockdown of AIP-1 exacerbated, Abeta toxicity. AIP-1 overexpression also reduced accumulation of Abeta in this model, which is consistent with AIP-1 enhancing protein degradation. Transgenic expression of one of the two human aip-1 homologues (AIRAPL), but not the other (AIRAP), suppressed Abeta toxicity in C. elegans, which advocates the biological relevance of the data to human biology. Interestingly, AIRAPL and AIP-1 contain a predicted farnesylation site, which is absent from AIRAP. This farnesylation site was shown by others to be essential for an AIP-1 prolongevity function. Consistent with this, we show that an AIP-1 mutant lacking the predicted farnesylation site failed to protect against Abeta toxicity. Our results implicate AIP-1 in the regulation of protein turnover and protection against Abeta toxicity and point at AIRAPL as the functional mammalian homologue of AIP-1.

  6. The TIM-3 pathway ameliorates Theiler's murine encephalomyelitis virus-induced demyelinating disease.

    PubMed

    Kaneyama, Tomoki; Tomiki, Hiroki; Tsugane, Sayaka; Inaba, Yuji; Ichikawa, Motoki; Akiba, Hisaya; Yagita, Hideo; Kim, Byung S; Koh, Chang-Sung

    2014-07-01

    Infection by Theiler's murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis. T-cell immunoglobulin and mucin domain-3 (TIM-3) has been demonstrated to play a crucial role in the maintenance of peripheral tolerance. In this study, we examined the regulatory role of the TIM-3 pathway in the development of TMEV-induced demyelinating disease (TMEV-IDD). The expression of TIM-3 was increased at both protein and mRNA levels in the spinal cords of mice with TMEV-IDD compared with naive controls. In addition, by utilizing a blocking mAb, we demonstrate that TIM-3 negatively regulates TMEV-specific ex vivo production of IFN-γ and IL-10 by CD4(+) T cells and IFN-γ by CD8(+) T cells from the CNS of mice with TMEV-IDD at 36 days post-infection (dpi). In vivo blockade of TIM-3 by using the anti-TIM-3 mAb resulted in significant exacerbation of the development of TMEV-IDD both clinically and histologically. The number of infiltrating mononuclear cells in the CNS was also increased in mice administered with anti-TIM-3 mAb both at the induction phase (10 dpi) and at the effector phase (36 dpi). Flow cytometric analysis of intracellular cytokines revealed that the number of CD4(+) T cells producing TNF, IL-4, IL-10 and IL-17 was significantly increased at the effector phase in the CNS of anti-TIM-3 mAb-treated mice. These results suggest that the TIM-3 pathway plays a critical role in the regulation of TMEV-IDD.

  7. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse

    PubMed Central

    Dinkins, Michael B.; Enasko, John; Hernandez, Caterina; Wang, Guanghu; Kong, Jina; Helwa, Inas; Liu, Yutao; Terry, Alvin V.

    2016-01-01

    Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro. Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome

  8. Clomipramine and Benznidazole Act Synergistically and Ameliorate the Outcome of Experimental Chagas Disease

    PubMed Central

    García, Mónica Cristina; Ponce, Nicolás Eric; Sanmarco, Liliana Maria; Manzo, Rubén Hilario; Jimenez-Kairuz, Alvaro Federico

    2016-01-01

    Chagas disease is an important public health problem in Latin America, and its treatment by chemotherapy with benznidazole (BZ) or nifurtimox remains unsatisfactory. In order to design new alternative strategies to improve the current etiological treatments, in the present work, we comprehensively evaluated the in vitro and in vivo anti-Trypanosoma cruzi effects of clomipramine (CMP) (a parasite-trypanothione reductase-specific inhibitor) combined with BZ. In vitro studies, carried out using a checkerboard technique on trypomastigotes (T. cruzi strain Tulahuen), revealed a combination index (CI) of 0.375, indicative of a synergistic effect of the drug combination. This result was correlated with the data obtained in infected BALB/c mice. We observed that during the acute phase (15 days postinfection [dpi]), BZ at 25 mg/kg of body weight/day alone decreased the levels of parasitemia compared with those of the control group, but when BZ was administered with CMP, the drug combination completely suppressed the parasitemia due to the observed synergistic effect. Furthermore, in the chronic phase (90 dpi), mice treated with both drugs showed less heart damage as assessed by the histopathological analysis, index of myocardial inflammation, and levels of heart injury biochemical markers than mice treated with BZ alone at the reference dose (100 mg/kg/day). Collectively, these data support the notion that CMP combined with low doses of BZ diminishes cardiac damage and inflammation during the chronic phase of cardiomyopathy. The synergistic activity of BZ-CMP clearly suggests a potential drug combination for Chagas disease treatment, which would allow a reduction of the effective dose of BZ and an increase in therapeutic safety. PMID:27067322

  9. Clomipramine and Benznidazole Act Synergistically and Ameliorate the Outcome of Experimental Chagas Disease.

    PubMed

    García, Mónica Cristina; Ponce, Nicolás Eric; Sanmarco, Liliana Maria; Manzo, Rubén Hilario; Jimenez-Kairuz, Alvaro Federico; Aoki, Maria Pilar

    2016-06-01

    Chagas disease is an important public health problem in Latin America, and its treatment by chemotherapy with benznidazole (BZ) or nifurtimox remains unsatisfactory. In order to design new alternative strategies to improve the current etiological treatments, in the present work, we comprehensively evaluated the in vitro and in vivo anti-Trypanosoma cruzi effects of clomipramine (CMP) (a parasite-trypanothione reductase-specific inhibitor) combined with BZ. In vitro studies, carried out using a checkerboard technique on trypomastigotes (T. cruzi strain Tulahuen), revealed a combination index (CI) of 0.375, indicative of a synergistic effect of the drug combination. This result was correlated with the data obtained in infected BALB/c mice. We observed that during the acute phase (15 days postinfection [dpi]), BZ at 25 mg/kg of body weight/day alone decreased the levels of parasitemia compared with those of the control group, but when BZ was administered with CMP, the drug combination completely suppressed the parasitemia due to the observed synergistic effect. Furthermore, in the chronic phase (90 dpi), mice treated with both drugs showed less heart damage as assessed by the histopathological analysis, index of myocardial inflammation, and levels of heart injury biochemical markers than mice treated with BZ alone at the reference dose (100 mg/kg/day). Collectively, these data support the notion that CMP combined with low doses of BZ diminishes cardiac damage and inflammation during the chronic phase of cardiomyopathy. The synergistic activity of BZ-CMP clearly suggests a potential drug combination for Chagas disease treatment, which would allow a reduction of the effective dose of BZ and an increase in therapeutic safety.

  10. 1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer's Disease Mice.

    PubMed

    Jeong, Ye Ji; Kang, Ga-Young; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer's disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid β (Aβ) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RFEMF exposure significantly reduced not only Aβ plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aβ42 and Aβ40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of β-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg- 5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aβ, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg- 5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aβ pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aβ, which suggests that RF-EMF can have a beneficial influence on AD.

  11. Benznidazole, a drug used in Chagas' disease, ameliorates LPS-induced inflammatory response in mice.

    PubMed

    Pascutti, María Fernanda; Pitashny, Milena; Nocito, Ana Lía; Guermonprez, Pierre; Amigorena, Sebastian; Wietzerbin, Juana; Serra, Esteban; Bottasso, Oscar; Revelli, Silvia

    2004-12-24

    Benznidazole (BZL) is a drug currently used for treating Chagas' disease. Given our earlier demonstration in which BZL downregulated cytokine and nitric oxide (NO) synthesis by LPS and/or IFN-gamma-stimulated murine macrophages, we have now analysed whether this compound could exert beneficial effects in a model of LPS-induced inflammation in C57BL/6 mice. The lethal model consisted of two LPS intraperitoneal injections, 200 microg each separated by 2 h, with BZL given orally at a dose of 200 mg/kg, 18 and 2 h before the first challenge and 20 and 44 hr following the second one. In this model, BZL treatment led to a significantly decreased mortality in comparison with untreated counterparts. Remaining experiments were carried out in mice given a unique LPS dose, pretreated with BZL or not, since those subjected to the lethal protocol were unsuitable for laboratory handling. Analysis of IL-1beta, IL-6, TNF-alpha, IL-12 and iNOS mRNA expression in liver samples taken at 90 min post-LPS showed a marked reduction of the two latter mRNAs in BZL-treated mice. These animals also displayed significantly decreased peaks levels of serum TNF-alpha and IL-6, accompanied by a diminished number of IL-6-producing peritoneal macrophages. Present effects may broaden the potential usefulness of BZL in situations accompanied by an excessive inflammatory response.

  12. Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer's disease.

    PubMed

    Shruster, Adi; Offen, Daniel

    2014-03-15

    Alzheimer's disease (AD) affects 13% of the population over the age of 65. Behavioral and neuropsychiatric symptoms are frequent and affect 80% of patients. Adult hippocampal neurogenesis, which is impaired in AD, is involved in learning and memory. It remains unclear, however, whether increasing adult neurogenesis improves behavioral symptoms in AD. We report that in the 3xTgAD mouse model of AD, chronic Wnt3a overexpression in the ventral hippocampus dentate gyrus (DG) restored adult neurogenesis to physiological levels. The restoration of adult neurogenesis led to full recovery of danger assessment impairment and the effect was blocked by ablation of neurogenesis with X-irradiation. Finally, using a bed nucleus of stria terminalis (BNST) mRNA expression array, we found that the expression of the 5-HT1A receptor in 3xTgAD mice is selectively decreased and normalized by Wnt3a overexpression in the ventral hippocampus DG, and this normalization is neurogenesis dependent. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult AD mice rescues behavioral symptoms, suggesting that adult neurogenesis may be a promising therapeutic target for alleviating behavioral deficits in AD patients.

  13. Capsaicin ameliorates stress-induced Alzheimer's disease-like pathological and cognitive impairments in rats.

    PubMed

    Jiang, Xia; Jia, Lin-Wei; Li, Xiao-Hong; Cheng, Xiang-Shu; Xie, Jia-Zhao; Ma, Zhi-Wei; Xu, Wei-Jie; Liu, Yue; Yao, Yun; Du, Lai-Ling; Zhou, Xin-Wen

    2013-01-01

    Hyperphosphorylated tau aggregated into neurofibrillary tangles is a hallmark lesion of Alzheimer's disease (AD) and is linked to synaptic and cognitive impairments. In animal models, cold water stress (CWS) can cause cognitive disorder and tau hyperphosphorylation. Capsaicin (CAP), a specific TRPV1 agonist, is neuroprotective against stress-induced impairment, but the detailed mechanisms are still elusive. Here, we investigated whether CAP mitigates CWS-induced cognitive and AD-like pathological alterations in rats. The animals were administered CAP (10 mg/kg in 0.2 ml, 0.1% ethanol) or a control (0.2 ml normal saline, 0.1% ethanol) by intragastric infusion 1 h before CWS treatment. Our results showed that CAP significantly attenuated CWS-induced spatial memory impairment and suppression of PP-DG long-term potentiation; CAP abolished CWS-induced dendritic regression and enhanced several memory-associated proteins decreased by CWS, such as synapsin I and PSD93; CAP also prevented CWS-induced tau hyperphosphorylation by abolishing inhibition of protein phosphatase 2A. Taken together, this study demonstrated that activation of TRPV1 can mitigate CWS-induced AD-like neuropathological alterations and cognitive impairment and may be a promising target for therapeutic intervention in AD.

  14. Pentoxifylline and melatonin in combination with pioglitazone ameliorate experimental non-alcoholic fatty liver disease.

    PubMed

    Zaitone, Sawsan; Hassan, Neven; El-Orabi, Naglaa; El-Awady, El-Sayed

    2011-07-15

    Insulin resistance, oxidative stress and cytokine imbalance are key pathophysiological mechanisms in non-alcoholic fatty liver disease (NAFLD). This study aimed at evaluating the effect of treatment with the insulin sensitizer, pioglitazone, the tumor necrosis factor-α inhibitor, pentoxifylline, and the antioxidant, melatonin and their combinations in rats with NAFLD. Rats were fed a high-fat diet (HFD) for eight weeks to induce NAFLD. For an additional eight weeks, rats were fed the HFD along with pioglitazone, pentoxifylline, melatonin alone or in combination. Liver index and insulin resistance index were calculated. Serum liver enzyme activities, total cholesterol, triglycerides and tumor necrosis factor-α (TNF-α) were determined. Tissue triglycerides, malondialdehyde and reduced glutathione were measured and liver injury was evaluated by histopathological examination. HFD induced severe hepatic steatosis, inflammation and fibrosis. In addition, liver index, insulin resistance index, activities of liver enzymes and serum level of total cholesterol, triglycerides and TNF-α were elevated. This was coupled with an increase in tissue triglycerides, malondialdehyde and depletion of reduced glutathione. Pioglitazone, pentoxifylline and melatonin, alone or in combination; reduced the insulin resistance index, activities of liver enzymes, hepatic malondialdehyde and increased hepatic reduced glutathione level. Pentoxifylline led to a decrease in serum TNF-α level, however, pioglitazone and melatonin reduced serum total cholesterol and triglycerides. In conclusion, data in this study indicate that pentoxifylline and melatonin can be used as promising adjuvant therapies to pioglitazone in the clinical management of NAFLD.

  15. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42.

    PubMed

    Zhang, Lu; Fang, Yu; Lian, Yajun; Chen, Yuan; Wu, Tianwen; Zheng, Yake; Zong, Huili; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua; Xu, Yuming

    2015-01-01

    An emerging body of data suggests that the early onset of Alzheimer's disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.

  16. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    PubMed

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  17. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    PubMed

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.

  18. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    PubMed

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  19. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor.

    PubMed

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People's Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility.

  20. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    PubMed Central

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  1. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease.

    PubMed

    Khurana, Navneet; Gajbhiye, Asmita

    2013-12-01

    Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC

  2. Inflammatory signaling in Alzheimer disease and depression.

    PubMed

    Barber, Robert

    2011-08-01

    To help define the relationships among inflammation, Alzheimer disease, and depression, the Texas Alzheimer's Research Consortium analyzed an array of inflammatory biomarkers in a cohort of patients with Alzheimer disease and in controls. Inflammation severity was highly correlated with earlier age at onset of Alzheimer disease and was also associated with cognitive decline. The relationship between inflammation and depression was not as clear, and it varied with aspects of depression, gender, and the presence of Alzheimer disease.

  3. Cucurbitacin E ameliorates hepatic fibrosis in vivo and in vitro through activation of AMPK and blocking mTOR-dependent signaling pathway.

    PubMed

    Wu, Yan-Ling; Zhang, Yu-Jing; Yao, You-Li; Li, Zhi-Man; Han, Xin; Lian, Li-Hua; Zhao, Yu-Qing; Nan, Ji-Xing

    2016-09-06

    The study evaluated the potential protective effect and underlying mechanism of Cucurbitacin E (CuE) in both thioacetamide-induced hepatic fibrosis and activated HSCs. CuE inhibited the proliferation of activated HSC/T-6 cells in a concentration- and time-dependent manner; triggered the activation of caspase-3, cleaved PARP, altered ratio of bcl-2-to-bax, and affected cytochrome C protein in a time- and concentration-dependent manner. CuE arrested activated HSCs at the G2/M phase. Furthermore, CuE reduced levels of p-Erk/MAPK and also inhibited the protein and mRNA expressions of α-SMA, TIMP-1 and collagen I in activated HSC-T6 cells. CuE inhibited PI3K and Akt phosphorylation, and reduced the levels of p-mTOR and p-P70S6K and increased the expression of p-AMPK, which is similar with AICAR and metformin. C57BL/6 mice were intraperitoneally injected with thioacetamide (TAA) for five continuous weeks (100 or 200mg/kg, three times per week) along with daily administration of CuE (5 or 10mg/kg/d) and curcumin (Cur, 20mg/kg). CuE treatments significantly reduced serum ALT/AST levels, α-SMA, TIMP-1, and collagen I protein expressions. HE, Masson trichrome, Sirius red and immunohistochemical staining also suggested that CuE could ameliorate hepatic fibrosis. Our findings suggest that CuE induces apoptosis of activated HSC and ameliorates TAA-induced hepatic fibrosis through activation of AMPK and blocking mTOR-dependent signaling pathway.

  4. Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway

    PubMed Central

    Huang, Guodong; Lv, Jianzhen; Li, Tongyu; Huai, Guoli; Li, Xiang; Xiang, Shaowei; Wang, Longlong; Qin, Zhenlin; Pang, Jianli; Zou, Bingyu; Wang, Yi

    2016-01-01

    The present study was designed to examine the protective effect of notoginsenoside R1 (NR1) on podocytes in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN), and to explore the mechanism responsible for NR1-induced renal protection. Diabetes was induced by a single injection of STZ, and NR1 was administered daily at a dose of 5 mg/kg (low dose), 10 mg/kg (medium) and 20 mg/kg (high) for 16 weeks in Sprague-Dawley rats. Blood glucose levels, body weight and proteinuria were measured every 4 weeks, starting on the day that the rats received NR1. Furthermore, on the day of sacrifice, blood, urine and kidneys were collected in order to assess renal function according to general parameters. Pathological staining was performed to evaluate the renal protective effect of NR1, and the expression of the key slit diaphragm proteins, namely neprhin, podocin and desmin, were evaluated. In addition, the serum levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), interleukin (IL)-1 and IL-6] as well as an anti-inflammatory cytokine (IL-10) were assessed, and the apoptosis of podocytes was quantified. Finally, the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and the involvement of nuclear factor-κB (NF-κB) inactivation was further analyzed. In this study, NR1 improved renal function by ameliorating histological alterations, increasing the expression of nephrin and podocin, decreasing the expression of desmin, and inhibiting both the inflammatory response as well as the apoptosis of podocytes. Furthermore, NR1 treatment increased the phosphorylation of both PI3K (p85) and Akt, indicating that activation of the PI3K/Akt signaling pathway was involved. Moreover, NR1 treatment decreased the phosphorylation of NF-κB (p65), suggesting the downregulation of NF-κB. This is the first study to the best of our knowledge, to clearly demonstrate that NR1 treatment ameliorates podocyte injury by inhibiting both

  5. Adipose-derived stem cells ameliorate renal interstitial fibrosis through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway.

    PubMed

    Song, Yan; Peng, Changliang; Lv, Shasha; Cheng, Jing; Liu, Shanshan; Wen, Qing; Guan, Guangju; Liu, Gang

    2017-03-01

    Adipose-derived stem cells (ADSCs) have been successfully used to treat acute kidney injury or acute renal failure. However, the effect of ADSCs on treating renal interstitial fibrosis remains unknown. Here, we assessed the therapeutic efficacy of ADSCs on renal interstitial fibrosis induced by unilateral ureter obstruction (UUO) and explored the potential mechanisms. After 7days of UUO, rats were injected with ADSCs (5×10(6)) or vehicle via tail vein. We found that ADSCs administration significantly ameliorated renal interstitial fibrosis, the occurrence of epithelial-mesenchymal transition (EMT) and inflammatory response. Furthermore, ADSCs administration could inhibit the activation of transforming growth factor-β1 (TGF-β1) signaling pathway, which might play a crucial role in renal interstitial fibrosis of the UUO model rats. These results suggested that ADSCs treatment attenuates renal interstitial fibrosis possibly through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway. Therefore, ADSCs may be an effective therapeutic strategy for the treatment of renal interstitial fibrosis.

  6. Eggshell membrane ameliorates hepatic fibrogenesis in human C3A cells and rats through changes in PPARγ-Endothelin 1 signaling

    PubMed Central

    Jia, Huijuan; Aw, Wanping; Saito, Kenji; Hanate, Manaka; Hasebe, Yukio; Kato, Hisanori

    2014-01-01

    Our previous nutrigenomic findings indicate that eggshell membrane (ESM) may prevent liver fibrosis. Here we investigated the effects and mechanisms underlying ESM intervention against liver injury by using DNA microarray analysis and comparative proteomics. In vitro hydrolyzed ESM attenuated the TGFβ1-induced procollagen production of human hepatocyte C3A cells and inhibited the expression of Endothelin 1 (EDN1) and its two receptors, and extracellular matrix components. In vivo male Wistar rats were allocated into a normal control group, a CCl4 group (hypodermic injection of 50% CCl4 2×/wk) and an ESM group (20 g ESM/kg diet with CCl4 injection) for 7 wks. Dietary ESM ameliorated the elevated activity of ALT/AST, oxidative stress and collagen accumulation in liver, accompanied by the down-regulated expression of Edn1 signaling and notable profibrogenic genes and growth factors as well as peroxisome proliferator-activated receptor gamma (PPARγ). Concomitantly, the decreased expressions of Galectin-1 and Desmin protein in the ESM group indicated the deactivation of hepatic stellate cells (HSCs). Through a multifaceted integrated omics approach, we have demonstrated that ESM can exert an antifibrotic effect by suppressing oxidative stress and promoting collagen degradation by inhibiting HSCs' transformation, potentially via a novel modulation of the PPARγ-Endothelin 1 interaction signaling pathway. PMID:25503635

  7. Treatment with a novel oleic-acid–dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats

    PubMed Central

    Decara, Juan M.; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L.; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-01-01

    ABSTRACT Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg−1) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver

  8. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model

    NASA Astrophysics Data System (ADS)

    Sharma, Shrestha; Narang, Jasjeet K.; Ali, Javed; Baboota, Sanjula

    2016-09-01

    in ameliorating oxidative stress in neurodegenerative disorders like Parkinson’s disease.

  9. Superoxide Dismutase 1 in vivo Ameliorates Maternal Diabetes-Induced Apoptosis and Heart Defects through Restoration of Impaired Wnt Signaling

    PubMed Central

    Wang, Fang; Fisher, Steven A.; Zhong, Jianxiang; Wu, Yanqing; Yang, Peixin

    2015-01-01

    Background Oxidative stress is manifested in embryos exposed to maternal diabetes, yet specific mechanisms for diabetes-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes-induced oxidative stress impairs Wnt signaling thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger SOD1. Methods and Results Wild-type (WT) and superoxide dismutase 1 (SOD1) overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis, and suppressed cell proliferation. Diabetes suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. Conclusions The oxidative stress of diabetes impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of CHDs in fetuses of diabetic pregnancies. PMID:26232087

  10. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  11. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling.

    PubMed

    Xie, Xi; Chang, Xiuting; Chen, Lei; Huang, Kaipeng; Huang, Juan; Wang, Shaogui; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-12-05

    The accumulation of glomerular extracellular matrix proteins, especially fibronectin (FN), is a critical pathological characteristic of diabetic renal fibrosis. Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of diabetic nephropathy (DN). RhoA/ROCK signaling is responsible for FN accumulation and NF-κB activation. Berberine (BBR) treatment significantly inhibited renal inflammation and thus improved renal damage in diabetes. Here, we study whether BBR inhibits FN accumulation and NF-κB activation by inhibiting RhoA/ROCK signaling and the underlying mechanisms involved. Results showed that BBR effectively inhibited RhoA/ROCK signaling activation in diabetic rat kidneys and high glucose-induced glomerular mesangial cells (GMCs) and simultaneously down-regulated NF-κB activity, which was accompanied by reduced intercellular adhesionmolecule-1, transforming growth factor-beta 1 and FN overproduction. Furthermore, we observed that BBR abrogated high glucose-mediated reactive oxygen species generation in GMCs. BBR and N-acetylcysteine inhibited RhoA/ROCK signaling activation in high glucose-exposed GMCs. Collectively, our data suggest that the renoprotective effect of BBR on DN partly depends on RhoA/ROCK inhibition. The anti-oxidative stress effect of BBR is responsible for RhoA/ROCK inhibition in DN.

  12. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    PubMed

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  13. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway.

    PubMed

    Xie, Xi; Li, Wenyuan; Lan, Tian; Liu, Weihua; Peng, Jing; Huang, Kaipeng; Huang, Juan; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2011-01-01

    Recently, it is implicated that the abnormality of Akt signaling pathway is involved in the diabetic pathology. Previous studies have demonstrated that berberine could decrease blood glucose by elevating liver glycogen synthesis. However, the underlying mechanism is still unclear. In the present study, we investigated the effects of berberine on fasting blood glucose, liver glycogen, Akt, Glycogen synthase kinase-3, glucokinase and insulin receptor substrate (IRS) in alloxan-induced diabetic mice, exploring its possible hypoglycemic mechanism. We found that in alloxan-induced diabetic mice, the high blood glucose was significantly lowered by berberine treatment. Liver glycogen content, the expression and activity of glucokinase and the phosphorylated Akt and IRS were all significantly reduced in diabetic mice whereas berberine blocked these changes. Berberine also depressed the increasing of phosphorylated GSK-3β in diabetic mice. Collectively, Berberine upregulates the activity of Akt possibly via insulin signaling pathway, eventually lowering high blood glucose in alloxan-induced diabetic mice.

  14. Wnt and planar cell polarity signaling in cystic renal disease.

    PubMed

    Goggolidou, Paraskevi

    2014-01-01

    Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.

  15. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson's Disease: Modulating Autophagy (Quercetin on Experimental Parkinson's Disease).

    PubMed

    El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N

    2016-07-01

    Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death.

  16. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways.

    PubMed

    Li, Depeng; Zhang, Naisheng; Cao, Yongguo; Zhang, Wen; Su, Gaoli; Sun, Yong; Liu, Zhicheng; Li, Fengyang; Liang, Dejie; Liu, Bo; Guo, Mengyao; Fu, Yunhe; Zhang, Xichen; Yang, Zhengtao

    2013-04-05

    Emodin is an anthraquinone derivative from the Chinese herb Radix et Rhizoma Rhei. It has been reported that emodin possesses a number of biological properties, such as anti-inflammatory, anti-virus, anti-bacteria, anti-tumor, and immunosuppressive properties. However, the effect of emodin on mastitis is not yet known. The aim of this study was to investigate whether emodin has protective effect against lipopolysaccharide (LPS)-induced mastitis in a mouse model. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Emodin was administered intraperitoneally with the dose of 1, 2, and 4 mg/kg respectively 1h before and 12h after induction of LPS. Emodin significantly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), concentration of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), mRNA expression levels of TNF-α, IL-1β and IL-6, which were increased in LPS-induced mouse mastitis. In addition, emodin influenced nuclear factor kappa-B signal transduction pathway by inhibiting activation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κB α (IκBα), and emodin also influenced mitogen activated protein kinases signal transduction pathway by depression activation of p38, extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). In conclusion, these results indicated that emodin could exert beneficial effects on experimental mastitis induced by LPS and may represent a novel treatment strategy for mastitis.

  17. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    PubMed

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  18. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    PubMed

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  19. An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Messing, Albee

    2016-01-01

    The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small

  20. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  1. Desmosomes: adhesive strength and signalling in health and disease.

    PubMed

    Thomason, Helen A; Scothern, Anthea; McHarg, Selina; Garrod, David R

    2010-08-01

    Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure-function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.

  2. Therapeutic modulators of STAT signalling for human diseases

    PubMed Central

    Miklossy, Gabriella; Hilliard, Tyvette S.; Turkson, James

    2014-01-01

    The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials. PMID:23903221

  3. Zingerone ameliorates lipopolysaccharide-induced acute kidney injury by inhibiting Toll-like receptor 4 signaling pathway.

    PubMed

    Song, Jie; Fan, Hao-jun; Li, Hui; Ding, Hui; Lv, Qi; Hou, Shi-ke

    2016-02-05

    Acute kidney injury (AKI) is a serious complication of sepsis. Zingerone, a phenolic alkanone isolated from ginger, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the therapeutic effects of zingerone on lipopolysaccharide (LPS)-induced AKI in mice. Zingerone was administrated 1h after LPS challenge. The production of blood urea nitrogen (BUN) and creatinine were measured in this study. The expressions of inflammatory cytokines in serum and kidney tissues were detected by ELISA. The expressions of Toll-like receptor 4 (TLR4), MyD88, TRIF, Nuclear factor Kappa B (NF-κB) and IκB were measured by Western blotting. The results showed that zingerone suppressed LPS-induced BUN, creatinine, and inflammatory cytokines TNF-α, IL-6 and IL-1β levels in a dose-dependent manner. Zingerone also attenuated LPS-induced kidney histopathologic changes. Furthermore, zingerone was found to inhibit LPS-induced TLR4, MyD88, TRIF expression and NF-κB activation. In conclusion, the current study demonstrated that zingerone inhibited LPS-induced AKI by suppressing TLR4/NF-κB signaling pathway.

  4. miR-375 ameliorates sepsis by downregulating miR-21 level via inhibiting JAK2-STAT3 signaling.

    PubMed

    Sheng, Bo; Zhao, Lei; Zang, Xuefeng; Zhen, Jie; Chen, Wei

    2017-02-01

    Accumulating evidences have confirmed that miRNAs have important roles in sepsis. Myeloid-derived suppressor cells (MDSCs) enhance late sepsis development through immunosuppression in mice. Here, the functions and mechanisms of miR-375 in sepsis were revealed. We found that miR-375 level was downregulated but miR-21 level was upregulated in sepsis patients and that their levels were correlated negatively. Importantly, ectopic expression of miR-375 could decrease the number of sepsis Gr1+CD11b+ MDSCs in mice. Mechanistically, miR-375 could target Janus kinase 2 (JAK2) and further impaired signal transducer and activator of transcription 3 (STAT3) in sepsis Gr1+CD11b+ MDSC. Gain and loss of function of experiments showed that upregulation or downregulation of miR-375 level could decrease or increase miR-21 level. Moreover, pretreatment of JAK2 overexpressing vector could abolish the effects of miR-375 on miR-21 level and the amount of sepsis Gr1+CD11b+ MDSCs. Therefore, our results demonstrate that miR-375 could block JAK2-STAT3 pathway and thus modulate miR-21 level, which is involved in regulation of late sepsis.

