Science.gov

Sample records for signaling pathways application

  1. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  2. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  3. Signaling pathways affecting skeletal health.

    PubMed

    Marie, Pierre J

    2012-09-01

    Skeletal health is dependent on the balance between bone resorption and formation during bone remodeling. Multiple signaling pathways play essential roles in the maintenance of skeletal integrity by positively or negatively regulating bone cells. During the last years, significant advances have been made in our understanding of the essential signaling pathways that regulate bone cell commitment, differentiation and survival. New signaling anabolic pathways triggered by parathyroid hormone, local growth factors, Wnt signaling, and calcium sensing receptor have been identified. Novel signals induced by interactions between bone cells-matrix (integrins), osteoblasts/osteocytes (cadherins, connexins), and osteoblasts/osteoclast (ephrins, Wnt-RhoA, semaphorins) have been discovered. Recent studies revealed the key pathways (MAPK, PI3K/Akt) that critically control bone cells and skeletal mass. This review summarizes the most recent knowledge on the major signaling pathways that control bone cells, and their potential impact on the development of therapeutic strategies to improve human bone health.

  4. Reduction of nonlinear dynamic systems with an application to signal transduction pathways.

    PubMed

    Petrov, V; Nikolova, E; Wolkenhauer, O

    2007-01-01

    Mathematical modelling of kinetic processes with different time scales allows a reduction of the governing equations using quasi-steady-state approximations (QSSA). A QSSA theorem is applied to a mathematical model of the influence that Raf kinase inhibitor protein (RKIP) has on the ERK signalling pathway. On the basis of previously published parameter values, the system of 11 ordinary differential equations is rewritten in a form suitable for model reduction. In accordance with the terminology of the QSSA theorem, it is established that four of the protein and protein-complex concentrations are 'fast varying', such that the corresponding kinetic equations form an attached system. Another concentration is 'medium varying' such that the corresponding equation is reduced with respect to the four fast ones. The other six concentrations are 'slow varying', which means the corresponding kinetic equations also present a reduced system with respect to the others. Analytical solutions, relating the steady-state values of the fast varying protein concentrations and the slow varying ones, are derived and interpreted as restrictions on the regulatory role of RKIP on ERK-pathway.

  5. Signaling on the endocytic pathway.

    PubMed

    McPherson, P S; Kay, B K; Hussain, N K

    2001-06-01

    Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.

  6. Retroactive Signaling in Short Signaling Pathways

    PubMed Central

    Sepulchre, Jacques-Alexandre; Merajver, Sofía D.; Ventura, Alejandra C.

    2012-01-01

    In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles. PMID:22848403

  7. Signaling Pathways in Melanogenesis

    PubMed Central

    D’Mello, Stacey A. N.; Finlay, Graeme J.; Baguley, Bruce C.; Askarian-Amiri, Marjan E.

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  8. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application

    PubMed Central

    Xia, Pu; Xu, Xiao-Yan

    2015-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess unique self-renewal activity and mediate tumor initiation and propagation. The PI3K/Akt/mTOR signaling pathway can be considered as a master regulator for cancer. More and more recent studies have shown the links between PI3K/Akt/mTOR signaling pathway and CSC biology. Herein, we provide a comprehensive review on the role of signaling components upstream and downstream of PI3K/Akt/mTOR signaling in CSC. In addition, we also summarize various classes of small molecule inhibitors of PI3K/Akt/mTOR signaling pathway and their clinical potential in CSC. Overall, the current available data suggest that the PI3K/Akt/mTOR signaling pathway could be a promising target for development of CSC-target drugs. PMID:26175931

  9. The Wnt signaling pathway in cancer.

    PubMed

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  10. Loco signaling pathway in longevity.

    PubMed

    Lin, Yuh-Ru; Parikh, Hardik; Park, Yongkyu

    2011-05-01

    Despite the various roles of regulator of G protein signaling (RGS) protein in the G protein signaling pathway that have been defined, the function of RGS has not been characterized in longevity signaling pathways. We found that reduced expression of Loco, a Drosophila RGS protein, resulted in a longer lifespan of flies with stronger resistance to stress, higher MnSOD activity and increased fat content. In contrast, overexpression of the loco gene shortened the fly lifespan significantly, lowered stress resistance and reduced fat content, also indicating that the RGS domain containing GTPase-activating protein (GAP) activity is related to the regulation of longevity. Interestingly, expressional changes of yeast RGS2 and rat RGS14, homologs to the fly Loco, also affected oxidative stress resistance and longevity in the respective species. It is known that Loco inactivates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase (AC) and RGS14 interacts with activated H-Ras and Raf-1 kinases, which subsequently inhibits ERK phosphorylation. We propose that Loco/RGS14 protein may regulate stress resistance and longevity as an activator in AC-cAMP-PKA pathway and/or as a molecular scaffold that sequesters active Ras and Raf from Ras•GTP-Raf-MEK-ERK signaling pathway. Consistently, our data showed that downregulation of Loco significantly diminishes cAMP amounts and increases p-ERK levels with higher resistance to the oxidative stress.

  11. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  12. Hydrogen sulfide in signaling pathways.

    PubMed

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  13. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  14. Acylcarnitines activate proinflammatory signaling pathways.

    PubMed

    Rutkowsky, Jennifer M; Knotts, Trina A; Ono-Moore, Kikumi D; McCoin, Colin S; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Adams, Sean H; Hwang, Daniel H

    2014-06-15

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed D,L isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant L-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. L-C14 carnitine (5-25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, L-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, L-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified.

  15. Acylcarnitines activate proinflammatory signaling pathways

    PubMed Central

    Rutkowsky, Jennifer M.; Knotts, Trina A.; Ono-Moore, Kikumi D.; McCoin, Colin S.; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Hwang, Daniel H.

    2014-01-01

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed d,l isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant l-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. l-C14 carnitine (5–25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, l-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, l-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified. PMID:24760988

  16. Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine

    PubMed Central

    Maxhimer, Justin B.; Bradley, James P.; Lee, Justine C.

    2015-01-01

    One of the simplest models for examining the interplay between bone formation and resorption is the junction between the cranial bones. Although only roughly a quarter of patients diagnosed with craniosynostosis have been linked to known genetic disturbances, the molecular mechanisms elucidated from these studies have provided basic knowledge of bone homeostasis. This work has translated to methods and advances in bone tissue engineering. In this review, we examine the current knowledge of cranial suture biology derived from human craniosynostosis syndromes and discuss its application to regenerative medicine. PMID:25961069

  17. Signalling pathways in pemphigus vulgaris.

    PubMed

    Li, Xiaoguang; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-03-01

    Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.

  18. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  19. Targeting the TGFβ signalling pathway in disease

    PubMed Central

    Akhurst, Rosemary J.; Hata, Akiko

    2012-01-01

    Many drugs that target transforming growth factor-β (TGFβ) signalling have disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome. Here, we consider why the TGFβ signalling pathway is a drug target, the potential clinical applications of TGFβ inhibition, the issues arising with anti-TGFβ therapy and how these might be tackled using personalized approaches to dosing, monitoring of biomarkers as well as brief and/or localized drug-dosing regimens. PMID:23000686

  20. Natural Compound Histone Deacetylase Inhibitors (HDACi): Synergy with Inflammatory Signaling Pathway Modulators and Clinical Applications in Cancer.

    PubMed

    Losson, Hélène; Schnekenburger, Michael; Dicato, Mario; Diederich, Marc

    2016-11-23

    The remarkable complexity of cancer involving multiple mechanisms of action and specific organs led researchers Hanahan and Weinberg to distinguish biological capabilities acquired by cancer cells during the multistep development of human tumors to simplify its understanding. These characteristic hallmarks include the abilities to sustain proliferative signaling, evade growth suppressors, resist cell death, enable replicative immortality, induce angiogenesis, activate invasion and metastasis, avoid immune destruction, and deregulate cellular energetics. Furthermore, two important characteristics of tumor cells that facilitate the acquisition of emerging hallmarks are tumor-promoting inflammation and genome instability. To treat a multifactorial disease such as cancer, a combination treatment strategy seems to be the best approach. Here we focus on natural histone deacetylase inhibitors (HDACi), their clinical uses as well as synergies with modulators of the pro-inflammatory transcription factor signaling pathways.

  1. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  2. KENeV: A web-application for the automated reconstruction and visualization of the enriched metabolic and signaling super-pathways deriving from genomic experiments

    PubMed Central

    Pilalis, Eleftherios; Koutsandreas, Theodoros; Valavanis, Ioannis; Athanasiadis, Emmanouil; Spyrou, George; Chatziioannou, Aristotelis

    2015-01-01

    Gene expression analysis, using high throughput genomic technologies,has become an indispensable step for the meaningful interpretation of the underlying molecular complexity, which shapes the phenotypic manifestation of the investigated biological mechanism. The modularity of the cellular response to different experimental conditions can be comprehended through the exploitation of molecular pathway databases, which offer a controlled, curated background for statistical enrichment analysis. Existing tools enable pathway analysis, visualization, or pathway merging but none integrates a fully automated workflow, combining all above-mentioned modules and destined to non-programmer users. We introduce an online web application, named KEGG Enriched Network Visualizer (KENeV), which enables a fully automated workflow starting from a list of differentially expressed genes and deriving the enriched KEGG metabolic and signaling pathways, merged into two respective, non-redundant super-networks. The final networks can be downloaded as SBML files, for further analysis, or instantly visualized through an interactive visualization module. In conclusion, KENeV (available online at http://www.grissom.gr/kenev) provides an integrative tool, suitable for users with no programming experience, for the functional interpretation, at both the metabolic and signaling level, of differentially expressed gene subsets deriving from genomic experiments. PMID:26925206

  3. Application of intact cell-based NFAT-β-lactamase reporter assay for Pasteurella multocida toxin-mediated activation of calcium signaling pathway

    PubMed Central

    Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A.

    2009-01-01

    Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C β1 (PLCβ1) signal transduction through its selective action on the alpha subunit of the Gq protein. Here, we describe the application of an NFAT-β-lactamase reporter assay as a functional readout for PMT-induced activation of the Gq-protein-coupled PLCβ1-IP3-Ca2+ signaling pathway. Use of the NFAT-β-lactamase reporter assay with a cell-permeable fluorogenic substrate provides high sensitivity due to the absence of endogenous β-lactamase activity in mammalian cells. This assay system was optimized for cell density, dose and time exposure of PMT stimulation. It is suited for quantitative characterization of PMT activity in mammalian cells and for use as a high-throughput screening method for PMT deletion and point mutants suitable for vaccine development. This method has application for diagnostic screening of clinical isolates of toxinogenic P. multocida. PMID:18190943

  4. LXR signaling pathways and atherosclerosis

    PubMed Central

    Calkin, Anna; Tontonoz, Peter

    2010-01-01

    First discovered as orphan receptors, liver X receptors (LXRs) were subsequently identified as the nuclear receptor target of the cholesterol metabolites, oxysterols.1 There are 2 LXR receptors encoded by distinct genes: LXRα is most highly expressed in the liver, adipose, kidney, adrenal tissues and macrophages, and LXRβ is ubiquitously expressed. Despite differential tissue distribution, these isoforms have 78% homology in their ligand-binding domain and appear to respond to the same endogenous ligands. Work over the past 10 years has shown that the LXR pathway regulates lipid metabolism and inflammation via both the induction and repression of target genes. Given the importance of cholesterol regulation and inflammation in the development of cardiovascular disease, it is not surprising that activation of the LXR pathway attenuates various mechanisms underlying atherosclerotic plaque development.2 In this minireview we will discuss the impact of the LXR pathway on both cholesterol metabolism and atherosclerosis. PMID:20631351

  5. Calcium in plant defence-signalling pathways.

    PubMed

    Lecourieux, David; Ranjeva, Raoul; Pugin, Alain

    2006-01-01

    In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.

  6. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  7. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  8. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty

    NASA Astrophysics Data System (ADS)

    Guo, Xuran; Zhang, Kaile; El-Aassar, Mohamed; Wang, Nanping; El-Hamshary, Hany; El-Newehy, Mohamed; Fu, Qiang; Mo, Xiumei

    2016-11-01

    Urethral strictures were common disease caused by over-expression of extracellular matrix from fibroblast. In this study, we compare two nanoyarn scaffolds for improving fibroblasts infiltration without inhibition the over-expression of extracellular matrix. Collagen/poly(L-lactide-co-caprolactone) (Col/P(LLA-CL)) nanoyarn scaffolds were prepared by conjugated electrospinning and dynamic liquid electrospinning, respectively. In addition, co-axial electrospinning technique was combined with the nanoyarn fabrication process to produce nanoyarn scaffolds loading Wnt signaling pathway inhibitor. The mechanical properties of the scaffolds were examined and morphology was observed by SEM. Cell morphology, proliferation and infiltration on the scaffolds were investigated by SEM, MTT assay and H&E staining, respectively. The release profiles of different scaffolds were determined using HPLC. The results indicated that cells showed an organized morphology along the nanoyarns and considerable infiltration into the nanoyarn scaffolds prepared by dynamic liquid electrospinning (DLY). It was also observed that the DLY significantly facilitate cell proliferation. The D-DLY could facilitate the infiltration of the fibroblasts and could be a promising scaffold for the treatment of urethra stricture while it may inhibit the collagen production.

  9. Signaling Pathways Controlling Microglia Chemotaxis

    PubMed Central

    Fan, Yang; Xie, Lirui; Chung, Chang Y.

    2017-01-01

    Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain’s innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis. PMID:28301917

  10. Molecular signalling pathways in canine gliomas.

    PubMed

    Boudreau, C E; York, D; Higgins, R J; LeCouteur, R A; Dickinson, P J

    2017-03-01

    In this study, we determined the expression of key signalling pathway proteins TP53, MDM2, P21, AKT, PTEN, RB1, P16, MTOR and MAPK in canine gliomas using western blotting. Protein expression was defined in three canine astrocytic glioma cell lines treated with CCNU, temozolamide or CPT-11 and was further evaluated in 22 spontaneous gliomas including high and low grade astrocytomas, high grade oligodendrogliomas and mixed oligoastrocytomas. Response to chemotherapeutic agents and cell survival were similar to that reported in human glioma cell lines. Alterations in expression of key human gliomagenesis pathway proteins were common in canine glioma tumour samples and segregated between oligodendroglial and astrocytic tumour types for some pathways. Both similarities and differences in protein expression were defined for canine gliomas compared to those reported in human tumour counterparts. The findings may inform more defined assessment of specific signalling pathways for targeted therapy of canine gliomas.

  11. [Wnt signalling pathway and cervical cancer].

    PubMed

    Ramos-Solano, Moisés; Álvarez-Zavala, Monserrat; García-Castro, Beatriz; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana

    2015-01-01

    Cervical cancer (CC) is a pathology that arises in the cervical epithelium, whose major cause of risk is human papillomavirus (HPV) infection. Due to the fact that HPV infection per se is not enough to generate a carcinogenic process, it has been proposed that alterations in the Wnt signaling pathway are involved in cervical carcinogenesis. The Wnt family consists of 13 receptors and 19 ligands, and it is highly conserved phylogenetically due to its contribution in different biological processes, such as embryogenesis and tissue regeneration. Additionally, this signaling pathway modulates various cellular functions, for instance: cell proliferation, differentiation, migration and cell polarity. This paper describes the Wnt signaling pathways and alterations that have been found in members of this family in different cancer types and, especially, in CC.

  12. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  13. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  14. Signaling pathways controlling skeletal muscle mass.