  5. [Cytokines in bone diseases. Wnt signal and excessive bone formation].

    PubMed

    Hosoi, Takayuki

    2010-10-01

    Wnt signal has been known to play various roles in many organ from the beginning of embryogensis. Its role in bone metabolism has also been investigated and established. Lipoprotein receptor-related protein 5 (LRP5) is one of the important molecules in wnt signal pathway whose point mutations are related to both bone loss and excessive bone formation. Wnt signal is involved in the action of sclerostin which was found as a gene for osteosclerosis, one of the diseases of excessive bone formation. Wnt signal is keeping the position as an important research target for normal and pathological bone formation.

  6. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats.

    PubMed

    Tian, Ruifeng; Yang, Wenqing; Xue, Qiang; Gao, Liang; Huo, Junli; Ren, Dongqing; Chen, Xiaoyan

    2016-01-15

    Rutin exhibits antidiabetic, antioxidant and anti-inflammatory properties, which makes rutin an attractive candidate for diabetic complications. The present study was designed to investigate the potential effect of rutin on diabetic neuropathy. After induction of diabetic neuropathy, rutin (5mg/kg, 25mg/kg and 50mg/kg) were daily given to the diabetic rats for 2 weeks. At the end of rutin administration, rutin produced a significant inhibition of mechanical hyperalgesia, thermal hyperalgesia and cold allodynia, as well as partial restoration of nerve conduction velocities in diabetic rats. Furthermore, rutin significantly increased Na(+), K(+)-ATPase activities in sciatic nerves and decreased caspase-3 expression in dorsal root ganglions (DRG). In addition, rutin significantly decreased plasma glucose, attenuated oxidative stress and neuroinflammation. Further studies showed that rutin significantly increased hydrogen sulfide (H2S) level, up-regulated the expression of nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in DRG. The evidences suggest the beneficial effect of rutin on diabetic neuropathy. Additionally, insulin (2 IU) and BG-12 (15mg/kg) were used to investigate the mechanisms underlying the beneficial effect of rutin on diabetic neuropathy. Insulin achieved lower plasma glucose and BG-12 achieved comparable Nrf2 expression than/to rutin (50mg/kg), respectively. In contrast, the beneficial effect of insulin and BG-12 was inferior to that of rutin (50mg/kg), suggesting that both lowered plasma glucose and Nrf2 signaling contribute to the beneficial effect of rutin on diabetic neuropathy. In conclusion, rutin produces significant protection in diabetic neuropathy, which makes it an attractive candidate for the treatment of diabetic neuropathy.

  7. EMG signal morphology in essential tremor and Parkinson's disease.

    PubMed

    Ruonala, V; Meigal, A; Rissanen, S M; Airaksinen, O; Kankaanpaa, M; Karjalainen, P A

    2013-01-01

    The aim of this work was to differentiate patients with essential tremor from patients with Parkinson's disease. The electromyographic signal from the biceps brachii muscle was measured during isometric tension from 17 patients with essential tremor, 35 patients with Parkinson's disease, and 40 healthy controls. The EMG signals were high pass filtered and divided to smaller segments from which histograms were calculated using 200 histogram bins. EMG signal histogram shape was analysed with a feature dimension reduction method, the principal component analysis, and the shape parameters were used to differentiate between different patient groups. The height of the histogram and the side difference between left and right hand were the best discriminators between essential tremor and Parkinson's disease groups. With this method, it was possible to discriminate 13/17 patients with essential tremor from 26/35 patients with Parkinson's disease and 14/17 patients with essential tremor from 29/40 healthy controls.

  8. Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: Role of endothelin signaling

    SciTech Connect

    El-Mas, Mahmoud M.; Helmy, Maged W.; Ali, Rabab M.; El-Gowelli, Hanan M.

    2015-04-01

    The immunosuppressant drug cyclosporine (CSA) is used with nonsteroidal antiinflammatory drugs (NSAIDs) in arthritic conditions. In this study, we investigated whether NSAIDs modify the deleterious hypertensive action of CSA and the role of endothelin (ET) receptors in this interaction. Pharmacologic, protein expression, and histopathologic studies were performed in rats to investigate the roles of endothelin receptors (ET{sub A}/ET{sub B}) in the hemodynamic interaction between CSA and two NSAIDs, indomethacin and celecoxib. Tail-cuff plethysmography measurements showed that CSA (20 mg kg{sup −1} day{sup −1}, 10 days) increased systolic blood pressure (SBP) and heart rate (HR). CSA hypertension was associated with renal perivascular fibrosis and divergent changes in immunohistochemical signals of renal arteriolar ET{sub A} (increases) and ET{sub B} (decreases) receptors. While these effects of CSA were preserved in rats treated concomitantly with indomethacin (5 mg kg{sup −1} day{sup −1}), celecoxib (10 mg kg{sup −1} day{sup −1}) abolished the pressor, tachycardic, and fibrotic effects of CSA and normalized the altered renal ET{sub A}/ET{sub B} receptor expressions. Selective blockade of ET{sub A} receptors by atrasentan (5 mg kg{sup −1} day{sup −1}) abolished the pressor response elicited by CSA or CSA plus indomethacin. Alternatively, BQ788 (ET{sub B} receptor blocker, 0.1 mg kg{sup −1} day{sup −1}) caused celecoxib-sensitive elevations in SBP and potentiated the pressor response evoked by CSA. Together, the improved renovascular fibrotic and endothelin receptor profile (ET{sub A} downregulation and ET{sub B} upregulation) mediate, at least partly, the protective effect of celecoxib against the hypertensive effect of CSA. Clinically, the use of celecoxib along with CSA in the management of arthritic conditions might provide hypertension-free regimen. - Highlights: • Chronic CSA causes hypertension and renal perivascular fibrosis in rats.

  9. Roles of FGF Signals in Heart Development, Health, and Disease

    PubMed Central

    Itoh, Nobuyuki; Ohta, Hiroya; Nakayama, Yoshiaki; Konishi, Morichika

    2016-01-01

    The heart provides the body with oxygen and nutrients and assists in the removal of metabolic waste through the blood vessels of the circulatory system. It is the first organ to form during embryonic morphogenesis. FGFs with diverse functions in development, health, and disease are signaling proteins, mostly as paracrine growth factors or endocrine hormones. The human/mouse FGF family comprises 22 members. Findings obtained from mouse models and human diseases with FGF signaling disorders have indicated that several FGFs are involved in heart development, health, and disease. Paracrine FGFs including FGF8, FGF9, FGF10, and FGF16 act as paracrine signals in embryonic heart development. In addition, paracrine FGFs including FGF2, FGF9, FGF10, and FGF16 play roles as paracrine signals in postnatal heart pathophysiology. Although FGF15/19, FGF21, and FGF23 are typical endocrine FGFs, they mainly function as paracrine signals in heart development or pathophysiology. In heart diseases, serum FGF15/19 levels or FGF21 and FGF23 levels decrease or increase, respectively, indicating their possible roles in heart pathophysiology. FGF2 and FGF10 also stimulate the cardiac differentiation of cultured stem cells and cardiac reprogramming of cultured fibroblasts. These findings provide new insights into the roles of FGF signaling in the heart and potential therapeutic strategies for cardiac disorders. PMID:27803896

  10. Riluzole But Not Melatonin Ameliorates Acute Motor Neuron Degeneration and Moderately Inhibits SOD1-Mediated Excitotoxicity Induced Disrupted Mitochondrial Ca2+ Signaling in Amyotrophic Lateral Sclerosis

    PubMed Central

    Jaiswal, Manoj Kumar

    2017-01-01

    Selective motoneurons (MNs) degeneration in the brain stem, hypoglossal motoneurons (HMNs), and the spinal cord resulting in patients paralysis and eventual death are prominent features of amyotrophic lateral sclerosis (ALS). Previous studies have suggested that mitochondrial respiratory impairment, low Ca2+ buffering and homeostasis and excitotoxicity are the pathological phenotypes found in mice, and cell culture models of familial ALS (fALS) linked with Cu/Zn-superoxide dismutase 1 (SOD1) mutation. In our study, we aimed to understand the impact of riluzole and melatonin on excitotoxicity, neuronal protection and Ca2+ signaling in individual HMNs ex vivo in symptomatic adult ALS mouse brain stem slice preparations and in WT and SOD1-G93A transfected SH-SY5Y neuroblastoma cell line using fluorescence microscopy, calcium imaging with high speed charged coupled device camera, together with immunohistochemistry, cell survival assay and histology. In our experiments, riluzole but not melatonin ameliorates MNs degeneration and moderately inhibit excitotoxicity and cell death in SH-SY5YWT or SH-SY5YG93A cell lines induced by complex IV blocker sodium azide. In brain stem slice preparations, riluzole significantly inhibit HMNs cell death induced by inhibiting the mitochondrial electron transport chain by Na-azide. In the HMNs of brainstem slice prepared from adult (14–15 weeks) WT, and corresponding symptomatic SOD1G93A mice, we measured the effect of riluzole and melatonin on [Ca2+]i using fura-2 AM ratiometric calcium imaging in individual MNs. Riluzole caused a significant decrease in [Ca2+]i transients and reversibly inhibited [Ca2+]i transients in Fura-2 AM loaded HMNs exposed to Na-azide in adult symptomatic SOD1G93A mice. On the contrary, melatonin failed to show similar effects in the HMNs of WT and SOD1G93A mice. Intrinsic nicotinamide adenine dinucleotide (NADH) fluorescence, an indicator of mitochondrial metabolism and health in MNs, showed enhanced

  11. Wnt signaling: role in Alzheimer disease and schizophrenia.

    PubMed

    Inestrosa, Nibaldo C; Montecinos-Oliva, Carla; Fuenzalida, Marco

    2012-12-01

    Wnt signaling function starts during the development of the nervous system and is crucial for synaptic plasticity in the adult brain. Clearly Wnt effects in synaptic and plastic processes are relevant, however the implication of this pathway in the prevention of neurodegenerative diseases that produce synaptic impairment, is even more interesting. Several years ago our laboratory found a relationship between the loss of Wnt signaling and the neurotoxicity of the amyloid-β-peptide (Aβ), one of the main players in Alzheimer's disease (AD). Moreover, the activation of the Wnt signaling cascade prevents Aβ-dependent cytotoxic effects. In fact, disrupted Wnt signaling may be a direct link between Aβ-toxicity and tau hyperphosphorylation, ultimately leading to impaired synaptic plasticity and/or neuronal degeneration, indicating that a single pathway can account for both neuro-pathological lesions and altered synaptic function. These observations, suggest that a sustained loss of Wnt signaling function may be a key relevant factor in the pathology of AD. On the other hand, Schizophrenia remains one of the most debilitating and intractable illness in psychiatry. Since Wnt signaling is important in organizing the developing brain, it is reasonable to propose that defects in Wnt signaling could contribute to Schizophrenia, particularly since the neuro-developmental hypothesis of the disease implies subtle dys-regulation of brain development, including some core components of the Wnt signaling pathways such as GSK-3β or Disrupted in Schizophrenia-1 (DISC-1). This review focuses on the relationship between Wnt signaling and its potential relevance for the treatment of neurodegenerative and neuropsychiatric diseases including AD and Schizophrenia.

  12. Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats.

    PubMed

    Lan, Zhou; Chen, Lvyi; Fu, Qiang; Ji, Weiwei; Wang, Shuyuan; Liang, Zhaohui; Qu, Rong; Kong, Lingyi; Ma, Shiping

    2013-03-01

    Paeoniflorin is a monoterpene glycoside isolated from the aqueous extract of the dry root of Paeonia. It has been identified to exhibit many pharmacological effects including enhancing the cognitive ability, producing anti-depressant-like effect and reducing the MTPT-induced toxicity. In our previous study, it has shown that paeoniflorin improved the cognitive ability and attenuated the oxidative stress in the Aβ(1-42)-treated rats. In order to further elucidate the possible molecular mechanisms of paeoniflorin on the cognitive ability, rats were injected with Aβ(1-42) (1 μg/μL) and later with paeoniflorin (15 mg/kg and 30 mg/kg, i.p.) and donepezil hydrochloride (2mg/kg, i.p.) daily for 20 days in this study. The results showed that the long-term treatment of paeoniflorin or donepezil enhanced the cognitive performances in the Morris water maze test, restored the decreased activities of superoxide dismutase and catalase and the increased level of malondialdehyde, and reversed the alterations of matrix metallopeptidase-9 and tissue-inhibitor of metalloproteinase-1 in the hippocampus of Aβ(1-42)-treated rats. Paeoniflorin also up-regulated the activity of choline acetyltrasferase and the expression of tyrosine kinase A receptor, and down-regulated the activity of acetylcholine esterase in the hippocampus of Aβ(1-42)-treated rats. These results demonstrate that paeoniflorin ameliorates the spatial learning and memory deficits by attenuating oxidative stress and regulating the nerve growth factor-mediated signaling to reinforce cholinergic functions in the hippocampus of the Aβ(1-42)-treated rats.

  13. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    PubMed

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  14. Stress Signal Network between Hypoxia and ER Stress in Chronic Kidney Disease

    PubMed Central

    Maekawa, Hiroshi; Inagi, Reiko

    2017-01-01

    Chronic kidney disease (CKD) is characterized by an irreversible decrease in kidney function and induction of various metabolic dysfunctions. Accumulated findings reveal that chronic hypoxic stress and endoplasmic reticulum (ER) stress are involved in a range of pathogenic conditions, including the progression of CKD. Because of the presence of an arteriovenous oxygen shunt, the kidney is thought to be susceptible to hypoxia. Chronic kidney hypoxia is induced by a number of pathogenic conditions, including renal ischemia, reduced peritubular capillary, and tubulointerstitial fibrosis. The ER is an organelle which helps maintain the quality of proteins through the unfolded protein response (UPR) pathway, and ER dysfunction associated with maladaptive UPR activation is named ER stress. ER stress is reported to be related to some of the effects of pathogenesis in kidney, particularly in the podocyte slit diaphragm and tubulointerstitium. Furthermore, chronic hypoxia mediates ER stress in blood vessel endothelial cells and tubulointerstitium via several mechanisms, including oxidative stress, epigenetic alteration, lipid metabolism, and the AKT pathway. In summary, a growing consensus considers that these stresses interact via complicated stress signal networks, which leads to the exacerbation of CKD (Figure 1). This stress signal network might be a target for interventions aimed at ameliorating CKD. PMID:28228736

  15. Stress Signal Network between Hypoxia and ER Stress in Chronic Kidney Disease.

    PubMed

    Maekawa, Hiroshi; Inagi, Reiko

    2017-01-01

    Chronic kidney disease (CKD) is characterized by an irreversible decrease in kidney function and induction of various metabolic dysfunctions. Accumulated findings reveal that chronic hypoxic stress and endoplasmic reticulum (ER) stress are involved in a range of pathogenic conditions, including the progression of CKD. Because of the presence of an arteriovenous oxygen shunt, the kidney is thought to be susceptible to hypoxia. Chronic kidney hypoxia is induced by a number of pathogenic conditions, including renal ischemia, reduced peritubular capillary, and tubulointerstitial fibrosis. The ER is an organelle which helps maintain the quality of proteins through the unfolded protein response (UPR) pathway, and ER dysfunction associated with maladaptive UPR activation is named ER stress. ER stress is reported to be related to some of the effects of pathogenesis in kidney, particularly in the podocyte slit diaphragm and tubulointerstitium. Furthermore, chronic hypoxia mediates ER stress in blood vessel endothelial cells and tubulointerstitium via several mechanisms, including oxidative stress, epigenetic alteration, lipid metabolism, and the AKT pathway. In summary, a growing consensus considers that these stresses interact via complicated stress signal networks, which leads to the exacerbation of CKD (Figure 1). This stress signal network might be a target for interventions aimed at ameliorating CKD.

  16. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence.

  17. A novel 2-decenoic acid thioester ameliorates corticosterone-induced depression- and anxiety-like behaviors and normalizes reduced hippocampal signal transduction in treated mice

    PubMed Central

    Shibata, Shoyo; Iinuma, Munekazu; Soumiya, Hitomi; Fukumitsu, Hidefumi; Furukawa, Yoshiko; Furukawa, Shoei

    2015-01-01

    We characterized mice administered corticosterone (CORT) at a dose of 20 mg/kg for 3 weeks to determine their suitability as a model of mood disorders and found that the time immobilized in the tail suspension test was longer and the time spent in the open arms of the elevated plus-maze test was shorter than those of the vehicle-treated group, findings demonstrating that chronic CORT induced both depression-like and anxiety-like behaviors. Furthermore, the levels of phosphorylated extracellular signal-regulated kinase (pERK) 1/2 in the hippocampus and cerebral cortex were reduced in the CORT-treated group. Using this model, we investigated the protective effect of the ester, thioester, and amide compounds of 2-decenoic acid derivatives (termed compounds A, B, and C, respectively). The potency of the protective activity against the CORT-induced depression-like or anxiety-like behaviors and the reduction in pERK1/2 level were found to be in the following order: compound B > compound C > compound A. Therefore, we further investigated the therapeutic activity of only compound B, and its effect on depression-like behavior was observed after oral administration for 1 or 2 weeks, and its effect on anxiety-like behavior was observed after oral administration for 3 weeks. The ratios of phosphorylated ERK1/2, Akt, and cAMP-response element-binding protein to their respective nonphosphorylated forms were smaller in the CORT-treated group than in the vehicle-treated group; however, subsequent treatment with compound B at either 0.3 or 1.5 mg/kg significantly ameliorated this reduction. Compound B appeared to elicit intracellular signaling, similar to that elicited by brain-derived neurotrophic factor, and its mode of action was shown to be novel and different from that of fluvoxamine, a currently prescribed drug for mood disorders. PMID:26038707

  18. HemoHIM ameliorates the persistent down-regulation of Th1-like immune responses in fractionated γ-irradiated mice by modulating the IL-12p70-STAT4 signaling pathway.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Choi, Nam-Hee; Jung, Uhee

    2012-05-01

    Whole body irradiated mice appear to experience a down-regulation of the helper T (Th)1-like immune response, and maintain a persistent immunological imbalance. In the current study, we evaluated the effect of HemoHIM (an herbal product made from Angelica Radix, Cnidium officinale , and Paeonia japonica cultivated in Korea) to ameliorate the immunological imbalance induce in fractionated γ-irradiated mice. The mice were exposed to γ rays twice a week (0.5 Gy fractions) for a total dose of 5 Gy, and HemoHIM was administrated orally from 1 week before the first irradiation to 1 week before the final analysis. All experiments were performed 4 and 6 months after their first exposure. HemoHIM ameliorated the Th1- and Th2-related immune responses normally occur in irradiated mice with or without dinitrophenylated keyhole limpet hemocyanin immunization. HemoHIM also restored the natural killer cell activities without changing the percentage of natural killer cells in irradiated mice. Furthermore, the administration of HemoHIM prevented the reduction in levels of interleukin-12p70 in irradiated mice. Finally, we found that HemoHIM enhanced the phosphorylation of signal transducer and activator of transcription (STAT) 4 that was reduced in irradiated mice. Our findings suggest that HemoHIM ameliorates the persistent down-regulation of Th1-like immune responses by modulating the IL-12p70/pSTAT4 signaling pathway.

  19. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  20. BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease

    PubMed Central

    Burke, Rebecca M.; Norman, Timothy A.; Haydar, Tarik F.; Slack, Barbara E.; Leeman, Susan E.; Blusztajn, Jan Krzysztof; Mellott, Tiffany J.

    2013-01-01

    Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer’s disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD. PMID:24218590

  1. Therapeutic Role of Ursolic Acid on Ameliorating Hepatic Steatosis and Improving Metabolic Disorders in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Rats

    PubMed Central

    Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Methodology/Principal Findings Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. Conclusions/Significance These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD. PMID:24489777

  2. Association of Increased Serum Leptin with Ameliorated Anemia and Malnutrition in Stage 5 Chronic Kidney Disease Patients after Parathyroidectomy.

    PubMed

    Jiang, Yao; Zhang, Jingjing; Yuan, Yanggang; Zha, Xiaoming; Xing, Changying; Shen, Chong; Shen, Zhixiang; Qin, Chao; Zeng, Ming; Yang, Guang; Mao, Huijuan; Zhang, Bo; Yu, Xiangbao; Sun, Bin; Ouyang, Chun; Xu, Xueqiang; Ge, Yifei; Wang, Jing; Zhang, Lina; Cheng, Chen; Yin, Caixia; Zhang, Jing; Chen, Huimin; Ma, Haoyang; Wang, Ningning

    2016-06-16

    Leptin is an adipokine that regulates various metabolism, but its association with secondary hyperparathyroidism (SHPT), a clinical manifestation of chronic kidney disease-mineral and bone disorder (CKD-MBD), remains obscure. Parathyroidectomy (PTX) is recommended for severe SHPT patients. Here, the associations between circulating leptin and clinical characteristics in CKD patients were investigated. Effects of PTX on leptin production were analyzed in vivo and in vitro. Controls and CKD patients had approximate serum leptin levels in that a larger proportion of CKD patients with body mass index (BMI) <23 kg/m(2). Serum leptin was related to anemia, albumin, and bone metabolism disorders in CKD patients. Lower intact parathyroid hormone (PTH) was related with higher leptin in PTX patients group. Severe SHPT inhibited uremia-enhanced leptin production in 3T3-L1 adipocytes, which was attenuated after PTX. High levels of PTH were found to reduce Akt phosphorylation and leptin production in vitro but high levels of calcium and phosphorus were not. Successful PTX was found to improve anemia and malnutrition in severe SHPT patients, and this was correlated with increased circulating leptin levels via up-regulated Akt signaling in adipocytes. These findings indicated the therapeutic potential of leptin and related target pathway for improving survival and quality of life in CKD.

  3. Targeting BMP signalling in cardiovascular disease and anaemia

    PubMed Central

    Morrell, Nicholas W.; Bloch, Donald B.; ten Dijke, Peter; Goumans, Marie-Jose T.H.; Hata, Akiko; Smith, Jim; Yu, Paul B.; Bloch, Kenneth D.

    2016-01-01

    Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonal patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders of heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell- and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signaling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, and well as for anaemia of chronic disease. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signaling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies. PMID:26461965

  4. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    PubMed Central

    Hsieh, Hsi-Lung; Yang, Chuen-Mao

    2013-01-01

    Reactive oxygen species (ROS), a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS) have been detected in patients with neurodegenerative diseases such as Alzheimer's disease (AD). These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs), cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases. PMID:24455696

  5. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    PubMed Central

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  6. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    PubMed

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  7. Purinergic signalling in the pancreas in health and disease.

    PubMed

    Burnstock, G; Novak, I

    2012-05-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.

  8. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease

    PubMed Central

    Wright, D J; Renoir, T; Smith, Z M; Frazier, A E; Francis, P S; Thorburn, D R; McGee, S L; Hannan, A J; Gray, L J

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy. PMID:25562842

  9. Nitric oxide functions as a signal in plant disease resistance.

    PubMed

    Delledonne, M; Xia, Y; Dixon, R A; Lamb, C

    1998-08-06

    Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.

  10. Inflammatory Signalings Involved in Airway and Pulmonary Diseases

    PubMed Central

    Lee, I-Ta; Yang, Chuen-Mao

    2013-01-01

    In respiratory diseases, there is an increased expression of multiple inflammatory proteins in the respiratory tract, including cytokines, chemokines, and adhesion molecules. Chemokines have been shown to regulate inflammation and immune cell differentiation. Moreover, many of the known inflammatory target proteins, such as matrix metalloproteinase-9 (MMP-9), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A2 (cPLA2), are associated with airway and lung inflammation in response to various stimuli. Injuriously environmental stimuli can access the lung through either the airways or the pulmonary and systemic circulations. The time course and intensity of responses by resident and circulating cells may be regulated by various inflammatory signalings, including Src family kinases (SFKs), protein kinase C (PKC), growth factor tyrosine kinase receptors, nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS), PI3K/Akt, MAPKs, nuclear factor-kappa B (NF-κB), activator protein-1 (AP-1), and other signaling molecules. These signaling molecules regulate both key inflammatory signaling transduction pathways and target proteins involved in airway and lung inflammation. Here, we discuss the mechanisms involved in the expression of inflammatory target proteins associated with the respiratory diseases. Knowledge of the mechanisms of inflammation regulation could lead to the pharmacological manipulation of anti-inflammatory drugs in the respiratory diseases. PMID:23690670

  11. Emerging roles of Notch signaling in liver disease

    PubMed Central

    Geisler, Fabian; Strazzabosco, Mario

    2014-01-01

    This review critically discusses the most recent advances on the role of Notch signaling in liver development, homeostasis and disease. It is now clear that the significance of Notch in determining mammalian cell fates and functions extends beyond development, and Notch is a major regular of organ homeostasis. Moreover, Notch signaling is reactivated upon injury and regulates the complex interactions between the distinct cellular types involved in the repair process. Notch is also involved in the regulation of liver metabolism, inflammation and cancer. The net effects of Notch signaling are highly variable and finely regulated at multiple levels, but also depend on the specific cellular context in which Notch is activated. Persistent activation of Notch signaling is associated with liver malignancies, such as hepatocellular carcinoma with stem cell features and intrahepatic cholangiocarcinoma. The complexity of the pathway provides several possible targets for agents able to inhibit Notch. However, further cell- and context-specific in depth understanding of Notch signaling in liver homeostasis and disease will be essential to translate these concepts into the clinical practice and be able to predict benefits and risks of evolving therapies. PMID:24930574

  12. Extracellular nucleotide and nucleoside signaling in vascular and blood disease

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Riegel, Ann-Kathrin

    2014-01-01

    Nucleotides and nucleosides—such as adenosine triphosphate (ATP) and adenosine—are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically. PMID:25001468

  13. Biological Membrane-Packed Mesenchymal Stem Cells Treat Acute Kidney Disease by Ameliorating Mitochondrial-Related Apoptosis

    PubMed Central

    Geng, Xiaodong; Hong, Quan; Wang, Weiwei; Zheng, Wei; Li, Ou; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2017-01-01

    The mortality of rhabdomyolysis-induced AKI remains high because no effective therapy exists. We investigated a new therapeutic method using MSCs. The aim of this study was to investigate the therapeutic potential and anti-apoptotic mechanisms of action of MSCs in the treatment of AKI induced by glycerol in vivo and in vitro. We used Duragen as a biological membrane to pack MSCs on the glycerol-injured renal tissue in vivo. The anti-apoptotic mechanism was investigated. In vitro, HK-2 cells were incubated with ferrous myoglobin and MSCs-conditioned medium, followed by cell proliferation and apoptosis assays. We founded that packing MSCs on the injured renal tissue preserved renal function, ameliorated renal tubular lesions, and reduced apoptosis in the mice with glycerol-induced AKI. The MSC-conditioned medium improved HK-2 cell viability and inhibited apoptosis. These effects were reversed by the PI3K inhibitor LY294002. Biological membrane packing of MSCs on the renal tissue has a therapeutic rescue function by inhibiting cell apoptosis in vivo. MSCs protect renal cells from apoptosis induced by myoglobin in vitro. We have thus demonstrated MSCs reduced rhabdomyolysis-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway and inhibiting apoptosis. PMID:28117405

  14. Notch signalling in placental development and gestational diseases.

    PubMed

    Haider, S; Pollheimer, J; Knöfler, M

    2017-01-16

    Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.

  15. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease

    PubMed Central

    Zhou, Fan; Katirai, Foad

    2011-01-01

    Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649

  16. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5.

    PubMed Central

    Wang, Y; Hu, Q; Madri, J A; Rollins, S A; Chodera, A; Matis, L A

    1996-01-01

    New Zealand black x New Zealand white (NZB/W) F1 mice spontaneously develop an autoimmune syndrome with notable similarities to human systemic lupus erythematosus. Female NZB/WF1 mice produce high titers of antinuclear antibodies and invariably succumb to severe glomerulonephritis by 12 months of age. Although the development of the immune-complex nephritis is accompanied by abundant local and systemic complement activation, the role of proinflammatory complement components in disease progression has not been established. In this study we have examined the contribution of activated terminal complement proteins to the pathogenesis of the lupus-like autoimmune disease. Female NZB/W F1 mice were treated with a monoclonal antibody (mAb) specific for the C5 component of complement that blocks the cleavage of C5 and thus prevents the generation of the potent proinflammatory factors C5a and C5b-9. Continuous therapy with anti-C5 mAb for 6 months resulted in significant amelioration of the course of glomerulonephritis and in markedly increased survival. These findings demonstrate an important role for the terminal complement cascade in the progression of renal disease in NZB/W F1 mice, and suggest that mAb-mediated C5 inhibition may be a useful approach to the therapy of immune-complex glomerulonephritis in humans. Images Fig. 3 Fig. 5 PMID:8710910

  17. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice

    PubMed Central

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    Background and aims A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Methods Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Results Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. Conclusions The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans. PMID:28278289

  18. Sonic hedgehog signaling in the lung. From development to disease.

    PubMed

    Kugler, Matthias C; Joyner, Alexandra L; Loomis, Cynthia A; Munger, John S

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.