    PubMed

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  15. Signalling Pathways Controlling Cellular Actin Organization.

    PubMed

    Steffen, Anika; Stradal, Theresia E B; Rottner, Klemens

    2017-01-01

    The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

  16. Signaling pathways controlling skeletal muscle mass

    PubMed Central

    Egerman, Marc A.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. PMID:24237131

  17. Targeting RTK Signaling Pathways in Cancer

    PubMed Central

    Regad, Tarik

    2015-01-01

    The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions. PMID:26404379

  18. Signaling pathways involved in MDSC regulation.

    PubMed

    Trikha, Prashant; Carson, William E

    2014-08-01

    The immune system has evolved mechanisms to protect the host from the deleterious effects of inflammation. The generation of immune suppressive cells like myeloid derived suppressor cells (MDSCs) that can counteract T cell responses represents one such strategy. There is an accumulation of immature myeloid cells or MDSCs in bone marrow (BM) and lymphoid organs under pathological conditions such as cancer. MDSCs represent a population of heterogeneous myeloid cells comprising of macrophages, granulocytes and dendritic cells that are at early stages of development. Although, the precise signaling pathways and molecular mechanisms that lead to MDSC generation and expansion in cancer remains to be elucidated. It is widely believed that perturbation of signaling pathways involved during normal hematopoietic and myeloid development under pathological conditions such as tumorogenesis contributes to the development of suppressive myeloid cells. In this review we discuss the role played by key signaling pathways such as PI3K, Ras, Jak/Stat and TGFb during myeloid development and how their deregulation under pathological conditions can lead to the generation of suppressive myeloid cells or MDSCs. Targeting these pathways should help in elucidating mechanisms that lead to the expansion of MDSCs in cancer and point to methods for eliminating these cells from the tumor microenvironment.

  19. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  20. Epigenetics and Signaling Pathways in Glaucoma

    PubMed Central

    2017-01-01

    Glaucoma is the most common cause of irreversible blindness worldwide. This neurodegenerative disease becomes more prevalent with aging, but predisposing genetic and environmental factors also contribute to increased risk. Emerging evidence now suggests that epigenetics may also be involved, which provides potential new therapeutic targets. These three factors work through several pathways, including TGF-β, MAP kinase, Rho kinase, BDNF, JNK, PI-3/Akt, PTEN, Bcl-2, Caspase, and Calcium-Calpain signaling. Together, these pathways result in the upregulation of proapoptotic gene expression, the downregulation of neuroprotective and prosurvival factors, and the generation of fibrosis at the trabecular meshwork, which may block aqueous humor drainage. Novel therapeutic agents targeting these pathway members have shown preliminary success in animal models and even human trials, demonstrating that they may eventually be used to preserve retinal neurons and vision. PMID:28210622

  1. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  2. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  3. Hormone signaling pathways under stress combinations.

    PubMed

    Suzuki, Nobuhiro

    2016-11-01

    As sessile organisms, plants are continuously exposed to various environmental stresses. In contrast to the controlled conditions employed in many researches, more than one or more abiotic and/or biotic stresses simultaneously occur and highly impact growth of plants and crops in the field environments. Therefore, an urgent need to generate crops with enhanced tolerance to stress combinations exists. Researchers, however, focused on the mechanisms underlying acclimation of plants to combined stresses only in recent studies. Plant hormones might be a key regulator of the tailored responses of plants to different stress combinations. Co-ordination between different hormone signaling, or hormone signaling and other pathways such as ROS regulatory mechanisms could be flexible, being altered by timing and types of stresses, and could be different depending on plant species under the stress combinations. In this review, update on recent studies focusing on complex-mode of hormone signaling under stress combinations will be provided.

  4. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and

  5. Modulation of neurotrophic signaling pathways by polyphenols.

    PubMed

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the

  6. Predictive mathematical models of cancer signalling pathways.

    PubMed

    Bachmann, J; Raue, A; Schilling, M; Becker, V; Timmer, J; Klingmüller, U

    2012-02-01

    Complex intracellular signalling networks integrate extracellular signals and convert them into cellular responses. In cancer cells, the tightly regulated and fine-tuned dynamics of information processing in signalling networks is altered, leading to uncontrolled cell proliferation, survival and migration. Systems biology combines mathematical modelling with comprehensive, quantitative, time-resolved data and is most advanced in addressing dynamic properties of intracellular signalling networks. Here, we introduce different modelling approaches and their application to medical systems biology, focusing on the identifiability of parameters in ordinary differential equation models and their importance in network modelling to predict cellular decisions. Two related examples are given, which include processing of ligand-encoded information and dual feedback regulation in erythropoietin (Epo) receptor signalling. Finally, we review the current understanding of how systems biology could foster the development of new treatment strategies in the context of lung cancer and anaemia.

  7. Signaling pathway cross talk in Alzheimer's disease.

    PubMed

    Godoy, Juan A; Rios, Juvenal A; Zolezzi, Juan M; Braidy, Nady; Inestrosa, Nibaldo C

    2014-03-28

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer's disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed "anti-ageing pathways", for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.

  8. The immune signaling pathways of Manduca sexta

    PubMed Central

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J.; Schwartz, Lawrence M.; Blissard, Gary; Jiang, Haobo

    2015-01-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  9. Interleukin 4 signals through two related pathways.

    PubMed

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  10. [Signaling pathway of meiosis induced by retinoic acid during spermatogenesis].

    PubMed

    Wang, Ke; Wu, Ying-Ji

    2013-02-01

    Retinoic acid (RA) is an oxidative metabolite of vitamin A (retinol, ROH) and plays an important role in the spermatogenesis (as in meiosis) of mammals. In mammalian testes, RA, in combination with its retinoic acid receptor (RAR), regulates the expressions of related target genes in various types of cells at different times. It activates meiosis by up-regulating the expressions of the genes that promote meiosis and down-regulate those that inhibit it during spermatogenesis in a specific stage. The results of researches on mammalian spermatogenesis have a great application value in reproductive biology, developmental biology, and reproductive engineering. Therefore, it is of considerable significance to study the signaling pathway of RA-induced meiosis during mammalian spermatogenesis. This article presents an introduction of the RA signal transduction system and its action mechanisms, as well as an overview on the signaling pathway of RA-activated meiosis during spermatogenesis.

  11. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  12. Chemical modulation of glycerolipid signaling and metabolic pathways.

    PubMed

    Scott, Sarah A; Mathews, Thomas P; Ivanova, Pavlina T; Lindsley, Craig W; Brown, H Alex

    2014-08-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.

  13. Parameter estimate of signal transduction pathways

    PubMed Central

    Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio

    2006-01-01

    Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160

  14. Cancer cachexia: mediators, signaling, and metabolic pathways.

    PubMed

    Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C

    2012-08-08

    Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.

  15. MAPKs in development: insights from Dictyostelium signaling pathways

    PubMed Central

    Hadwiger, Jeffrey A.; Nguyen, Hoai-Nghia

    2011-01-01

    Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development. PMID:21666837

  16. Systematic identifiability testing for unambiguous mechanistic modeling – application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models

    PubMed Central

    Quaiser, Tom; Mönnigmann, Martin

    2009-01-01

    Background When creating mechanistic mathematical models for biological signaling processes it is tempting to include as many known biochemical interactions into one large model as possible. For the JAK-STAT, MAP kinase, and NF-κB pathways a lot of biological insight is available, and as a consequence, large mathematical models have emerged. For large models the question arises whether unknown model parameters can uniquely be determined by parameter estimation from measured data. Systematic approaches to answering this question are indispensable since the uniqueness of model parameter values is essential for predictive mechanistic modeling. Results We propose an eigenvalue based method for efficiently testing identifiability of large ordinary differential models and compare this approach to three existing ones. The methods are benchmarked by applying them to models of the signaling pathways mentioned above. In all cases the eigenvalue method proposed here and the orthogonal method find the largest set of identifiable parameters, thus clearly outperforming the other approaches. The identifiability analysis shows that the pathway models are not identifiable, even under the strong assumption that all system state variables are measurable. We demonstrate how the results of the identifiability analysis can be used for model simplification. Conclusion While it has undoubtedly contributed to recent advances in systems biology, mechanistic modeling by itself does not guarantee unambiguous descriptions of biological processes. We show that some recent signal transduction pathway models have reached a level of detail that is not warranted. Rigorous identifiability tests reveal that even if highly idealized experiments could be carried out to measure all state variables of these signaling pathways, some unknown parameters could still not be estimated. The identifiability tests therefore show that the level of detail of the investigated models is too high in principle, not

  17. Exercise for the heart: signaling pathways.

    PubMed

    Tao, Lichan; Bei, Yihua; Zhang, Haifeng; Xiao, Junjie; Li, Xinli

    2015-08-28

    Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.

  18. Signaling pathway and molecular subgroups of medulloblastoma

    PubMed Central

    Li, Kay Ka-Wai; Lau, Kin-Mang; Ng, Ho-Keung

    2013-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in children. Although multimodality treatment regimens including surgery, radiotherapy and chemotherapy have greatly improved disease outcome, about one-third of MB patient remains incurable, and many long-term survivors are suffered from deleterious effects due to aggressive treatment. Understanding the signaling pathways and the genetic mechanisms contributed to MB development would be the key to develop novel therapeutic treatment strategies for improving survival and outcome of MB. In this review, we discuss the biological signaling pathways involved in MB pathogenesis. We also go through the current international consensus of four core MB subgroups namely, SHH, WNT, Group 3, and Group 4. This is adopted based on the knowledge of genomic complexity of MB as analyzed by recent high-throughput genomic technology. We talk about immunohistochemistry assays established to determine molecular subgroup affiliation. In the last part of review, we discuss how identification of molecular subgroups is going to change our routine disease diagnosis and clinical management. PMID:23826403

  19. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  20. SRNL ALL-PATHWAYS APPLICATION

    SciTech Connect

    Koffman, L; Elmer Wilhite, E; Leonard Collard, L

    2007-05-29

    The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) performs performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. One of the performance objectives in the DOE Order is that the radiological dose to representative members of the public shall not exceed 25 mrem in a year total effective dose equivalent from all exposure pathways, excluding radon. Analysis to meet this performance objective is generally referred to as all-pathways analysis. SRNL performs detailed transient groundwater transport analysis for the waste disposal units, which has been used as input for the groundwater part of all-pathways analysis. The desire to better integrate all-pathways analysis with the groundwater transport analysis lead to the development of a software application named the SRNL All-Pathways Application. Another requirement of DOE Order 435.1 is to assess the impact of nuclear waste disposal on water resources, which SRS has interpreted for groundwater protection as meeting the EPA regulations for radionuclides in drinking water. EPA specifies four separate criteria as part of their implementation guidance for radionuclides, which are specified as maximum contaminant levels (MCL). (1) Beta/gamma emitters have a combined dose limit of 4 mrem/year. (2) Alpha emitters have a combined concentration limit of 15 pCi/L (called gross alpha), excluding uranium and radon, but including radium-226. (3) Combined radium-226 and radium-228 have a concentration limit of 5 pCi/L. (4) Isotopes of uranium have a combined concentration limit of 30 {micro}g/L. The All-Pathways Application was designed to be an easy-to-use software application that utilizes transient concentration results from groundwater transport analysis to (1) calculate the groundwater part of all-pathways dose and to (2) evaluate the four EPA criteria for groundwater protection.

  1. WNK signalling pathways in blood pressure regulation.

    PubMed

    Murthy, Meena; Kurz, Thimo; O'Shaughnessy, Kevin M

    2017-04-01

    Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.

  2. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  3. Canonical RTK-Ras-ERK signaling and related alternative pathways

    PubMed Central

    Sundaram, Meera V.

    2013-01-01

    Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway. PMID:23908058

  4. Cell signaling pathways and HIV-1 therapeutics.

    PubMed

    He, Johnny J

    2011-06-01

    Host-virus interactions permeate every aspect of both virus life cycle and host response and involve host cell macromolecular machinery and viral elements. It is these intimate interactions that mandate the outcomes of the infection and pathogenesis. It is also these intimate interactions that lay the foundation for the development of pharmaceutical interventions. HIV-1 is no exception in these regards. In the first two decades, HIV/AIDS research has led to the successful development of a number of antiviral inhibitors and the landmark formulation of the suppressive therapy. It has become apparent that this therapy does not offer a complete solution to cure and eradicate the virus. Meanwhile, this therapy has changed the overall landscape of HIV-associated neurological disorders to a more common and prevalent form so-called minor cognitive motor disorder. Thus, there is an important and continued need for new anti-HIV therapeutics. We believe that this is an excellent opportunity to compile and present the latest works being done during the last few years in this exciting field of HIV-host interactions, particularly cell signaling pathways. We hope that this special issue composed of one brief report, eight thematic reviews, and two original articles will serve to foster the exchange of new scientific ideas on HIV-host interactions and anti-HIV therapy and eventually contribute to HIV/AIDS eradication.

  5. Mapping signaling pathway cross-talk in Drosophila cells

    PubMed Central

    Ammeux, Noemie; Housden, Benjamin E.; Georgiadis, Andrew; Hu, Yanhui; Perrimon, Norbert

    2016-01-01

    During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell–cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly. PMID:27528688

  6. Lessons from C. elegans: Signaling pathways for longevity

    PubMed Central

    Lapierre, Louis R.; Hansen, Malene

    2012-01-01

    Recent research using model organisms such as the nematode Caenorhabditis elegans has highlighted a critical role for several conserved signaling pathways in longevity determination. Here, we review three major endocrine- and nutrient-sensing signaling pathways with influence on lifespan, the insulin/insulin-like growth factor (IGF), target of rapamycin (TOR), and germline signaling pathways. Although these pathways engage distinct sets of transcription factors, the three pathways appear to modulate aging in C. elegans through partially overlapping effector mechanisms, including lipid metabolism and autophagy. This review highlights the latest advances in our understanding of how the insulin/IGF-1, TOR, and germline signaling pathways utilize different transcription factors to modulate aging in C. elegans with special emphasis on the role of lipid metabolism and autophagy. PMID:22939742

  7. Targeting the WNT Signaling Pathway in Cancer Therapeutics.

    PubMed

    Tai, David; Wells, Keith; Arcaroli, John; Vanderbilt, Chad; Aisner, Dara L; Messersmith, Wells A; Lieu, Christopher H

    2015-10-01

    The WNT signaling cascade is integral in numerous biological processes including embryonic development, cell cycle regulation, inflammation, and cancer. Hyperactivation of WNT signaling secondary to alterations to varying nodes of the pathway have been identified in multiple tumor types. These alterations converge into increased tumorigenicity, sustained proliferation, and enhanced metastatic potential. This review seeks to evaluate the evidence supporting the WNT pathway in cancer, the therapeutic strategies in modulating this pathway, and potential challenges in drug development.

  8. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications

    PubMed Central

    Jin, Shan; Borkhuu, Oyungerel; Bao, Wuyuntu; Yang, Yun-Tian

    2016-01-01

    Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed. PMID:26985248

  9. Phylogenetic evidence for the modular evolution of metazoan signalling pathways.

    PubMed

    Babonis, Leslie S; Martindale, Mark Q

    2017-02-05

    Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  10. AKT/GSK3 signaling pathway and schizophrenia

    PubMed Central

    Emamian, Effat S.