  19. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice

    PubMed Central

    Hong, Zhen-Yi; Yu, Shuang-Shuang; Wang, Zhi-Jun; Zhu, Yi-Zhun

    2015-01-01

    SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson’s disease and Alzheimer’s disease (AD). In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1) double-transgenic mice without affecting amyloid-β (Aβ) burden. In addition, decreases in cAMP-response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA) inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future. PMID:26262618

  20. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice.

    PubMed

    Hong, Zhen-Yi; Yu, Shuang-Shuang; Wang, Zhi-Jun; Zhu, Yi-Zhun

    2015-08-07

    SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson's disease and Alzheimer's disease (AD). In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1) double-transgenic mice without affecting amyloid-β (Aβ) burden. In addition, decreases in cAMP-response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA) inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future.

  1. Pound the alarm: danger signals in rheumatic diseases.

    PubMed

    O'Reilly, Steven

    2015-03-01

    Damage-associated molecular patterns (DAMPs) are chemically heterogeneous endogenous host molecules rapidly released from damaged or dying cells that incite a sterile inflammatory response mediated via pattern recognition receptors (PRRs). The sources of DAMPs are dead or dying cells or the extracellular matrix and can signal through the PRRs, the Toll-like receptors or cytosolic Nod-like receptors, culminating in nuclear factor κB (NF-κB) activation and pro-inflammatory cytokine secretion. Together, these molecules are involved in sterile inflammation and many are associated with rheumatic autoimmune diseases such as rheumatoid arthritis, systemic lupus erythromatosus, psoriatic arthritis and systemic sclerosis. These diseases are associated with inflammation and many danger signals are found in sites of sterile inflammation and mediate inflammation. The present review examines the role of DAMPs in rheumatic conditions and suggests avenues for their therapeutic modulation.

  2. TLR signaling in the gut in health and disease.

    PubMed

    Abreu, Maria T; Fukata, Masayuki; Arditi, Moshe

    2005-04-15

    The human intestine has evolved in the presence of diverse enteric microflora. TLRs convert the recognition of pathogen-associated molecules in the gut into signals for anti-microbial peptide expression, barrier fortification, and proliferation of epithelial cells. Healing of injured intestinal epithelium and clearance of intramucosal bacteria require the presence of intact TLR signaling. Nucleotide oligomerization domain (Nod)1 and Nod2 are additional pattern recognition receptors that are required for defense against invasive enteric pathogens. Through spatial and functional localization of TLR and Nod molecules, the normal gut maintains a state of controlled inflammation. By contrast, patients with inflammatory bowel disease demonstrate inflammation in response to the normal flora. A subset of these patients carry polymorphisms in TLR and CARD15/NOD2 genes. A better understanding of the delicate regulation of TLR and Nod molecules in the gut may lead to improved treatment for enteric infections and idiopathic inflammatory bowel diseases.

  3. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-β/Smad Signaling

    PubMed Central

    He, Wei-ming; Lu, Xun; Ni, Li; Yang, Yan-yu; Chen, Lin; Xiong, Pei-hua; Sun, Wei

    2016-01-01

    JiaWeiDangGui (JWDG) decoction has anti-inflammatory and antifibrotic effects, which is used widely for the treatment of various kidney diseases. In previous studies, we have found that JWDG decoction can reduce the quantity of proteinuria, but the mechanism was unknown. Here, we studied the protective effect of JWDG decoction in adriamycin-induced nephropathy on rat. JWDG decoction, at 10 mL/kg/d, 20 mL/kg/d, and 40 mL/kg/d, was orally administered daily for 12 weeks. Therapeutic effects and mechanisms were further examined. The kidney function related biochemical indexes were measured by automatic biochemistry analyzer. The pathomorphological changes were observed using light and transmission electron microcopies. The proteins expressions of podocin, nephrin, collagen IV, and fibronectin (FN) were examined by immunohistochemical staining, and key proteins involved in TGF-β/Smad signaling were evaluated by RT-PCR and western blotting. Compared with vehicle-treated controls, JWDG decoction decreased the quantity of proteinuria; reduced glomerulosclerotic lesions induced by ADR; and preserved the expression of podocin and nephrin. JWDG decoction also inhibited the expression of the collagen IV, FN, and fibrogenic TGF-β. Further studies revealed that inhibition of renal fibrosis was associated with the blockade of TGF-β/Smad signaling and downregulation of snail expression dose dependently. JWDG decoction prevents proteinuria production, podocyte dysfunction, and kidney injury in adriamycin nephropathy by inhibiting TGF-β/Smad signaling. PMID:27403197

  4. Activin Signaling in the Pathogenesis and Therapy of Neuropsychiatric Diseases

    PubMed Central

    Link, Andrea S.; Zheng, Fang; Alzheimer, Christian

    2016-01-01

    Activins are members of the transforming growth factor β (TGFβ) family and serve as multifunctional regulatory proteins in many tissues and organs. In the brain, activin A, which is formed by two disulfide-linked βA subunits, is recognized as the predominant player in activin signaling. Over the last years, considerable progress has been made in elucidating novel and unexpected functions of activin in the normal and diseased brain and in deciphering the underlying molecular mechanisms. Initially identified as a neurotrophic and protective factor during development and in several forms of acute injury, the scope of effects of activin A in the adult central nervous system (CNS) has been considerably broadened by now. Here, we will highlight recent findings that bear significance for a better understanding of the pathogenesis of various neuropsychiatric diseases and might hold promise for novel therapeutic strategies. While the basal level of activin A in the adult brain is low, significant short-term up-regulation occurs in response to increased neuronal activity. In fact, brief exposure to an enriched environment (EE) is already sufficient to considerably strengthen activin signaling. Enhancement of this pathway tunes the performance of glutamatergic and GABAergic synapses in a fashion that impacts on cognitive functions and affective behavior, counteracts death-inducing signals through extrasynaptic NMDA receptors (NMDARs), and stimulates adult neurogenesis in the hippocampus. We will discuss how impaired activin signaling is involved in anxiety disorders, depression, drug dependence, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and how reinforcement of activin signaling might be exploited for therapeutic interventions. PMID:27242425

  5. Vitamin A-retinoid signaling in pulmonary development and disease.

    PubMed

    Marquez, Hector A; Cardoso, Wellington V

    2016-12-01

    Retinoic acid (RA), the active form of vitamin A, regulates key developmental processes in multiple organs. In the developing lung, RA is crucial for normal growth and differentiation of airways. Disruption in RA signaling or vitamin A deficiency (VAD) has been linked to aberrant development of the lung including alterations in the airway smooth muscle (SM) differentiation, development, and function. These alterations have been linked to disease states including asthma in both human and animal models.

  6. Notch signaling and new therapeutic options in liver disease.

    PubMed

    Morell, Carola Maria; Strazzabosco, Mario

    2014-04-01

    Notch signaling is a crucial determinant of cell fate decision during development and disease in several organs. Notch effects are strictly dependent on the cellular context in which it is activated. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis. Recent advances have shed light on Notch as a critical player in liver regeneration and repair, as well as in liver metabolism and inflammation and cancer. Notch signaling is finely regulated at several levels. The complexity of the pathway provides several possible targets for development of therapeutic agents able to inhibit Notch. Recent reports have shown that persistent activation of Notch signaling is associated with liver malignancies, particularly hepatocellular with stem cell features and cholangiocarcinoma. These novel findings suggest that interfering with the aberrant activation of the Notch pathway may have therapeutic relevance. However, further studies are needed to clarify the mechanisms regulating physiologic and pathologic Notch activation in the adult liver, to better understand the mechanistic role(s) of Notch in liver diseases and to develop safe and specific therapeutic agents.

  7. The ATM signaling network in development and disease

    PubMed Central

    Stracker, Travis H.; Roig, Ignasi; Knobel, Philip A.; Marjanović, Marko

    2013-01-01

    The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease. PMID:23532176

  8. Early intervention in the 3xTg-AD mice with an amyloid β-antibody fragment ameliorates first hallmarks of Alzheimer disease.

    PubMed

    Giménez-Llort, Lydia; Rivera-Hernández, Geovanny; Marin-Argany, Marta; Sánchez-Quesada, José L; Villegas, Sandra

    2013-01-01

    The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels.

  9. Early intervention in the 3xTg-AD mice with an amyloid β-antibody fragment ameliorates first hallmarks of Alzheimer disease

    PubMed Central

    Giménez-Llort, Lydia; Rivera-Hernández, Geovanny; Marín-Argany, Marta; Sánchez-Quesada, José L.; Villegas, Sandra

    2013-01-01

    The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels. PMID:23884018

  10. Blocking the Apolipoprotein E/Amyloid β Interaction in Triple Transgenic Mice Ameliorates Alzheimer’s Disease Related Amyloid β and Tau Pathology

    PubMed Central

    Liu, Shan; Breitbart, Ariel; Sun, Yanjie; Mehta, Pankaj D.; Boutajangout, Allal; Scholtzova, Henrieta; Wisniewski, Thomas

    2013-01-01

    Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer’s disease (AD). Studies have shown that the binding between apoE and amyloid-β (Aβ) peptides occurs at residues 244–272 of apoE and residues 12–28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12–28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy (CAA). In the present study, we investigated whether the Aβ12–28P elicits a therapeutic effect on tau-related pathology in addition to amyloid pathology using old triple transgenic Alzheimer’s disease mice (3xTg, with PS1M146V, APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12–28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice. PMID:24117759

  11. Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen

    PubMed Central

    Nitta, Kyoko; Shi, Sen; Nagai, Takako; Kanasaki, Megumi; Kitada, Munehiro; Srivastava, Swayam Prakash; Haneda, Masakazu; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy. PMID:27088094

  12. Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen.

    PubMed

    Nitta, Kyoko; Shi, Sen; Nagai, Takako; Kanasaki, Megumi; Kitada, Munehiro; Srivastava, Swayam Prakash; Haneda, Masakazu; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy.

  13. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    PubMed

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P < .05). The transcriptional factors of hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P < .05). These results suggested that adzuki beans attenuate lipid accumulation and oxidative stress-induced inflammation by suppressing hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD.

  14. Quantitative imaging of disease signatures through radioactive decay signal conversion.

    PubMed

    Thorek, Daniel L J; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-10-01

    In the era of personalized medicine, there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used; however, radioactive decay is a physical constant, and its signal is independent of biological interactions. Here, we introduce a framework of previously uncharacterized targeted and activatable probes that are excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. We accomplished this by using Cerenkov luminescence, the light produced by β-particle-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to tumor identification from a conventional PET scan, we demonstrate the medical utility of our approach by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and represents a shift toward activatable nuclear medicine agents.

  15. Analysis of surface EMG signal morphology in Parkinson's disease.

    PubMed

    Rissanen, Saara; Kankaanpää, Markku; Tarvainen, Mika P; Nuutinen, Juho; Tarkka, Ina M; Airaksinen, Olavi; Karjalainen, Pasi A

    2007-12-01

    A novel approach is presented for the analysis of surface electromyogram (EMG) morphology in Parkinson's disease (PD). The method is based on histogram and crossing rate (CR) analysis of the EMG signal. In the method, histograms and CR values are used as high-dimensional feature vectors. The dimensionality of them is then reduced using the Karhunen-Loève transform (KLT). Finally, the discriminant analysis of feature vectors is performed in low-dimensional eigenspace. Histograms and CR values were chosen for analysis, because Parkinsonian EMG signals typically involve patterns of EMG bursts. Traditional methods of EMG amplitude and spectral analysis are not effective in analyzing impulse-like signals. The method, which was tested with EMG signals measured from 25 patients with PD and 22 healthy controls, was promising for discriminating between these two groups of subjects. The ratio of correct discrimination by augmented KLT was 86% for the control group and 72% for the patient group. On the basis of these results, further studies are suggested in order to evaluate the usability of this method in early stage diagnostics of PD.

  16. [Wavelet entropy analysis of spontaneous EEG signals in Alzheimer's disease].

    PubMed

    Zhang, Meiyun; Zhang, Benshu; Chen, Ying

    2014-08-01

    Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r= 0. 601-0. 799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.

  17. Effect of TACI Signaling on Humoral Immunity and Autoimmune Diseases

    PubMed Central

    Zhang, Yi; Li, Jun; Zhang, Ya-Min; Zhang, Xiao-Ming; Tao, Juan

    2015-01-01

    Transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) is one of the receptors of B cell activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL). TACI is a regulator in the immune responses. TACI inhibits B cell expansion and promotes the differentiation and survival of plasma cells. The mechanisms underlying these effects probably involve changed expressions of some crucial molecules, such as B lymphocyte induced maturation protein-1 (Blimp-1) and inducible T-cell costimulator ligand (ICOSL) in B cells and/or plasma cells. However, abnormal TACI signaling may relate to autoimmune disorders. Common variable immune deficiency (CVID) patients with heterozygous mutations in TACI alleles increase susceptibility to autoimmune diseases. Taci−/− mice and BAFF transgenic mice both develop signs of human SLE. These findings that indicate inappropriate levels of TACI signaling may disrupt immune system balance, thereby promoting the development of autoimmune diseases. In this review, we summarize the basic characteristics of the TACI ligands BAFF and APRIL, and detail the research findings on the role of TACI in humoral immunity. We also discuss the possible mechanisms underlying the susceptibility of CVID patients with TACI mutations to autoimmune diseases and the role of TACI in the pathogenesis of SLE. PMID:25866827

  18. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  19. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-12-06

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1-treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.

  20. Desmosomal cadherins and signaling: lessons from autoimmune disease.

    PubMed

    Spindler, Volker; Waschke, Jens

    2014-02-01

    Autoantibodies from patients suffering from the autoimmune blistering skin disease pemphigus can be applied as tools to study desmosomal adhesion. These autoantibodies targeting the desmosomal cadherins desmoglein (Dsg) 1 and Dsg3 cause disruption of desmosomes and loss of intercellular cohesion. Although pemphigus autoantibodies were initially proposed to sterically hinder desmosomes, many groups have shown that they activate signaling pathways which cause disruption of desmosomes and loss of intercellular cohesion by uncoupling the desmosomal plaque from the intermediate filament cytoskeleton and/or by interfering with desmosome turnover. These studies demonstrate that desmogleins serve as receptor molecules to transmit outside-in signaling and demonstrate that desmosomal cadherins have functions in addition to their adhesive properties. Two central molecules regulating cytoskeletal anchorage and desmosome turnover are p38MAPK and PKC. As cytoskeletal uncoupling in turn enhances Dsg3 depletion from desmosomes, both mechanisms reinforce one another in a vicious cycle that compromise the integrity and number of desmosomes.

  1. Planar Cell Polarity Signaling: From Fly Development to Human Disease

    PubMed Central

    Simons, Matias; Mlodzik, Marek

    2009-01-01

    Most, if not all, cell types and tissues display several aspects of polarization. In addition to the ubiquitous epithelial cell polarity along the apical-basolateral axis, many epithelial tissues and organs are also polarized within the plane of the epithelium. This is generally referred to as planar cell polarity (PCP; or historically, tissue polarity). Genetic screens in Drosophila pioneered the discovery of core PCP factors, and subsequent work in vertebrates has established that the respective pathways are evolutionarily conserved. PCP is not restricted only to epithelial tissues but is also found in mesenchymal cells, where it can regulate cell migration and cell intercalation. Moreover, particularly in vertebrates, the conserved core PCP signaling factors have recently been found to be associated with the orientation or formation of cilia. This review discusses new developments in the molecular understanding of PCP establishment in Drosophila and vertebrates; these developments are integrated with new evidence that links PCP signaling to human disease. PMID:18710302

  2. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone

    SciTech Connect

    Wu, Xue-Feng; Ouyang, Zi-Jun; Feng, Li-Li; Chen, Gong; Guo, Wen-Jie; Shen, Yan; Wu, Xu-Dong; Sun, Yang Xu, Qiang

    2014-11-15

    Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD. Treatment with fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b{sup +} macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following fraxinellone treatment. The results from in vitro assays showed that fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of fraxinellone in NF-κB signaling and NLRP3 inflammasome activation. Overall, our results support fraxinellone as a novel drug candidate in the treatment of colonic inflammation. - Highlights: • Fraxinellone, a lactone compound, alleviated DSS induced colitis. • The effects of fraxinellone were attributed to its inhibition on

  3. Organelle communication: signaling crossroads between homeostasis and disease.

    PubMed

    Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio

    2014-05-01

    Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.

  4. mTOR signaling in growth control and disease

    PubMed Central

    Laplante, Mathieu; Sabatini, David M.

    2012-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health and disease as well as aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation. PMID:22500797

  5. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  6. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators.

    PubMed

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-04-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients' blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients' blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: "Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize". Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be promising

  7. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    PubMed Central

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  8. MicroRNAs in stress signaling and human disease

    PubMed Central

    Mendell, Joshua T.; Olson, Eric N.

    2012-01-01

    Summary Disease is often the result of an aberrant or inadequate response to physiologic and pathophysiologic stress. Studies over the last 10 years have uncovered a recurring paradigm in which microRNAs (miRNAs) regulate cellular behavior under these conditions, suggesting an especially significant role for these small RNAs in pathologic settings. Here, we review emerging principles of miRNA regulation of stress signaling pathways and apply these concepts to our understanding of the roles of miRNAs in disease. These discussions further highlight the unique challenges and opportunities associated with the mechanistic dissection of miRNA functions and the development of miRNA-based therapeutics. PMID:22424228

  9. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    PubMed

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

  10. NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease

    PubMed Central

    Guo, Honglei; Bi, Xiao; Zhou, Ping; Zhu, Shijian

    2017-01-01

    Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD. PMID:28348462

  11. Narrow-Band Ultraviolet B Phototherapy Ameliorates Acute Graft-Versus-Host Disease of the Intestine by Expansion of Regulatory T Cells.

    PubMed

    Hashimoto, Akari; Sato, Tsutomu; Iyama, Satoshi; Yoshida, Masahiro; Ibata, Soushi; Tatekoshi, Ayumi; Kamihara, Yusuke; Horiguchi, Hiroto; Murase, Kazuyuki; Kawano, Yutaka; Takada, Kohichi; Miyanishi, Koji; Kobune, Masayoshi; Ichimiya, Shingo; Kato, Junji

    2016-01-01

    Narrowband ultraviolet B (NB-UVB) has been widely used in dermatological phototherapy. As for the application of NB-UVB phototherapy to graft-versus-host disease (GVHD), we previously reported that it was highly efficacious for cutaneous lesions of acute GVHD (aGVHD) and that expansion of regulatory T (Treg) cells induced by NB-UVB might be one of the mechanisms. In order to examine whether NB-UVB irradiation through expansion of Treg cells is effective for the treatment of not only cutaneous aGVHD but also aGVHD of inner organs such as the intestine or liver, we conducted experiments in which a murine lethal aGVHD model, characterized by severe involvement of the intestine, was irradiated with NB-UVB. We found that NB-UVB irradiation improved the clinical score and survival rate. The pathological score of aGVHD was improved in all affected organs: intestine, liver, and skin. In the serum of mice irradiated with NB-UVB, the levels of Treg cells-associated cytokines such as transforming growth factor beta (TGFβ) and interleukin-10 (IL-10) were elevated. The numbers of infiltrating Treg cells in inflamed tissue of the intestine and those in spleen were increased in mice treated with NB-UVB. This is the first report demonstrating that NB-UVB phototherapy has the ability to ameliorate intestinal aGVHD through the expansion of Treg cells.

  12. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease.

    PubMed

    Heeba, Gehan H; Morsy, Mohamed A

    2015-11-01

    Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. In the present study, we investigated the therapeutic effect of fucoidan on non-alcoholic fatty liver disease (NAFLD) in rats. Rats were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD. Oral administrations of fucoidan (100mg/kg, orally), metformin (200mg/kg, orally) or the vehicle were started in the last four weeks. Results showed that administration of fucoidan for 4 weeks attenuated the development of NAFLD as evidenced by the significant decrease in liver index, serum liver enzymes activities, serum total cholesterol and triglycerides, fasting serum glucose, insulin, insulin resistance, and body composition index. Further, fucoidan decreased hepatic malondialdehyde as well as nitric oxide concentrations, and concomitantly increased hepatic reduced glutathione level. In addition, the effect of fucoidan was accompanied with significant decrease in hepatic mRNA expressions of tumor necrosis factor-α, interleukins-1β and matrix metalloproteinase-2. Furthermore, histopathological examination confirmed the effect of fucoidan. In conclusion, fucoidan ameliorated the development of HFD-induced NAFLD in rats that may be, at least partly, related to its hypolipidemic, insulin sensitizing, antioxidant and anti-inflammatory mechanisms.

  13. Bile acid signaling in metabolic disease and drug therapy.

    PubMed

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  14. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  15. Suppression of NLRP3 Inflammasome Activation Ameliorates Chronic Kidney Disease-Induced Cardiac Fibrosis and Diastolic Dysfunction

    PubMed Central

    Bugyei-Twum, Antoinette; Abadeh, Armin; Thai, Kerri; Zhang, Yanling; Mitchell, Melissa; Kabir, Golam; Connelly, Kim A.

    2016-01-01

    Cardiac fibrosis is a common finding in patients with chronic kidney disease. Here, we investigate the cardio-renal effects of theracurmin, a novel formulation of the polyphenolic compound curcumin, in a rat model of chronic kidney disease. Briefly, Sprague-Dawley rats were randomized to undergo sham or subtotal nephrectomy (SNx) surgery. At 3 weeks post surgery, SNx animals were further randomized to received theracurmin via once daily oral gavage or vehicle for 5 consecutive weeks. At 8 weeks post surgery, cardiac function was assessed via echocardiography and pressure volume loop analysis, followed by LV and renal tissue collection for analysis. SNx animals developed key hallmarks of renal injury including hypertension, proteinuria, elevated blood urea nitrogen, and glomerulosclerosis. Renal injury in SNx animals was also associated with significant diastolic dysfunction, macrophage infiltration, and cardiac NLRP3 inflammasome activation. Treatment of SNx animals with theracurmin improved structural and functional manifestations of cardiac injury associated with renal failure and also attenuated cardiac NLRP3 inflammasome activation and mature IL-1β release. Taken together, our findings suggest a significant role for the NLRP3 inflammasome in renal injury-induced cardiac dysfunction and presents inflammasome attenuation as a unique strategy to prevent adverse cardiac remodeling in the setting of chronic kidney disease. PMID:28000751

  16. Selective Targeting of a Disease-Related Conformational Isoform of Macrophage Migration Inhibitory Factor Ameliorates Inflammatory Conditions

    PubMed Central

    Thiele, Michael; Tam, Frederick W. K.; Völkel, Dirk; Douillard, Patrice; Schinagl, Alexander; Kühnel, Harald; Smith, Jennifer; McDaid, John P.; Bhangal, Gurjeet; Yu, Mei-Ching; Pusey, Charles D.; Cook, H. Terence; Kovarik, Josef; Magelky, Erica; Bhan, Atul; Rieger, Manfred; Mudde, Geert C.; Ehrlich, Hartmut; Jilma, Bernd; Tilg, Herbert; Moschen, Alexander; Terhorst, Cox; Scheiflinger, Friedrich

    2015-01-01

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy. PMID:26209628

  17. Signaling by reactive oxygen and nitrogen species in skin diseases.

    PubMed

    Afanas'ev, Igor B

    2010-06-01

    For many years the formation of reactive oxygen and nitrogen species (ROS) and (RNS) in living organisms has been considered to be dangerous phenomenon due to their damaging action on biomolecules. However, present studies demonstrated another important activity of ROS and RNS: their signaling functions in physiological and pathological processes. In this work we discuss the new data concerning a role of ROS and RNS in many enzymatic/gene cascades causing damaging changes during the development of skin diseases and pathological disorders (skin cancer, the toxic effects of irradiation on the skin, and skin wounding). It has been suggested that the enhancement of ROS formation in tumor cells through the inactivation of mitochondrial MnSOD or the activation of NADPH oxidase leads to apoptosis and might be applied for developing a new cancer therapy. On the other hand ROS overproduction might stimulate malignant transformation of melanoma. Role of ROS signaling is also considered in the damaging action of UVA, UVB, and IRA irradiation on the skin and the processes of wound healing. In the last part of review the possibility of the right choice of antioxidants and free radical scavengers for the treatment of skin disease is discussed.

  18. Mammalian target of rapamycin signaling in diabetic cardiovascular disease.

    PubMed

    Chong, Zhao Zhong; Maiese, Kenneth

    2012-07-16

    Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another 200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals. Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury, and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of diabetes mellitus in the cardiovascular system.

  19. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  20. Amelioration of non-alcoholic fatty liver disease with NPC1L1-targeted IgY or n-3 polyunsaturated fatty acids in mice.

    PubMed

    Bae, Jin-Sik; Park, Jong-Min; Lee, Junghoon; Oh, Byung-Chul; Jang, Sang-Ho; Lee, Yun Bin; Han, Young-Min; Ock, Chan-Young; Cha, Ji-Young; Hahm, Ki-Baik

    2017-01-01

    Patients with non-alcoholic fatty liver disease (NAFLD) have an increased risk for progression to hepatocellular carcinoma in addition to comorbidities such as cardiovascular and serious metabolic diseases; however, the current therapeutic options are limited. Based on our previous report that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can significantly ameliorate high fat diet (HFD)-induced NAFLD, we explored the therapeutic efficacy of n-3 PUFAs and N-IgY, which is a chicken egg yolk-derived IgY specific for the Niemann-Pick C1-Like 1 (NPC1L1) cholesterol transporter, on NAFLD in mice. We generated N-IgY and confirmed its efficient cholesterol transport-blocking activity in HepG2 and Caco-2 cells, which was comparable to the effect of ezetimibe (EZM). C57BL/6 wild type and fat-1 transgenic mice, capable of producing n-3 PUFAs, were fed a high fat diet (HFD) alone or supplemented with N-IgY. Endogenously synthesized n-3 PUFAs combined with N-IgY led to significant decreases in hepatic steatosis, fibrosis, and inflammation (p<0.01). The combination of N-IgY and n-3 PUFAs resulted in significant upregulation of genes involved in cholesterol uptake (LDLR), reverse cholesterol transport (ABCG5/ABCG8), and bile acid metabolism (CYP7A1). Moreover, fat-1 transgenic mice treated with N-IgY showed significant downregulation of genes involved in cholesterol-induced hepatic stellate cell activation (Tgfb1, Tlr4, Col1a1, Col1a2, and Timp2). Collectively, these data suggest that n-3 PUFAs and N-IgY, alone or in combination, represent a promising treatment strategy to prevent HFD-induced fatty liver through the activation cholesterol catabolism to bile acids and by decreasing cholesterol-induced fibrosis.

  1. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease

    PubMed Central

    Lelos, M.J.; Morgan, R.J.; Kelly, C.M.; Torres, E.M.; Rosser, A.E.; Dunnett, S.B.

    2016-01-01

    Background Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Objectives Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Methods Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~ 9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Results Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. Conclusions We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. PMID:26851542

  2. Treatment with DHA/EPA ameliorates atopic dermatitis-like skin disease by blocking LTB4 production.

    PubMed

    Yoshida, Shinya; Yasutomo, Koji; Watanabe, Toshiyuki

    2016-01-01

    Atopic dermatitis (AD) is caused by both dysregulated immune responses and an impaired skin barrier. Although leukotriene B4 (LTB4) is involved in tissue inflammation that occurs in several disorders, including AD, therapeutic strategies based on LTB4 inhibition have not been explored. Here we demonstrate that progression of an AD-like skin disease in NC/Nga mice is inhibited when docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) is administered together with FK506. Treatment with DHA/EPA and FK506 decreases the clinical score of dermatitis in NC/Nga mice and lowers local LTB4 concentrations. The treatment also suppressed the infiltration of T cells, B cells, eosinophils and neutrophils, and promoted reduced serum IgE levels. Secretion of IL-13 and IL-17A in CD4(+) T cells was lower in DHA/EPA- and FK506-treated mice than in mice treated with FK506 alone. The inhibition of disease progression induced by DHA/EPA was reversed by local injection of LTB4, suggesting that the therapeutic effect of DHA/EPA is LTB4-dependent. Our results demonstrate that treatment of AD with DHA/EPA is effective for allergic skin inflammation and acts by suppressing LTB4 production. J. Med. Invest. 63: 187-191, August, 2016.

  3. The Role of Redox Signaling in Epigenetics and Cardiovascular Disease

    PubMed Central

    Ryan, John J.; Archer, Stephen L.

    2013-01-01

    Abstract Significance: The term epigenetics refers to the changes in the phenotype and gene expression that occur without alterations in the DNA sequence. There is a rapidly growing body of evidence that epigenetic modifications are involved in the pathological mechanisms of many cardiovascular diseases (CVDs), which intersect with many of the pathways involved in oxidative stress. Recent Advances: Most studies relating epigenetics and human pathologies have focused on cancer. There has been a limited study of epigenetic mechanisms in CVDs. Although CVDs have multiple established genetic and environmental risk factors, these explain only a portion of the total CVD risk. The epigenetic perspective is beginning to shed new light on how the environment influences gene expression and disease susceptibility in CVDs. Known epigenetic changes contributing to CVD include hypomethylation in proliferating vascular smooth muscle cells in atherosclerosis, changes in estrogen receptor-α (ER-α) and ER-β methylation in vascular disease, decreased superoxide dismutase 2 expression in pulmonary hypertension (PH), as well as trimethylation of histones H3K4 and H3K9 in congestive heart failure. Critical Issues: In this review, we discuss the epigenetic modifications in CVDs, including atherosclerosis, congestive heart failure, hypertension, and PH, with a focus on altered redox signaling. Future Directions: As advances in both the methodology and technology accelerate the study of epigenetic modifications, the critical role they play in CVD is beginning to emerge. A fundamental question in the field of epigenetics is to understand the biochemical mechanisms underlying reactive oxygen species-dependent regulation of epigenetic modification. Antioxid. Redox Signal. 18, 1920–1936. PMID:23480168

  4. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2015-09-30

    T cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathological immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite multiple pharmacological properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription (STAT) proteins. In addition, BOT-4-one inhibited T-cell receptor (TCR)-mediated Akt and nuclear factor-kappaB (NF-κB) signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as TNCB-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and the overall immune responses.Journal of Investigative Dermatology accepted article preview online, 30 September 2015. doi:10.1038/jid.2015.384.