    2012-01-01

    Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different

  11. Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment

    PubMed Central

    Zhong, Li

    2017-01-01

    The Wnt, Hedgehog, and Notch pathways are inherent signaling pathways in normal embryogenesis, development, and hemostasis. However, dysfunctions of these pathways are evident in multiple tumor types and malignancies. Specifically, aberrant activation of these pathways is implicated in modulation of cancer stem cells (CSCs), a small subset of cancer cells capable of self-renewal and differentiation into heterogeneous tumor cells. The CSCs are accountable for tumor initiation, growth, and recurrence. In this review, we focus on roles of Wnt, Hedgehog, and Notch pathways in CSCs' stemness and functions and summarize therapeutic studies targeting these pathways to eliminate CSCs and improve overall cancer treatment outcomes. PMID:28356914

  12. Information processing in multi-step signaling pathways

    NASA Astrophysics Data System (ADS)

    Ganesan, Ambhi; Hamidzadeh, Archer; Zhang, Jin; Levchenko, Andre

    Information processing in complex signaling networks is limited by a high degree of variability in the abundance and activity of biochemical reactions (biological noise) operating in living cells. In this context, it is particularly surprising that many signaling pathways found in eukaryotic cells are composed of long chains of biochemical reactions, which are expected to be subject to accumulating noise and delayed signal processing. Here, we challenge the notion that signaling pathways are insulated chains, and rather view them as parts of extensively branched networks, which can benefit from a low degree of interference between signaling components. We further establish conditions under which this pathway organization would limit noise accumulation, and provide evidence for this type of signal processing in an experimental model of a calcium-activated MAPK cascade. These results address the long-standing problem of diverse organization and structure of signaling networks in live cells.

  13. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  14. The hypoxia signaling pathway and hypoxic adaptation in fishes.

    PubMed

    Xiao, Wuhan

    2015-02-01

    The hypoxia signaling pathway is an evolutionarily conserved cellular signaling pathway present in animals ranging from Caenorhabditis elegans to mammals. The pathway is crucial for oxygen homeostasis maintenance. Hypoxia-inducible factors (HIF-1α and HIF-2α) are master regulators in the hypoxia signaling pathway. Oxygen concentrations vary a lot in the aquatic environment. To deal with this, fishes have adapted and developed varying strategies for living in hypoxic conditions. Investigations into the strategies and mechanisms of hypoxia adaptation in fishes will allow us to understand fish speciation and breed hypoxia-tolerant fish species/strains. This review summarizes the process of the hypoxia signaling pathway and its regulation, as well as the mechanism of hypoxia adaptation in fishes.

  15. Evolutionary conservation of plant gibberellin signalling pathway components

    PubMed Central

    Vandenbussche, Filip; Fierro, Ana C; Wiedemann, Gertrud; Reski, Ralf; Van Der Straeten, Dominique

    2007-01-01

    Background: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. PMID:18047669

  16. Targeting the Notch signaling pathway in cancer therapeutics.

    PubMed

    Guo, Huajiao; Lu, Yi; Wang, Jianhua; Liu, Xia; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian

    2014-11-01

    Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway.

  17. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  18. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.

  19. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    SciTech Connect

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  20. UNDERSTANDING PATHWAYS OF TOXICITY: MAKING SENSE OF CHANGING SIGNALS

    EPA Science Inventory

    Title:
    Understanding Pathways of Toxicity: Making sense of changing signals
    Authors & affiliations:
    Sid Hunter, Maria Blanton, Edward Karoly, Ellen Rogers, Leonard Mole, Phillip Hartig, James Andrews. Reproductive Toxicology Division, National Health and Environmental Ef...

  1. Intermittent parathyroid hormone (1-34) application regulates cAMP-response element binding protein activity to promote the proliferation and osteogenic differentiation of bone mesenchymal stromal cells, via the cAMP/PKA signaling pathway.

    PubMed

    Chen, Bailing; Lin, Tao; Yang, Xiaoxi; Li, Yiqiang; Xie, Denghui; Cui, Haowen

    2016-06-01

    The potential effects of intermittent parathyroid hormone (1-34) [PTH (1-34)] administration on bone formation have previously been investigated. A number of studies have suggested that the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway is associated with PTH-induced osteogenic differentiation. However, the precise signaling pathways and molecular mechanism by which PTH (1-34) induces the osteogenic differentiation of bone mesenchymal stromal cells (BMSCs) remain elusive. The purpose of the present study was to investigate the mechanism underlying the effect of intermittent PTH (1-34) application on the proliferation and osteogenic differentiation of BMSCs. BMSCs were randomly divided into four groups, as follows: Osteogenic medium (control group); osteogenic medium and intermittent PTH (1-34); osteogenic medium and intermittent PTH (1-34) plus the adenylyl cyclase activator forskolin; and osteogenic medium and intermittent PTH (1-34) plus the PKA inhibitor H-89. A cell proliferation assay revealed that PTH (1-34) stimulates BMSC proliferation via the cAMP/PKA pathway. Furthermore, reverse transcription-quantitative polymerase chain reaction, alkaline phosphatase activity testing and cell examination using Alizarin Red S staining demonstrated that PTH (1-34) administration promotes osteogenic differentiation and mineralization, mediated by the cAMP/PKA pathway. Crucially, the results of western blot analyses suggested that PTH (1-34) treatment and, to a greater degree, PTH (1-34) plus forskolin treatment caused an increase in phosphorylated cAMP response element binding protein (p-CREB) expression, but the effect of PTH on p-CREB expression was blocked by H-89. In conclusion, the current study demonstrated that intermittent PTH (1-34) administration regulates downstream proteins, particularly p-CREB, in the cAMP/PKA signaling pathway, to enhance the proliferation, osteogenic differentiation and mineralization of BMSCs.

  2. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  3. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL...5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c...SUPPLEMENTARY NOTES None 14. ABSTRACT Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital abnormalities, and

  4. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  5. Role of Hedgehog Signaling Pathway in NASH

    PubMed Central

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  6. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Alzheimer’s disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language) map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map) based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/. PMID:22647208

  7. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  8. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  9. Regulation of cross-talk in yeast MAPK signaling pathways.

    PubMed

    Saito, Haruo

    2010-12-01

    MAP kinase (MAPK) modules are conserved three-kinase cascades that serve central roles in intracellular signal transduction in eukaryotic cells. MAPK pathways of different inputs and outputs use overlapping sets of signaling components. In yeast, for example, three MAPK pathways (pheromone response, filamentous growth response, and osmostress adaptation) all use the same Ste11 MAPK kinase kinase (MAPKKK). How undesirable leakage of signal, or cross-talk, is prevented between these pathways has been a subject of intensive study. This review discusses recent findings from yeast that indicate that there is no single mechanism, but that a combination of four general strategies (docking interactions, scaffold proteins, cross-pathway inhibition, and kinetic insulation) are utilized for the prevention of cross-talk between any two MAPK modules.

  10. [ALPHA-ACTININS AND SIGNAL TRANSDUCTION PATHWAYS].

    PubMed

    Panyushev, N V; Tentler, D G

    2015-01-01

    Involvement of actin cytoskeleton proteins in signal transduction from cell surface to the nucleus, including regulation of transcription factors activity, has now been supported by a lot of experimental data. Here-with, cytoskeletal proteins may have different functions than ones they execute in the cytoplasm. Particularly, alpha-actinin 4 stabilizing actin microfilaments in the cytoplasm can translocate to the nucleus and change the activity of several transcription factors. Despite the lack of nuclear import signal and DNA binding domain, alpha-actinin 4 can bind to promoter sequences, and co-activate NF-κB-dependent transcription. Selective regulation of NF-κB gene targets may indicate involvement of alpha-actinin 4 in determining the specificity of cell response to NF-κB activation in cells of different types.

  11. XTalkDB: a database of signaling pathway crosstalk

    PubMed Central

    Sam, Sarah A.; Teel, Joelle; Tegge, Allison N.; Bharadwaj, Aditya; Murali, T.M.

    2017-01-01

    Analysis of signaling pathways and their crosstalk is a cornerstone of systems biology. Thousands of papers have been published on these topics. Surprisingly, there is no database that carefully and explicitly documents crosstalk between specific pairs of signaling pathways. We have developed XTalkDB (http://www.xtalkdb.org) to fill this very important gap. XTalkDB contains curated information for 650 pairs of pathways from over 1600 publications. In addition, the database reports the molecular components (e.g. proteins, hormones, microRNAs) that mediate crosstalk between a pair of pathways and the species and tissue in which the crosstalk was observed. The XTalkDB website provides an easy-to-use interface for scientists to browse crosstalk information by querying one or more pathways or molecules of interest. PMID:27899583

  12. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  13. Modulation of signaling pathways by RNA virus capsid proteins.

    PubMed

    Urbanowski, Matthew D; Ilkow, Carolina S; Hobman, Tom C

    2008-07-01

    Capsid proteins are structural components of virus particles. They are nucleic acid-binding proteins whose main recognized function is to package viral genomes into protective structures called nucleocapsids. Research over the last 10 years indicates that in addition to their role as genome guardians, viral capsid proteins modulate host cell signaling networks. Disruption or alteration of intracellular signaling pathways by viral capsids may benefit replication of the virus by affecting innate immunity and in some cases, may underlie disease progression. In this review, we describe how the capsid proteins from medically relevant RNA viruses interact with host cell signaling pathways.

  14. Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation.

    PubMed

    Cui, Fuqiang; Brosché, Mikael; Lehtonen, Mikko T; Amiryousefi, Ali; Xu, Enjun; Punkkinen, Matleena; Valkonen, Jari P T; Fujii, Hiroaki; Overmyer, Kirk

    2016-06-06

    The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.2/SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcomitrella patens, exogenous ABA suppressed expression of cuticle-related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment.

  15. Ontology based standardization of petri net modeling for signaling pathways.

    PubMed

    Takai-Igarashi, Takako

    2011-01-01

    Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.

  16. Hedgehog signaling pathway as a therapeutic target for ovarian cancer.

    PubMed

    Li, Haixia; Li, Jinghua; Feng, Limin

    2016-02-01

    Ovarian cancer is the most lethal cause of death among gynecological malignancies. Despite advancements in surgery and chemotherapy treatment strategies, the prognosis of ovarian cancer patients remains poor; a majority of patients relapse and eventually succumb to this disease. Therefore, novel therapeutic approaches to improve patient outcome are urgently needed. The hedgehog signaling pathway is vital for embryonic development and tissue homeostasis, and its deregulation is implicated in cancer cell growth, survival, differentiation, and metastasis. The critical role of hedgehog signaling in multiple biologic processes raises concerns about its potential therapeutic use in cancer. Consequently, many studies are focusing on hedgehog signaling as an attractive target in cancer treatment. In this review, we present an overview of the hedgehog pathway and its pathological aberrations in ovarian cancer. We also discuss inhibitors of the hedgehog signaling pathway that are currently being investigated in the laboratory and in early clinical trials; as well as the clinical challenges these inhibitors face.

  17. Hedgehog signaling pathway is inactive in colorectal cancer cell lines.

    PubMed

    Chatel, Guillaume; Ganeff, Corine; Boussif, Naima; Delacroix, Laurence; Briquet, Alexandra; Nolens, Gregory; Winkler, Rosita

    2007-12-15

    The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.

  18. Computational modeling of apoptotic signaling pathways induced by cisplatin

    PubMed Central

    2012-01-01

    Background Apoptosis is an essential property of all higher organisms that involves extremely complex signaling pathways. Mathematical modeling provides a rigorous integrative approach for analyzing and understanding such intricate biological systems. Results Here, we constructed a large-scale, literature-based model of apoptosis pathways responding to an external stimulus, cisplatin. Our model includes the key elements of three apoptotic pathways induced by cisplatin: death receptor-mediated, mitochondrial, and endoplasmic reticulum-stress pathways. We showed that cisplatin-induced apoptosis had dose- and time-dependent characteristics, and the level of apoptosis was saturated at higher concentrations of cisplatin. Simulated results demonstrated that the effect of the mitochondrial pathway on apoptosis was the strongest of the three pathways. The cross-talk effect among pathways accounted for approximately 25% of the total apoptosis level. Conclusions Using this model, we revealed a novel mechanism by which cisplatin induces dose-dependent cell death. Our finding that the level of apoptosis was affected by not only cisplatin concentration, but also by cross talk among pathways provides in silico evidence for a functional impact of system-level characteristics of signaling pathways on apoptosis. PMID:22967854

  19. Epilepsy and the Wnt Signaling Pathway

    DTIC Science & Technology

    2015-06-01

    and Decitabine attenuated SE (Figure 4) Background. Green tea and EGCG. Green tea is the world’s second most popular beverage after water and is... tea compound EGCG [(-) epigallocatechin gallate] is the main catechin component in dry green tea (about 30%). Green tea is about 0.1% EGCG solution...w/v), or 2 mM. Green tea and EGCG (4~8 U.S. cups/day) has no appreciable side effects in humans 33,34 35. We showed that EGCG blocks Wnt signaling

  20. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  1. Advances in mechanisms and signaling pathways of carbon nanotube toxicity.

    PubMed

    Dong, Jie; Ma, Qiang

    2015-01-01

    Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial and commercial applications. In contrast, the physicochemical properties of CNT at the nanoscale render them the potency to generate toxic effects. Indeed, the potential health impacts of CNT have drawn a great deal of attention in recent years, owing to their identified toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis, and immunotoxicity. Understanding the mechanisms by which CNT induce toxicity and pathology is thus urgently needed for accurate risk assessment of CNT exposure in humans, and for safe and responsible development and commercialization of nanotechnology. Here, we summarize and discuss recent advances in this area with a focus on the molecular interactions between CNT and mammalian systems, and the signaling pathways important for the development of CNT toxicity such as the NF-κB, NLRP3 inflammasome, TGF-β1, MAPK, and p53 signaling cascades. With the current mechanistic evidence summarized in this review, we expect to provide new insights into CNT toxicology at the molecular level and offer new clues to the prevention of health effects resulting from CNT exposure. Moreover, we disclose questions and issues that remain in this rapidly advancing field of nanotoxicology, which would facilitate ascertaining future research directions.

  2. Advances in mechanisms and signaling pathways of carbon nanotube toxicity

    PubMed Central

    Dong, Jie; Ma, Qiang

    2015-01-01

    Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial and commercial applications. In contrast, the physicochemical properties of CNT at the nanoscale render them the potency to generate toxic effects. Indeed, the potential health impacts of CNT have drawn a great deal of attention in recent years, owing to their identified toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis, and immunotoxicity. Understanding the mechanisms by which CNT induce toxicity and pathology is thus urgently needed for accurate risk assessment of CNT exposure in humans, and for safe and responsible development and commercialization of nanotechnology. Here, we summarize and discuss recent advances in this area with a focus on the molecular interactions between CNT and mammalian systems, and the signaling pathways important for the development of CNT toxicity such as the NF-κB, NLRP3 inflammasome, TGF-β1, MAPK, and p53 signaling cascades. With the current mechanistic evidence summarized in this review, we expect to provide new insights into CNT toxicology at the molecular level and offer new clues to the prevention of health effects resulting from CNT exposure. Moreover, we disclose questions and issues that remain in this rapidly advancing field of nanotoxicology, which would facilitate ascertaining future research directions. PMID:25676622

  3. Targeting kinase signaling pathways with constrained peptide scaffolds.

    PubMed

    Hanold, Laura E; Fulton, Melody D; Kennedy, Eileen J

    2017-02-07

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications.