  5. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses.

  6. Hsp90 inhibition ameliorates CD4+ T cell‐mediated acute Graft versus Host disease in mice

    PubMed Central

    Kerkau, Thomas; Werner, Sandra; Wolf, Nelli; Winter, Nadine; Hünig, Thomas; Einsele, Hermann; Topp, Max S.; Beyersdorf, Niklas

    2016-01-01

    Abstract Introduction For many patients with leukemia only allogeneic bone marrow transplantion provides a chance of cure. Co‐transplanted mature donor T cells mediate the desired Graft versus Tumor (GvT) effect required to destroy residual leukemic cells. The donor T cells very often, however, also attack healthy tissue of the patient inducing acute Graft versus Host Disease (aGvHD)—a potentially life‐threatening complication. Methods Therefore, we used the well established C57BL/6 into BALB/c mouse aGvHD model to evaluate whether pharmacological inhibition of heat shock protein 90 (Hsp90) would protect the mice from aGvHD. Results Treatment of the BALB/c recipient mice from day 0 to +2 after allogeneic CD4+ T cell transplantation with the Hsp90 inhibitor 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin (DMAG) partially protected the mice from aGvHD. DMAG treatment was, however, insufficient to prolong overall survival of leukemia‐bearing mice after transplantation of allogeneic CD4+ and CD8+ T cells. Ex vivo analyses and in vitro experiments revealed that DMAG primarily inhibits conventional CD4+ T cells with a relative resistance of CD4+ regulatory and CD8+ T cells toward Hsp90 inhibition. Conclusions Our data, thus, suggest that Hsp90 inhibition might constitute a novel approach to reduce aGvHD in patients without abrogating the desired GvT effect. PMID:27980780

  7. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.

    PubMed

    So, Wing Yan; Leung, Po Sing

    2016-09-01

    Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin's actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus.

  8. Partial Amelioration of Peripheral and Central Symptoms of Huntington’s Disease via Modulation of Lipid Metabolism

    PubMed Central

    Chen, Jane Y.; Tran, Conny; Hwang, Lin; Deng, Gang; Jung, Michael E.; Faull, Kym F.; Levine, Michael S.; Cepeda, Carlos

    2016-01-01

    Background Huntington’s disease (HD) is a fatal, inherited neurodegenerative disorder characterized by uncontrollable dance-like movements, as well as cognitive deficits and mood changes. A feature of HD is a metabolic disturbance that precedes neurological symptoms. In addition, brain cholesterol synthesis is significantly reduced, which could hamper synaptic transmission. Objective Alterations in lipid metabolism as a potential target for therapeutic intervention in the R6/2 mouse model of HD were examined. Methods Electrophysiological recordings in vitro examined the acute effects of cholesterol-modifying drugs. In addition, behavioral testing, effects on synaptic activity, and measurements of circulating and brain tissue concentrations of cholesterol and the ketone β-hydroxybutyrate (BHB), were examined in symptomatic R6/2 mice and littermate controls raised on normal chow or a ketogenic diet (KD). Results Whole-cell voltage clamp recordings of striatal medium-sized spiny neurons (MSNs) from symptomatic R6/2 mice showed increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) compared with littermate controls. Incubation of slices in cholesterol reduced the frequency of large-amplitude sIPSCs. Addition of BHB or the Liver X Receptor (LXR) agonist T0901317 reduced the frequency and amplitude of sIPSCs. Surprisingly, incubation in simvastatin to reduce cholesterol levels also decreased the frequency of sIPSCs. HD mice fed the KD lost weight more gradually, performed better in an open field, had fewer stereotypies and lower brain levels of cholesterol than mice fed a regular diet. Conclusions Lipid metabolism represents a potential target for therapeutic intervention in HD. Modifying cholesterol or ketone levels acutely in the brain can partially rescue synaptic alterations, and the KD can prevent weight loss and improve some behavioral abnormalities. PMID:27031732

  9. Inhibition of GSK-3 Ameliorates Aβ Pathology in an Adult-Onset Drosophila Model of Alzheimer's Disease

    PubMed Central

    Killick, Richard; Augustin, Hrvoje; Gandy, Carina; Allen, Marcus J.; Hardy, John; Lovestone, Simon; Partridge, Linda

    2010-01-01

    Aβ peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD), with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3) is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Aβ42 specifically in adult neurons, to avoid developmental effects. Aβ42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Aβ42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment) rescued Aβ42 toxicity. Aβ42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Aβ42. The GSK-3–mediated effects on Aβ42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Aβ42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Aβ42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Aβ42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD. PMID:20824130

  10. Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating the IRS-1/PI3K/Akt and AMPK/ACC2 signaling pathways

    PubMed Central

    Nie, Xu-qiang; Chen, Huai-hong; Zhang, Jian-yong; Zhang, Yu-jing; Yang, Jian-wen; Pan, Hui-jun; Song, Wen-xia; Murad, Ferid; He, Yu-qi; Bian, Ka

    2016-01-01

    phosphorylation of AMPK and ACC2, and increased glucose uptake. Conclusion: Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating IRS-1/PI3K/Akt signaling pathway in liver and AMPK/ACC2 signaling pathway in skeletal muscles. PMID:26972495

  11. Frontal cortex BOLD signal changes in premanifest Huntington disease

    PubMed Central

    Ferraro, Stefania; Piacentini, Sylvie; Mandelli, Maria L.; Bertolino, Nicola; Ghielmetti, Francesco; Epifani, Francesca; Nigri, Anna; Taroni, Franco; Bruzzone, Maria G.; Donato, Stefano Di; Savoiardo, Mario; Mariotti, Caterina; Grisoli, Marina

    2014-01-01

    Objective: To identify a possible functional imaging biomarker sensitive to the earliest neural changes in premanifest Huntington disease (preHD), allowing early therapeutic approaches aimed at preventing or delaying clinical onset. Methods: Sixteen preHD and 18 healthy participants were submitted to anatomical acquisitions and functional MRI (fMRI) acquisitions during the execution of the exogenous covert orienting of attention task. Due to strong a priori hypothesis, all fMRI correlation analyses were restricted to the following: (1) the frontal oculomotor cortex identified by the means of a prosaccadic task, comprising frontal eye fields and supplementary frontal eye fields; and (2) the data collected during inhibition of return, a phenomenon occurring during the executed task. In preHD, multiple regression analysis was performed between fMRI data and the probability to develop the disease in the next 5 years (p5HD). Moreover, mean blood oxygen level–dependent (BOLD) signal changes in the frontal oculomotor cortex and striatal volumes were linearly correlated with p5HD. Results: In preHD, multiple regression analysis showed that clusters of activity strongly correlated with p5HD in the right frontal oculomotor cortex. Importantly, mean BOLD signal changes of this region correlated with p5HD (r2 = 0.52). Among the considered striatal volumes, a modest correlation (r2 = 0.29) was observed in the right putamen and p5HD. Conclusion: fMRI activations in the right-frontal oculomotor cortex during inhibition of return can be considered a possible functional imaging biomarker in preHD. PMID:24898924

  12. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway.

    PubMed

    Yu, De-Shui; Wang, Yan-Song; Bi, Yun-Long; Guo, Zhan-Peng; Yuan, Ya-Jiang; Tong, Song-Ming; Su, Rui-Chao; Ge, Li-Hao; Wang, Jian; Pan, Ya-Li; Guan, Ting-Ting; Cao, Yang

    2017-02-15

    Salvianolic acid A (Sal A), a bioactive compound isolated from the Chinese medicinal herb Danshen, is used for the prevention and treatment of cardiovascular diseases. However, the protective function of Sal A on preserving the role of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is unclear. The present study investigated the effects and mechanisms of Sal A (2.5, 5, 10mg/kg, i.p.) on BSCB permeability at different time-points after compressive SCI in rats. Compared to the SCI group, treatment with Sal A decreased the content of the Evans blue in the spinal cord tissue at 24h post-SCI. The expression levels of tight junction proteins and HO-1 were remarkably increased, and that of p-caveolin-1 protein was greatly decreased after SCI Sal A. The effect of Sal A on the expression level of ZO-1, occluding, and p-caveolin-1 after SCI was blocked by the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP). Also, Sal A inhibited the level of apoptosis-related proteins and improved the motor function until 21days after SCI. In addition, Sal A significantly increased the expression of microRNA-101 (miR-101) in the RBMECs under hypoxia. AntagomiR-101 markedly increased the RBMECs permeability and the expression of the Cul3 protein by targeting with 3'-UTR of its mRNA. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 was significantly increased after agomiR-101 treatment. Therefore, Sal A could improve the recovery of neurological function after SCI, which could be correlated with the repair of BSCB integrity by the miR-101/Cul3/Nrf2/HO-1 signaling pathway.

  13. Bacterial protein signals are associated with Crohn’s disease

    PubMed Central

    Juste, Catherine; Kreil, David P; Beauvallet, Christian; Guillot, Alain; Vaca, Sebastian; Carapito, Christine; Mondot, Stanislas; Sykacek, Peter; Sokol, Harry; Blon, Florence; Lepercq, Pascale; Levenez, Florence; Valot, Benoît; Carré, Wilfrid; Loux, Valentin; Pons, Nicolas; David, Olivier; Schaeffer, Brigitte; Lepage, Patricia; Martin, Patrice; Monnet, Véronique; Seksik, Philippe; Beaugerie, Laurent; Ehrlich, S Dusko; Gibrat, Jean-François; Van Dorsselaer, Alain; Doré, Joël

    2014-01-01

    Objective No Crohn’s disease (CD) molecular maker has advanced to clinical use, and independent lines of evidence support a central role of the gut microbial community in CD. Here we explore the feasibility of extracting bacterial protein signals relevant to CD, by interrogating myriads of intestinal bacterial proteomes from a small number of patients and healthy controls. Design We first developed and validated a workflow—including extraction of microbial communities, two-dimensional difference gel electrophoresis (2D-DIGE), and LC-MS/MS—to discover protein signals from CD-associated gut microbial communities. Then we used selected reaction monitoring (SRM) to confirm a set of candidates. In parallel, we used 16S rRNA gene sequencing for an integrated analysis of gut ecosystem structure and functions. Results Our 2D-DIGE-based discovery approach revealed an imbalance of intestinal bacterial functions in CD. Many proteins, largely derived from Bacteroides species, were over-represented, while under-represented proteins were mostly from Firmicutes and some Prevotella members. Most overabundant proteins could be confirmed using SRM. They correspond to functions allowing opportunistic pathogens to colonise the mucus layers, breach the host barriers and invade the mucosae, which could still be aggravated by decreased host-derived pancreatic zymogen granule membrane protein GP2 in CD patients. Moreover, although the abundance of most protein groups reflected that of related bacterial populations, we found a specific independent regulation of bacteria-derived cell envelope proteins. Conclusions This study provides the first evidence that quantifiable bacterial protein signals are associated with CD, which can have a profound impact on future molecular diagnosis. PMID:24436141

  14. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.

    PubMed

    Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I

    2015-01-01

    Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.

  15. Signaling pathway cross talk in Alzheimer’s disease

    PubMed Central

    2014-01-01

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer’s disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed “anti-ageing pathways”, for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired. PMID:24679124

  16. Wnt Signaling in Cartilage Development and Diseases: Lessons from Animal Studies

    PubMed Central

    Usami, Yu; Gunawardena, Aruni T.; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2016-01-01

    Cartilage not only plays essential roles in skeletal development and growth during pre-and post-natal stages but also serves to provide smooth movement of skeletons throughout life. Thus dysfunction of cartilage causes a variety of skeletal disorders. Results from animal studies reveal that β-catenin-dependent canonical and independent non-canonical Wnt signaling pathways have multiple roles in regulation of cartilage development, growth and maintenance. β-catenin-dependent signaling is required for progression of endochondral ossification and growth of axial and appendicular skeletons while excessive activation of this signaling can cause severe inhibition of initial cartilage formation and growth plate organization and function in mice. In contrast, non-canonical Wnt signaling is important in columnar organization of growth plate chondrocytes. Manipulation of Wnt signaling causes or ameliorates articular cartilage degeneration in rodent osteoarthritis models. Human genetic studies indicate that Wnt/β-catenin signaling is a risk factor for osteoarthritis. Accumulative findings from analysis of expression of Wnt signaling molecules and in vivo and in vitro functional experiments suggest that Wnt signaling is a therapeutic target for osteoarthritis. The target tissues of Wnt signaling may be not only articular cartilage but also synovium and subchondral bone. PMID:26641070

  17. Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington's disease.

    PubMed

    Pérez-De La Cruz, Verónica; Elinos-Calderón, Diana; Robledo-Arratia, Yolanda; Medina-Campos, Omar N; Pedraza-Chaverrí, José; Ali, Syed F; Santamaría, Abel

    2009-05-16

    In this study, we reproduced two toxic models resembling some motor/kinetic deficits of Huntington's disease induced by bilateral intrastriatal injections of either quinolinic acid (QUIN, 120 nmol/microl per side) or 3-nitropropionic acid (3-NP, 250 nmol/microl per side) to rats. Motor skills (including total distance walked/traveled and total horizontal and vertical activities) were evaluated in a box-field system at 1 and 7 days post-lesion. In order to investigate whether these alterations were associated with the oxidative/nitrergic stress evoked by the nitrogen reactive species peroxynitrite (ONOO(-)) in the striatum, some rats were pretreated with the ONOO(-) decomposition catalyst iron porphyrinate (Fe(TPPS), 10 mg/kg, i.p.) 120 min prior to toxins infusion. With the aim to further characterize some possible mechanisms by which motor tasks were affected and/or preserved, biochemical analysis of peroxidative damage to lipids and mitochondrial dysfunction were both assessed in synaptic membranes isolated from the striata of QUIN-, 3-NP- and/or Fe(TPPS)-treated animals. Our results show that targeting oxidative/nitrergic stress by Fe(TPPS) in these toxic models results in amelioration of motor deficits linked to inhibition of peroxidative damage and recovery of mitochondrial function in synaptic membranes. Based on these findings, we hypothesize that the protection exerted by Fe(TPPS) on the biochemical markers analyzed reflects the possible preservation of the functional status of the nerve tissue by limiting the deleterious actions of ONOO(-), further accounting for partial recovery of integrative motor functions.

  18. Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice.

    PubMed

    Segawa, Shuichi; Wakita, Yoshihisa; Hirata, Hiroshi; Watari, Junji

    2008-12-10

    We examined the effect of heat-killed Lactobacillus brevis (L. brevis) SBC8803 on the development of alcoholic liver disease using ethanol-containing diet-fed mice. Heat-killed L. brevis was orally administered at a dose of 100 or 500 mg/kg once a day for 35 days. Alcoholic liver injury was examined by measuring the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in a serum, and the alcoholic fatty liver was assessed from the content of triglyceride (TG) and total cholesterol in the liver. Quantitative RT-PCR was used to examine mRNA expression of tumor necrosis factor (TNF)-alpha, sterol regulatory element-binding protein (SREBP)-1, SREBP-2, and peroxisome proliferator-activated receptor alpha (PPARalpha) in the liver, as well as E-cadherin, Zonula occludens 1 (ZO-1), and heat shock protein (Hsp) 25 in the small intestine. Oral administration of L. brevis significantly inhibited an increase in the level of serum ALT and AST, as well as the content of TG and total cholesterol in the liver caused by ethanol intake. L. brevis supplementation suppressed the overexpression of TNF-alpha, SREBP-1, and SREBP-2 mRNA in the liver induced by ethanol intake and up-regulated the expression of Hsp25 mRNA in the small intestine. These results suggest that L. brevis ameliorated the ethanol-induced liver injury and the fatty liver by suppressing the up-regulation of TNF-alpha and SREBPs in the liver. We speculate that the inhibition of TNF-alpha and SREBPs up-regulation by L. brevis is due to the inhibition of gut-derived endotoxin migration into the liver through the enhancement of intestinal barrier function by the induction of cytoprotective Hsps.

  19. NF-kappaB Signaling in Chronic Inflammatory Airway Disease

    PubMed Central

    Schuliga, Michael

    2015-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD. PMID:26131974

  20. Angelica gigas Ameliorates Hyperglycemia and Hepatic Steatosis in C57BL/KsJ-db/db Mice via Activation of AMP-Activated Protein Kinase Signaling Pathway.

    PubMed

    Bae, Ui-Jin; Choi, Eun-Kyung; Oh, Mi-Ra; Jung, Su-Jin; Park, Joon; Jung, Tae-Sung; Park, Tae-Sun; Chae, Soo-Wan; Park, Byung-Hyun

    2016-01-01

    The prevention and management of type 2 diabetes mellitus has become a major global public health challenge. Decursin, an active compound of Angelica gigas Nakai roots, was recently reported to have a glucose-lowering activity. However, the antidiabetic effect of Angelica gigas Nakai extract (AGNE) has not yet been investigated. We evaluated the effects of AGNE on glucose homeostasis in type 2 diabetic mice and investigated the underlying mechanism by which AGNE acts. Male C57BL/KsJ-db/db mice were treated with either AGNE (10 mg/kg, 20 mg/kg, and 40 mg/kg) or metformin (100 mg/kg) for 8 weeks. AGNE supplementation (20 and 40 mg/kg) significantly decreased fasting glucose and insulin levels, decreased the areas under the curve of glucose in oral glucose tolerance and insulin tolerance tests, and improved homeostatic model assessment-insulin resistant (HOMA-IR) scores. AGNE also ameliorated hepatic steatosis, hyperlipidemia, and hypercholesterolemia. Mechanistic studies suggested that the glucose-lowering effect of AGNE was mediated by the activation of AMP activated protein kinase, Akt, and glycogen synthase kinase-3[Formula: see text]. AGNE can potentially improve hyperglycemia and hepatic steatosis in patients with type 2 diabetes.

  1. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.

    PubMed

    Raish, Mohammad

    2017-04-01

    The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2.

  2. The Influence of Tim-3 Signaling on Central Nervous System Autoimmune Disease is Determined by the Effector Function of the Pathogenic T Cells

    PubMed Central

    Lee, Sarah Y.; Goverman, Joan M.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) mediated by self-reactive, myelin-specific T cells. Both CD4+ and CD8+ T cells play important roles in the pathogenesis of MS. MS is studied using experimental autoimmune encephalomyelitis (EAE), an animal model mediated by myelin-specific T cells. Tim-3 is a cell-surface receptor expressed on CD4+ IFN-γ-secreting Th1 cells, and triggering Tim-3 signaling ameliorated EAE by inducing death in pathogenic Th1 cells in vivo. This suggested that enhancing Tim-3 signaling might be beneficial in patients with MS. However, Tim-3 is also expressed on activated CD8+ T cells, microglia, and dendritic cells (DCs), and the combined effect of manipulating Tim-3 signaling on these cell types during CNS autoimmunity is unknown. Furthermore, CD4+ IL-17-secreting Th17 cells also play a rolein MS but do not express high levels of Tim-3. We investigated Tim-3 signaling in EAE models that include myelin-specific Th17, Th1 and CD8+ T cells. We found that preventing Tim-3 signaling in CD4+ T cells altered the inflammatory pattern in the CNS due to differential effects on Th1 versus Th17 cells. In contrast, preventing Tim-3 signaling during CD8+ T cell-mediated EAE exacerbated disease. We also analyzed the importance of Tim-3 signaling in EAE in innate immune cells. Tim-3 signaling in DCs and microglia did not affect the manifestation of EAE in these models. These results indicate that the therapeutic efficacy of targeting Tim-3 in EAE is dependent on the nature of the effector T cells contributing to the disease. PMID:23562810

  3. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease

    PubMed Central

    Divito, Christopher B.; Steece-Collier, Kathy; Case, Daniel T.; Williams, Sean-Paul G.; Stancati, Jennifer A.; Zhi, Lianteng; Rubio, Maria E.; Sortwell, Caryl E.; Collier, Timothy J.; Sulzer, David; Edwards, Robert H.; Zhang, Hui

    2015-01-01

    The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a

  4. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Montie, Heather L; Cho, Maria S; Holder, Latia; Liu, Yuhong; Tsvetkov, Andrey S; Finkbeiner, Steven; Merry, Diane E

    2009-06-01

    The nucleus is the primary site of protein aggregation in many polyglutamine diseases, suggesting a central role in pathogenesis. In SBMA, the nucleus is further implicated by the critical role for disease of androgens, which promote the nuclear translocation of the mutant androgen receptor (AR). To clarify the importance of the nucleus in SBMA, we genetically manipulated the nuclear localization signal of the polyglutamine-expanded AR. Transgenic mice expressing this mutant AR displayed inefficient nuclear translocation and substantially improved motor function compared with SBMA mice. While we found that nuclear localization of polyglutamine-expanded AR is required for SBMA, we also discovered, using cell models of SBMA, that it is insufficient for both aggregation and toxicity and requires androgens for these disease features. Through our studies of cultured motor neurons, we further found that the autophagic pathway was able to degrade cytoplasmically retained expanded AR and represents an endogenous neuroprotective mechanism. Moreover, pharmacologic induction of autophagy rescued motor neurons from the toxic effects of even nuclear-residing mutant AR, suggesting a therapeutic role for autophagy in this nucleus-centric disease. Thus, our studies firmly establish that polyglutamine-expanded AR must reside within nuclei in the presence of its ligand to cause SBMA. They also highlight a mechanistic basis for the requirement for nuclear localization in SBMA neurotoxicity, namely the lack of mutant AR removal by the autophagic protein degradation pathway.

  5. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  6. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease.

    PubMed

    Yoshihara, Daisuke; Kurahashi, Hiroki; Morita, Miwa; Kugita, Masanori; Hiki, Yoshiyuki; Aukema, Harold M; Yamaguchi, Tamio; Calvet, James P; Wallace, Darren P; Nagao, Shizuko

    2011-02-01

    In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.

  7. Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway.

    PubMed

    Lan, Tian; Shen, Xiaoyan; Liu, Peiqing; Liu, Weihua; Xu, Suowen; Xie, Xi; Jiang, Qin; Li, Wenyuan; Huang, Heqing

    2010-10-15

    Berberine (BBR) was previously found to have beneficial effects on renal injury in experimental diabetic rats. However, the mechanisms underlying the effects are not fully understood. Sphingosine kinase-Sphingosine 1-phosphate (SphK-S1P) signaling pathway has been implicated in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the effects of BBR on renal injury and the activation of SphK-S1P signaling pathway in alloxan-induced diabetic mice with nephropathy. Alloxan-induced diabetic mice were treated orally with BBR (300 mg/kg/day) or vehicle for 12 weeks. BBR inhibited the increases in fasting blood glucose, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. It also prevented renal hypertrophy, TGF-beta1 synthesis, FN and Col IV accumulation. Moreover, BBR down-regulated the elevated staining, activity and levels of mRNA and protein of SphK1, and S1P production as well. These findings suggest that the inhibitory effect of BBR on the activation of SphK-S1P signaling pathway in diabetic mouse kidney is a novel mechanism by which BBR partly exerts renoprotective effects on DN.

  8. Chronic stress enhances progression of periodontitis via α1-adrenergic signaling: a potential target for periodontal disease therapy.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan

    2014-10-17

    This study assessed the roles of chronic stress (CS) in the stimulation of the sympathetic nervous system and explored the underlying mechanisms of periodontitis. Using an animal model of periodontitis and CS, the expression of tyrosine hydroxylase (TH) and the protein levels of the α1-adrenergic receptor (α1-AR) and β2-adrenergic receptor (β2-AR) were assessed. Furthermore, human periodontal ligament fibroblasts (HPDLFs) were stimulated with lipopolysaccharide (LPS) to mimic the process of inflammation. The proliferation of the HPDLFs and the expression of α1-AR and β2-AR were assessed. The inflammatory-related cytokines interleukin (IL)-1β, IL-6 and IL-8 were detected after pretreatment with the α1/β2-AR blockers phentolamine/propranolol, both in vitro and in vivo. Results show that periodontitis under CS conditions enhanced the expression of TH, α1-AR and β2-AR. Phentolamine significantly reduced the inflammatory cytokine levels. Furthermore, we observed a marked decrease in HPDLF proliferation and the increased expression of α1-ARfollowing LPS pretreatment. Pretreatment with phentolamine dramatically ameliorated LPS-inhibited cell proliferation. In addition, the blocking of α1-ARsignaling also hindered the upregulation of the inflammatory-related cytokines IL-1β, IL-6 and IL-8. These results suggest that CS can significantly enhance the pathological progression of periodontitis by an α1-adrenergic signaling-mediated inflammatory response. We have identified a potential therapeutic target for the treatment of periodontal disease, particularly in those patients suffering from concurrent CS.

  9. Protective effect of higenamine ameliorates collagen-induced arthritis through heme oxygenase-1 and PI3K/Akt/Nrf-2 signaling pathways

    PubMed Central

    Duan, Wenjiang; Chen, Jianmin; Wu, Yu; Zhang, Yong; Xu, Yuansheng

    2016-01-01

    Existing in Ranunculaceae Aconitum and tomato, with the chemical name 1-phydroxybenzyl-1,2,3,4-tetrahy-droisoquinoline, higenamine is widely distributed in China. Higenamine's anti-inflammatory, antioxidant and anti-apoptotic effects have been identified in previous studies. The present study attempted to determine the protective effect of higenamine against collagen-induced arthritis through heme oxygenase-1 (HO-1) and PI3K/Akt/Nrf-2 signaling pathways. A type II collagen (CII)-induced arthritis (CIA) model was established and clinical arthritis scores were used to appraise the curative effect of higenamine. Inflammatory reactions, oxidative damage and caspase-3/9 activation were detected using specific ELISA kits. In addition, western blotting was used to evaluate the expression of HO-1, Akt and Nrf-2 protein in CII-induced CIA mice. In CII-induced CIA mice, the clinical arthritis scores, inflammatory reactions, oxidation damage and caspase-3/9 activation were increased and activated. The results demonstrated that treatment with higenamine significantly reduced the elevation of clinical arthritis scores (P<0.01), and suppressed the promotion of inflammatory reactions, oxidation damage and caspase-3/9 activation. Furthermore, higenamine significantly increased HO-1 protein expression (P<0.01) and upregulated the PI3K/Akt/Nrf-2 signal pathway in CII-induced CIA mice. Collectively, it is concluded that higenamine protects against CII-induced CIA through the induction of HO-1 and the upregulation of the PI3K/Akt/Nrf-2 signaling pathway. In conclusion, higenamine may be a beneficial drug for protecting against CIA. PMID:27882125

  10. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice

    PubMed Central

    Maria, Sabogal-Guáqueta Angélica; Ignacio, Muñoz-Manco Juan; Ramírez-Pineda Jose, R; Marisol, Lamprea-Rodriguez; Edison, Osorio; Patricia, Cardona-Gómez Gloria

    2015-01-01

    Alzheimer’s disease (AD) is the most common senile dementia in the world. Although important progress has been made in understanding the pathogenesis of AD, current therapeutic approaches provide only modest symptomatic relief. In this study, we evaluated the neuroprotective effect of quercetin (25 mg/kg) administration via i.p. injection every 48 hours for 3 months on aged (21–24 months old) triple transgenic AD model (3xTg-AD) mice. Our data show that quercetin decreases extracellular β-amyloidosis, tauopathy, astrogliosis and microgliosis in the hippocampus and the amygdala. These results were supported by a significant reduction in the paired helical filament (PHF), β-amyloid (βA) 1–40 and βA 1–42 levels and a decrease in BACE1-mediated cleavage of APP (into CTFβ). Additionally, quercetin induced improved performance on learning and spatial memory tasks and greater risk assessment behavior based on the elevated plus maze test. Together, these findings suggest that quercetin reverses histological hallmarks of AD and protects cognitive and emotional function in aged 3xTg-AD mice. PMID:25666032

  11. A boswellic acid-containing extract ameliorates schistosomiasis liver granuloma and fibrosis through regulating NF-κB signaling in mice.

    PubMed

    Liu, Miao; Wu, Qingsi; Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18-22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD.

  12. A Boswellic Acid-Containing Extract Ameliorates Schistosomiasis Liver Granuloma and Fibrosis through Regulating NF-κB Signaling in Mice

    PubMed Central

    Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18–22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD. PMID:24941000

  13. Sweet Dream Liquid Chinese Medicine Ameliorates Learning and Memory Deficit in a Rat Model of Paradoxical Sleep Deprivation through the ERK/CREB Signaling Pathway.