  4. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  5. A multi-pathway hypothesis for human visual fear signaling

    PubMed Central

    Silverstein, David N.; Ingvar, Martin

    2015-01-01

    A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513

  6. Signaling Pathways in Schizophrenia: emerging targets and therapeutic strategies

    PubMed Central

    Karam, Caline S; Ballon, Jacob S; Bivens, Nancy M; Freyberg, Zachary; Girgis, Ragy R; Lizardi-Ortiz, Jose E; Markx, Sander; Lieberman, Jeffrey A; Javitch, Jonathan A

    2013-01-01

    Dopamine D2 receptor antagonism is a unifying property of all antipsychotic drugs in clinical use for schizophrenia. While often effective at ameliorating psychosis, these drugs are largely ineffective at treating negative and cognitive symptoms. Increasing attention is being focused on the complex genetics of the illness and the signaling pathways implicated in its pathophysiology. We review targeted approaches for pharmacotherapy involving the glutamatergic, GABAergic and cholinergic pathways. We also describe a number of the major genetic findings that identify signaling pathways representing potential targets for novel pharmacological intervention. These include genes in the 22q11 locus, DISC1, neuregulin/ERB4, and components of the Akt/GSK-3 pathway. PMID:20579747

  7. NOTCH, a new signaling pathway implicated in holoprosencephaly

    PubMed Central

    Dupé, Valérie; Rochard, Lucie; Mercier, Sandra; Le Pétillon, Yann; Gicquel, Isabelle; Bendavid, Claude; Bourrouillou, Georges; Kini, Usha; Thauvin-Robinet, Christel; Bohan, Timothy P.; Odent, Sylvie; Dubourg, Christèle; David, Véronique

    2011-01-01

    Genetics of Holoprosencephaly (HPE), a congenital malformation of the developing human forebrain, is due to multiple genetic defects. Most genes that have been implicated in HPE belong to the Sonic Hedgehog (SHH) signaling pathway. Here we describe a new candidate gene isolated from array CGH redundant 6qter deletions, DELTA Like 1 (DLL1), which is a ligand of NOTCH. We show that DLL1 is co-expressed in the developing chick forebrain with Fgf8. By treating chick embryos with a pharmacological inhibitor, we demonstrate that DLL1 interacts with FGF signaling pathway. Moreover, a mutation analysis of DLL1 in HPE patients, revealed a three-nucleotide deletion. These various findings implicate DLL1 in early patterning of the forebrain and identify NOTCH as a new signaling pathway involved in HPE. PMID:21196490

  8. Role of Notch signaling pathway in pancreatic cancer

    PubMed Central

    Gao, Jiankun; Long, Bo; Wang, Zhiwei

    2017-01-01

    Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients. PMID:28337369

  9. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  10. New cell-signaling pathways for controlling cytomegalovirus replication.

    PubMed

    Roy, S; Arav-Boger, R

    2014-06-01

    Cytomegalovirus (CMV) is increasingly recognized as an accomplished modulator of cell-signaling pathways, both directly via interaction between viral and cellular proteins, and indirectly by activating metabolic/energy states of infected cells. Viral genes, as well as captured cellular genes, enable CMV to modify these pathways upon binding to cellular receptors, up until generation of virus progeny. Deregulation of cell-signaling pathways appears to be a well-developed tightly balanced virus strategy to achieve the desired consequences in each infected cell type. Importantly and perhaps surprisingly, identification of new signaling pathways in cancer cells positioned CMV as a sophisticated user and abuser of many such pathways, creating opportunities to develop novel therapeutic strategies for inhibiting CMV replication (in addition to standard of care CMV DNA polymerase inhibitors). Advances in genomics and proteomics allow the identification of CMV products interacting with the cellular machinery. Ultimately, clinical implementation of candidate drugs capable of disrupting the delicate balance between CMV and cell-signaling will depend on the specificity and selectivity index of newly identified targets.

  11. The Notch signaling pathway as a mediator of tumor survival.

    PubMed

    Capaccione, Kathleen M; Pine, Sharon R

    2013-07-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial-mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics.

  12. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  13. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  14. A network map of Interleukin-10 signaling pathway.

    PubMed

    Verma, Renu; Balakrishnan, Lavanya; Sharma, Kusum; Khan, Aafaque Ahmad; Advani, Jayshree; Gowda, Harsha; Tripathy, Srikanth Prasad; Suar, Mrutyunjay; Pandey, Akhilesh; Gandotra, Sheetal; Prasad, T S Keshava; Shankar, Subramanian

    2016-03-01

    Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group.

  15. Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis.

    PubMed

    Xi, Yongming; Chen, Yan

    2014-10-10

    Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.

  16. Real Time Monitoring of Signaling Pathways in Biological Cells

    DTIC Science & Technology

    2007-11-02

    cell signaling events by mediating the transport of molecules in and out of the cells . Cell surface receptors also function to...organic acceptor molecules in the plasma membrane and endocytic membranes of non -polarized MDCK cells . The EviTag-based FRET assay was designed to...02-2005 Final 27-07-2004 to 14-02-2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Real Time Monitoring of Signaling Pathways in Biological Cells

  17. Complex regulation of HSC emergence by the Notch signaling pathway

    PubMed Central

    Butko, Emerald; Pouget, Claire; Traver, David

    2016-01-01

    Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development. PMID:26586199

  18. Copper as a key regulator of cell signalling pathways.

    PubMed

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  19. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  20. FGF and Notch signaling in sensory neuron formation: a multifactorial approach to understanding signaling pathway hierarchy.

    PubMed

    Voelkel, Jacob E; Harvey, Jamison A; Adams, Jason S; Lassiter, Rhonda N; Stark, Michael R

    2014-11-01

    The ophthalmic trigeminal (opV) placode exclusively gives rise to sensory neurons, making it a good model to study the molecular regulation of sensory neurogenesis. A number of signaling pathways including Wnt, PDGF, FGF, and Notch have been shown to be involved in the process of opV placode cell development. However, the regulatory relationships between these signaling pathways in placode cells are still unknown and have been difficult to study experimentally. Using a novel multifactorial approach in chick embryos that allows for inhibition of FGF throughout the tissue or in individual cells, with simultaneous inactivation of Notch signaling, we investigated the potential interaction between the FGF and Notch signaling pathways in trigeminal sensory neurogenesis. This study builds on prior research describing the individual role of FGF signaling or Notch signaling in opV placode development, where blocking FGF signaling resulted in neurogenesis failure, while blocking Notch signaling resulted in enhanced neurogenesis. Reported here, blocking both pathways simultaneously resulted in a reduction in the number of cells delaminating from the opV placode and undergoing sensory neuron differentiation. Further, Notch inhibition alone did not lead to an increase in the number of cells expressing FGFR4 or in the FGFR4 expression domain, but did result in a highly fragmented basal lamina, which was reversed when blocking FGF signaling. Cumulatively, the results presented here do not support a model of Notch/FGF interdependence, rather that FGF and Notch act in parallel to promote sensory neurogenesis.

  1. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy

    PubMed Central

    Borahay, Mostafa A; Al-Hendy, Ayman; Kilic, Gokhan S; Boehning, Darren

    2015-01-01

    Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics. PMID:25879625

  2. Microsystem for signal processing applications

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Froehlich, K.-J.; Hentschel, D.; Reppe, G.

    2005-05-01

    Acoustic monitoring of technological processes requires methods that eliminate noise as much as possible. Sensor-near signal evaluation can contribute substantially. Frequently, a further necessity exists to integrate the measuring technique in the monitored structure. The solution described contains components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction, and digital communication. The core component is a digital signal processor (DSP). Digital signal processors perform the algorithms necessary for filtering, down sampling, FFT computation and correlation of spectral components particularly effective. A compact, sensor-near signal processing structure was realized. It meets the Match-X standard, which as specified by the German Association for Mechanical and Plant Engineering (VDMA) for development of micro-technical modules, which can be combined to applicaiton specific systems. The solution is based on AL2O3 ceramic components including different signal processing modules as ADC, as well as memory and power supply. An arbitrary waveform generator has been developed and combined with a power amplifier for piezoelectric transducers in a special module. A further module interfaces to these transducers. It contains a multi-channel preamplifier, some high-pass filters for analog signal processing and an ADC-driver. A Bluetooth communication chip for wireless data transmission and a DiscOnChip module are under construction. As a first application, the combustion behavior of safety-relevant contacts is monitored. A special waveform up to 5MHz is produced and sent to the monitored object. The resulting signal form is evaluated with special algorithms, which extract significant parameters of the signal, and transmitted via CAN-bus.

  3. Hedgehog signaling pathway in small bovine ovarian follicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  4. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  5. Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling

    PubMed Central

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-01-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality, and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. PMID:23702245

  6. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways.

  7. Cellular metabolic and autophagic pathways: traffic control by redox signaling.

    PubMed

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-10-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.

  8. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  9. Distinct Wnt signaling pathways have opposing roles in appendage regeneration.

    PubMed

    Stoick-Cooper, Cristi L; Weidinger, Gilbert; Riehle, Kimberly J; Hubbert, Charlotte; Major, Michael B; Fausto, Nelson; Moon, Randall T

    2007-02-01

    In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.

  10. Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer.

    PubMed

    Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L; Sood, Anil K

    2015-03-01

    Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and cross-talk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3-4, Jagged 1-2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Because the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA-approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK-0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway.

  11. Key cancer cell signal transduction pathways as therapeutic targets.

    PubMed

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  12. The use of small molecule probes to study spatially separated stimulus-induced signaling pathways

    PubMed Central

    Kravchenko, Vladimir V.; Glöckner, Christian; Stowe, G. Neil; Kang, Young J.; Tobias, Peter S.; Mathison, John C.; Ulevitch, Richard J.; Kaufmann, Gunnar F.; Janda, Kim D.

    2012-01-01

    Simultaneous activation of signaling pathways requires dynamic assembly of higher-order protein complexes at the cytoplasmic domains of membrane-associated receptors in a stimulus-specific manner. Here, using the paradigm of cellular activation through cytokine and innate immune receptors, we demonstrate the proof-of-principle application of small molecule probes for the dissection of receptor-proximal signaling processes, such as activation of the transcription factor NF- B and the protein kinase p38. PMID:22300658

  13. Stress signaling pathways for the pathogenicity of Cryptococcus.

    PubMed

    Bahn, Yong-Sun; Jung, Kwang-Woo

    2013-12-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.

  14. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways.

    PubMed

    Ramos, Sonia

    2008-05-01

    Prevention of cancer through dietary intervention recently has received an increasing interest, and dietary polyphenols have become not only important potential chemopreventive, but also therapeutic, natural agents. Polyphenols have been reported to interfere at the initiation, promotion and progression of cancer. They might lead to the modulation of proteins in diverse pathways and require the integration of different signals for the final chemopreventive or therapeutic effect. Polyphenols have been demonstrated to act on multiple key elements in signal transduction pathways related to cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis; however, these molecular mechanisms of action are not completely characterized and many features remain to be elucidated. The aim of this review is to provide insights into the molecular basis of potential chemopreventive and therapeutic activities of dietary polyphenols with emphasis in their ability to control intracellular signalling cascades considered as relevant targets in a cancer preventive approach.

  15. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  16. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  17. Asymptotic Analysis of the Wnt/β Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Maris, D. T.; Goussis, D. A.

    2015-01-01

    The Wnt/β-catenin pathway is a signal transduction pathway made of proteins, which plays an important role in oncogenesis. Ethan Lee and and co-workers introduced in 2003 a detailed mathematical model of this pathway, incorporating the kinetics of protein-protein interactions, protein synthesis/degradation and phosphorylation/dephosphorylation. The fast/slow dynamics of Lee's system are examined here, by employing the Computational Singular Perturbation (CSP) algorithm. CSP reproduces the results of the classical singular perturbation analysis in an algorithmic fashion, producing an approximation of (i) the low dimensional Slow Invariant Manifold (SIM), where the solution evolves and (ii) the reduced model that governs the flow there. The temporal variation of the dimensions of the SIM will be presented and the components of the pathway that are responsible (i) for the generation of the SIM and (ii) for driving the system on it will be identified.

  18. Signaling pathways regulating cartilage growth plate formation and activity.

    PubMed

    Samsa, William E; Zhou, Xin; Zhou, Guang

    2017-02-01

    The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.

  19. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  20. Estrogen receptors regulate innate immune cells and signaling pathways.

    PubMed

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  1. Sonic hedgehog signaling pathway mediates development of hepatocellular carcinoma.

    PubMed

    Cai, Heng; Li, Hongxing; Li, Jingmin; Li, Xiaoyan; Li, Yana; Shi, Yan; Wang, Dong

    2016-10-15

    Although abnormal activation of the sonic hedgehog (Shh) signaling pathway has been demonstrated in human hepatocellular carcinoma (HCC) patients and in most HCC cell lines, the mechanism by which the Shh pathway promotes the development of HCC remains uncertain. Using a liver cancer model induced by diethylnitrosamine (DEN) which mimics the process from liver injury, abnormal hepatocyte proliferation, and hepatocirrhosis to hepatocyte canceration, we investigated the abnormal activation of the Shh pathway by examining the expression of Shh, patched-1 (Ptch), smoothened (SMO), and glioma-associated oncogene-1 (Gli1) genes. During this process, the expression of CDK1 and cyclin B1 protein, which are two components of the M-phase promoting factor (MPF) controlling G2/M transition, was also examined to explore the potential relationship between Shh activation and cell cycle progression. We observed that the cells with Shh, Ptch, and Gli1 protein expression were mainly distributed in hyperplastic nodule, cancerous node, the epithelia of interlobular bile duct, and precancerous tissues. A gradually increasing tendency of the positive expression rate of Shh, Ptch, and Gli1 proteins in the process from the beginning normal tissue to the final cancer formation was revealed. The cyclin B1 and CDK1 expression level was higher in the DEN-induced rats as compared with normal rats, and their expression was mainly distributed in the portal area of the liver, hyperplastic nodule, cancerous node, and precancerous tissues. Our results suggested that the Shh signaling pathway is activated during liver carcinogenesis, and activated Shh signaling promotes the cell proliferation by facilitating the G2/M transition through increasing the expression of cyclin B1 and CDK1 protein, which eventually results in the development of liver cancer. Better understanding of the Shh signaling pathway in HCC may contribute to the development of novel therapeutic strategies in inhibiting cell

  2. Optogenetic control of the Dab1 signaling pathway

    PubMed Central

    Wang, Liang; Cooper, Jonathan A.

    2017-01-01

    The Reelin-Dab1 signaling pathway regulates development of the mammalian brain, including neuron migrations in various brain regions, as well as learning and memory in adults. Extracellular Reelin binds to cell surface receptors and activates phosphorylation of the intracellular Dab1 protein. Dab1 is required for most effects of Reelin, but Dab1-independent pathways may contribute. Here we developed a single-component, photoactivatable Dab1 (opto-Dab1) by using the blue light-sensitive dimerization/oligomerization property of A. thaliana Cryptochrome 2 (Cry2). Opto-Dab1 can activate downstream signals rapidly, locally, and reversibly upon blue light illumination. The high spatiotemporal resolution of the opto-Dab1 probe also allows us to control membrane protrusion, retraction and ruffling by local illumination in both COS7 cells and in primary neurons. This shows that Dab1 activation is sufficient to orient cell movement in the absence of other signals. Opto-Dab1 may be useful to study the biological functions of the Reelin-Dab1 signaling pathway both in vitro and in vivo. PMID:28272509

  3. Gene profiling of the red light signalling pathways in roots.

    PubMed

    Molas, Maria Lia; Kiss, John Z; Correll, Melanie J

    2006-01-01

    Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.

  4. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  5. Stress signalling pathways that impair prefrontal cortex structure and function

    PubMed Central

    2010-01-01

    The prefrontal cortex (PFC)—the most evolved brain region—subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness. PMID:19455173

  6. AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway.

    PubMed

    Carnegie, Graeme K; Soughayer, Joseph; Smith, F Donelson; Pedroja, Benjamin S; Zhang, Fang; Diviani, Dario; Bristow, Michael R; Kunkel, Maya T; Newton, Alexandra C; Langeberg, Lorene K; Scott, John D

    2008-10-24

    Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.

  7. RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways

    PubMed Central

    Wu, Jun; Pei, Rongjuan; Xu, Yang; Yang, Dongliang; Roggendorf, Michael; Lu, Mengji

    2013-01-01

    Background & Aims Our previous results showed that the knockdown of woodchuck hepatitis virus (WHV) by RNA interference (RNAi) led to upregulation of interferon stimulated genes (ISGs) in primary hepatocytes. In the present study, we tested the hypothesis that the cellular signaling pathways recognizing RNA molecules may be involved the ISG stimulation by RNAi. Methods Primary murine hepatocytes (PMHs) from wild type mice and WHV transgenic (Tg) mice were prepared and treated with defined siRNAs. The mRNA levels of target genes and ISGs were detected by real-time RT-PCR. The involvement of the signaling pathways including RIG-I/MDA5, PKR, and TLR3/7/8/9 was examined by specific inhibition and the analysis of their activation by Western blotting. Results In PMHs from WHV Tg mice, specific siRNAs targeting WHV, mouse β-actin, and GAPDH reduced the levels of targeted mRNAs and increased the mRNA expression of IFN-β, MxA, and IP-10. The enhanced ISG expression by siRNA transfection were abolished by siRNA-specific 2′-O-methyl antisense RNA and the inhibitors 2-AP and chloroquine blocking PKR and other TLR-mediated signaling pathways. Furthermore, Western blotting revealed that RNAi results in an increase in PKR phosphorylation and nuclear translocation of IRF3 and NF-êB, indicating the possible role of IRF3 in the RNAi-directed induction of ISGs. In contrast, silencing of RIG-I and MDA5 failed to block RNAi-mediated MxA induction. Conclusions RNAi is capable of enhancing innate immune responses through the PKR- and TLR-dependent signaling pathways in primary hepatocytes. The immune stimulation by RNAi may contribute to the antiviral activity of siRNAs in vivo. PMID:23700487

  8. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  9. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened.

    PubMed

    Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin

    2015-06-10

    An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.

  10. Color signals through dorsal and ventral visual pathways

    PubMed Central

    Conway, Bevil R.

    2014-01-01

    Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417

  11. Crosstalk of Oncogenic Signaling Pathways during Epithelial–Mesenchymal Transition

    PubMed Central

    Lindsey, Stephan; Langhans, Sigrid A.

    2014-01-01

    Epithelial–mesenchymal transition (EMT) and cell transformation have been well-documented in multiple cancer cell models and are believed to be one of the earliest events in tumor progression. Genetic and epigenetic modifications shift cells toward either end of the EMT spectrum, and can be influenced by the microenvironment surrounding a tumor. EMT and mesenchymal–epithelial transition are critical to normal function and development and an intricate network of transcription factors and transcriptional regulators tightly regulates these processes. As evidenced in normal and transformed cell lines, many signaling pathways trigger EMT during development and differentiation. The signaling pathways include those triggered by different members of the transforming growth factor superfamily, epidermal growth factor, fibroblast growth factor, hepatocyte growth factor, hypoxia-inducible factor, Wnt, Notch, and many others. Functional redundancies allow cells to undergo EMT even if these key transcriptional regulators are lacking, but these same redundancies also make these pathways particularly susceptible to gain-of-function mutations or constitutive signal activation; the “forced” transition toward either a mesenchymal or epithelial phenotype. PMID:25566498

  12. Regulation of Hh/Gli signaling by dual ubiquitin pathways.

    PubMed

    Jiang, Jin

    2006-11-01

    The Hedgehog (Hh) signaling pathway governs cell growth and patterning in animal development. Malfunction of several pathway components, including the key transcriptional effector Ci/Gli proteins, leads to a variety of human disorders including several malignancies. Ci/Gli activity is controlled by multi-layered regulatory mechanisms, the most prominent of which is the ubiquitin-mediated proteolysis. In the absence of Hh, Ci/Gli is proteolytically processed into a truncated form that functions as a transcriptional repressor of the Hh pathway. Ci processing is mediated by an SCF (Skip1/Cul1/F-box protein) ubiquitin ligase in which the F-box protein Slimb/beta-TRCP bridges Ci to the ubiquitin ligase. Recent studies in Drosophila and mammalian cultured cells have demonstrated that sequential phosphorylation of Ci/Gli by PKA, GSK3, and CKI creates multiple docking sites that can recruit SCF(Slimb/beta-TRCP), which then promotes Ci/Gli ubiquitination followed by proteasome-mediated processing. Recently, an E3 ubiquitin ligase consisting of the BTB (Broad Complex, Tramtrack, and Bric a Brac) protein HIB (Hh induced MATH and BTB protein) and Cullin 3 (Cul3) has been identified that acts in a negative feedback loop to fine-tune Hh signaling responses by degrading full length Ci. In eye imaginal discs where Hh signals coordinate cell proliferation and differentiation, HIB is highly expressed in the differentiating cells to prevent aberrant Hh signaling activity and ensure normal eye development. Tissue- and developmental stage-specific expression of HIB and its homologs in vertebrates may provide a conserved mechanism for ensuring precision in spatial and temporal control of Hh signaling.

  13. JAK/STAT Pathways in Cytokine Signaling and Myeloproliferative Disorders

    PubMed Central

    Jatiani, Shashidhar S.; Baker, Stacey J.; Silverman, Lewis R.; Reddy, E. Premkumar

    2010-01-01

    Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2V617F mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood. PMID:21442038

  14. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    PubMed

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  15. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    PubMed Central

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  16. Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans.

    PubMed

    Son, Minjun; Shields, Robert C; Ahn, Sang-Joon; Burne, Robert A; Hagen, Stephen J

    2015-10-01

    Streptococcus mutans expresses comX (also known as sigX), which encodes a sigma factor that is required for development of genetic competence, in response to the peptide signals XIP and CSP and environmental factors. XIP (sigX inducing peptide) is derived from ComS and activates comX unimodally in chemically defined media via the ComRS system. CSP (competence stimulating peptide) activates comX bimodally in peptide-rich media through the ComDE two-component system. However, CSP-ComDE activation of comX is indirect and involves ComRS. Therefore, the bimodality of CSP-dependent activation of comX may arise from either ComRS or ComDE. Here we study, at the single-cell level, how genes in the CSP signaling pathway respond to CSP, XIP and media. Our data indicate that activation of comX stimulates expression of comE. In addition, activation of comE requires intact comR and comS genes. Therefore, not only does CSP-ComDE stimulate the ComRS pathway to activate comX expression, but ComRS activation of comX also stimulates expression of the CSP-ComDE pathway and its regulon. The results demonstrate the mutual interconnection of the signaling pathways that control bacteriocin expression (ComDE) and genetic competence (ComRS), both of which are linked to lytic and virulence behaviors.

  17. Connecting proline metabolism and signaling pathways in plant senescence

    PubMed Central

    Zhang, Lu; Becker, Donald F.

    2015-01-01

    The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS) due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products. PMID:26347750

  18. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  19. Signaling pathway underlying the octopaminergic modulation of myogenic contraction in the cricket lateral oviduct.

    PubMed

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    Octopamine (OA), a biogenic monoamine, is a neurotransmitter and neuromodulator in invertebrates. Here, we report the effect of OA on the spontaneous rhythmic contractions (SRCs) of the lateral oviduct of the cricket Gryllus bimaculatus and the possible signaling pathway involved. Application of OA increased both the frequency and amplitude of SRCs in a dose-dependent manner. The effect of OA was inhibited by subsequent application of the OA receptor antagonist epinastine, indicating that the action of OA is mediated by OA receptor. To investigate the predominant signaling pathway underlying the action of OA, we first examined a possible involvement of the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway. Application of the membrane-permeable cAMP analog 8-Br-cAMP had little effect on SRCs and the effect of OA was not influenced by subsequent application of the PKA inhibitor H89, indicating that the cAMP/PKA signaling pathway is not the predominant pathway in the action of OA. Next, we examined a possible involvement of the second messenger inositol 1,4,5-trisphosphate in the action of OA. The effect of OA on SRCs was inhibited by subsequent application of the phosphoinositide-specific phospholipase C (PLC) inhibitor U73122, indicating that the PLC pathway is involved in the action of OA. The OA-induced increase in the frequency of SRCs was inhibited by pretreatment of the cell with the ryanodine receptor antagonist tetracaine but was not significantly affected by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB). On the other hand, the OA-induced increase in the amplitude of SRCs was inhibited by pretreatment of the cells with 2-APB but was not significantly affected by tetracaine. Taken together, these results suggest that the OA-induced excitatory effect on SRCs is mediated by the PLC signaling pathway: Ca2+ release from IP3 receptors may contribute to the modulation of the amplitude of SRCs, whereas Ca2+ release from ryanodine

  20. ROS signaling pathways and biological rhythms: perspectives in crustaceans.

    PubMed

    Fanjul-Moles, Maria Luisa

    2013-01-01

    This work reviews concepts regarding the endogenous circadian clock and the relationship between oxidative stress (OS), light and entrainment in different organisms including crustaceans, particularly crayfish. In the first section, the molecular control of circadian rhythms in invertebrates, particularly in Drosophila, is reviewed, and this model is contrasted with recent reports on the circadian genes and proteins in crayfish. Second, the redox mechanisms and signaling pathways that participate in the entrainment of the circadian clock in different organisms are reviewed. Finally, the light signals and transduction pathways involved in the entrainment of the circadian clock, specifically in relation to cryptochromes (CRYs) and their dual role in the circadian clock of different animal groups and their possible relationship to the circadian clock and redox mechanisms in crustaceans is discussed. The relationship between metabolism, ROS signals and transcription factors, such as HIF-1 alpha in crayfish, as well as the possibility that HIF-1 alpha participates in the regulation of circadian control genes (ccgs) in crustaceans is discussed.

  1. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.

    PubMed

    Guan, S-M; Fu, S-M; He, J-J; Zhang, M

    2011-01-01

    Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.

  2. [Activators, receptors and signal transduction pathways of blood platelets].

    PubMed

    Shaturnyĭ, V I; Shakhidzhanov, S S; Sveshnikova, A N; Panteleev, M A

    2014-01-01

    Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.

  3. The interactions of flavonoids within neuronal signalling pathways

    PubMed Central

    2007-01-01

    Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca2+ homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system. PMID:18850181

  4. Notch Signaling Pathway Regulates Progesterone Secretion in Murine Luteal Cells.

    PubMed

    Wang, Jing; Liu, Shuangmei; Peng, Lichao; Dong, Qiming; Bao, Riqiang; Lv, Qiulan; Tang, Min; Hu, Chuan; Li, Gang; Liang, Shangdong; Zhang, Chunping

    2015-10-01

    Notch signaling is an evolutionarily conserved pathway, which involves in various cell life activities. Other studies and our report showed that the Notch signaling plays very important role in follicle development in mammalian ovaries. In luteal cells, Notch ligand, delta-like ligand 4, is involved in normal luteal vasculature. In this study, murine luteal cells were cultured in vitro and treated with Notch signaling inhibitors, L-658,458 and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT). We found that L-658,458 and DAPT treatment decrease basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion. On the contrary, overexpression of intracellular domain of Notch3 increased basal and hCG-stimulated progesterone secretion. Further studies demonstrated that Notch signaling regulated the expression of steroidogenic acute regulatory protein and CYP11A, 2 key enzymes for progesterone synthesis. In conclusion, Notch signaling plays important role in regulating progesterone secretion in murine luteal cells.

  5. The Gq signalling pathway inhibits brown and beige adipose tissue.

    PubMed

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A; Pfeifer, Alexander

    2016-03-09

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity.

  6. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  7. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia

    PubMed Central

    Mundt, Nadine; Bruentgens, Felicitas; Geilenkirchen, Petra; Machado, Patricia A.; Veitinger, Thomas; Veitinger, Sophie; Lipartowski, Susanne M.; Engelhardt, Corinna H.; Oldiges, Marco; Spehr, Jennifer

    2016-01-01

    Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP—a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts—activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca2+-activated large-conductance K+ channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis. PMID:27574293

  8. The Role of Coinhibitory Signaling Pathways in Transplantation and Tolerance

    PubMed Central

    McGrath, Martina M.; Najafian, Nader

    2012-01-01

    Negative costimulatory molecules, acting through so-called inhibitory pathways, play a crucial role in the control of T cell responses. This negative “second signal” opposes T cell receptor activation and leads to downregulation of T cell proliferation and promotes antigen specific tolerance. Much interest has focused upon these pathways in recent years as a method to control detrimental alloresponses and promote allograft tolerance. However, recent experimental data highlights the complexity of negative costimulatory pathways in alloimmunity. Varying effects are observed from molecules expressed on donor and recipient tissues and also depending upon the activation status of immune cells involved. There appears to be significant overlap and redundancy within these systems, rendering this a challenging area to understand and exploit therapeutically. In this article, we will review the literature at the current time regarding the major negative costimulation pathways including CTLA-4:B7, PD-1:PD-L1/PD-L2 and PD-L1:B7-1, B7-H3, B7-H4, HVEM:BTLA/CD160, and TIM-3:Galectin-9. We aim to outline the role of these pathways in alloimmunity and discuss their potential applications for tolerance induction in transplantation. PMID:22566929

  9. Lessons and challenges from adaptation pathways planning applications

    NASA Astrophysics Data System (ADS)

    Haasnoot, M.; Lawrence, J.; Kwakkel, J. H.; Walker, W.; Timmermans, J.; Bloemen, P.; Thissen, W.

    2015-12-01

    Planning for adaptation to dynamic risks (e.g., because of climate change) is a critical need. The concept of 'adaptive policies' is receiving increasing attention as a way of performing strategic planning that is able to address many of the inherent challenges of uncertainty and dynamic change. Several approaches for developing adaptive policies are available in the literature. One approach, for which several applications already exist, is Dynamic Adaptive Policy Pathways (DAPP). Pathway maps enable policy analysts, decision makers, and stakeholders to recognize potential 'locked-in' situations and to assess the flexibility, robustness, and efficacy of decision alternatives. Most of the applications of DAPP have been in deltas, coastal cities, or floodplains, often within the context of climate change adaptation. In this talk, we describe the DAPP approach and present a framework for designing signposts as adaptation signals, together with an illustrative application for the Rhine River in the Netherlands. We also draw lessons and challenges from pathways applications that differ in environment, culture, and institutional context. For example, the Dutch Delta Programme has used pathways to identify short-term decisions and long-term policy options. In Bangladesh, an application is in its early phase. Steps before generating pathways - such as long- term thinking in multiple possible futures and acknowledging uncertainties - are already a big challenge there. In New Zealand, the 'Sustainable Delta Game' has been used as the catalyst for pathways thinking by two local councils. This has led to its application in decision making for coastal and flood risk management and economic analysis of policy options.