    PubMed

    Su, Xinyun; Wang, Chunhua; Wang, Xiuhua; Han, Fang; Lv, Changjun; Zhang, Xiuli

    2016-05-01

    Sweet dream oral liquid (SDOL), a traditional Chinese herbal compound contains 17 traditional Chinese medicines. It has various pharmacological effects, such as improving brain dysfunction and increasing sleeping quality. This study investigated the neuroprotective effect and the underlying mechanisms of SDOL-impaired hippocampus learning and memory-induced paradoxical sleep deprivation (PSD) in rats. Sixty Male Wistar rats were randomly divided into six groups. Before PSD, SDOL treatment group rats were intragastrically administered SDOL for 25 days at dose of 2.1, 4.2, and 8.4 mL/kg body weight per day. Normal control group, large platform control group, and PSD groups were treated with normal saline instead of SDOL. After 25 days treatment, PSD and SDOL groups were deprived of paradoxical sleep for 72 h. Then two behavioral studies were conducted to test the spatial learning and memory ability using the open field test and Morris water maze test. Expression of the c-fos, c-jun, cyclic AMP response element binding protein (CREB), extracellular signal-regulated protein kinase (ERK), mitogen-activated protein kinases (MAPK)/ERK kinase (MEK), and p-CREB, p-ERK, and p-MEK in the hippocampus were also assayed by western blot. In this study, PSD decreased the levels of p-CREB, p-ERK, p-MEK, c-fos, and c-jun. However, SDOL treatment increased expressions of these proteins. Our results showed that SDOL improved 72-h PSD-induced cognitive impairment. These affects may be mediated by increasing the contents of c-fos, c-jun, and p-CREB/ERK signaling.

  14. Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway.

    PubMed

    Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Hsiang, Chien-Yun

    2017-02-01

    Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p < 0.05] in cells. Trypsin hydrolysate of corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p < 0.01]. In addition, both corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p < 0.001]. Moreover, FK2 significantly reduced NF-κB-driven luminescent signals in organs by 5-11-fold and suppressed LPS-induced NF-κB activities and IL-β production in tissues. In conclusion, our findings indicated that corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ-NF-κB signaling pathways.

  15. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death.

    PubMed

    Lv, Hongming; Liu, Qinmei; Zhou, Junfeng; Tan, Guangyun; Deng, Xuming; Ci, Xinxin

    2017-05-01

    Daphnetin (Daph), a natural coumarin derivative isolated from plants of the Genus Daphne, possesses abundant biological activities, such as anti-inflammatory, antioxidant and anticancer properties. In the present study, we focused on investigating the protective effect of Daph against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage, mitochondrial dysfunction and the involvement of underlying molecular mechanisms. Our findings indicated that Daph effectively inhibited t-BHP-stimulated cytotoxicity, cell apoptosis, and mitochondrial dysfunction, which are associated with suppressed reactive oxygen species (ROS) generation, decreased malondialdehyde (MDA) formation, increased superoxide dismutase (SOD) levels and glutathione (GSH)/GSSG (oxidized GSH) ratio. Further investigation indicated that Daph significantly suppressed cytochrome c release and NLRP3 inflammasome activation and modulated apoptosis-related protein Bcl-2, Bax, and caspase-3 expression. Moreover, Daph dramatically induced the expression of the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit, heme oxygenase-1 (HO-1), and NAD (P) H: quinone oxidoreductase (NQO1), which is largely dependent on upregulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element (ARE) promoter activity. Additionally, Daph remarkably activated a c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation, but ERK and JNK inhibitor pretreatment exhibited an evident decrease of the level of Daph-enhanced Nrf2 nuclear translocation. Furthermore, Daph exposure suppressed t-BHP-induced cytotoxicity and ROS overproduction, which are mostly blocked in Nrf2 knockout RAW 264.7 cells and peritoneal macrophages. Accordingly, Daph exhibited protective roles against t-BHP-triggered oxidative damage and mitochondrial

  16. Bone Morphogenetic Protein (BMP) signaling in development and human diseases

    PubMed Central

    Wang, Richard N.; Green, Jordan; Wang, Zhongliang; Deng, Youlin; Qiao, Min; Peabody, Michael; Zhang, Qian; Ye, Jixing; Yan, Zhengjian; Denduluri, Sahitya; Idowu, Olumuyiwa; Li, Melissa; Shen, Christine; Hu, Alan; Haydon, Rex C.; Kang, Richard; Mok, James; Lee, Michael J.; Luu, Hue L.; Shi, Lewis L.

    2014-01-01

    Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. PMID:25401122

  17. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  18. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  19. Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: involvement of NF-кB and PPAR-γ signaling pathways

    PubMed Central

    Yang, Yali; Yan, Hui; Jing, Mei; Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Shan, Luchen; Yu, Pei; Wang, Yuqiang; Xu, Lipeng

    2016-01-01

    Andrographolide is a traditional herb medicine, widely used in Asia for conditions involving inflammation. The andrographlide-lipoic acid conjugate, AL-1, has been found being able to alleviate inflammation in our previous reports. Although the anti-inflammatory activity of AL-1 contributes to its cytoprotective effects, whether AL-1 can improve inflammatory bowel disease (IBD) and the underlying mechanisms of its action remain largely unknown. In this study, we investigated the anti-inflammatory effects of AL-1 in C57BL/6 mice with trinitrobenzenesulfonic acid (TNBS)-induced colitis. The body weight loss and length change of colon after TNBS instillation were more severe than those in normal mice. AL-1 treatment led to significant reductions in disease activity index (DAI), macroscopic score and colon mucosa damage index (CMDI) associated with TNBS administration. AL-1 inhibited the inflammatory response via lowering the level of inflammatory cytokines and myeloperoxidase (MPO) activity. AL-1 attenuated the expression of p-p65, p-IκBα and COX-2 in the colitis mice. The alleviation of colon injury by AL-1 treatment was also evidenced by the increased expression of PPAR-γ. These results indicated that AL-1 could protect intestinal tract from the injury induced by TNBS in mice, suggesting that AL-1 may have potential in treatment for IBD. PMID:27435110

  20. Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling

    PubMed Central

    Abdul, Hafiz Mohmmad; Sama, Michelle A.; Furman, Jennifer L.; Mathis, Diana M.; Beckett, Tina L.; Weidner, Adam M.; Patel, Ela S.; Baig, Irfan; Murphy, M. Paul; 3rd, Harry LeVine; Kraner, Susan D.; Norris, Christopher M.

    2009-01-01

    Upon activation by calcineurin, the nuclear factor of activated T cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca2+ dysregulation, both of which are prominent features of Alzheimer’s disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated cytosolic and nuclear fractions prepared from rapid-autopsy postmortem human brain tissue, we show that NFATs 1 and 3 shifted to nuclear compartments in the hippocampus at different stages of neuropathology and cognitive decline, while NFAT2 remained unchanged. NFAT1 exhibited greater association with isolated nuclear fractions in subjects with mild cognitive impairment (MCI), while NFAT3 showed a strong nuclear bias in subjects with severe dementia and AD. Similar to NFAT1, calcineurin-Aα also exhibited a nuclear bias in the early stages of cognitive decline. But, unlike NFAT1 and similar to NFAT3, the nuclear bias for calcineurin became more pronounced as cognition worsened. Changes in calcineurin/NFAT3 were directly correlated to soluble Aβ(1-42) levels in postmortem hippocampus, and oligomeric Aβ, in particular, robustly stimulated NFAT activation in primary rat astrocyte cultures. Oligomeric Aβ also caused a significant reduction in excitatory amino acid transporter 2 (EAAT2) protein levels in astrocyte cultures, which was blocked by NFAT inhibition. Moreover, inhibition of astrocytic NFAT activity in mixed cultures ameliorated Aβ-dependent elevations in glutamate and neuronal death. The results suggest that NFAT signaling is selectively altered in AD and may play an important role in driving Aβ-mediated neurodegeneration. PMID:19828810

  1. Glafenine-induced intestinal injury in zebrafish is ameliorated by μ-opioid signaling via enhancement of Atf6-dependent cellular stress responses

    PubMed Central

    Goldsmith, Jason R.; Cocchiaro, Jordan L.; Rawls, John F.; Jobin, Christian

    2013-01-01

    SUMMARY Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of μ-opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 hours in the presence or absence of the MOR-specific agonist DALDA. By analysis with histology, transmission electron microscopy and vital dye staining, glafenine-treated zebrafish showed evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen. Although the early UPR marker BiP was induced with glafenine-induced injury, downstream atf6 and s-xbp1 expression were paradoxically not increased, explaining the halted cell stress responses. The μ-opioid agonist DALDA protected against glafenine-induced injury through induction of atf6-dependent UPR. Our findings show that DALDA prevents glafenine-induced epithelial damage through induction of effective UPR. PMID:22917923

  2. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain.

    PubMed

    Liu, Qian; Hu, Yaya; Cao, Youfang; Song, Ge; Liu, Zhigang; Liu, Xuebo

    2017-01-18

    As a major nutraceutical component of a typical Mediterranean vegetable chicory, chicoric acid (CA) has been well-documented due to its excellent antioxidant and antiobesity bioactivities. In the current study, the effects of CA on lipopolysaccharide (LPS)-stimulated oxidative stress in BV-2 microglia and C57BL/6J mice and the underlying molecular mechanisms were investigated. Results demonstrated that CA significantly reversed LPS-elicited cell viability decrease, mitochondrial dysfunction, activation of NFκB and MAPK stress pathways, and inflammation responses via balancing cellular redox status. Furthermore, molecular modeling study demonstrated that CA could insert into the pocket of Keap1 and up-regulated Nrf2 signaling and, thus, transcriptionally regulate downstream expressions of antioxidant enzymes including HO-1 and NQO-1 in both microglial cells and ip injection of LPS-treated mouse brain. These results suggested that CA attenuated LPS-induced oxidative stress via mediating Keap1/Nrf2 transcriptional pathways and downstream enzyme expressions, which indicated that CA has great potential as a nutritional preventive strategy in oxidative stress-related neuroinflammation.

  3. Interferon Regulatory Factor-5 Deficiency Ameliorates Disease Severity in the MRL/lpr Mouse Model of Lupus in the Absence of a Mutation in DOCK2

    PubMed Central

    Kochar, Guneet S.; Wilson, Gabriella E.; Laskow, Bari; Richez, Christophe; Bonegio, Ramon G.; Rifkin, Ian R.

    2014-01-01

    Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus. PMID:25076492

  4. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway.

    PubMed

    Jo, Hee Kyung; Kim, Go Woon; Jeong, Kyung Ju; Kim, Do Yeon; Chung, Sung Hyun

    2014-01-01

    Beneficial effect of eugenol on fatty liver was examined in hepatocytes and liver tissue of high fat diet (HFD)-fed C57BL/6J mice. To induce a fatty liver, palmitic acid or isolated hepatocytes from HFD-fed Sprague-Dawley (SD) rats were used in vitro studies, and C57BL/6J mice were fed HFD for 10 weeks. Lipid contents were markedly decreased when hepatocytes were treated with eugenol for up to 24 h. Gene expressions of sterol regulatory element binding protein 1 (SREBP1) and its target enzymes were suppressed but those of lipolysis-related proteins were increased. As a regulatory kinase for lipogenic transcriptional factors, the AMP-activated protein kinase (AMPK) signaling pathway was examined. Protein expressions of phosphorylated Ca(2+)-calmodulin dependent protein kinase kinase (CAMKK), AMPK and acetyl-CoA carboxylase (ACC) were significantly increased and those of phosphorylated mammalian target of rapamycin (mTOR) and p70S6K were suppressed when the hepatocytes were treated with eugenol at up to 100 µM. These effects were all reversed in the presence of specific inhibitors of CAMKK, AMPK or mTOR. In vivo studies, hepatic triglyceride (TG) levels and steatosis score were decreased by 45% and 72%, respectively, in eugenol-treated mice. Gene expressions of fibrosis marker protein such as α-smooth muscle actin (α-SMA), collagen type I (Col-I) and plasminogen activator inhibitor-1 (PAI-1) were also significantly reduced by 36%, 63% and 40% in eugenol-treated mice. In summary, eugenol may represent a potential intervention in populations at high risk for fatty liver.

  5. Phlebodium decumanum is a natural supplement that ameliorates the oxidative stress and inflammatory signalling induced by strenuous exercise in adult humans.

    PubMed

    Díaz-Castro, Javier; Guisado, Rafael; Kajarabille, Naroa; García, Carmen; Guisado, Isabel M; De Teresa, Carlos; Ochoa, Julio J

    2012-08-01

    Strenuous exercise induces muscle damage due to a highly increased generation of free radicals and inflammatory response and therefore, in this type of exercise, it is important to reduce both oxidative stress and inflammation, at least their negative aspects. The purpose of this study was investigate, for the first time, whether a purified, standard water-soluble fraction obtained from Phlebodium decamanum could reduce the over-expression of inflammation and oxidative stress induced by strenuous exercise. The physical test consisted of a constant run that combined several degrees of high effort (mountain run and ultra-endurance), in permanent climbing. Biochemical parameters, oxidative stress and inflammatory mediators were assessed. The results showed that oral supplementation of P. decumanum during high-intensity exercise effectively reduces the degree of oxidative stress (decreased 8-hydroxy-2'-deoxyguanosine and isoprostanes generation, increased antioxidant enzyme activities in erythrocyte and total antioxidant status in plasma). The data obtained also indicate that this supplementation is efficient in reducing the inflammatory response through the decrease of TNF-α and increase of sTNF-RII, but kept the levels of IL-6 and IL-1ra. In conclusion, oral supplementation of P. decamanum extract during high-intensity exercise effectively reduces the degree of oxidative stress and has anti-inflammatory protective effects, preventing the over-expression of TNF-α but keeping the levels and effects of IL-6. These findings provide a basis for similar Phlebodium supplementation for both professional and amateur athletes performing strenuous exercise in order to reduce the undesirable effects of the oxidative stress and inflammation signalling elicited during high-intensity exercise.

  6. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  7. Rutin ameliorates renal fibrosis and proteinuria in 5/6-nephrectomized rats by anti-oxidation and inhibiting activation of TGFβ1-smad signaling

    PubMed Central

    Han, Yu; Lu, Jin-Shan; Xu, Yong; Zhang, Lei; Hong, Bao-Fa

    2015-01-01

    Objectives: Rutin, a polyphenolic flavonoid, was reported to have beneficial effect on drug induced nephropathy. The present study aimed to introduce 5/6 nephrectomized rat model to further evaluate its renal protective effect. Methods: Adult Wistar rats were induced to develop chronic renal failure through 5/6 nephrectomy (5/6 Nx). After that, animals were treated orally with saline, rutin at 15 and 45 mg/kg, and losartan (10 mg/kg) daily for 20 weeks; sham-operated animals were also involved as control. After treatment for 8 and 20 weeks, blood and urine samples were collected for biochemical examination; all the kidney remnants were collected for histological examination. The protein levels of TGF-β1, smad2 and phosphorylated-smad2 (p-smad2) in kidney were measured. Immunohistochemistry was used to analyze the expression of TGF-β1, fibronectin and collagen IV in kidney tissues. Results: Results suggested that rutin could reduce the proteinurea, blood urine nitrogen and blood creatinine in 5/6 Nx animals significantly, as well as oxidation stress in the kidney. By histological examination, rutin administration alleviated glomerular sclerosis scores and tubulointerstitial injuries in a dose-dependent manner (P<0.01). Immunohistochemistry also suggested rutin could reduce the expression of TGF-β1, fibronectin and collagen IV in kidney tissues. By western blot, we found the rutin could reduce the TGF-β1, p-smad2 expression in the kidney tissues of rats. Conclusions: This study suggests that the rutin can improve renal function in 5/6 Nx rats effectively. Its effect may be due to its anti-oxidation and inhibiting TGFβ1-Smad signaling. PMID:26191162

  8. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways.

    PubMed

    Ka, Shuk-Man; Kuoping Chao, Louis; Lin, Jung-Chen; Chen, Shui-Tein; Li, Wen-Tai; Lin, Chien-Nan; Cheng, Jen-Che; Jheng, Huei-Ling; Chen, Ann; Hua, Kuo-Feng

    2016-02-01

    Uncontrolled inflammation is a leading cause of various chronic diseases. Cinnamaldehyde (CA) is a major bioactive compound isolated from the essential oil of the leaves of Cinnamomum osmophloeum kaneh that exhibits anti-inflammatory activity; however, the use of CA is limited by its cytotoxicity. Here, we synthesized three CA derivatives and identified 4-hydroxycinnamaldehyde-galactosamine (HCAG) as a low toxicity anti-inflammatory compound in vitro (HCAG IC50 ≫ 1600 µM; CA IC50=40 µM) and in vivo. HCAG reduced pro-inflammatory mediator expression in LPS-activated macrophages by inhibiting MAPK and PKC-α/δ phosphorylation, decreasing ROS generation and reducing NF-κB activation. HCAG also reduced NLRP3 inflammasome-derived IL-1β secretion by inhibiting the ATP-mediated phosphorylation of AKT and PKC-α/δ. In a mouse model of LPS-induced renal inflammation, we observed reduced albuminuria and a mild degree of glomerular proliferation, glomerular sclerosis and periglomerular inflammation in the HCAG-treated mice compared with the vehicle-treated mice. The underlying mechanisms for these renoprotective effects involved: (1) inhibited NLRP3 inflammasome activation; (2) decreased superoxide anion levels and apoptosis; and (3) suppressed activation of NF-κB and related downstream inflammatory mediators.

  9. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    SciTech Connect

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  10. Emerging translational approaches to target STAT3 signalling and its impact on vascular disease

    PubMed Central

    Dutzmann, Jochen; Daniel, Jan-Marcus; Bauersachs, Johann; Hilfiker-Kleiner, Denise; Sedding, Daniel G.

    2015-01-01

    Acute and chronic inflammation responses characterize the vascular remodelling processes in atherosclerosis, restenosis, pulmonary arterial hypertension, and angiogenesis. The functional and phenotypic changes in diverse vascular cell types are mediated by complex signalling cascades that initiate and control genetic reprogramming. The signalling molecule's signal transducer and activator of transcription 3 (STAT3) plays a key role in the initiation and continuation of these pathophysiological changes. This review highlights the pivotal involvement of STAT3 in pathological vascular remodelling processes and discusses potential translational therapies, which target STAT3 signalling, to prevent and treat cardiovascular diseases. Moreover, current clinical trials using highly effective and selective inhibitors of STAT3 signalling for distinct diseases, such as myelofibrosis and rheumatoid arthritis, are discussed with regard to their vascular (side-) effects and their potential to pave the way for a direct use of these molecules for the prevention or treatment of vascular diseases. PMID:25784694

  11. The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases

    PubMed Central

    Bayat, Vafa; Jaiswal, Manish; Bellen, Hugo J.

    2011-01-01

    Summary The Drosophila neuromuscular junction (NMJ) has recently provided new insights into the roles of various proteins in neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA), Multiple Sclerosis (MS) Hereditary Spastic Paraplegia (HSP), and Huntington’s Disease (HD). Several developmental signaling pathways including WNT, MAPK and BMP/TGF-β signaling play important roles in the formation and growth of the Drosophila NMJ. Studies of the fly homologues of genes that cause neurodegenerative disease at the NMJ have resulted in a better understanding of the roles of these proteins in vivo. These studies may shed light on the pathological mechanisms of these diseases, with implications for reduced BMP/TGF-β signaling in ALS, SMA and HD and increased signaling in HSP and MS. PMID:20832291

  12. DNA damage response and sphingolipid signaling in liver diseases

    PubMed Central

    Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-01-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  13. Modeling intracellular signaling underlying striatal function in health and disease

    PubMed Central

    Nair, Anu G; Gutierrez-Arenas, Omar; Eriksson, Olivia; Jauhiainen, Alexandra; Blackwell, Kim T; Kotaleski, Jeanette Hellgren

    2014-01-01

    Striatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops. Understanding the role of dopamine and other neuromodulators requires the development of quantitative dynamical models for describing the intracellular signaling, in order to provide precise unambiguous descriptions and quantitative predictions. Building such models requires integration of data from multiple data sources containing information regarding the molecular interactions, the strength of these interactions, and the subcellular localization of the molecules. Due to the uncertainty, variability, and sparseness of these data, parameter estimation techniques are critical for inferring or constraining the unknown parameters, and sensitivity analysis evaluates which parameters are most critical for a given observed macroscopic behavior. Here, we briefly review the modeling approaches and tools that have been used to investigate biochemical signaling in the striatum, along with some of the models built around striatum. We also suggest a future direction for the development of such models from the, now becoming abundant, high-throughput data. PMID:24560149

  14. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    PubMed

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.

  15. Exercise-induced Signals for Vascular Endothelial Adaptations: Implications for Cardiovascular Disease

    PubMed Central

    Jenkins, Nathan T.; Martin, Jeffrey S.; Laughlin, M. Harold; Padilla, Jaume

    2012-01-01

    This article reviews recent advances in our understanding of hemodynamic signals, external/compressive forces, and circulating factors that mediate exercise training-induced vascular adaptations, with particular attention to the roles of these signals in prevention and treatment of endothelial dysfunction and cardiovascular (CV) diseases. PMID:22844545

  16. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects.

    PubMed

    Banerjee, Shubhasree; Biehl, Ann; Gadina, Massimo; Hasni, Sarfaraz; Schwartz, Daniella M

    2017-04-01

    The Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling pathway is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Mutations in JAK and STAT genes cause a number of immunodeficiency syndromes, and polymorphisms in these genes are associated with autoimmune diseases. The success of small-molecule JAK inhibitors (Jakinibs) in the treatment of rheumatologic disease demonstrates that intracellular signaling pathways can be targeted therapeutically to treat autoimmunity. Tofacitinib, the first rheumatologic Jakinib, is US Food and Drug Administration (FDA) approved for rheumatoid arthritis and is currently under investigation for other autoimmune diseases. Many other Jakinibs are in preclinical development or in various phases of clinical trials. This review describes the JAK-STAT pathway, outlines its role in autoimmunity, and explains the rationale/pre-clinical evidence for targeting JAK-STAT signaling. The safety and clinical efficacy of the Jakinibs are reviewed, starting with the FDA-approved Jakinib tofacitinib, and continuing on to next-generation Jakinibs. Recent and ongoing studies are emphasized, with a focus on emerging indications for JAK inhibition and novel mechanisms of JAK-STAT signaling blockade.

  17. The signaling pathway of uromodulin and its role in kidney diseases.

    PubMed

    Mao, Song; Zhang, Aihua; Huang, Songming

    2014-12-01

    The uromodulin (UMOD) is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. UMOD acts as a regulatory protein in health and in various conditions. For kidney diseases, its role remains elusive. On one hand, UMOD plays a role in binding and excretion of various potentially injurious products from the tubular fluid. On the other hand, chronic kidney disease is associated with higher serum levels of UMOD. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for UMOD to the investigators who were interested in the role of UMOD in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of UMOD and its role in the pathogenesis of kidney diseases.

  18. Amitriptyline improves motor function via enhanced neurotrophin signaling and mitochondrial functions in the murine N171-82Q Huntington disease model.

    PubMed

    Cong, Wei-Na; Chadwick, Wayne; Wang, Rui; Daimon, Caitlin M; Cai, Huan; Amma, Jennifer; Wood, William H; Becker, Kevin G; Martin, Bronwen; Maudsley, Stuart

    2015-01-30

    Huntington disease (HD) is a neurodegenerative disorder characterized by progressive motor impairment and cognitive alterations. Hereditary HD is primarily caused by the expansion of a CAG trinucleotide repeat in the huntingtin (Htt) gene, which results in the production of mutant huntingtin protein (mHTT) with an expanded amino-terminal polyglutamine (poly(Q)) stretch. Besides pathological mHTT aggregation, reduced brain-derived neurotrophic factor (BDNF) levels, impaired neurotrophin signaling, and compromised mitochondrial functions also contribute to the deleterious progressive etiology of HD. As a well tolerated Food and Drug Administration-approved antidepressant, amitriptyline (AMI) has shown efficacy in treating neurodegenerative murine models via potentiation of BDNF levels and amelioration of alterations in neurotrophin signaling pathways. In this study, we observed profound improvements in the motor coordination of AMI-treated N171-82Q HD model mice. The beneficial effects of AMI treatment were associated with its ability to reduce mHTT aggregation, potentiation of the BDNF-TrkB signaling system, and support of mitochondrial integrity and functionality. Our study not only provides preclinical evidence for the therapeutic potency of AMI in treating HD, but it also represents an important example of the usefulness of additional pharmacogenomic profiling of pre-existing drugs for novel therapeutic effects with often intractable pathological scenarios.

  19. Amitriptyline Improves Motor Function via Enhanced Neurotrophin Signaling and Mitochondrial Functions in the Murine N171-82Q Huntington Disease Model*

    PubMed Central

    Cong, Wei-Na; Chadwick, Wayne; Wang, Rui; Daimon, Caitlin M.; Cai, Huan; Amma, Jennifer; Wood, William H.; Becker, Kevin G.; Martin, Bronwen; Maudsley, Stuart

    2015-01-01

    Huntington disease (HD) is a neurodegenerative disorder characterized by progressive motor impairment and cognitive alterations. Hereditary HD is primarily caused by the expansion of a CAG trinucleotide repeat in the huntingtin (Htt) gene, which results in the production of mutant huntingtin protein (mHTT) with an expanded amino-terminal polyglutamine (poly(Q)) stretch. Besides pathological mHTT aggregation, reduced brain-derived neurotrophic factor (BDNF) levels, impaired neurotrophin signaling, and compromised mitochondrial functions also contribute to the deleterious progressive etiology of HD. As a well tolerated Food and Drug Administration-approved antidepressant, amitriptyline (AMI) has shown efficacy in treating neurodegenerative murine models via potentiation of BDNF levels and amelioration of alterations in neurotrophin signaling pathways. In this study, we observed profound improvements in the motor coordination of AMI-treated N171-82Q HD model mice. The beneficial effects of AMI treatment were associated with its ability to reduce mHTT aggregation, potentiation of the BDNF-TrkB signaling system, and support of mitochondrial integrity and functionality. Our study not only provides preclinical evidence for the therapeutic potency of AMI in treating HD, but it also represents an important example of the usefulness of additional pharmacogenomic profiling of pre-existing drugs for novel therapeutic effects with often intractable pathological scenarios. PMID:25505248

  20. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    PubMed

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  1. Wnt signaling and potential applications in bone diseases.

    PubMed

    Rawadi, Georges

    2008-07-01

    In the United States, it is estimated that $10-15 billion is spent annually for the treatment of osteoporotic fracture. The worldwide annual incidence of osteoporotic hip fracture exceeds 1.7 million cases. Bone loss leading to osteoporosis and osteoporotic fractures are caused by an imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and numerous factors have been implicated in the development of osteoporosis. The prevention and treatment of osteoporosis traditionally involves the use of anti-resorptive agents, which target osteoclast function, but do not lead to a significant increase in bone mass and therefore only partially reduce risk of fractures. For these reasons, the search for anabolic agents, which target osteoblast function, represents an urgent medical need. Genetic studies have firmly established a link between bone mass in humans and Wnt signaling. Multiple genetic and pharmacological manipulations of Wnt signaling in mice have since then confirmed the central role of this pathway in regulating bone formation. The existence of many potential pharmacological targets in this pathway makes it attractive for bone anabolic drug discovery.

  2. Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases

    PubMed Central

    Sherman, Larry S.; Matsumoto, Steven; Su, Weiping; Srivastava, Taasin; Back, Stephen A.

    2015-01-01

    The glycosaminoglycan hyaluronan (HA), a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS). HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes. Insults to the CNS lead to long-term elevation of HA within damaged tissues, which is linked at least in part to increased transcription of HA synthases. HA accumulation is often accompanied by elevated expression of at least some transmembrane HA receptors including CD44. Hyaluronidases that digest high molecular weight HA into smaller fragments are also elevated following CNS insults and can generate HA digestion products that have unique biological activities. A number of studies, for example, suggest that both the removal of high molecular weight HA and the accumulation of hyaluronidase-generated HA digestion products can impact CNS injuries through mechanisms that include the regulation of progenitor cell differentiation and proliferation. These studies, reviewed here, suggest that targeting HA synthesis, catabolism, and signaling are all potential strategies to promote CNS repair. PMID:26448752

  3. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2 and the TGF-β/Smad signaling pathways

    PubMed Central

    Li, Xue-mei; Peng, Jing-hua; Sun, Zhao-lin; Tian, Hua-jie; Duan, Xiao-hua; Liu, Lin; Ma, Xin; Feng, Qin; Liu, Ping; Hu, Yi-yang

    2016-01-01

    Aim: Chinese medicine CGA formula consists of polysaccharide from Cordyceps sinensis mycelia (CS-PS), gypenosides and amygdalin, which is derived from Fuzheng Huayu (FZHY) capsule for treating liver fibrosis. In this study we attempted to confirm the therapeutic effects of CGA formula in dimethylnitrosamine (DMN)-induced liver fibrosis in rats, and to identify the mechanisms of anti-fibrotic actions. Methods: Rats were injected with DMN (10 mg·kg−1·d−1, ip) for 3 consecutive days per week over a 4-week period. The rats then were orally administered with CGA formula (CS-PS 60 mg·kg−1·d−1, gypenosides 50 mg·kg−1·d−1 and amygdalin 80 mg·kg−1·d−1) daily in the next 2 weeks. CS-PS, gypenosides or amygdalin alone were administered as individual component controls, whereas colchicine and FZHY were used as positive controls. Serum biomarkers were measured. Hepatic injury, collagen deposition and stellate cell activation were examined. The MMP activities, expression of TIMP protein and proteins involved in the TGF-β1/Smad signaling pathways in liver tissues were assayed. Results: In DMN-treated rats, administration of CGA formula significantly decreased serum ALT, AST and total bilirubin and hepatic hydroxyproline levels, increased serum albumin level, and attenuated liver fibrosis as shown by histological examination. Furthermore, these effects were comparable to those caused by administration of FZHY, and superior to those caused by administration of colchicine or the individual components of CGA formula. Moreover, administration of CGA formula significantly decreased the protein levels of α-SMA, TGF-β1, TGF-β1 receptor (TβR-I), p-TβR-I, p-TβR-II, p-Smad2, p-Smad3, TIMP1 and TIMP2, as well as MMP2 and MMP9 activities in liver tissues of DMN-treated rats. Conclusion: Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats, and this effect was likely associated with the down-regulation of MMP2/9 activities, TIMP1/2 protein

  4. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  5. Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson’s Disease

    DTIC Science & Technology

    2004-07-01

    disease . The overall hypothesis is that, in rats with partial dopamine lesions mimicking the preclinical phase of Parkinson’s disease , deficits in...The purpose of this project is to investigate the relationship between phasic dopaminergic signaling and behavior in an animal model of Parkinson’s

  6. Electrocardiographic and signal monitoring in ischaemic heart disease: state of the art and perspective.

    PubMed

    Emdin, M; Taddei, A; Varanini, M; Raciti, M; Pola, S; Marchesi, C; L'Abbate, A

    1997-01-01

    The current role of ECG and signal monitoring in the diagnosis of Ischaemic Heart Disease is outlined in relation to imaging techniques giving accurate information on myocardial anatomy and function. ECG monitoring during stress testing remains the first step non-invasive method providing pathophysiological information. Long term continuous monitoring of the ECG and of other signals (e.g. arterial blood pressure and respiration) is commonly used to control patients with suspected or ascertained IHD. Progress of technology and of signal processing methods are driving the exploitation of signal information for diagnosis, prognosis and therapy control of ischaemic patients.