  10. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  11. General secretion signal for the mycobacterial type VII secretion pathway

    PubMed Central

    Daleke, Maria H.; Ummels, Roy; Bawono, Punto; Heringa, Jaap; Vandenbroucke-Grauls, Christina M. J. E.; Luirink, Joen; Bitter, Wilbert

    2012-01-01

    Mycobacterial pathogens use specialized type VII secretion (T7S) systems to transport crucial virulence factors across their unusual cell envelope into infected host cells. These virulence factors lack classical secretion signals and the mechanism of substrate recognition is not well understood. Here we demonstrate that the model T7S substrates PE25/PPE41, which form a heterodimer, are targeted to the T7S pathway ESX-5 by a signal located in the C terminus of PE25. Site-directed mutagenesis of residues within this C terminus resulted in the identification of a highly conserved motif, i.e., YxxxD/E, which is required for secretion. This motif was also essential for the secretion of LipY, another ESX-5 substrate. Pathogenic mycobacteria have several different T7S systems and we identified a PE protein that is secreted by the ESX-1 system, which allowed us to compare substrate recognition of these two T7S systems. Surprisingly, this ESX-1 substrate contained a C-terminal signal functionally equivalent to that of PE25. Exchange of these C-terminal secretion signals between the PE proteins restored secretion, but each PE protein remained secreted via its own ESX secretion system, indicating that an additional signal(s) provides system specificity. Remarkably, the YxxxD/E motif was also present in and required for efficient secretion of the ESX-1 substrates CFP-10 and EspB. Therefore, our data show that the YxxxD/E motif is a general secretion signal that is present in all known mycobacterial T7S substrates or substrate complexes. PMID:22733768

  12. TrkB signalling pathways in LTP and learning.

    PubMed

    Minichiello, Liliana

    2009-12-01

    Understanding the mechanisms that underlie learning is one of the most fascinating and central aims of neurobiological research. Hippocampal long-term potentiation (LTP) is widely regarded as a prime candidate for the cellular mechanism of learning. The receptor tyrosine kinase TrkB (also known as NTRK2), known primarily for its function during PNS and CNS development, has emerged in recent years as a potent regulator of hippocampal LTP. Here I describe efforts to understand the signalling pathways and molecular mechanisms that underlie the involvement of TrkB in LTP and learning.

  13. New regulatory, signaling pathways, and sources of nitric oxide.

    PubMed

    Pluta, Ryszard M

    2011-01-01

    Discovered in 1980 by the late Robert F. Furchgott, endothelium-derived relaxing factor, nitric oxide (NO), has been in the forefront of vascular research for several decades. What was originally a narrow approach, has been significantly widened due to major advances in understanding the chemical and biological properties of NO as well as its signaling pathways and discovering new sources of this notorious free radical gas. In this review, recent discoveries regarding NO and their implications on therapy for delayed cerebral vasospasm are presented.

  14. Multiparticle collision dynamics for diffusion-influenced signaling pathways

    NASA Astrophysics Data System (ADS)

    Strehl, R.; Rohlf, K.

    2016-08-01

    An efficient yet accurate simulation method for modeling diffusion-influenced reaction networks is presented. The method extends existing reactive multiparticle collision dynamics by incorporating species-dependent diffusion coefficients, and developing theoretical expressions for the reactant-dependent diffusion control. This off-lattice particle-based mesoscopic simulation tool is particularly suited for problems in which detailed descriptions of particle trajectories and local reactions are required. Numerical simulations of an intracellular signaling pathway for bacterial chemotaxis are carried out to validate our approach, and to demonstrate its efficiency.

  15. Signaling pathways and tissue interactions in neural plate border formation.

    PubMed

    Schille, Carolin; Schambony, Alexandra

    2017-01-01

    The neural crest is a transient cell population that gives rise to various cell types of multiple tissues and organs in the vertebrate embryo. Neural crest cells arise from the neural plate border, a region localized at the lateral borders of the prospective neural plate. Temporally and spatially coordinated interaction with the adjacent tissues, the non-neural ectoderm, the neural plate and the prospective dorsolateral mesoderm, is required for neural plate border specification. Signaling molecules, namely BMP, Wnt and FGF ligands and corresponding antagonists are derived from these tissues and interact to induce the expression of neural plate border specific genes. The present mini-review focuses on the current understanding of how the NPB territory is formed and accentuates the need for coordinated interaction of BMP and Wnt signaling pathways and precise tissue communication that are required for the definition of the prospective NC in the competent ectoderm.

  16. Metabolic control of signalling pathways and metabolic auto-regulation.

    PubMed

    Lorendeau, Doriane; Christen, Stefan; Rinaldi, Gianmarco; Fendt, Sarah-Maria

    2015-08-01

    Metabolic alterations have emerged as an important hallmark in the development of various diseases. Thus, understanding the complex interplay of metabolism with other cellular processes such as cell signalling is critical to rationally control and modulate cellular physiology. Here, we review in the context of mammalian target of rapamycin, AMP-activated protein kinase and p53, the orchestrated interplay between metabolism and cellular signalling as well as transcriptional regulation. Moreover, we discuss recent discoveries in auto-regulation of metabolism (i.e. how metabolic parameters such as metabolite levels activate or inhibit enzymes and thus metabolic pathways). Finally, we review functional consequences of post-translational modification on metabolic enzyme abundance and/or activities.

  17. Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.

  18. Strigolactone regulates shoot development through a core signalling pathway

    PubMed Central

    Müller, Dörte

    2016-01-01

    ABSTRACT Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14) α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both direct proteolytic targets of SCFMAX2, and downstream targets. However, the relevance and importance of these proteins to strigolactone signalling in many cases has not been fully established. Here we assess the contribution of these targets to strigolactone signalling in adult shoot developmental responses. We find that all examined strigolactone responses are regulated by SCFMAX2 and D14, and not by other D14-like proteins. We further show that all examined strigolactone responses likely depend on degradation of SMXL proteins in the SMXL6 clade, and not on the other proposed proteolytic targets BES1 or DELLAs. Taken together, our results suggest that in the adult shoot, the dominant mode of strigolactone signalling is D14-initiated, MAX2-mediated degradation of SMXL6-related proteins. We confirm that the BRANCHED1 transcription factor and the PIN-FORMED1 auxin efflux carrier are plausible downstream targets of this pathway in the regulation of shoot branching, and show that BRC1 likely acts in parallel to PIN1. PMID:27793831

  19. Dynamic Hedgehog signalling pathway activity in germline stem cells.

    PubMed

    Sahin, Z; Szczepny, A; McLaughlin, E A; Meistrich, M L; Zhou, W; Ustunel, I; Loveland, K L

    2014-03-01

    Although the contribution of Hedgehog (Hh) signalling to stem cell development and oncogenesis is well recognised, its importance for spermatogonial stem cells (SSCs) has not been established. Here we interrogate adult rat SSCs using an established model in which only undifferentiated spermatogonial cells remain in the testis at 15 weeks following irradiation, and spermatogonial differentiation is induced within 4 weeks by gonadotrophin-releasing hormone antagonist (GnRH-ant) administration. Synthesis of Hh pathway components in untreated adult rat testes was compared with that in irradiated testes prior to and after GnRH-ant exposure using in situ hybridization. In adult testes with complete spermatogenesis, the Desert Hedgehog ligand transcript, Dhh, was detected in Sertoli cells, some spermatogonia and in spermatocytes by in situ hybridization. Spermatogenic cells were identified as sites of Hh signalling through detection of transcripts encoding the Hh receptor, Ptc2 transcripts and proteins for the key downstream target of Hh signalling, Gli1 and the Hh transcriptional activator, Gli2. Remarkably, the undifferentiated spermatogonia present in irradiated adult rat testes contained Dhh in addition to Ptc2, Gli1 and Gli2, revealing the potential for an autocrine Hh signalling loop to sustain undifferentiated spermatogonial cells. These transcripts became undetectable by in situ hybridization following GnRH-ant induction of spermatogonial differentiation, however, detection of Gli1 protein in spermatogonia in all groups indicates that Hh signalling is sustained. This is the first evidence of active Hh signalling in mammalian male germline stem cells, as has been documented for some cancer stem cells.

  20. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Sugano, Shoji; Kojima, Mikiko; Yazawa, Katsumi; Yoshida, Riichiro; Inoue, Haruhiko; Hayashi, Nagao; Sakakibara, Hitoshi; Takatsuji, Hiroshi

    2010-06-01

    Plant hormones play pivotal signaling roles in plant-pathogen interactions. Here, we report characterization of an antagonistic interaction of abscisic acid (ABA) with salicylic acid (SA) signaling pathways in the rice-Magnaporthe grisea interaction. Exogenous application of ABA drastically compromised the rice resistance to both compatible and incompatible M. grisea strains, indicating that ABA negatively regulates both basal and resistance gene-mediated blast resistance. ABA markedly suppressed the transcriptional upregulation of WRKY45 and OsNPR1, the two key components of the SA signaling pathway in rice, induced by SA or benzothiadiazole or by blast infection. Overexpression of OsNPR1 or WRKY45 largely negated the enhancement of blast susceptibility by ABA, suggesting that ABA acts upstream of WRKY45 and OsNPR1 in the rice SA pathway. ABA-responsive genes were induced during blast infection in a pattern reciprocal to those of WRKY45 and OsPR1b in the compatible rice-blast interaction but only marginally in the incompatible one. These results suggest that the balance of SA and ABA signaling is an important determinant for the outcome of the rice-M. grisea interaction. ABA was detected in hyphae and conidia of M. grisea as well as in culture media, implying that blast-fungus-derived ABA could play a role in triggering ABA signaling at host infection sites.

  1. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)

    PubMed Central

    PENG, SHUPING; GAO, DAN; GAO, CHENGDE; WEI, PINGPIN; NIU, MAN; SHUAI, CIJUN

    2016-01-01

    Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease. PMID:27222009

  2. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  3. Integrative analysis of cancer-related signaling pathways.

    PubMed

    Kessler, Thomas; Hache, Hendrik; Wierling, Christoph

    2013-01-01

    Identification and classification of cancer types and subtypes is a major issue in current cancer research. Whole genome expression profiling of cancer tissues is often the basis for such subtype classifications of tumors and different signatures for individual cancer types have been described. However, the search for best performing discriminatory gene-expression signatures covering more than one cancer type remains a relevant topic in cancer research as such a signature would help understanding the common changes in signaling networks in these disease types. In this work, we explore the idea of a top down approach for sample stratification based on a module-based network of cancer relevant signaling pathways. For assembly of this network, we consider several of the most established cancer pathways. We evaluate our sample stratification approach using expression data of human breast and ovarian cancer signatures. We show that our approach performs equally well to previously reported methods besides providing the advantage to classify different cancer types. Furthermore, it allows to identify common changes in network module activity of those cancer samples.

  4. HID-1, a New Component of the Peptidergic Signaling Pathway

    PubMed Central

    Mesa, Rosana; Luo, Shuo; Hoover, Christopher M.; Miller, Kenneth; Minniti, Alicia; Inestrosa, Nibaldo; Nonet, Michael L.

    2011-01-01

    hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs. PMID:21115972

  5. Profiling of UV-induced ATM/ATR signaling pathways

    PubMed Central

    Stokes, Matthew P.; Rush, John; MacNeill, Joan; Ren, Jian Min; Sprott, Kam; Nardone, Julie; Yang, Vicky; Beausoleil, Sean A.; Gygi, Steven P.; Livingstone, Mark; Zhang, Hui; Polakiewicz, Roberto D.; Comb, Michael J.

    2007-01-01

    To ensure survival in the face of genomic insult, cells have evolved complex mechanisms to respond to DNA damage, termed the DNA damage checkpoint. The serine/threonine kinases ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) activate checkpoint signaling by phosphorylating substrate proteins at SQ/TQ motifs. Although some ATM/ATR substrates (Chk1, p53) have been identified, the lack of a more complete list of substrates limits current understanding of checkpoint pathways. Here, we use immunoaffinity phosphopeptide isolation coupled with mass spectrometry to identify 570 sites phosphorylated in UV-damaged cells, 498 of which are previously undescribed. Semiquantitative analysis yielded 24 known and 192 previously uncharacterized sites differentially phosphorylated upon UV damage, some of which were confirmed by SILAC, Western blotting, and immunoprecipitation/Western blotting. ATR-specific phosphorylation was investigated by using a Seckel syndrome (ATR mutant) cell line. Together, these results provide a rich resource for further deciphering ATM/ATR signaling and the pathways mediating the DNA damage response. PMID:18077418

  6. Signaling pathway cross talk in Alzheimer’s disease

    PubMed Central

    2014-01-01

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer’s disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed “anti-ageing pathways”, for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired. PMID:24679124

  7. Interaction of vitamin D with membrane-based signaling pathways

    PubMed Central

    Larriba, María Jesús; González-Sancho, José Manuel; Bonilla, Félix; Muñoz, Alberto

    2014-01-01

    Many studies in different biological systems have revealed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) modulates signaling pathways triggered at the plasma membrane by agents such as Wnt, transforming growth factor (TGF)-β, epidermal growth factor (EGF), and others. In addition, 1α,25(OH)2D3 may affect gene expression by paracrine mechanisms that involve the regulation of cytokine or growth factor secretion by neighboring cells. Moreover, post-transcriptional and post-translational effects of 1α,25(OH)2D3 add to or overlap with its classical modulation of gene transcription rate. Together, these findings show that vitamin D receptor (VDR) cannot be considered only as a nuclear-acting, ligand-modulated transcription factor that binds to and controls the transcription of target genes. Instead, available data support the view that much of the complex biological activity of 1α,25(OH)2D3 resides in its capacity to interact with membrane-based signaling pathways and to modulate the expression and secretion of paracrine factors. Therefore, we propose that future research in the vitamin D field should focus on the interplay between 1α,25(OH)2D3 and agents that act at the plasma membrane, and on the analysis of intercellular communication. Global analyses such as RNA-Seq, transcriptomic arrays, and genome-wide ChIP are expected to dissect the interactions at the gene and molecular levels. PMID:24600406

  8. Association Study of Wnt Signaling Pathway Genes in Bipolar Disorder

    PubMed Central

    Zandi, Peter P.; Belmonte, Pamela L.; Willour, Virginia L.; Goes, Fernando S.; Badner, Judith A.; Simpson, Sylvia G.; Gershon, Elliot S.; McMahon, Francis J.; DePaulo, J. Raymond; Potash, James B.

    2011-01-01

    Context The Wnt signaling pathways promote cell growth and are best known for their role in embryogenesis and cancer. Several lines of evidence suggest these pathways might also be involved in bipolar disorder (BP). Objective We tested for the association of candidate genes in the Wnt signaling pathways with disease susceptibility in a family-based BP study Design 227 tagSNPs from 34 genes were successfully genotyped. Initial results led us to focus on the gene PPARD, in which we genotyped an additional 13 SNPs for follow-up. Setting Nine academic medical centers in the United States. Participants 554 BP offspring and their parents from 317 families. Main Outcome Measures We tested for family-based association using FBAT and HBAT. Exploratory analyses testing for interactions of PPARD SNPs with clinical covariates and with other Wnt genes were conducted with GENASSOC. Results In the initial analysis, the most significantly associated SNP was rs2267665 in PPARD (nominal p=0.0003). This remained significant at p=0.05 by permutation after accounting for all SNPs tested. Additional genotyping in PPARD yielded four SNPs in one haplotype block that were significantly associated with BP at p<0.01, the most significant being rs9462082 (p=0.0001). Exploratory analyses revealed significant evidence (p<0.01) for interactions of rs9462082 with poor functioning on the Global Assessment Scale (OR = 3.36, 95% CI = 1.85–6.08), and with SNPs in WNT2B (rs3790606, OR = 2.56, 95% CI = 1.67–4.00) and WNT7A (rs4685048, OR = 1.79, 95% CI 1.23–2.63). Conclusions We found evidence for association of BP with PPARD, a gene in the Wnt signaling pathway. The consistency of this result with one from the Wellcome Trust Case-Control Consortium encourages further study. If the finding can be confirmed in additional samples, it may illuminate a new avenue for understanding the pathogenesis of severe BP and developing more effective treatments. PMID:18606951

  9. Host Factors and Cancer Progression: Biobehavioral Signaling Pathways and Interventions

    PubMed Central

    Lutgendorf, Susan K.; Sood, Anil K.; Antoni, Michael H.

    2010-01-01

    Whereas evidence for the role of psychosocial factors in cancer initiation has been equivocal, support continues to grow for links between psychological factors such as stress, depression, and social isolation and progression of cancer. In vitro, in vivo, and clinical studies show that stress- related processes can impact pathways implicated in cancer progression, including immuno-regulation, angiogenesis, and invasion. Contributions of systemic factors, such as stress hormones to the crosstalk between tumor and stromal cells, appear to be critical in modulating downstream signaling pathways with important implications for disease progression. Inflammatory pathways may also be implicated in fatigue and other factors related to quality of life. Although substantial evidence supports a positive effect of psychosocial interventions on quality of life in cancer, the clinical evidence for efficacy of stress-modulating psychosocial interventions in slowing cancer progression remains inconclusive, and the biobehavioral mechanisms that might explain such effects are still being established. This article reviews research findings to date and outlines future avenues of research in this area. PMID:20644093

  10. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  11. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells

    PubMed Central

    Zaher, Tahereh E.; Miller, Edmund J.; Morrow, Dympna M. P.; Javdan, Mohammad; Mantell, Lin L.

    2007-01-01

    Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses upon exposure to hyperoxia. We discuss in detail some of the most interesting players, such as, NF-κB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses. PMID:17349918

  12. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    PubMed

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg.

  13. [Novel signal transduction pathways: the molecular basis for targeted cancer therapies in Hedgehog/Notch/Wnt pathway].

    PubMed

    Shimizu, Toshio; Nakagawa, Kazuhiko

    2015-08-01

    Aberrant activation of the Wnt, Notch and Hedgehog pathways via mutations or ligand overexpression has been implicated in a large number of cancer types where they are involved in functions ranging from tumor initiation to cancer stem cell (CSC) maintenance and angiogenesis. Agents targeting each one of these three pathways have now reached clinical trials, and the first one of these, Vismodegib, a hedgehog pathway inhibitor, was approved in 2012 by US FDA for the treatment of advanced basal cell carcinoma. Development of agents that target critical steps in these pathways as novel signal transduction pathways will be complicated by signaling cross-talk. The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are being explored coupled with early phase I clinical studies.

  14. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  15. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  16. A combination assay for simultaneous assessment of multiple signaling pathways.

    PubMed

    Goetz, A S; Liacos, J; Yingling, J; Ignar, D M

    1999-12-01

    We have developed an assay in which modulation of two or more signaling pathways can be assessed concurrently by combining reporter gene systems with fluorescent probe technology. The validation of this method was achieved by indirect analysis of adenylyl cyclase activation with the use of a cyclic AMP response element (CRE)-luciferase reporter system in combination with the measurement of calcium mobilization by Calcium Green-1 AM fluorescence on a fluorescent imaging plate reader. To demonstrate the utility of the method in studying the pharmacology of receptors that couple to more than one G protein, Chinese hamster ovary (CHO) cells, which stably expressed both the CRE-luciferase reporter gene and the human pituitary adenylyl cyclase-activating peptide (PACAP) receptor, were treated with PACAP 1-27 and 1-38. Calcium mobilization and the induction of adenylyl cyclase activity in response to each concentration of peptide were assessed in individuals wells. This assay may also be used to screen for ligands of two or more unrelated receptors simultaneously without compromising the assessment of either signaling pathway. To illustrate this point, Rat-1 fibroblasts, which expressed human alpha1A receptors, were cocultured with CRE-luciferase CHO cells, which expressed human GLP-1 receptors. Calcium mobilization elicited by phenylephrine agonism of the alpha1A receptor was assessed in the same assay as GLP-1-induced activation of adenylyl cyclase. The pEC(50) for each agonist was similar to that observed when the cell lines were not cocultured. The number of different receptors that can be screened per well is limited only by the ability to distinguish different reporter gene signals and fluorescent indicators.

  17. Role of TWEAK/Fn14 signalling pathway in lupus nephritis and other clinical settings.

    PubMed

    González-Sánchez, Diego A; Álvarez, Cristian M; Vásquez, Gloria; Gómez-Puerta, José A

    2016-08-29

    Knowledge of the signalling pathways involved in various diseases has enabled advances in the understanding of pathophysiological, diagnostic and therapeutic models of several inflammatory and autoimmune diseases. Systemic lupus erythematosus is a widely studied autoimmune disease that can affect multiple organs, with a major impact on morbidity and mortality when it involves the kidneys. Over the past 10 years, interest in the role of the TWEAK/Fn14 signalling pathway in lupus nephritis, as well as other clinical settings, has increased. By reviewing the literature, this article assesses the role of this pathway in lupus nephritis, underlines the importance of TWEAK in urine (uTWEAK) as a biomarker of the disease and stresses the favourable results published in the literature from the inhibition of the TWEAK/Fn14 pathway as a therapeutic target in experimental animal models, demonstrating its potential application in other settings. Results of ongoing clinical trials and future research will give us a better understanding of the real benefit of blocking this pathway in the clinical course of several conditions.

  18. Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes

    PubMed Central

    Singleton, Katherine R.; Wood, Kris C.

    2016-01-01

    Functional genomics approaches such as gain- and loss-of-function screening can efficiently reveal genes that control cancer cell growth, survival, signal transduction, and drug resistance, but distilling the results of large-scale screens into actionable therapeutic strategies is challenging given our incomplete understanding of the functions of many genes. Research over several decades, including the results of large-scale cancer sequencing projects, has made it clear that many oncogenic properties are controlled by a common set of core oncogenic signaling pathways. By directly screening this core set of pathways, rather than much larger numbers of individual genes, it may be possible to more directly and efficiently connect functional genomic screening results with therapeutic targets. Here, we describe the recent development of methods to directly screen oncogenic pathways in high-throughput. We summarize the results of studies that have used pathway-centric screening to map the pathways of resistance to targeted therapies in diverse cancer types, then conclude by expanding on potential future applications of this approach. PMID:27738492

  19. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  20. Signaling pathway for apoptosis: a racetrack for life or death.

    PubMed

    Wang, E; Marcotte, R; Petroulakis, E

    1999-01-01

    Apoptosis, or programmed cell death, is a gene-directed mechanism activated as a suicidal event to get rid of excess, damaged, or infected cells. The recent astounding pace of research in this area has expanded our horizon of understanding that this mechanism is regulated largely by pro- and anti-apoptosis factors acting for or against the final death event. The driving force behind these factors, either pro-apoptosis or pro-survival, is largely determined by signal transduction pathways, starting with the initiation of a death signal at the plasma membrane, and following through a complex cytoplasmic network before reaching the end point of cell demise. Enmeshed in this intricate cytoplasmic network are many checkpoints, where complexes of pro- and anti-apoptosis factors function to facilitate or deter the death signals. The culmination of the balancing act between these two camps of factors at these signal transduction checkpoints may then result in the final decision to die or to live. Thus, the eventual death of a cell may require successful passage through all the checkpoints, a mechanism Nature has provided as a safeguard to prevent erroneous triggering of death. With the advent of a new biotechnology revolution at the dawn of the new millenium, we look forward to an exciting era when we can gain fuller understanding of the operation of all these checkpoints. Ultimately, this gain will pave the way to control the apoptosis event at the checkpoints, and to support the organism's functionality as long as possible. J. Cell. Biochem. Suppls. 32/33:95-102, 1999.

  1. Arrestins as regulatory hubs in cancer signalling pathways.

    PubMed

    Enslen, Hervé; Lima-Fernandes, Evelyne; Scott, Mark G H

    2014-01-01

    Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.

  2. Targeting the BLyS-APRIL signaling pathway in SLE.

    PubMed

    La Cava, Antonio

    2013-09-01

    The B lymphocyte stimulator (BLyS)-A PRoliferation-Inducing Ligand (APRIL) signaling pathway has an important role in the selection, maturation and survival of B cells and plays a significant role in the pathogenesis of systemic lupus erythematosus (SLE). The inhibition of BLyS, a survival factor for transitional and mature B cells, has recently proven to be successful in large phase III clinical trials that led to the approval of an anti-BLyS monoclonal antibody (belimumab) for the treatment of SLE. Yet, there is currently a need to both understand better the mechanisms of action of belimumab in SLE and better define the subsets of patients that are more likely to respond to the drug.

  3. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models

    PubMed Central

    Salavert, Francisco; Hidago, Marta R.; Amadoz, Alicia; Çubuk, Cankut; Medina, Ignacio; Crespo, Daniel; Carbonell-Caballero, Jose; Dopazo, Joaquín

    2016-01-01

    The discovery of actionable targets is crucial for targeted therapies and is also a constituent part of the drug discovery process. The success of an intervention over a target depends critically on its contribution, within the complex network of gene interactions, to the cellular processes responsible for disease progression or therapeutic response. Here we present PathAct, a web server that predicts the effect that interventions over genes (inhibitions or activations that simulate knock-outs, drug treatments or over-expressions) can have over signal transmission within signaling pathways and, ultimately, over the cell functionalities triggered by them. PathAct implements an advanced graphical interface that provides a unique interactive working environment in which the suitability of potentially actionable genes, that could eventually become drug targets for personalized or individualized therapies, can be easily tested. The PathAct tool can be found at: http://pathact.babelomics.org. PMID:27137885

  4. Distinct growth factor-induced dynamic mass redistribution (DMR) profiles for monitoring oncogenic signaling pathways in various cancer cells.

    PubMed

    Du, Yuhong; Li, Zijian; Li, Lian; Chen, Zhuo Georgia; Sun, Shi-Yong; Chen, Peifang; Shin, Dong M; Khuri, Fadlo R; Fu, Haian

    2009-01-01

    Targeting dysregulated signaling pathways in tumors has led to the development of a novel class of signal transduction inhibitors, including inhibitors of the epidermal growth factor (EGF) receptor (EGFR). To dissect oncogenic pathways, identify key pathway determinants, and evaluate the efficacy of targeted agents, it is vital to develop technologies that allow the detection of temporal signaling events under physiological conditions. Here we report the application of a label-free optical biosensor to reveal the rapid response of cancer cells to EGF, expressed as a dynamic mass redistribution (DMR) signal. In response to EGF, squamous cell carcinoma of the head and neck cells exhibited a rapid rise in DMR signal, whereas lung adenocarcinoma cells showed a biphasic DMR profile, suggesting a cell type-dependent DMR response. Pharmacological studies suggested the importance of EGFR and the phosphatidylinositol-3 kinase pathway in mediating the EGF-induced DMR response. The defined DMR signatures offer a simple yet sensitive tool for evaluating EGFR-targeted agents, as shown with gefitinib and erlotinib. The assay can also be used for cell-based high-throughput screening of EGF pathway inhibitors, as demonstrated by its robust performance in a 384-well plate format (Z' > 0.5). This technology is applicable to other oncogenic pathways for the discovery of novel therapeutic agents for the treatment of various cancers.

  5. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  6. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways.

    PubMed

    Abetov, Danysh; Mustapova, Zhanar; Saliev, Timur; Bulanin, Denis; Batyrbekov, Kanat; Gilman, Charles P

    2015-12-01

    The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.

  7. Caytaxin Deficiency Disrupts Signaling Pathways in Cerebellar Cortex

    PubMed Central

    Xiao, Jianfeng; Gong, Suzhen; LeDoux, Mark S.

    2007-01-01

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as a site of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time RT-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and calcium-transporting plasma membrane ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex. PMID:17092653

  8. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex.

    PubMed

    Xiao, J; Gong, S; Ledoux, M S

    2007-01-19

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as sites of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time reverse transcriptase-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and plasma membrane calcium-dependent ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex.

  9. TMEFF2 modulates the AKT and ERK signaling pathways

    PubMed Central

    Chen, Xiaofei; Ruiz-Echevarría, Maria J

    2013-01-01

    The transmembrane protein with epidermal growth factor (EGF) and two follistatin (FS) motifs 2 (TMEFF2) has a limited tissue distribution with strong expression only in brain and prostate. While TMEFF2 is overexpressed in prostate cancer indicating an oncogenic role, several studies indicate a tumor suppressor role for this protein. This dual mode of action is, at least in part, the result of metalloproteinase-dependent shedding that generates a soluble TMEFF2 ectodomain with a growth promoting function. While recent studies have shed some light on the biology of different forms of TMEFF2, little is known about the molecular mechanisms that influence its oncogenic/tumor suppressive function. In several non-prostate cell lines, it has been shown that a recombinant form of the TMEFF2 ectodomain can interact with platelet derived growth factor (PDGF)-AA to suppress PDGF receptor signaling and can promote ErbB4 and ERK1/2 phosphorylation. However, the role of the full length TMEFF2 in these pathways has not been examined. Using prostate cell lines, here we examine the role of TMEFF2 in ERK and Akt activation, two pathways implicated in prostate cancer progression and that have been shown to cross talk in several cancers. Our results show that different forms of TMEFF2 distinctly affect Akt and ERK activation and this may contribute to a different cellular response of either proliferation or tumor suppression. PMID:23936739

  10. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  11. Osteocytic signalling pathways as therapeutic targets for bone fragility.

    PubMed

    Plotkin, Lilian I; Bellido, Teresita

    2016-10-01

    Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.

  12. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  13. The Spectrin cytoskeleton regulates the Hippo signalling pathway

    PubMed Central

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-01-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. PMID:25712476

  14. ATMIN defines an NBS1-independent pathway of ATM signalling

    PubMed Central

    Kanu, Nnennaya; Behrens, Axel

    2007-01-01

    The checkpoint kinase ATM (ataxia telangiectasia mutated) transduces genomic stress signals to halt cell cycle progression and promote DNA repair in response to DNA damage. Here, we report the characterisation of an essential cofactor for ATM, ATMIN (ATM INteracting protein). ATMIN interacts with ATM through a C-terminal motif, which is also present in Nijmegen breakage syndrome (NBS)1. ATMIN and ATM colocalised in response to ATM activation by chloroquine and hypotonic stress, but not after induction of double-strand breaks by ionising radiation (IR). ATM/ATMIN complex disruption by IR was attenuated in cells with impaired NBS1 function, suggesting competition of NBS1 and ATMIN for ATM binding. ATMIN protein levels were reduced in ataxia telangiectasia cells and ATM protein levels were low in primary murine fibroblasts lacking ATMIN, indicating reciprocal stabilisation. Whereas phosphorylation of Smc1, Chk2 and p53 was normal after IR in ATMIN-deficient cells, basal ATM activity and ATM activation by hypotonic stress and inhibition of DNA replication was impaired. Thus, ATMIN defines a novel NBS1-independent pathway of ATM signalling. PMID:17525732

  15. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    PubMed

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  16. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    PubMed Central

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  17. Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples.