  7. Signal and image processing for early detection of coronary artery diseases: A review

    NASA Astrophysics Data System (ADS)

    Mobssite, Youness; Samir, B. Belhaouari; Mohamad Hani, Ahmed Fadzil B.

    2012-09-01

    Today biomedical signals and image based detection are a basic step to diagnose heart diseases, in particular, coronary artery diseases. The goal of this work is to provide non-invasive early detection of Coronary Artery Diseases relying on analyzing images and ECG signals as a combined approach to extract features, further classify and quantify the severity of DCAD by using B-splines method. In an aim of creating a prototype of screening biomedical imaging for coronary arteries to help cardiologists to decide the kind of treatment needed to reduce or control the risk of heart attack.

  8. [Research progress on role of chemokine receptor CCR3 signaling in allergic airway diseases].

    PubMed

    Xu, Yi; Liu, Yuehui

    2012-12-01

    Allergic airway diseases have been identified as chronic inflammatory diseases of respiratory membranes, characterized by infiltration of many inflammatory cells, especially eosinophils. The expression of CCR3 is abundant on the cell surface of eosinophils. Increased accumulation of CCR3-driven inflammatory cells is thought to favor the development of allergy. In this review, we survey the properties of CCR3 and its ligands and highlight the roles of CCR3 signaling in allergic airway diseases.

  9. Nerve growth factor signaling in prostate health and disease.

    PubMed

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Missale, Cristina; Spano, Pierfranco; Sigala, Sandra

    2010-06-01

    The prostate is one of the most abundant sources of nerve growth factor (NGF) in different species, including humans. NGF and its receptors are implicated in the control of prostate cell proliferation and apoptosis and it can either support or suppress cell growth. The co-expression of both NGF receptors, p75(NGFR) and tropomyosin-related kinase A (trkA), represents a crucial condition for the antiproliferative effect of NGF; indeed, p75(NGFR) is progressively lost during prostate tumorigenesis and its disappearance represents a malignancy marker of prostate adenocarcinoma (PCa). Interestingly, a dysregulation of NGF signal transduction was found in a number of human tumors. This review summarizes the current knowledge on the role of NGF and its receptors in prostate and in PCa. Conclusions bring to the hypothesis that the NGF network could be a candidate for future pharmacological manipulation in the PCa therapy: in particular the re-expression of p75(NTR) and/or the negative modulation of trkA could represent a target to induce apoptosis and to reduce proliferation and invasiveness of PCa.

  10. The MOZ histone acetyltransferase in epigenetic signaling and disease.

    PubMed

    Carlson, Samuel; Glass, Karen C

    2014-11-01

    The monocytic leukemic zinc finger (MOZ) histone acetyltransferase (HAT) plays a role in acute myeloid leukemia (AML). It functions as a quaternary complex with the bromodomain PHD finger protein 1 (BRPF1), the human Esa1-associated factor 6 homolog (hEAF6), and the inhibitor of growth 5 (ING5). Each of these subunits contain chromatin reader domains that recognize specific post-translational modifications (PTMs) on histone tails, and this recognition directs the MOZ HAT complex to specific chromatin substrates. The structure and function of these epigenetic reader modules has now been elucidated, and a model describing how the cooperative action of these domains regulates HAT activity in response to the epigenetic landscape is proposed. The emerging role of epigenetic reader domains in disease, and their therapeutic potential for many types of cancer is also highlighted.

  11. Sphingosine-1-Phosphate Signaling in Inflammatory Bowel Disease.

    PubMed

    Nielsen, Ole Haagen; Li, Yuan; Johansson-Lindbom, Bengt; Coskun, Mehmet

    2017-04-01

    An unmet medical need exists for the development of targeted therapies for the treatment of inflammatory bowel disease (IBD) with easily administered and stable oral drugs, particularly as most patients on biologics [i.e., tumor necrosis factor (TNF) inhibitors and anti-integrins] are either primary non-responders or lose responsiveness during maintenance treatment. A new class of small molecules, sphingosine-1-phosphate (S1P) receptor modulators, has recently shown efficacy in IBD. Here we provide an overview of the mechanism of action of this novel treatment principle in the context of intestinal inflammation. The remarkable impact of therapeutic modulation of the S1P/S1P receptor axis reflects the complexity of the pathogenesis of IBD and the fact that S1P receptor modulation may be a logical therapeutic approach for the future management of IBD.

  12. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

    PubMed Central

    Inestrosa, Nibaldo C; Toledo, Enrique M

    2008-01-01

    Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD. PMID:18652670

  13. Beneficial and detrimental role of adenosine signaling in diseases and therapy.

    PubMed

    Liu, Hong; Xia, Yang

    2015-11-15

    Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects.

  14. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: possible role of peroxisome proliferator activated receptor-Upsilon (PPARUpsilon) in Huntington's disease.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-08-01

    Emerging evidence indicates that PPARUpsilon activators attenuate neurodegeneration and related complications. Therefore, the present study focused on the neuroprotective potential of pioglitazone against quinolinic acid (QUIN) induced neurotoxicity. Intrastriatal (unilaterally) administration of QUIN significantly altered body weight and motor function (locomotor activity, rotarod and beam walk performance). Further, QUIN treatment significantly caused oxidative damage (increased lipid peroxidation, nitrite concentration and depleted endogenous antioxidant defense enzymes), altered mitochondrial enzyme complex (I, II and IV) activities and TNF-alpha level as compared to sham treated animals. Pioglitazone (10, 20 and 40mg/kg, p.o.) treatment significantly improved body weight and motor functions, oxidative defense. Further, pioglitazone treatment restored mitochondrial enzyme complex activity as well as TNF-alpha level as compared to QUIN treated group. While Bisphenol A diglycidyl ether (BADGE) (15mg/kg), PPARUpsilon antagonist significantly reversed the protective effect of the pioglitazone (40mg/kg) in the QUIN treated animals. Further, pioglitazone treatment significantly attenuated the striatal lesion volume in QUIN treated animals, suggesting a role for the PPARUpsilon pathway in QUIN induced neurotoxicity. Altogether, this evidence indicates that PPARUpsilon activation by pioglitazone attenuated QUIN induced neurotoxicity in animals and which could be an important therapeutic avenue to ameliorate Huntington like symptoms.

  15. Vasopressin and interactive calcium, cyclic AMP and purinergic signaling in Polycystic Kidney Disease

    PubMed Central

    Chebib, Fouad T.; Sussman, Caroline R.; Wang, Xiaofang; Harris, Peter C.; Torres, Vicente E.

    2015-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common monogenic kidney disease and the fourth leading cause of end-stage renal disease, responsible for 5–10% of cases. The disease is characterized by relentless development and growth of cysts causing progressive kidney enlargement associated with hypertension, pain, reduced quality of life, and eventually kidney failure. It is caused by mutations to PKD1 or PKD2, encoding polycystin-1 and polycystin-2, respectively. Their function and the molecular mechanisms responsible for the development of polycystic kidney disease are not well understood. The objective of this review is to synthesize a large body of literature that examines how reduction of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signaling and indirectly disrupts calcium regulated cAMP and purinergic signaling. We propose a hypothetical model where dysregulated metabolism of cAMP and purinergic signaling increase the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signaling initiated by mutations to PC1 or PC2 and activates downstream signaling pathways responsible for impaired tubulogenesis, cell proliferation, increased fluid secretion and interstitial inflammation. PMID:25870007

  16. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    PubMed

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  17. Anaplastic lymphoma kinase: signalling in development and disease

    PubMed Central

    Palmer, Ruth H.; Vernersson, Emma; Grabbe, Caroline; Hallberg, Bengt

    2009-01-01

    RTKs (receptor tyrosine kinases) play important roles in cellular proliferation and differentiation. In addition, RTKs reveal oncogenic potential when their kinase activities are constitutively enhanced by point mutation, amplification or rearrangement of the corresponding genes. The ALK (anaplastic lymphoma kinase) RTK was originally identified as a member of the insulin receptor subfamily of RTKs that acquires transforming capability when truncated and fused to NPM (nucleophosmin) in the t(2;5) chromosomal rearrangement associated with ALCL (anaplastic large cell lymphoma). To date, many chromosomal rearrangements leading to enhanced ALK activity have been described and are implicated in a number of cancer types. Recent reports of the EML4 (echinoderm microtubule-associated protein like 4)–ALK oncoprotein in NSCLC (non-small cell lung cancer), together with the identification of activating point mutations in neuroblastoma, have highlighted ALK as a significant player and target for drug development in cancer. In the present review we address the role of ALK in development and disease and discuss implications for the future. PMID:19459784

  18. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    PubMed Central

    Wu, Mengrui; Chen, Guiqian; Li, Yi-Ping

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling. PMID:27563484

  19. Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease

    PubMed Central

    Li, Pin-Lan; Zhang, Yang

    2013-01-01

    Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where trans-membrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial–temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways. PMID:23563657

  20. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease.

    PubMed

    Jayaraman, Arul; Wood, Thomas K

    2008-01-01

    Communication between bacteria, belonging to the same species or to different species, is mediated through different chemical signals that are synthesized and secreted by bacteria. These signals can either be cell-density related (autoinducers) or be produced by bacteria at different stages of growth, and they allow bacteria to monitor their environment and alter gene expression to derive a competitive advantage. The properties of these signals and the response elicited by them are important in ensuring bacterial survival and propagation in natural environments (e.g., human oral cavity) where hundreds of bacterial species coexist. First, the interaction between a signal and its receptor is very specific, which underlies intraspecies communication and quorum sensing. Second, when multiple signals are synthesized by the same bacterium, the signaling circuits utilized by the different signals are coordinately regulated with distinct overall circuit architecture so as to maximize the overall response. Third, the recognition of a universal communication signal synthesized by different bacterial species (interspecies communication), as well that of signals produced by eukaryotic cells (interkingdom communication), is also integral to the formation of multispecies biofilm communities that are important in infection and disease. The focus of this review is on the principles underlying signal-mediated bacterial communication, with specific emphasis on the potential for using them in two applications-development of synthetic biology modules and circuits, and the control of biofilm formation and infection.

  1. microRNA regulation of Wnt signaling pathways in development and disease

    PubMed Central

    Song, Jia L.; Nigam, Priya; Tektas, Senel S.; Selva, Erica

    2015-01-01

    Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3′untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics. PMID:25843779

  2. JAK/STAT Signalling in Huntington’s Disease Immune Cells

    PubMed Central

    Träger, Ulrike; Magnusson, Anna; Lahiri Swales, Nayana; Wild, Edward; North, Janet; Lowdell, Mark; Björkqvist, Maria

    2013-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. Both central and peripheral innate immune activation have been described as features of the disease. Isolated human HD monocytes have been shown to produce more cytokines upon LPS stimulation compared to control monocytes. Understanding alterations in the signalling cascades responsible and activated by this increase in pro-inflammatory cytokine production is crucial in understanding the molecular basis of this phenomenon. Here we investigated the signalling cascade most commonly activated by pro-inflammatory cytokines such as IL-6 – the JAK/STAT signalling cascade. Using flow cytometry, we show that one out of three key transcription factors activated by JAK/STAT signalling is altered in primary human HD innate immune cells, suggesting that this pathway may only play a minor, additive role in the immune cell dysfunction in HD. PMID:24459609

  3. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease

    PubMed Central

    Williams, Aislinn J.; Umemori, Hisashi

    2014-01-01

    Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases. PMID:24672476

  4. Secreted calmodulin-like skin protein ameliorates scopolamine-induced memory impairment.

    PubMed

    Hayashi, Masaaki; Tajima, Hirohisa; Hashimoto, Yuichi; Matsuoka, Masaaki

    2014-06-18

    Humanin, a short bioactive peptide, inhibits cell death in a variety of cell-based death models through Humanin receptors in vitro. In vivo, Humanin ameliorates both muscarinic receptor antagonist-induced memory impairment in normal mice and memory impairment in Alzheimer's disease (AD)-relevant mouse models including aged transgenic mice expressing a familial AD-linked gene. Recently, calmodulin-like skin protein (CLSP) has been shown to be secreted from skin tissues, contain a region minimally similar to the core region of Humanin, and inhibit AD-related neuronal death through the heterotrimeric Humanin receptor on the cell surface in vitro. As CLSP is much more potent than Humanin and efficiently transported through blood circulation across the blood-brain barrier to the central nervous system, CLSP is considered as a physiological agonist that binds to the heterotrimeric Humanin receptor and triggers the Humanin-induced signals in central nervous system. However, it remains unknown whether CLSP ameliorates memory impairment in mouse dementia models as Humanin does. In this study, we show that recombinant CLSP, administered intracerebroventricularly or intraperitoneally, ameliorates scopolamine-induced dementia in mice.

  5. At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone

    PubMed Central

    Nickerson, Nicole; Riese, David J.; Hollenhorst, Peter C.; Lorch, Gwendolen; Foley, Anne M.

    2014-01-01

    The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone. PMID:22684584

  6. Desmosomes: Regulators of Cellular Signaling and Adhesion in Epidermal Health and Disease

    PubMed Central

    Johnson, Jodi L.; Najor, Nicole A.; Green, Kathleen J.

    2014-01-01

    Desmosomes are intercellular junctions that mediate cell–cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin—in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis. PMID:25368015

  7. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease.

    PubMed

    Johnson, Jodi L; Najor, Nicole A; Green, Kathleen J

    2014-11-03

    Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.

  8. Neuregulin-ERBB signaling in nervous system development and neuropsychiatric diseases

    PubMed Central

    Mei, Lin; Nave, Klaus-Armin

    2014-01-01

    Summary Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors ERBBs have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms. PMID:24991953

  9. Strategies Targeting cAMP Signaling in the Treatment of Polycystic Kidney Disease

    PubMed Central

    Harris, Peter C.

    2014-01-01

    Polycystic kidney disease (PKD) is a leading cause of ESRD worldwide. In PKD, excessive cell proliferation and fluid secretion, pathogenic interactions of mutated epithelial cells with an abnormal extracellular matrix and alternatively activated interstitial macrophages, and the disruption of mechanisms controlling tubular diameter contribute to cyst formation. Studies with animal models suggest that several diverse pathophysiologic mechanisms, including dysregulation of intracellular calcium levels and cAMP signaling, mediate these cystogenic mechanisms. This article reviews the evidence implicating calcium and cAMP as central players in a network of signaling pathways underlying the pathogenesis of PKD and considers the therapeutic relevance of treatment strategies targeting cAMP signaling. PMID:24335972

  10. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction

    PubMed Central

    Furumoto, Yasuko; Smith, Carolyne K.; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R.; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L.; Trier, Anna M.; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T.; O'Shea, John J.

    2016-01-01

    Objectives Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. To date, no drug targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a Janus kinase (JAK) inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and on its associated vascular pathology remains to be characterized. Methods MRL/lpr lupus-prone mice received tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum autoantibody levels and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular trap (NET) release, endothelium-dependent vasorelaxation and endothelial differentiation were compared in treated and untreated mice. Results Treatment with tofacitinib led to significant improvement in measures of disease activity including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of pro-inflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated NET formation and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective as both preventive and therapeutic strategies. Conclusions Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. PMID:27429362

  11. Glycyrrhizin Ameliorates Fibrosis, Vasculopathy, and Inflammation in Animal Models of Systemic Sclerosis

    PubMed Central

    Yamashita, Takashi; Asano, Yoshihide; Taniguchi, Takashi; Nakamura, Kouki; Saigusa, Ryosuke; Miura, Shunsuke; Toyama, Tetsuo; Takahashi, Takehiro; Ichimura, Yohei; Yoshizaki, Ayumi; Trojanowska, Maria; Sato, Shinichi

    2017-01-01

    Systemic sclerosis (SSc) is a multisystem inflammatory and vascular disease resulting in extensive tissue fibrosis. Glycyrrhizin, clinically used for chronic hepatic diseases and itching dermatitis, modulates the pathological processes of inflammation, vasculopathy, and fibrosis in human diseases and their animal models. Therefore, we investigated a potential impact of glycyrrhizin on the key pathological manifestations of SSc, including inflammation, vasculopathy, and tissue fibrosis, with bleomycin-treated mice mimicking the fibrotic and inflammatory components of SSc and endothelial cell-specific Fli1-knockout mice recapitulating SSc vasculopathy. Glycyrrhizin significantly ameliorated dermal fibrosis in bleomycin-treated mice, which was partly attributable to blockade of transforming growth factor-β signaling in dermal fibroblasts through the downregulation of thrombospondin 1, a latent transforming growth factor-β receptor, and transcription factors Smad3 and Ets1. Furthermore, bleomycin-dependent induction of T helper type 2-skewed immune polarization, M2 macrophage infiltration, and endothelial-to-mesenchymal transition were greatly suppressed in mice administered glycyrrhizin. Glycyrrhizin also improved vascular permeability of endothelial cell-specific Fli1-knockout mice by increasing the expression of molecules regulating vascular integrity. These results indicate that glycyrrhizin ameliorates bleomycin-induced dermal fibrosis through the inhibition of fibroblast activation, T helper type 2-skewed immune polarization, M2 macrophage infiltration, and endothelial-to-mesenchymal transition and improves endothelial Fli1 deficiency-dependent vascular disintegrity, implying its potential as a disease-modifying drug for SSc. PMID:27777101

  12. Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance.

    PubMed

    Bonda, David J; Stone, Jeremy G; Torres, Sandy L; Siedlak, Sandra L; Perry, George; Kryscio, Richard; Jicha, Gregory; Casadesus, Gemma; Smith, Mark A; Zhu, Xiongwei; Lee, Hyoung-Gon

    2014-01-01

    Leptin signaling has received considerable attention in the Alzheimer disease (AD) field. Within the past decade, the peptide hormone has been demonstrated to attenuate tau hyperphosphorylation in neuronal cells and to be modulated by amyloid-β. Moreover, a role in neuroprotection and neurogenesis within the hippocampus has been shown in animal models. To further characterize the association between leptin signaling and vulnerable regions in AD, we assessed the profile of leptin and the leptin receptor in AD and control patients. We analyzed leptin levels in CSF, and the concentration and localization of leptin and leptin receptor in the hippocampus. Significant elevations in leptin levels in both CSF and hippocampal tissue of AD patients, compared with age-matched control cases, indicate a physiological up-regulation of leptin in AD. However, the level of leptin receptor mRNA decreased in AD brain and the leptin receptor protein was localized to neurofibrillary tangles, suggesting a severe discontinuity in the leptin signaling pathway. Collectively, our results suggest that leptin resistance in the hippocampus may play a role in the characteristic changes associated with the disease. These findings are the first to demonstrate such dysregulated leptin-signaling circuitry and provide novel insights into the possible role of aberrant leptin signaling in AD. In this study, increased leptin was found in CSF and hippocampus in Alzheimer disease indicating its physiological up-regulation, yet leptin receptor mRNA was decreased and leptin receptor protein was localized to neurofibrillary tangles, suggesting a discontinuity in the leptin signaling pathway. The lack of leptin signaling within degenerating neurons may represent a novel neuronal leptin resistance in Alzheimer disease.

  13. A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin

    PubMed Central

    Grönke, Sebastian; Castillo-Quan, Jorge Iván; Woodling, Nathaniel S.; Li, Li; Sirka, Ernestas; Gegg, Matthew; Mills, Kevin; Hardy, John; Bjedov, Ivana

    2016-01-01

    Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD. SIGNIFICANCE STATEMENT We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are

  14. TRK-820, a selective kappa opioid receptor agonist, could effectively ameliorate L-DOPA-induced dyskinesia symptoms in a rat model of Parkinson's disease.

    PubMed

    Ikeda, Ken; Yoshikawa, Satoru; Kurokawa, Takahiro; Yuzawa, Natsumi; Nakao, Kaoru; Mochizuki, Hidenori

    2009-10-12

    Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in parkinsonian patients is known to lead to dyskinesia within a few years, and repeated administration of L-DOPA is also likely to alter the expression of kappa opioid receptors in the basal ganglia, especially the striatum and substantia nigra pars reticulata, suggesting that kappa opioid receptors might be deeply involved in motor functions. Therefore, effects of TRK-820 ((E)-N-[17-(cyclopropylmethyl)-4,5alpha-epoxy-3,14-dihydroxymorphinan-6beta-yl]-3-(furan-3-yl)-N-methylprop-2-enamide monohydrochloride), a selective kappa opioid receptor agonist, were investigated on rotational behavior in unilateral 6-hydroxydopamine (6-OHDA)-treated rats (hemi-parkinsonian rats) and on L-DOPA-induced dyskinesia produced by administering L-DOPA to hemi-parkinsonian rats for 3 weeks (dyskinesia rats). A single administration of subcutaneous TRK-820 significantly increased spontaneous ipsilateral rotational behavior of hemi-parkinsonian rats at 30 microg/kg though the efficacy was moderate and also significantly inhibited L-DOPA-induced dyskinesia at 10 and 30 microg/kg; this inhibition was reversed in the presence of nor-binaltorphimine, a kappa opioid receptor antagonist. In vivo microdialysis study, TRK-820 (30 microg/kg, s.c.) significantly inhibited L-DOPA-derived extracellular dopamine content in the 6-OHDA-treated striatum in dyskinesia rats, but not in hemi-parkinsonian rats. Moreover, the development of L-DOPA-induced dyskinesia was suppressed by the 3-week co-administration of TRK-820 (3 and 10 microg/kg, s.c.) with L-DOPA. These results have suggested that TRK-820 ameliorates L-DOPA-induced dyskinesia with a moderate anti-parkinsonian effect by inhibiting L-DOPA-induced excessive dopamine release through kappa opioid receptors only in dyskinesia rats; therefore, TRK-820 is expected to become a useful agent for the treatment of L-DOPA-induced dyskinesia.

  15. A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    PubMed Central

    Bond, Michael E.; Brown, Rachel; Rallis, Charalampos; Bähler, Jürg; Mole, Sara E.

    2015-01-01

    Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases. PMID:28357272

  16. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases.

    PubMed

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent.

  17. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  18. Novel cAMP signalling paradigms: therapeutic implications for airway disease.

    PubMed

    Billington, Charlotte K; Hall, Ian P

    2012-05-01

    Since its discovery over 50 years ago, cAMP has been the archetypal second messenger introducing students to the concept of cell signalling at the simplest level. As explored in this review, however, there are many more facets to cAMP signalling than the path from Gs-coupled receptor to adenylyl cyclase (AC) to cAMP to PKA to biological effect. After a brief description of this canonical cAMP signalling pathway, a snapshot is provided of the novel paradigms of cAMP signalling. As in the airway the cAMP pathway relays the major bronchorelaxant signal and as such is the target for frontline therapy for asthma and COPD, particular emphasis is given to airway disease and therapy. Areas discussed include biased agonism, continued signalling following internalization, modulation of cAMP by AC, control of cAMP degradation, cAMP and calcium crosstalk, Epac-mediated signalling and finally the implications of altered genotypes will be considered. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.

  19. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  20. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.).

    PubMed

    Huvenne, Hanneke; Goeminne, Geert; Maes, Martine; Messens, Eric

    2008-09-01

    The bacterium Brenneria salicis is the causal agent of watermark disease in willow. This work shows the importance of in situ studies and high-resolution separation of biological samples with ultrahigh performance liquid chromatography combined with ion trap mass spectrometry to unambiguously identify molecular compounds associated with this disease. Approximately 40 oligolignols accumulated in wood sap of watermark diseased willow, and are indicative for degradation of the xylem cell wall, of which 15 were structurally assigned based on an earlier study. Many bacteria are known to produce and release quorum sensing signal molecules that switch on the expression of specific, sometimes pathogenic functions. Two quorum sensing signal molecules, N-(3-oxohexanoyl)-l-homoserine lactone and N-(hexanoyl)-l-homoserine lactone, were present in 4/1 ratios in diseased wood and in high-density in vitro cultures of B. salicis at 0.13-1.2 microM concentrations, and absent in healthy wood and in low-density in vitro cultures of B. salicis. Although it is not a proof, it can be an indication for involvement of quorum sensing in B. salicis pathogenesis. Cyclic dipeptides were present at high concentrations in high-density in vitro cultures of B. salicis, but not in situ, and were found not to be involved in quorum sensing signaling, therefore, the attribution of quorum signal properties to cyclic dipeptides isolated from in vitro cultures of pathogenic bacteria should be reconsidered.

  1. Physical exercise associated with NO production: signaling pathways and significance in health and disease

    PubMed Central

    Dyakova, Elena Y.; Kapilevich, Leonid V.; Shylko, Victor G.; Popov, Sergey V.; Anfinogenova, Yana

    2015-01-01

    Here we review available data on nitric oxide (NO)-mediated signaling in skeletal muscle during physical exercise. Nitric oxide modulates skeletal myocyte function, hormone regulation, and local microcirculation. Nitric oxide underlies the therapeutic effects of physical activity whereas the pharmacological modulators of NO-mediated signaling are the promising therapeutic agents in different diseases. Nitric oxide production increases in skeletal muscle in response to physical activity. This molecule can alter energy supply in skeletal muscle through hormonal modulation. Mitochondria in skeletal muscle tissue are highly abundant and play a pivotal role in metabolism. Considering NO a plausible regulator of mitochondrial biogenesis that directly affects cellular respiration, we discuss the mechanisms of NO-induced mitochondrial biogenesis in the skeletal muscle cells. We also review available data on myokines, the molecules that are expressed and released by the muscle fibers and exert autocrine, paracrine and/or endocrine effects. The article suggests the presence of putative interplay between NO-mediated signaling and myokines in skeletal muscle. Data demonstrate an important role of NO in various diseases and suggest that physical training may improve health of patients with diabetes, chronic heart failure, and even degenerative muscle diseases. We conclude that NO-associated signaling represents a promising target for the treatment of various diseases and for the achievement of better athletic performance. PMID:25883934

  2. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson's disease.

    PubMed

    Matsumoto, Masayuki

    2015-04-01

    The pathological hallmark of Parkinson's disease (PD) is the degeneration of midbrain dopamine neurons. Cognitive dysfunction is a feature of PD patients even at the early stages of the disease. Electrophysiological studies on dopamine neurons in awake animals provide contradictory accounts of the role of dopamine. These studies have established that dopamine neurons convey a unique signal associated with rewards rather than cognitive functions. Emphasizing their role in reward processing leads to difficulty in developing hypothesis as to how cognitive impairments in PD are associated with the degeneration of dopamine circuitry. A hint to resolve this contradiction came from recent electrophysiological studies reporting that dopamine neurons transmit more diverse signals than previously thought. These studies suggest that dopamine neurons are divided into at least two functional subgroups, one signaling "motivational value" and the other signaling "salience." The former subgroup fits well with the conventional reward theory, whereas the latter subgroup has been shown to transmit signals related to salient but non-rewarding experiences such as aversive stimulations and cognitively demanding situations. This article reviews recent advances in understanding the non-reward functions of dopamine, and then discusses the possibility that cognitive dysfunction in PD is at least partially caused by the degeneration of the dopamine neuron subgroup signaling the salience of events in the environment.

  3. miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling

    PubMed Central

    Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.

    2014-01-01

    Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646

  4. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    PubMed Central

    Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.

    2014-01-01

    The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307

  5. Modulation of TGF-beta signaling during progression of chronic liver diseases.

    PubMed

    Matsuzaki, Koichi

    2009-01-01

    A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.

  6. Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease.

    PubMed

    Lim, Dmitry; Rodríguez-Arellano, J J; Parpura, Vladimir; Zorec, Robert; Zeidán-Chuliá, Fares; Genazzani, Armando A; Verkhratsky, Alexei

    2016-01-01

    Pathological remodelling of astroglia represents an important component of the pathogenesis of Alzheimer's disease (AD). In AD astrocytes undergo both atrophy and reactivity; which may be specific for different stages of the disease evolution. Astroglial reactivity represents the generic defensive mechanism, and inhibition of astrogliotic response exacerbates b-amyloid pathology associated with AD. In animal models of AD astroglial reactivity is different in different brain regions, and the deficits of reactive response observed in entorhinal and prefrontal cortices may be linked to their vulnerability to AD progression. Reactive astrogliosis is linked to astroglial Ca(2+) signalling, this latter being widely regarded as a mechanism of astroglial excitability. The AD pathology evolving in animal models as well as acute or chronic exposure to β-amyloid induce pathological remodelling of Ca(2+) signalling toolkit in astrocytes. This remodelling modifies astroglial Ca(2+) signalling and may be linked to cellular mechanisms of AD pathogenesis.

  7. MAPK Signaling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets

    PubMed Central

    Muslin, Anthony J.

    2009-01-01

    Intracellular mitogen-activated protein kinase (MAPK) signaling cascades likely play an important role in the pathogenesis of cardiac and vascular disease. A substantial amount of basic science research has defined many of the details of MAPK pathway organization and activation, but the role of individual signaling proteins in the pathogenesis of various cardiovascular diseases is still being elucidated. In this review, the role of the MAPKs extracellular signal-regulated kinase (ERK), C-jun N-terminal kinase (JNK) and p38 MAPK in cardiac hypertrophy, cardiac remodeling after myocardial infarction, atherosclerosis and vascular restenosis will be examined with attention paid to genetically-modified murine model systems and to the use of pharmacologic inhibitors of protein kinases. Despite the complexities of this field of research, attractive targets for pharmacological therapy are emerging. PMID:18752467

  8. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases

    PubMed Central

    Cui, Ziyou; Dewey, Shannamar; Gomes, Aldrin V

    2011-01-01

    Cardioproteomics (Cardiovascular proteomics) is fast becoming an indispensible technique in deciphering changes in signaling pathways that occur in cardiovascular diseases (CVDs). The quality and availability of the instruments and bioinformatics software used for cardioproteomics continues to improve, and these techniques are now available to most cardiovascular researchers either directly or indirectly via university core centers. The heart and aorta are specialized tissues which present unique challenges to investigate. Currently, the diverse range of proteomic techniques available for cardiovascular research makes the choice of the best method or best combination of methods for the disease parameter(s) being investigated as important as the equipment used. This review focuses on proteomic techniques and their applications which have advanced our understanding of the signaling mechanisms involved in CVDs at the levels of protein complex/protein-protein interaction, post-translational modifications and signaling induced protein changes. PMID:22254205

  9. Tripterygium Glycosides Tablet Ameliorates Renal Tubulointerstitial Fibrosis via the Toll-Like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in High-Fat Diet Fed and Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ma, Ze-jun; Zhang, Xiao-na; Li, Li; Yang, Wei; Wang, Shan-shan; Guo, Xin; Sun, Pei; Chen, Li-ming

    2015-01-01

    Tripterygium glycosides tablet (TGT) is a Chinese traditional medicine that has been shown to protect podocytes from injury and reduce the proteinuria. The aim of this study was to assess the effect of TGT on renal tubulointerstitial fibrosis and its potential mechanism in high-fat diet fed and STZ-induced diabetic rats. Rats were randomly divided into normal control rats (NC group), diabetic rats without drug treatment (DM group), and diabetic rats treated with TGT (1, 3, or 6 mg/kg/day, respectively) for 8 weeks. The results showed that 24 h proteinuria and urinary N-acetyl-glucosaminidase (NAG) in diabetic rats were decreased by TGT treatment without affecting blood glucose. Masson's trichrome stains showed that apparent renal tubulointerstitial fibrosis was found in DM group, which was ameliorated by TGT treatment. The expression of α-SMA was significantly decreased, accompanied by increased expression of E-cadherin in TGT-treated rats, but not in untreated DM rats. Further studies showed that TGT administration markedly reduced expression of TLR4, NF-κB, IL-1β, and MCP-1 in TGT-treated diabetic rats. These results showed that TGT could ameliorate renal tubulointerstitial fibrosis, the mechanism which may be at least partly associated with the amelioration of EMT through suppression of the TLR4/NF-κB pathway. PMID:26347890

  10. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  11. Wnt signalling in kidney diseases: dual roles in renal injury and repair.

    PubMed

    Kawakami, Takahisa; Ren, Shuyu; Duffield, Jeremy S

    2013-01-01

    Wnt signalling is a complex, highly conserved, cell-to-cell communication pathway in multicellular organisms, regulating cell fate, function and phenotype in development, and diseases, including neoplasia. Although the critical role of the Wnt pathway in nephrogenesis is well established, recent investigations have shown its involvement in many adult kidney diseases, including ischaemic kidney injury, glomerular diseases, diabetic nephropathy, interstitial fibrosis and cystic kidney diseases. Overall, activation of the Wnt pathway is deleterious to many chronic diseases of the kidney, contributing to the maintenance of cells in an activated state. In addition, the Wnt pathway is activated during repair and regeneration in animal models of acute ischaemic injury, a scenario that is frequently encountered in human acute kidney injury. This activation recapitulates features of nephrogenesis and appears to play an indispensable role in repair and regeneration in this acute setting. As tools are being developed to regulate the Wnt pathway intracellularly and at the cell surface, the Wnt pathway has become a potential avenue for urgently required novel therapeutics for treating human kidney diseases. In this review, we describe consensus models for major Wnt signalling cascades and then discuss their roles in kidney diseases.

  12. Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling

    PubMed Central

    Nguyen, Thanh-Phuong; Morine, Melissa J.

    2014-01-01

    Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI) to model the functional network of NDs. The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv) inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration. PMID:24551850

  13. Expanding role of delta-like 4 mediated notch signaling in cardiovascular and metabolic diseases.

    PubMed

    Fukuda, Daiju; Aikawa, Masanori

    2013-01-01

    Cardiometabolic disease, a global health threat, has been linked to chronic inflammation, in which activated macrophages play a key role. Macrophages are highly heterogeneous hematopoietic cells found in nearly every tissue in the body. Various stimuli recruit monocytes into the cardiovascular system and metabolic organs, where they differentiate to macrophages, and activate these pro-inflammatory phagocytes, leading to the initiation and development of inflammation in these organs. Key regulators of macrophage activation therefore may serve as therapeutic targets for cardiometabolic disease. The Notch signaling pathway, involving 5 ligands and 4 receptors, regulates the differentiation of various cell types during development, and also contributes to the disease processes in adults. We found that the Notch ligand delta-like 4 (Dll4) activates macrophages in vitro as determined by the induction of genes and pathways associated with cardiovascular and metabolic disorders. Our recent study demonstrated in vivo that blockade of Dll4 by a neutralizing antibody attenuates key features typical of cardiovascular and metabolic diseases, such as accumulation of activated macrophages in arteries and fat; chronic atherosclerosis; arterial and valvular calcification; insulin resistance; and fatty liver. These results suggest that Dll4-mediated Notch signaling participates in the shared disease mechanisms for cardiovascular and metabolic disorders. This review summarizes the role of macrophages and Dll4/Notch signaling in the development of inflammation in both the cardiovascular system and metabolic organs. 

  14. [Research Progress on Notch Signal Pathway in Acute Graft-Versus-Host Disease -Review].

    PubMed

    Guo, Dong-Mei; Li, Ban-Ban; Li, Chun-Pu; Teng, Qing-Liang

    2017-02-01

    The Notch signaling pathway is a highly conserved cell signaling system that plays an essential role in many biological processes. Notch signaling regulates multiple aspects of hematopoiesis, especially during T cell develop-ment. Recent data suggest that Notch also regulates mature T cell differentiation and function. The latest data show that Notch also plays an essential role in alloreactive T cells mediating acute graft-versus-host disease (aGVHD), the most severe complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Notch inhibition in donor-derived T cells or blockade of individual Notch ligands and receptors after transplantation can reduce GVHD severity and mortality in mouse models of allo-HSCT, without causing global immunosuppression. These findings indicate Notch in T cells as an attractive therapeutic target to control aGVHD. In this article, the pathophysiology of aGVHD, the Notch signal pathway and aGVHD are reviewed.

  15. Temporal fluctuation analysis of tremor signal in Parkinson's disease and Essential tremor subjects.

    PubMed

    Thanawattano, C; Anan, C; Pongthornseri, R; Dumnin, S; Bhidayasiri, R

    2015-01-01

    Tremor is a common symptom shared in both Parkinson's disease (PD) and Essential tremor (ET) subjects. The differential diagnosis of PD and ET tremor is important since the treatment depends on specific medication. A novel feature was developed based on a hypothesis stating that the tremor of PD subject has a larger fluctuation while performing resting task than action task. Tremor signal was collected using a gyroscope sensor attached to subject's finger. The angular velocity signal was analyzed by transforming a one-dimensional to two-dimensional signal based on relation of different units of time-delay. The tremor fluctuation was defined as the area of 95% confidence ellipse covering the two-dimensional signal. Experimenting with 32 PD and 20 ET subjects, a ratio of fluctuation of resting to kinetic task can be a sensitive feature to discriminate PD from ET with 100% accuracy.

  16. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.

  17. Wnt/β-catenin Signaling in Oral Tissue Development and Disease

    PubMed Central

    Liu, F.; Millar, S.E.

    2010-01-01

    The Wnt/β-catenin signaling pathway is one of several key conserved intercellular signaling pathways in animals, and plays fundamental roles in the proliferation, regeneration, differentiation, and function of many cell and tissue types. This pathway is activated in a dynamic manner during the morphogenesis of oral organs, including teeth, taste papillae, and taste buds, and is essential for these processes to occur normally. Conversely, forced activation of Wnt/β-catenin signaling promotes the formation of ectopic teeth and taste papillae. In this review, we discuss our current understanding of the roles of Wnt/β-catenin signaling in oral tissue development and in related human diseases, and the potential of manipulating this pathway for therapeutic purposes. PMID:20200414

  18. Implications of fundamental signalling alterations in diabetes mellitus-associated cardiovascular disease .

    PubMed

    Balakumar, Pitchai

    2014-12-01

    The chronic diabetes mellitus (DM) is a major risk factor for cardiovascular disease. The incidence of cardiovascular disease might be a foremost cause of morbidity and mortality in patients afflicted with DM. In fact, DM is associated with multi-factorial cardiovascular signalling alterations via significant modulation of expression pattern, activation or release of PI3K, PKB, eNOS, EDRF, NADPH oxidase, EDHF, CGRP, adenosine, iNOS, ROCK, PKC-β2, CaMKII, microRNA (miR)-126 and miR-130a, which could result in inadequate maintenance of cardiovascular physiology and subsequent development of cardiovascular pathology. This review highlights the possible adverse implications of fundamental cardiovascular signalling alteration in DM-associated cardiovascular disease pathology.

  19. Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling*

    PubMed Central

    de Jesus, Adriana Almeida; Canna, Scott W.; Liu, Yin; Goldbach-Mansky, Raphaela

    2015-01-01

    Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification. PMID:25706096

  20. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  1. Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer's disease.

    PubMed

    Newton, Alexandra C; Tanzi, Rudolph E; VanHook, Annalisa M

    2016-05-10

    This Podcast features an interview with Alexandra Newton and Rudolph Tanzi, authors of a Research Article that appears in the 10 May 2016 issue of Science Signaling, about activating mutations in protein kinase Cα that may promote the type of neural defects that characterize Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative disorder that causes cognitive loss and, eventually, death. Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ), synaptic depression, and synaptic degeneration. Alfonso et al found activating mutations in the gene encoding protein kinase Cα (PKCα) in some families with inherited Alzheimer's disease. Loss of PKCα function prevented Aβ-induced synaptic depression in brain tissue from mice, suggesting that activated forms of PKCα may contribute to Alzheimer's disease in some patients.Listen to Podcast.

  2. Danger signals activating innate immunity in graft-versus-host disease.

    PubMed

    Zeiser, Robert; Penack, Olaf; Holler, Ernst; Idzko, Marco

    2011-09-01

    Extensive cell death with consecutive release of danger signals can cause immune-mediated tissue destruction. The abundance of cell death is likely to determine the relevance of the danger signals as physiological mechanisms that counteract immune activation may be overruled. Such constellation is conceivable in chemo-/radiotherapy-induced tissue damage, reperfusion injury, trauma, and severe infection. Studies on graft-versus-host disease (GvHD) development have to consider the effects of chemo-/radiotherapy-related tissue damage leading to the release of exogenous and endogenous danger signals. Our previous work has demonstrated a role for adenosine-5'-triphosphate (ATP) as an endogenous danger signal in GvHD. Besides ATP, uric acid or soluble extracellular matrix components are functional danger signals that activate the NLRP3 inflammasome when released from dying cells or from extracellular matrix. In contrast to sterile inflammation, GvHD is more complex since bacterial components that leak through damaged intestinal barriers and the skin can activate pattern recognition receptors and directly contribute to GvHD pathogenesis. These exogenous danger signals transmit immune activation via toll-like receptors and NOD-like receptors of the innate immune system. This review covers both the impact of endogenous and exogenous danger signals activating innate immunity in GvHD.

  3. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson’s disease symptoms without side effects

    PubMed Central

    Wakade, Chandramohan; Chong, Raymond; Bradley, Eric; Morgan, John C

    2015-01-01

    Key Clinical Message A 65-year-old male, Parkinson’s disease patient, was evaluated for GPR109A expression, niacin index, UPDRS scale, handwriting test, and quality of sleep with and without niacin treatment. The evaluation was repeated 3 months after niacin was stopped. Niacin modulated the abovementioned parameters and showed the overall improvement without side effects. PMID:26273459

  4. 3,4-dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer's disease mouse model: modulation of the molecular signals in neuronal survival-apoptotic programs.

    PubMed

    Arunsundar, Mohanasundaram; Shanmugarajan, Thukani Sathanantham; Ravichandran, Velayutham

    2015-02-01

    Alzheimer's disease (AD), the most common type of dementia, is a devastating neurodegenerative disease characterized by progressive neuro-cognitive dysfunction. In our study, we investigated the potential of 3,4-dihydroxyphenylethanol (DOPET), a dopamine metabolite, and also a polyphenol from olive oil, in ameliorating soluble oligomeric amyloid β1-42 plus ibotenic acid (oA42i)-induced neuro-behavioral dysfunction in C57BL/6 mice. The results depicted that intracerebroventricular injection of oA42i negatively altered the spatial reference and working memories in mice, whereas DOPET treatment significantly augmented the spatio-cognitive abilities against oA42i. Upon investigation of the underlying mechanisms, oA42i-intoxicated mice displayed significantly activated death kinases including JNK- and p38-MAPKs with concomitantly inhibited ERK-MAPK/RSK2, PI3K/Akt1, and JAK2/STAT3 survival signaling pathways in the hippocampal neurons. Conversely, DOPET treatment reversed these dysregulated signaling mechanisms comparable to the sham-operated mice. Notably, oA42i administration altered the Bcl-2/Bad levels and activated the caspase-dependent mitochondria-mediated apoptotic pathway involving cytochrome c, apoptotic protease activating factor-1, and caspase-9/3. In contrary, DOPET administration stabilized the dysregulated activities of these apoptotic/anti-apoptotic markers and preserved the mitochondrial ultra-architecture. Besides, we observed that oA42i intoxication substantially down-regulated the expression of genes involved in the regulation of survival and memory functions including sirtuin-1, cyclic AMP response element-binding protein (CREB), CREB-target genes (BDNF, c-Fos, Nurr1, and Egr1) and a disintegrin and metalloprotease 10. Fascinatingly, DOPET treatment significantly diminished these aberrations when compared to the oA42i group. Taken together, these results accentuate that DOPET may be a multipotent agent to combat AD.

  5. Lipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling

    PubMed Central

    Hicks, David A.; Nalivaeva, Natalia N.; Turner, Anthony J.

    2012-01-01

    Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events. PMID:22737128

  6. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    PubMed

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  7. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    PubMed

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment.

  8. Treatment of Huntington disease with gamma-acetylenic GABA an irreversible inhibitor of GABA-transaminase: increased CSF GABA and homocarnosine without clinical amelioration.

    PubMed

    Tell, G; Böhlen, P; Schechter, P J; Koch-Weser, J; Agid, Y; Bonnet, A M; Coquillat, G; Chazot, G; Fischer, C

    1981-02-01

    gamma-Acetylenic GABA (GAG, RMI 71.645), a potent irreversible inhibitor of gamma-aminobutyric acid transaminase, was given orally in various dosage schedules to 14 patients with Huntington disease. The biochemical effects of the drug on cerebrospinal fluid (CSF) concentrations of gamma-aminobutyric acid (GABA) and the GABA-containing dipeptide, homocarnosine, were measured in 10 of 14 patients. Treatment with GAG increased CSF concentrations of GABA and homocarnosine as compared to pretreatment values, suggesting that the drug increased brain GABA concentration. Despite this neurochemical effect, the clinical state was not improved. Except for single seizure episodes in five patients, GAG therapy was well tolerated. These results do not exclude the possibility that agents that augment CNS GABAergic function may prove useful in therapy of Huntington disease.

  9. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis

    PubMed Central

    Cui, Jin; Wang, Xiaoyin; Li, Xiaohang; Wang, Xin; Zhang, Chenlu; Li, Wei; Zhang, Yangming; Gu, Haifeng; Xie, Xin; Nan, Fajun; Zhao, Jian; Pei, Gang

    2015-01-01

    Despite decades of intense global effort, no disease-modifying drugs for Alzheimer’s disease have emerged. Molecules targeting catalytic activities of γ-secretase or β-site APP-cleaving enzyme 1 (BACE1) have been beset by undesired side effects. We hypothesized that blocking the interaction between BACE1 and γ-secretase subunit presenilin-1 (PS1) might offer an alternative strategy to selectively suppress Aβ generation. Through high-throughput screening, we discovered that 3-α-akebonoic acid (3AA) interferes with PS1/BACE1 interaction and reduces Aβ production. Structural analogs of 3AA were systematically synthesized and the functional analog XYT472B was identified. Photo-activated crosslinking and biochemical competition assays showed that 3AA and XYT472B bind to PS1, interfere with PS1/BACE1 interaction, and reduce Aβ production, whereas sparing secretase activities. Furthermore, treatment of APP/PS1 mice with XYT472B alleviated cognitive dysfunction and Aβ-related pathology. Together, our results indicate that chemical interference of PS1/BACE1 interaction is a promising strategy for Alzheimer’s disease therapeutics. PMID:27462420

  10. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease

    PubMed Central

    Bosse, Authors: Kevin; Hans, Chetan P.; Zhao, Ning; Koenig, Sara N.; Huang, Nianyuan; Guggilam, Anuradha; LaHaye, Stephanie; Tao, Ge; Lucchesi, Pamela A.; Lincoln, Joy; Lilly, Brenda; Garg, Vidu

    2013-01-01

    The mature aortic valve is composed of a structured trilaminar extracellular matrix that is interspersed with aortic valve interstitial cells (AVICs) and covered by endothelium. Dysfunction of the valvular endothelium initiates calcification of neighboring AVICs leading to calcific aortic valve disease (CAVD). The molecular mechanism by which endothelial cells communicate with AVICs and cause disease is not well understood. Using a co-culture assay, we show that endothelial cells secrete a signal to inhibit calcification of AVICs. Gain or loss of nitric oxide (NO) prevents or accelerates calcification of AVICs, respectively, suggesting that the endothelial cell-derived signal is NO. Overexpression of Notch1, which is genetically linked to human CAVD, retards the calcification of AVICs that occurs with NO inhibition. In AVICs, NO regulates the expression of Hey1, a downstream target of Notch1, and alters nuclear localization of Notch1 intracellular domain. Finally, Notch1 and NOS3 (endothelial NO synthase) display an in vivo genetic interaction critical for proper valve morphogenesis and the development of aortic valve disease. Our data suggests that endothelial cell-derived NO is a regulator of Notch1 signaling in AVICs in the development of the aortic valve and adult aortic valve disease. PMID:23583836

  11. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease.

    PubMed

    Lim, Jeong-A; Li, Lishu; Shirihai, Orian S; Trudeau, Kyle M; Puertollano, Rosa; Raben, Nina

    2017-03-01

    Mechanistic target of rapamycin (mTOR) coordinates biosynthetic and catabolic processes in response to multiple extracellular and intracellular signals including growth factors and nutrients. This serine/threonine kinase has long been known as a critical regulator of muscle mass. The recent finding that the decision regarding its activation/inactivation takes place at the lysosome undeniably brings mTOR into the field of lysosomal storage diseases. In this study, we have examined the involvement of the mTOR pathway in the pathophysiology of a severe muscle wasting condition, Pompe disease, caused by excessive accumulation of lysosomal glycogen. Here, we report the dysregulation of mTOR signaling in the diseased muscle cells, and we focus on potential sites for therapeutic intervention. Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup. Of particular interest, we found that the aberrant mTOR signaling can be reversed by arginine. This finding can be translated into the clinic and may become a paradigm for targeted therapy in lysosomal, metabolic, and neuromuscular diseases.

  12. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  13. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease.

    PubMed

    Rickert, Robert C; Jellusova, Julia; Miletic, Ana V

    2011-11-01

    Members of the tumor necrosis factor receptor superfamily (TNFRSF) participate prominently in B-cell maturation and function. In particular, B-cell activating factor belonging to the TNF family receptor (BAFF-R), B-cell maturation antigen (BCMA), and transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) play critical roles in promoting B-cell survival at distinct stages of development by engaging a proliferation-inducing ligand (APRIL) and/or BAFF. CD40 is also essential for directing the humoral response to T-cell-dependent antigens. Signaling by the TNFRSF is mediated primarily, albeit not exclusively, via the TNFR-associated factor (TRAF) proteins and activation of the canonical and/or non-canonical nuclear factor-κB (NF-κB) pathways. Dysregulated signaling by TNFRSF members can promote B-cell survival and proliferation, causing autoimmunity and neoplasia. In this review, we present a current understanding of the functions of and distinctions between APRIL/BAFF signaling by their respective receptors expressed on particular B-cell subsets. These findings are compared and contrasted with CD40 signaling, which employs similar signaling conduits to achieve distinct cellular outcomes in the context of the germinal center response. We also underscore how new findings and conceptual insights into TNFRSF signaling are facilitating the understanding of B-cell malignancies and autoimmune diseases.

  14. An integrated and disease-oriented growth factor-regulated signal transduction network.

    PubMed

    Erol, A

    2013-01-01

    The importance of Akt, Erk, and their downstream effectors-mediated signaling is indisputable for the proliferation of cell. Growth factor-induced activation of Akt and Erk pathways interacts with each other to regulate proliferation. However, an instructive model, wiring the crucial signaling nodes working in cellular growth and division, is still absent or controversial. Although growth factor-mediated mTORC1 regulation is defined considerably, debates still exist formTORC2. TSC1-TSC2 complex integrates both nutrient and mitogenic signals coming from growth factor receptors. Growth factor-induced PI3K/Akt- and Ras/Erk-mediated TSC2 inhibition is well defined. However, the interaction between TSC complex and new molecules such as Pin1 and DAPK requires further clarifications. Furthermore, the Wnt-β-catenin signaling pathway also intersects with the growth factor signaling at TSC1/TSC2 junction. Therefore, the aim of this perspective paper is to suggest an integrated model, linking growth factor-activated crucial signaling nodes in order to supply key molecular connections to degenerative diseases.

  15. The Role of Hippo/YAP Signaling in Vascular Remodeling and Related Diseases.

    PubMed

    He, Jinlong; Bao, Qiankun; Yan, Meng; Liang, Jing; Zhu, Yi; Wang, Chunjiong; Ai, Ding

    2017-04-03

    Vascular remodeling is a vital process of a wide range of cardiovascular diseases and represents the altered structure and arrangement of blood vessels. The Hippo pathway controls organ size by regulating cell survival, proliferation and apoptosis. Yes-associated protein (YAP), a transcription coactivator, is a downstream effector of the Hippo pathway. Emerging evidence supports that the Hippo/YAP pathway plays an important role in vascular-remodeling and related cardiovascular diseases. The Hippo/YAP pathway has been shown to alter extracellular matrix production or degradation and the growth, death and migration of vascular smooth muscle cells and endothelial cells, which contributes to vascular remodeling in cardiovascular diseases such as pulmonary hypertension, atherosclerosis, restenosis, aortic aneurysms and angiogenesis. In this review, we summarize and discuss recent findings about the roles and mechanisms of Hippo/YAP signaling in vascular-remodeling and related diseases.

  16. The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background In this study, we evaluated the anti-inflammatory effect of PM014 on cigarette smoke induced lung disease in the murine animal model of chronic obstructive pulmonary disease (COPD). Methods Mice were exposed to cigarette smoke (CS) for 2 weeks to induce COPD-like lung inflammation. Two hours prior to cigarette smoke exposure, the treatment group was administered PM014 via an oral injection. To investigate the effects of PM014, we assessed PM014 functions in vivo, including immune cell infiltration, cytokine profiles in bronchoalveolar lavage (BAL) fluid and histopathological changes in the lung. The efficacy of PM014 was compared with that of the recently developed anti-COPD drug, roflumilast. Results PM014 substantially inhibited immune cell infiltration (neutrophils, macrophages, and lymphocytes) into the airway. In addition, IL-6, TNF-α and MCP-1 were decreased in the BAL fluid of PM014-treated mice compared to cigarette smoke stimulated mice. These changes were more prominent than roflumilast treated mice. The expression of PAS-positive cells in the bronchial layer was also significantly reduced in both PM014 and roflumilast treated mice. Conclusions These data suggest that PM014 exerts strong therapeutic effects against CS induced, COPD-like lung inflammation. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for COPD treatment. PMID:24010767

  17. Bacteria-Derived Compatible Solutes Ectoine and 5α-Hydroxyectoine Act as Intestinal Barrier Stabilizers to Ameliorate Experimental Inflammatory Bowel Disease.

    PubMed

    Abdel-Aziz, Heba; Wadie, Walaa; Scherner, Olaf; Efferth, Thomas; Khayyal, Mohamed T

    2015-06-26

    Earlier studies showed that the compatible solute ectoine (1) given prophylactically before induction of colitis by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats prevented histological changes induced in the colon and the associated rise in inflammatory mediators. This study was therefore conducted to investigate whether ectoine (1) and its 5α-hydroxy derivative (2) would also be effective in treating an already established condition. Two days after inducing colitis in rats by instilling TNBS/alcohol in the colon, animals were treated orally once daily for 1 week with either 1 or 2 (50, 100, 300 mg/kg). Twenty-four hours after the last drug administration rats were sacrificed. Ulcerative lesions and colon mass indices were reduced by 1 and 2 in a bell-shaped manner. Best results were obtained with 100 mg/kg ectoine (1) and 50 mg/kg 5α-hydroxyectoine (2). The solutes normalized the rise in myeloperoxidase, TNFα, and IL-1β induced by TNBS but did not affect levels of reduced glutathione or ICAM-1, while reducing the level of fecal calprotectin, an established marker for inflammatory bowel disease. The findings indicate that the naturally occurring compatible solutes ectoine (1) and 5α-hydroxyectoine (2) possess an optimum concentration that affords maximal intestinal barrier stabilization and could therefore prove useful for better management of human inflammatory bowel disease.

  18. Riluzole ameliorates learning and memory deficits in Aβ25-35-induced rat model of Alzheimer's disease and is independent of cholinoceptor activation.

    PubMed

    Mokhtari, Zahra; Baluchnejadmojarad, Tourandokht; Nikbakht, Farnaz; Mansouri, Monireh; Roghani, Mehrdad

    2017-03-01

    Alzheimer's disease (AD) is a major global public health concern and social care problem that is associated with learning, memory, and cognitive deficits. Riluzole is a glutamate modulator which has shown to improve memory performance in aged rats and may be of benefit in Alzheimer's disease. In the present study, its beneficial effect on attenuation of learning and memory deficits in Aβ25-35-induced rat model of AD was assessed. Riluzole administration at a dose of 10mg/kg/day p.o. improved spatial memory in Morris water maze and retention and recall in passive avoidance task and its protective effect was not neutralized following intracerebroventricular microinjection of muscarinic or nicotinic receptor antagonists. Further biochemical analysis showed that riluzole pretreatment of intrahippocampal Aβ-microinjected rats is able to attenuate hippocampal AChE activity and lower some oxidative stress markers, i.e. MDA and nitrite, with no significant change of the defensive enzyme catalase. Furthermore, riluzole prevented hippocampal CA1 neuronal loss and reduced 3-nitrotyrosine immunoreactivity. It is concluded that riluzole could exert a protective effect against memory decline induced by intrahippocampal Aβ25-35 through anti-oxidative, anti-cholinesterase, and neuroprotective potential and its beneficial effect is possibly independent of cholinoceptor activation.

  19. Compartmentation of cAMP signalling in cardiomyocytes in health and disease.

    PubMed

    Perera, R K; Nikolaev, V O

    2013-04-01

    3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger critically involved in the regulation of heart function. It has been shown to act in discrete subcellular signalling compartments formed by differentially localized receptors, phosphodiesterases and protein kinases. Cardiac diseases such as hypertrophy or heart failure are associated with structural and functional remodelling of these microdomains which leads to changes in cAMP compartmentation. In this review, we will discuss recent key findings which provided new insights into cAMP compartmentation in cardiomyocytes with a particular focus on its alterations in heart disease.

  20. The Challenge of Proteomic Data from Molecular Signals to Biological Networks and Disease

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Adkins, Joshua N.; Gracio, Deborah K.

    2006-12-31

    Mass spectrometry (MS) based proteomics is a rapidly advancing field that has great promise for both understanding biological systems as well as advancing the identification and treatment of disease. Breakthroughs in science and medicine due to proteomics, however, are coupled with our ability to overcome significant challenges in the field. These challenges are multi-scalar, spanning the range from the statistics of molecules and molecular signals, to the phenomenological characterization of disease. The papers presented in this section are a representative snapshot of these challenges that span scale and scientific disciplines.

  1. A comparison of different feature extraction methods for diagnosis of valvular heart diseases using PCG signals.

    PubMed

    Rouhani, M; Abdoli, R

    2012-01-01

    This article presents a novel method for diagnosis of valvular heart disease (VHD) based on phonocardiography (PCG) signals. Application of the pattern classification and feature selection and reduction methods in analysing normal and pathological heart sound was investigated. After signal preprocessing using independent component analysis (ICA), 32 features are extracted. Those include carefully selected linear and nonlinear time domain, wavelet and entropy features. By examining different feature selection and feature reduction methods such as principal component analysis (PCA), genetic algorithms (GA), genetic programming (GP) and generalized discriminant analysis (GDA), the four most informative features are extracted. Furthermore, support vector machines (SVM) and neural network classifiers are compared for diagnosis of pathological heart sounds. Three valvular heart diseases are considered: aortic stenosis (AS), mitral stenosis (MS) and mitral regurgitation (MR). An overall accuracy of 99.47% was achieved by proposed algorithm.

  2. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end.

  3. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease

    PubMed Central

    Lian, Hong; Zheng, Hui

    2015-01-01

    Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer’s disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, TGFβ, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer’s disease. PMID:26546579

  4. Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease

    PubMed Central

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics

  5. Reciprocal Transcriptional Regulation of Metabolic and Signaling Pathways Correlates with Disease Severity in Heart Failure

    PubMed Central

    Barth, Andreas S; Kumordzie, Ami; Frangakis, Constantine; Margulies, Kenneth B; Cappola, Thomas P; Tomaselli, Gordon F

    2012-01-01

    Background Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. Methods and Results Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, while cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern observed in experimental animal models which recapitulates a fetal gene expression program, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in non-failing human samples which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS) within the first 6h, thus mimicking gene expression patterns observed in failing samples. Additionally, beta-blockers and ACE-inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity. Conclusions Irrespective of the etiology, gene

  6. Isoflavones and PPAR Signaling: A Critical Target in Cardiovascular, Metastatic, and Metabolic Disease

    PubMed Central

    Patel, Rakesh P.; Barnes, Stephen

    2010-01-01

    Isoflavone intake through foods and dietary supplements has both health advocates and critics. The latter come from a concern about the estrogenic effects of isoflavones in certain species. However, careful removal of isoflavones and other estrogens from the diet of rodents leads to the metabolic syndrome. These results suggest that isoflavones have other mechanisms of action, potentially those involving regulation of fatty acid metabolism via the nuclear receptors PPARα and PPARγ. The goal of this paper was to examine the evidence for isoflavone/PPAR signaling and to identify diseases in which such signaling would have an important impact. It is therefore of note that investigators using a chemical structure approach to discover PPAR ligands identified isoflavones as the best structures in the library of compounds that they tested. Future studies will involve careful identification of the underlying mechanisms whereby isoflavones have their action via PPAR signaling. PMID:21461045

  7. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases

    PubMed Central

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases. PMID:23678293

  8. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  9. Primary cilia and signaling pathways in mammalian development, health and disease

    PubMed Central

    VELAND, IBEN R.; AWAN, AASHIR; PEDERSEN, LOTTE B.; YODER, BRADLEY K.; CHRISTENSEN, SØREN T.

    2010-01-01

    SUMMARY Although first described 1898 and long considered a vestigial organelle of little functional importance, the primary cilium has become one of the hottest research topics in modern cell biology and physiology. Primary cilia are non-motile sensory organelles present in a single copy on the surface of most growth-arrested or differentiated mammalian cells, and defects in their assembly or function are tightly coupled to many developmental defects, diseases and disorders. In normal tissues the primary cilium coordinates a series of signal transduction pathways, including Hedgehog, Wnt, PDGFRα and integrin signaling. In the kidney the primary cilium may function as a mechano-, chemo- and osmosensing unit that probes the extracellular environment and transmits signals to the cell via e.g. polycystins, which depend on ciliary localization for appropriate function. Indeed, hypomorphic mutations in the mouse ift88 (previously called Tg737) gene, which encodes a ciliogenic intraflagellar transport (IFT) protein, result in malformation of primary cilia, and in the collecting ducts of kidney tubules this is accompanied by development of autosomal recessive polycystic kidney disease (PKD; (1)). While PKD was one of the first diseases to be linked to dysfunctional primary cilia, defects in this organelle have subsequently been associated with many other phenotypes, including cancer, obesity, diabetes as well as a number of developmental defects. Collectively, these disorders of the cilium are now referred to as the ciliopathies. In this review we provide a brief overview of the structure and function of primary cilia and some of their roles in coordinating signal transduction pathways in mammalian development, health and disease. This review was written in conjunction with the Takis Anagnostopoulos Symposium on Renal and Epithelial Physiology and Physiopathology at Faculté de Médecine Necker in Paris, June 26-27, 2008. PMID:19276629

  10. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    PubMed Central

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders. PMID

  11. Toxicity of Alzheimer's disease-associated Aβ peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability.

    PubMed

    Hua, Haiqing; Münter, Lisa; Harmeier, Anja; Georgiev, Oleg; Multhaup, Gerd; Schaffner, Walter

    2011-10-01

    Amyloid plaques consisting of aggregated Aβ peptide are a hallmark of Alzheimer's disease. Among the different forms of Aβ, the one of 42aa length (Aβ42) is most aggregation-prone and also the most neurotoxic. We find that eye-specific expression of human Aβ42 in Drosophila results in a degeneration of eye structures that progresses with age. Dietary supplements of zinc or copper ions exacerbate eye damage. Positive effects are seen with zinc/copper chelators, or with elevated expression of MTF-1, a transcription factor with a key role in metal homeostasis and detoxification, or with human or fly transgenes encoding metallothioneins, metal scavenger proteins. These results show that a tight control of zinc and copper availability can minimize cellular damage associated with Aβ42 expression.

  12. Naringenin ameliorates Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model.

    PubMed

    Khan, M Badruzzaman; Khan, Mohd Moshahid; Khan, Andleeb; Ahmed, Md Ejaz; Ishrat, Tauheed; Tabassum, Rizwana; Vaibhav, Kumar; Ahmad, Ajmal; Islam, Fakhrul

    2012-12-01

    Oxidative stress is involved in Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) as well as age related cognitive deficit. The present study was designed to investigate the pre-treatment effects of naringenin (NAR), a polyphenolic compound on cognitive dysfunction, oxidative stress in the hippocampus, and hippocampal neuron injury in a rat model of AD-TNDCI. The rats were pre-treated with NAR at a selective dose (50mg/kg, orally) for 2 weeks followed by intracerebroventricular-streptozotocin (ICV-STZ) (3mg/kg; 5μl per site) injection bilaterally. Behavioral alterations were monitored after 2 weeks from the lesion using passive avoidance test and Morris water maze paradigm. Three weeks after the lesion, the rats were sacrificed for measuring non-enzymatic [4-hydroxynonenal (4-HNE), malonaldehyde (MDA), thiobarbituric reactive substances (TBARS), hydrogen peroxide (H(2)O(2)), protein carbonyl (PC), reduced glutathione (GSH)] content and enzymatic [glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and Na(+)/K(+)-ATPase] activity in the hippocampus, and expression of choline acetyltransferase (ChAT) positive neuron, and histopathology of hippocampal neurons. The non-enzymatic level and enzymatic activity was significantly increased and decreased, respectively, with striking impairments in spatial learning and memory, loss of ChAT positive neuron and severe damage to hippocampal neurons in the rat induced by ICV-STZ. These abnormalities were significantly improved by NAR pre-treatment. The study suggests that NAR can protect against cognitive deficits, neuronal injury and oxidative stress induced by ICV-STZ, and may be used as a potential agent in treatment of neurodegenerative diseases such as AD-TNDCI.

  13. Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target.

    PubMed

    Inestrosa, Nibaldo C; Varela-Nallar, Lorena; Grabowski, Catalina P; Colombres, Marcela

    2007-01-01

    Recent evidence supports a role of the Wnt pathway in neurodegenerative disorders such as Alzheimer's disease (AD). A relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmatic levels of beta-catenin has been proposed. Also, the inhibition of glycogen synthase kinase (GSK-3beta), a central modulator of the pathway, protects rat hippocampal neurons from Abeta-induced damage. Interestingly, during the progression of AD, it has been described that active GSK-3beta is found in neuronal cell bodies and neurites, co-localizing with pre-neurofibrillary tangles observed in disease brains. Since Abeta oligomers are associated with the post-synaptic region and we have found that the non-canonical Wnt signaling modulates PSD-95 and glutamate receptors, we propose that the synaptic target for Abeta oligomers in AD is the postsynaptic region and at the molecular level is the non-canonical Wnt signaling pathway. Altogether, our evidence suggests that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in AD brains and that the activation of this signaling pathway could be of therapeutic interest in AD.

  14. Towards Semi-Automatic Artifact Rejection for the Improvement of Alzheimer's Disease Screening from EEG Signals.

    PubMed

    Solé-Casals, Jordi; Vialatte, François-Benoît

    2015-07-23

    A large number of studies have analyzed measurable changes that Alzheimer's disease causes on electroencephalography (EEG). Despite being easily reproducible, those markers have limited sensitivity, which reduces the interest of EEG as a screening tool for this pathology. This is for a large part due to the poor signal-to-noise ratio of EEG signals: EEG recordings are indeed usually corrupted by spurious extra-cerebral artifacts. These artifacts are responsible for a consequent degradation of the signal quality. We investigate the possibility to automatically clean a database of EEG recordings taken from patients suffering from Alzheimer's disease and healthy age-matched controls. We present here an investigation of commonly used markers of EEG artifacts: kurtosis, sample entropy, zero-crossing rate and fractal dimension. We investigate the reliability of the markers, by comparison with human labeling of sources. Our results show significant differences with the sample entropy marker. We present a strategy for semi-automatic cleaning based on blind source separation, which may improve the specificity of Alzheimer screening using EEG signals.

  15. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease.

    PubMed

    Zhou, Qingde; Yen, Allen; Rymarczyk, Grzegorz; Asai, Hirohide; Trengrove, Chelsea; Aziz, Nadine; Kirber, Michael T; Mostoslavsky, Gustavo; Ikezu, Tsuneya; Wolozin, Benjamin; Bolotina, Victoria M

    2016-01-12

    The etiology of idiopathic Parkinson's disease (idPD) remains enigmatic despite recent successes in identification of genes (PARKs) that underlie familial PD. To find new keys to this incurable neurodegenerative disorder we focused on the poorly understood PARK14 disease locus (Pla2g6 gene) and the store-operated Ca(2+) signalling pathway. Analysis of the cells from idPD patients reveals a significant deficiency in store-operated PLA2g6-dependent Ca(2+) signalling, which we can mimic in a novel B6.Cg-Pla2g6(ΔEx2-VB) (PLA2g6 ex2(KO)) mouse model. Here we demonstrate that genetic or molecular impairment of PLA2g6-dependent Ca(2+) signalling is a trigger for autophagic dysfunction, progressive loss of dopaminergic (DA) neurons in substantia nigra pars compacta and age-dependent L-DOPA-sensitive motor dysfunction. Discovery of this previously unknown sequence of pathological events, its association with idPD and our ability to mimic this pathology in a novel genetic mouse model opens new opportunities for finding a cure for this devastating neurodegenerative disease.

  16. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  17. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease.

    PubMed

    Haas, Laura T; Salazar, Santiago V; Kostylev, Mikhail A; Um, Ji Won; Kaufman, Adam C; Strittmatter, Stephen M

    2016-02-01

    Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.

  18. The NF-kappaB signaling in cystic fibrosis lung disease: pathophysiology and therapeutic potential.

    PubMed

    Bodas, Manish; Vij, Neeraj

    2010-04-01

    Lung disease is the major cause of morbidity and mortality of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in CF transmembrane-conductance regulator (CFTR) gene. In CF, elevated levels of interleukin-8 (IL-8) signaling mediated by the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) result in chronic infection, neutrophilic inflammation, and progressive airway destruction. The most frequent mutation in the CFTR gene is the deletion of phenylalanine 508 (DeltaF508), which results in its endoplasmic reticulum associated degradation (ERAD) by the ubiquitin-proteasome system. The inability of DeltaF508-CFTR to reach cell surface leads to inherently high levels of NF-kappaB. Severity of CF lung disease depends on the levels of functional CFTR on cell surface that control its chloride transport and NF-kappaB mediated innate immune response functions. NF-kappaB mediated chronic inflammation is a prominent feature of CF lung disease and the mechanism(s) by which CFTR regulates these inflammatory signaling pathways is becoming apparent. Recent data suggest that CFTR localization to lipid-rafts is critical for regulating NF-kappaB mediated innate immune response and chronic CF lung disease. We anticipate that targeting the pathways, which facilitates CFTR's rescue to the cell surface and lipid-rafts, will not only restore CFTR channel function but also control NF-kappaB mediated chronic inflammation, although the level of correction may be a critical factor for therapeutic efficacy. We discuss here the mechanisms of NF-kappaB induction in CF, pathogenesis of CF lung disease, and novel therapeutic strategies that may help in reversing the chronic CF lung disease.

  19. The NFκB Signaling in Cystic Fibrosis Lung Disease: Pathophysiology and Therapeutic Potential

    PubMed Central

    Bodas, Manish; Vij, Neeraj

    2010-01-01

    Lung disease is the major cause of morbidity and mortality of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in CF transmembrane-conductance regulator (CFTR) gene. In CF, elevated levels of interleukin-8 (IL-8) signaling mediated by the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) result in chronic infection, neutrophilic inflammation, and progressive airway destruction. The most frequent mutation in the CFTR gene is the deletion of phenylalanine 508 (ΔF508), which results in its endoplasmic reticulum associated degradation (ERAD) by the ubiquitin-proteasome system. The inability of ΔF508-CFTR to reach cell surface leads to inherently high levels of NFκB. Severity of CF lung disease depends on the levels of functional CFTR on cell surface that control its chloride transport and NFκB mediated innate immune response functions. NFκB mediated chronic inflammation is a prominent feature of CF lung disease and the mechanism(s) by which CFTR regulates these inflammatory signaling pathways is becoming apparent. Recent data suggest that CFTR localization to lipid-rafts is critical for regulating NFκB mediated innate immune response and chronic CF lung disease. We anticipate that targeting the pathways, which facilitates CFTR’s rescue to the cell surface and lipid-rafts, will not only restore CFTR channel function but also control NFκB mediated chronic inflammation, although the level of correction may be a critical factor for therapeutic efficacy. We discuss here the mechanisms of NFκB induction in CF, pathogenesis of CF lung disease, and novel therapeutic strategies that may help in reversing the chronic CF lung disease. PMID:20423679

  20. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.

    PubMed

    Espinosa, Alejandra; Henríquez-Olguín, Carlos; Jaimovich, Enrique

    2016-09-01

    Reactive Oxygen Species (ROS) have been profusely studied as agents of potential damage to living cells and they have been related to a number of pathological processes. Increasing evidence points to a more positive role of ROS in cell signaling and the detailed mechanism that regulates the precise amount of ROS needed for cell functioning without the deleterious effects of excess ROS still needs to be resolved in detail. In skeletal muscle the main source of ROS during normal functioning appears to be NADPH oxidase 2 (NOX2), which is activated by electrical stimuli (or exercise) through a cascade of events that include ATP release through pannexin1 channels. NOX2 is a protein complex that assembles in the T-tubule membrane before activation and ROS production by NOX2 appears to be important for muscle adaptation through gene expression and mitochondrial biogenesis as well as for improving glucose transport after insulin action. Excess ROS production (or diminished antioxidant defenses) plays a role in a number of pathological processes in skeletal muscle. Together with increased reactive nitrogen species, an increase in ROS appears to have a deleterious role in a model of Duchenne muscular dystrophy as well as muscle wasting in other diseases such as aging sarcopenia and cancer cachexia. In addition, ROS is involved in obesity and muscle insulin resistance, both of which are causally related to type 2 diabetes. A detailed description of the fine-tuning of ROS (including all sources of ROS) in skeletal muscle in health and disease will significantly contribute to our knowledge of both muscle adaptation and muscle related pathologies.

  1. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    PubMed Central

    Tian, Yu; He, Lei; Shao, Yang; Li, Na

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  2. The Role of Phospholipase D in Modulating the MTOR Signaling Pathway in Polycystic Kidney Disease

    PubMed Central

    Liu, Yang; Käch, Andres; Ziegler, Urs; Ong, Albert C. M.; Wallace, Darren P.; Arcaro, Alexandre; Serra, Andreas L.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD. PMID:24009738

  3. Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin–1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model

    PubMed Central

    Wang, Qiwei; Zhou, Ting; Liu, Zhenjie; Ren, Jun; Phan, Noel; Gupta, Kartik; Stewart, Danielle M.; Morgan, Stephanie; Assa, Carmel; Kent, K. Craig; Liu, Bo

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P < 0.05). The mean aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair. PMID:28186202

  4. Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model.

    PubMed

    Wang, Qiwei; Zhou, Ting; Liu, Zhenjie; Ren, Jun; Phan, Noel; Gupta, Kartik; Stewart, Danielle M; Morgan, Stephanie; Assa, Carmel; Kent, K Craig; Liu, Bo

    2017-02-10

    Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P < 0.05). The mean aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair.

  5. Amylin Treatment Reduces Neuroinflammation and Ameliorates Abnormal Patterns of Gene Expression in the Cerebral Cortex of an Alzheimer’s Disease Mouse Model

    PubMed Central

    Wang, Erming; Zhu, Haihao; Wang, Xiaofan; Gower, Adam C.; Wallack, Max; Blusztajn, Jan Krzysztof; Kowall, Neil; Qiu, Wei Qiao

    2017-01-01

    Our recent study has demonstrated that peripheral amylin treatment reduces the amyloid pathology in the brain of Alzheimer’s disease (AD) mouse models, and improves their learning and memory. We hypothesized that the beneficial effects of amylin for AD was beyond reducing the amyloids in the brain, and have now directly tested the actions of amylin on other aspects of AD pathogenesis, especially neuroinflammation. A 10-week course of peripheral amylin treatment significantly reduced levels of cerebral inflammation markers, Cd68 and Iba1, in amyloid precursor protein (APP) transgenic mice. Mechanistic studies indicated the protective effect of amylin required interaction with its cognate receptor because silencing the amylin receptor expression blocked the amylin effect on Cd68 in microglia. Using weighted gene co-expression network analysis, we discovered that amylin treatment influenced two gene modules linked with amyloid pathology: 1) a module related to proinflammation and transport/vesicle process that included a hub gene of Cd68, and 2) a module related to mitochondria function that included a hub gene of Atp5b. Amylin treatment restored the expression of most genes in the APP cortex toward levels observed in the wild-type (WT) cortex in these two modules including Cd68 and Atp5b. Using a human dataset, we found that the expression levels of Cd68 and Atp5b were significantly correlated with the neurofibrillary tangle burden in the AD brain and with their cognition. These data suggest that amylin acts on the pathological cascade in animal models of AD, and further supports the therapeutic potential of amylin-type peptides for AD. PMID:27911303

  6. Does intravenous sildenafil clinically ameliorate pulmonary hypertension during perioperative management of congenital heart diseases in children? – A prospective randomized study

    PubMed Central

    Sharma, Vipul Krishen; Joshi, Saajan; Joshi, Ankur; Kumar, Gaurav; Arora, Harmeet; Garg, Anurag

    2015-01-01

    Background: Pulmonary hypertension (PHT), if present, can be a significant cause of increased morbidity and mortality in children undergoing surgery for congenital heart diseases (CHD). Various techniques and drugs have been used perioperatively to alleviate the effects of PHT. Intravenous (IV) sildenafil is one of them and not many studies validate its clinical use. Aims and Objectives: To compare perioperative PaO2 – FiO2 ratio peak filling rate (PFR), systolic pulmonary artery pressure (PAP) – systolic aortic pressure (AoP) ratio, extubation time, and Intensive Care Unit (ICU) stay between two groups of children when one of them is administered IV sildenafil perioperatively during surgery for CHDs. Materials and Methods: Patients with ventricular septal defects and proven PHT, <14 years of age, all American Society of Anesthesiologists physical status III, undergoing cardiac surgery, were enrolled into two groups – Group S (IV sildenafil) and Group C (control) – over a period of 14 months, starting from October 2013. Independent t-test and Mann–Whitney U-test were used to compare the various parameters between two groups. Results: PFR was higher throughout, perioperatively, in Group S. PAP/AoP was 0.3 and 0.4 in Group S and Group C, respectively. In Group S, mean group extubation time was 7 ± 7.34 h, whereas in Group C it was 22.1 ± 10.6. Postoperative ICU stay in Group S and Group C were 42.3 ± 8.8 h and 64.4 ± 15.9 h, respectively. Conclusion: IV sildenafil, when used perioperatively, in children with CHD having PHT undergoing corrective surgery, improves not only PaO2 – FiO2 ratio and PAP – AoP ratio but also reduces extubation time and postoperative ICU stay. PMID:26440237

  7. IL-2-targeted therapy ameliorates the severity of graft-versus-host disease: ex vivo selective depletion of host-reactive T cells and in vivo therapy.

    PubMed

    Yarkoni, Shai; Prigozhina, Tatyana B; Slavin, Shimon; Askenasy, Nadir

    2012-04-01

    T cell depletion prevents graft-versus-host disease (GVHD) but also removes T cell-mediated support of hematopoietic cell engraftment. A chimeric molecule composed of IL-2 and caspase-3 (IL2-cas) has been evaluated as a therapeutic modality for GVHD and selective ex vivo depletion of host-reactive T cells. IL2-cas does not affect hematopoietic cell engraftment and significantly reduces the clinical and histological severity of GVHD. Early administration of IL2-cas reduced the lethal outcome of haploidentical transplants, and survivor mice displayed markedly elevated levels of X-linked forkhead/winged helix (FoxP3(+); 50%) and CD25(+)FoxP3(+) T cells (35%) in the lymph nodes. The chimeric molecule induces in vitro apoptosis in both CD4(+)CD25(-) and CD4(+)CD25(+) subsets of lymphocytes from alloimmunized mice, and stimulates proliferation of cells with highest levels of CD25 expression. Adoptive transfer of IL2-cas-pretreated viable splenocytes into sublethally irradiated haploidentical recipients resulted in 60% survival after a lethal challenge with lipopolysaccharide, which is associated with elevated fractions of CD25(high)FoxP3(+) T cells in the lymph nodes of survivors. These data demonstrate that ex vivo purging of host-presensitized lymphocytes is effectively achieved with IL2-cas, and that IL-2-targeted apoptotic therapy reduces GVHD severity in vivo. Both approaches promote survival in lethal models of haploidentical GVHD. The mechanism of protection includes direct killing of GVHD effectors, prevention of transition to effector/memory T cells, and induction of regulatory T cell proliferation, which becomes the dominant subset under conditions of homeostatic expansion.

  8. Angiotensin II activates signal transducers and activators of transcription 3 via Rac1 in the atrial tissue in permanent atrial fibrillation patients with rheumatic heart disease.

    PubMed

    Xue, Xiao-Dong; Huang, Jian-Hua; Wang, Hui-Shan

    2015-01-01

    Patients with rheumatic heart disease (RHD) often experience persistent atrial fibrillation (AF) associated with adverse atrial structural remodeling (ASR) manifested by atrial fibrosis and left atrial enlargement. The aim of this study was to explore the potential molecular signaling mechanisms for atrial fibrosis and ASR. Twenty RHD patients with persistent AF and 10 RHD patients with sinus rhythm (Group A) were recruited in our study, which all underwent transthoracic echocardiography. Right atrial appendage (RAA) tissue samples were obtained from these patients during mitral/aortic valve replacement operation. The AF patients were further divided into two groups according to left atrial diameter (LAD): Group B with LAD ranging 50-65 mm and Group C with LAD >65 mm. Histological examinations were performed with hematoxylin-eosin staining and Masson's trichrome staining. Atrial angiotensin II (AngII) content was measured by ELISA. Rac1 and STAT3 protein levels were determined by Western blot analysis. Hematoxylin-eosin staining demonstrated highly organized arrangement of atrial muscles in control Group A and significant derangement in both Group B and C AF patients with reduced cell density and increased cell size. Moreover, Masson's trichrome staining showed that atrial myocytes were surrounded by large trunks of collagen fibers in both Group B and C, but not in Group A. There was a positive correlation between atrial tissue fibrosis and LAD. AngII content was markedly higher in Group C than in Group B than in Group A, which was positively correlated with LAD. Similarly, Rac1 and STAT3 protein levels were found considerably higher in Group C and B than in Group A with excellent correlation to LAD. Our study unraveled for the first time the AngII/Rac1/STAT3 signaling as a mechanism for ASR thereby AF in a particular clinical setting-RHD patients with persistent AF and indicated inhibition of this pathway may help ameliorating adverse ASR.

  9. Functional defects in NOD2 signaling in experimental and human Crohn disease.

    PubMed

    Corridoni, Daniele; Arseneau, Kristen O; Cominelli, Fabio

    2014-01-01

    Increasing evidence suggests that a deficit in innate immunity may play a causative role in the pathogenesis of inflammatory bowel disease. The most compelling support for this hypothesis comes from the genetic association of Crohn disease (CD) with carriage of polymorphisms within the NOD2 gene, which represent the most frequent genetic defect in CD. Our findings suggest that SAMP1/YitFc mice, which develop CD-like ileitis in the absence of NOD2 genetic mutations, fail to respond to MDP administration by displaying decreased innate cytokine production and impaired bacterial clearance before the onset of disease. This provides evidence that dysregulated NOD2 signaling, genetic or functional in nature, predisposes to chronic intestinal inflammation, and supports a new paradigm that CD may occur from a deficit in innate immunity as opposed to an overly aggressive immune response. This new paradigm could lead to potential development of new preventative or therapeutic modalities for patients with CD.

  10. Innate immune signaling and gut-liver interactions in non-alcoholic fatty liver disease

    PubMed Central

    Trautwein, Christian

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and covers a disease spectrum ranging from steatosis to inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The innate immune response in the liver plays an important role during NAFLD progression. In addition, changes in the intestinal microbial balance and bacterial translocation can further affect disease progression. Immune cells in the liver recognize cell damage or pathogen invasion with intracellular or surface-expressed pattern recognition receptors (PRRs), subsequently initiating signaling cascades that trigger the release of factors promoting the inflammatory response during NAFLD progression. Therefore, mechanisms by which cells of the immune system are activated and recruited into the liver and how these cells cause injury and stress are important for understanding the inflammatory response during NAFLD. PMID:25568861

  11. Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease.

    PubMed

    Wooten, Marie W; Hu, Xiao; Babu, J Ramesh; Seibenhener, M Lamar; Geetha, Thangiah; Paine, Michael G; Wooten, Michael C

    2006-01-01

    Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome. P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases. Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.

  12. EMG signal morphology and kinematic parameters in essential tremor and Parkinson's disease patients.

    PubMed

    Ruonala, V; Meigal, A; Rissanen, S M; Airaksinen, O; Kankaanpää, M; Karjalainen, P A

    2014-04-01

    The aim of this work was to differentiate patients with essential tremor from patients with Parkinson's disease. Electromyographic data from biceps brachii muscles and kinematic data from arms during isometric tension of the arms were measured from 17 patients with essential tremor, 35 patients with Parkinson's disease and 40 healthy controls. The EMG signals were divided to smaller segments from which histograms were calculated. The histogram shape was analysed with a feature dimension reduction method, the principal component analysis, and the shape parameters were used to differentiate between different subject groups. Three parameters, RMS-amplitude, sample entropy and peak frequency were determined from the kinematic measurements of the arms. The height and the side differences of the histogram were the most effective for differentiating between essential tremor and Parkinson's disease groups. The histogram parameters of patients with essential tremor were more similar to patients with Parkinson's disease than healthy controls. With this method it was possible to discriminate 13/17 patients with essential tremor from 26/35 patients with Parkinson's disease and 14/17 patients with essential tremor from 29/40 healthy controls. The kinematic parameters of patients with essential tremor were closer to parameters of patients with Parkinson's disease compared to healthy controls. Combining EMG and kinematic analysis did not increase discrimination efficiency but provided more reliability to the discrimination of subject groups.

  13. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    PubMed

    Shahaduzzaman, Md; Nash, Kevin; Hudson, Charles; Sharif, Masroor; Grimmig, Bethany; Lin, Xiaoyang; Bai, Ge; Liu, Hui; Ugen, Kenneth E; Cao, Chuanhai; Bickford, Paula C

    2015-01-01

    The protein α-synuclein (α-Syn) has a central role in the pathogenesis of Parkinson's disease (PD) and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN), while control rats received an AAV vector expressing green fluorescent protein (GFP). Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1), or central region (AB2) of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II) immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2) significantly inhibited α-Syn-induced dopaminergic cell (DA) and NeuN+ cell loss (one-way ANOVA (F (3, 30) = 5.8, p = 0.002 and (F (3, 29) = 7.92, p = 0.002 respectively), as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003). Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37) = 9.786; p = 0.0001) and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  14. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification?

    PubMed