    PubMed

    Paryan, Mahdi; Mohammadi-Yeganeh, Samira; Samiee, Siamak Mirab; Soleimani, Masoud; Arefian, Ehsan; Azadmanesh, Keyhan; Poopak, Behzad; Mostafavi, Ehsan; Karimipoor, Morteza; Mahdian, Reza

    2013-10-01

    In diagnostic research challenges, quantitative real-time PCR (QPCR) has been widely utilized in gene expression analysis because of its sensitivity, accuracy, reproducibility, and most importantly, quantitativeness. Real-time PCR base kits are wildly applicable in cancer signaling pathways, especially in cancer investigations. T-cell acute lymphoblastic leukemia (T-ALL) is a type of leukemia that is more common in older children and teenagers. Deregulation of the Notch signaling pathway promotes proliferation and inhibits apoptosis of the lymphoblastic T cells. The aim of this study was to investigate the effect of Notch signaling activation on the expression of target genes using real-time QPCR and further use this method in clinical examination after validation. Two T-ALL cell lines, Jurkat and Molt-4, were used as models for activation of the Notch signaling via over-expression of the Notch1 intracellular domain. Expression analysis was performed for six downstream target genes (NCSTN, APH1, PSEN1, ADAM17, NOTCH1 and C-MYC) which play critical roles in the Notch signaling pathway. The results showed significant difference in the expression of target genes in the deregulated Notch signaling pathway. These results were also verified in 12 clinical samples bearing over-expression of the Notch signaling pathway. Identification of such downstream Notch target genes, which have not been studied inclusively, provides insights into the mechanisms of the Notch function in T cell leukemia, and may help identify novel diagnoses and therapeutic targets in acute lymphoblastic leukemia.

  18. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  19. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.

    PubMed

    Riveras, Eleodoro; Alvarez, José M; Vidal, Elena A; Oses, Carolina; Vega, Andrea; Gutiérrez, Rodrigo A

    2015-10-01

    Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca(2+) concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca(2+) levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca(2+) levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca(2+) channel blockers or phospholipase C inhibitors. These results indicate that Ca(2+) acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca(2+) in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.

  20. Advances in targeting insulin-like growth factor signaling pathway in cancer treatment.

    PubMed

    You, Liangkun; Liu, Changyu; Tang, Hexiao; Liao, Yongde; Fu, Shengling

    2014-01-01

    Insulin-like growth factors (IGFs), along with their receptors and binding proteins, play key roles in human cell proliferation, differentiation and apoptosis. There is now substantial evidence suggesting that the IGF system is involved in the pathogenesis and progression of various malignancies. Recent studies have shown that targeting of the IGF-1 receptor (IGF-1R) signaling pathway might be a novel approach for the treatment of cancer. Presently numerous agents featuring different mechanisms of IGF targeting methods such as IGF-1R monoclonal antibodies, IGF-1R tyrosine kinase inhibitors and IGF ligand specific antibodies are being investigated in more than 170 clinical trials and appear to have potential therapeutic efficacy. However, advanced trials reiterate the importance of predictive biomarkers to guide the clinical efforts of these agents. As a result, current research strategies are emerging to identify the most suitable subpopulations of patients that might benefit from these treatments. Furthermore, newly presented toxicity and growth hormone response and implication of hybrid receptors in IGF signaling pathway pose unprecedented challenges in the design and application of anti-IGF agents. On the other hand, cross-talk in downstream signaling between IGF-1R and other tumor promoting pathways and the development of multi-target agents might encourage the IGF-1R-targeted therapies further into comprehensive treatments of cancer. With both challenges and prospects ahead, this paper reviewed the progress in this particular field.

  1. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways

    PubMed Central

    Li, Yajuan; Li, Yuelong; Cao, Xiaocong; Jin, Xiangyu; Jin, Tengchuan

    2017-01-01

    Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms. PMID:27721456

  2. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  3. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    PubMed Central

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  4. Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets.

    PubMed

    Li, Chen; Ge, Qi-Wei; Nakata, Mitsuru; Matsuno, Hiroshi; Miyano, Satoru

    2007-01-01

    This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, by using timed Petri nets - i.e. the time taken in fi ring of each transition - is proposed based on some simple principles that the number of tokens flowed into a place is equivalent to the number of tokens fl owed out. Finally, the availability of proposed method is confirmed by observing signalling transductions in biological pathways through simulation experiments of the apoptosis signalling pathways as an example.

  5. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  6. Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.

    PubMed

    Conzelmann, Holger; Gilles, Ernst-Dieter

    2008-01-01

    Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.

  7. ent-Steroids: novel tools for studies of signaling pathways.

    PubMed

    Covey, Douglas F

    2009-07-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.

  8. Ebola Virus Does Not Block Apoptotic Signaling Pathways

    PubMed Central

    Olejnik, Judith; Alonso, Jesus; Schmidt, Kristina M.; Yan, Zhen; Wang, Wei; Marzi, Andrea; Ebihara, Hideki; Yang, Jinghua; Patterson, Jean L.; Ryabchikova, Elena

    2013-01-01

    Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics. PMID:23468487

  9. Urotensin II Inhibits Skeletal Muscle Glucose Transport Signaling Pathways via the NADPH Oxidase Pathway

    PubMed Central

    Wang, Hong-Xia; Wu, Xin-Rui; Yang, Hui; Yin, Chun-Lin; Shi, Li-Jin; Wang, Xue-Jiang

    2013-01-01

    Our previous studies have demonstrated that the urotensin (UII) and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM), but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK) mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM. PMID:24116164

  10. Wnt signaling pathways in urological cancers: past decades and still growing

    PubMed Central

    2012-01-01

    The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers. PMID:22325146

  11. Wnt signaling pathways in urological cancers: past decades and still growing.

    PubMed

    Majid, Shahana; Saini, Sharanjot; Dahiya, Rajvir

    2012-02-10

    The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.

  12. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    PubMed Central

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery. PMID:27043642

  13. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks.

    PubMed

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-03-28

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  14. Spatial signalling mediated by the transforming growth factor-β signalling pathway during tooth formation

    PubMed Central

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong

    2016-01-01

    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-β signalling pathway might play a role in this process. PMID:27982023

  15. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury

    PubMed Central

    Guo, Wei; Yi, Xin; Ren, Faxin; Liu, Liwen; Wu, Suning; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT assay and Annexin-V-FITC kit respectively. Moreover, effects of SHH expression on the pathway signal proteins expression was analyzed using ELISA and western blotting. mRNA level of SHH was significantly decreased compared to the controls (P<0.05). Besides, CMECs viability was significantly increased while cell apoptosis was decreased by SHH application compared with the controls (P<0.05). Vasculogenesis-related factors including VEGF, FGF and Ang were significantly increased by SHH application, as well as the SHH signal proteins including Patch-1, Gli1, Gli2 and SMO (P<0.05). However, these effects of SHH application on biological factors levels were reversed by the SHH inhibitor application. This study suggested that SHH over expression may play a pivotal contribute role in vasculogenesis through activating the SHH signals in post-MIRI. PMID:26722433

  16. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  17. [Abnormal Notch-Hes Signaling Pathways and Acute Leukemia -Review].

    PubMed

    Gu, Zhen-Yang; Wang, Li; Gao, Chun-Ji

    2017-02-01

    The abnormal activation of Notch signaling is closely related to the development of acute leukemia (AL). The core elements of the Notch signaling system include Notch receptors, Notch ligands, CSL DNA-binding proteins, and effectors like target genes. Any factors, which affect ligands, receptors, signal transducers and effectors, can influence the signal transduction of Notch signaling greatly. Based on the role of Notch signaling in AL, several targeted drugs against Notch upstream signaling have been developed. However, due to the complexity and pleiotropic effects of Notch upstream signaling, these targeted drugs display strong side effects. Thus, Hes (Hairy Enhancer of Split) factors as a primary Notch effector, also play an important role in the pathogenesis of AL. This review summarizes recent progresses on Notch-Hes signaling in AL, hopping to provide references for further excavation of the Notch-Hes signaling, and lay foundations for developing the next generation of targeted drugs.

  18. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer.

    PubMed

    Schalken, Jack; Fitzpatrick, John M

    2016-02-01

    Significant progress has been made in the understanding of the underlying cancer biology of castration-resistant prostate cancer (CRPC) with the androgen receptor (AR) signalling pathway remaining implicated throughout the prostate cancer disease continuum. Reactivation of the AR signalling pathway is considered to be a key driver of CRPC progression and, as such, the AR is a logical target for therapy in CRPC. The objective of this review was to understand the importance of AR signalling in the treatment of patients with metastatic CRPC (mCRPC) and to discuss the clinical benefits associated with inhibition of the AR signalling pathway. A search was conducted to identify articles relating to the role of AR signalling in CRPC and therapies that inhibit the AR signalling pathway. Current understanding of prostate cancer has identified the AR signalling pathway as a logical target for the treatment of CRPC. Available therapies that inhibit the AR signalling pathway include AR blockers, androgen biosynthesis inhibitors, and AR signalling inhibitors. Enzalutamide, the first approved AR signalling inhibitor, has a novel mode of action targeting AR signalling at three key stages. The direct mode of action of enzalutamide has been shown to translate into clinical responses in patients with mCRPC. In conclusion, the targeting of the AR signalling pathway in patients with mCRPC results in numerous clinical benefits. As the number of treatment options increase, more trials evaluating the sequencing and combination of treatments are required. This review highlights the continued importance of targeting a key driver in the progression of CRPC, AR signalling, and the clinical benefits associated with inhibition of the AR signalling pathway in the treatment of patients with CRPC.

  19. Hedgehog signaling pathway function conserved in Tribolium segmentation

    PubMed Central

    Farzana, Laila

    2008-01-01

    In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect. PMID:18392879

  20. Wrangling Phosphoproteomic Data to Elucidate Cancer Signaling Pathways

    PubMed Central

    Grimes, Mark L.; Lee, Wan-Jui; van der Maaten, Laurens; Shannon, Paul

    2013-01-01

    The interpretation of biological data sets is essential for generating hypotheses that guide research, yet modern methods of global analysis challenge our ability to discern meaningful patterns and then convey results in a way that can be easily appreciated. Proteomic data is especially challenging because mass spectrometry detectors often miss peptides in complex samples, resulting in sparsely populated data sets. Using the R programming language and techniques from the field of pattern recognition, we have devised methods to resolve and evaluate clusters of proteins related by their pattern of expression in different samples in proteomic data sets. We examined tyrosine phosphoproteomic data from lung cancer samples. We calculated dissimilarities between the proteins based on Pearson or Spearman correlations and on Euclidean distances, whilst dealing with large amounts of missing data. The dissimilarities were then used as feature vectors in clustering and visualization algorithms. The quality of the clusterings and visualizations were evaluated internally based on the primary data and externally based on gene ontology and protein interaction networks. The results show that t-distributed stochastic neighbor embedding (t-SNE) followed by minimum spanning tree methods groups sparse proteomic data into meaningful clusters more effectively than other methods such as k-means and classical multidimensional scaling. Furthermore, our results show that using a combination of Spearman correlation and Euclidean distance as a dissimilarity representation increases the resolution of clusters. Our analyses show that many clusters contain one or more tyrosine kinases and include known effectors as well as proteins with no known interactions. Visualizing these clusters as networks elucidated previously unknown tyrosine kinase signal transduction pathways that drive cancer. Our approach can be applied to other data types, and can be easily adopted because open source software

  1. The Cbln family of proteins interact with multiple signaling pathways.

    PubMed

    Wei, Peng; Pattarini, Roberto; Rong, Yongqi; Guo, Hong; Bansal, Parmil K; Kusnoor, Sheila V; Deutch, Ariel Y; Parris, Jennifer; Morgan, James I

    2012-06-01

    Cerebellin precursor protein (Cbln1) is essential for synapse integrity in cerebellum through assembly into complexes that bridge pre-synaptic β-neurexins (Nrxn) to post-synaptic GluRδ2. However, GluRδ2 is largely cerebellum-specific, yet Cbln1 and its little studied family members, Cbln2 and Cbln4, are expressed throughout brain. Therefore, we investigated whether additional proteins mediate Cbln family actions. Whereas Cbln1 and Cbln2 bound to GluRδ2 and Nrxns1-3, Cbln4 bound weakly or not at all, suggesting it has distinct binding partners. In a candidate receptor-screening assay, Cbln4 (but not Cbln1 or Cbln2) bound selectively to the netrin receptor, (deleted in colorectal cancer (DCC) in a netrin-displaceable fashion. To determine whether Cbln4 had a netrin-like function, Cbln4-null mice were generated. Cbln4-null mice did not phenocopy netrin-null mice. Cbln1 and Cbln4 were likely co-localized in neurons thought to be responsible for synaptic changes in striatum of Cbln1-null mice. Furthermore, complexes containing Cbln1 and Cbln4 had greatly reduced affinity to DCC but increased affinity to Nrxns, suggesting a functional interaction. However, Cbln4-null mice lacked the striatal synaptic changes seen in Cbln null mice. Thus, Cbln family members interact with multiple receptors/signaling pathways in a subunit composition-dependent manner and have independent functions with Cbln4 potentially involved in the less well-characterized role of netrin/DCC in adult brain.

  2. Cytosolic [Ca2+] signaling pathway in macula densa cells.

    PubMed

    Peti-Peterdi, J; Bell, P D

    1999-09-01

    Previous micropuncture studies suggested that macula densa (MD) cells might detect variations in luminal sodium chloride concentration ([NaCl]l) through changes in cytosolic calcium ([Ca2+]c). To test this hypothesis, MD [Ca2+]c was measured with fluorescence microscopy using fura 2 in the isolated perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney. Tubules were bathed and perfused with a Ringer solution, [NaCl]l was varied and isosmotically replaced with N-methyl-D-glucamine cyclamate. Control [Ca2+]c, during perfusion with 25 mM NaCl and 150 mM NaCl in the bath, averaged 101. 6 +/- 8.2 nM (n = 21). Increasing [NaCl]l to 150 mM elevated [Ca2+]c by 39.1 +/- 5.2 nM (n = 21, P < 0.01). This effect was concentration dependent between zero and 60 mM [NaCl]l. The presence of either luminal furosemide or basolateral nifedipine or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a potent Cl- channel blocker, significantly reduced resting [Ca2+]c and abolished the increase in [Ca2+]c in response to increased [NaCl]l. Nifedipine failed to produce a similar inhibitory effect when added exclusively to the luminal perfusate. Also, 100 nM BAY K 8644, a voltage-gated Ca2+ channel agonist, added to the bathing solution increased [Ca2+]c by 33.2 +/- 8.1 nM (n = 5, P < 0.05). These observations suggest that MD cells may detect variations in [NaCl]l through a signaling pathway that includes Na+-2Cl--K+ cotransport, basolateral membrane depolarization via Cl- channels, and Ca2+ entry through voltage-gated Ca2+ channels.

  3. High fructose causes cardiac hypertrophy via mitochondrial signaling pathway

    PubMed Central

    Zhang, Yan-Bo; Meng, Yan-Hai; Chang, Shuo; Zhang, Rong-Yuan; Shi, Chen

    2016-01-01

    High fructose diet can cause cardiac hypertrophy and oxidative stress is a key mediator for myocardial hypertrophy. Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) leads to oxidative stress. This study aims to reveal mitochondrial oxidative stress-related signaling pathway in high fructose-induced cardiac hypertrophy. Mice were fed high fructose to develop cardiac hypertrophy. Fructose and H2O2 were used to induce cardiomyocyte hypertrophy in vitro. Mitochondria-targeted antioxidant SkQ1 was applied to investigate the possible role of mitochondrial reactive oxygen species (ROS). CFTR silence was performed to detect the role of CFTR in high fructose-induced myocardial hypertrophy. ROS, glutathione (GSH), mitochondrial function and hypertrophic markers were measured. We confirmed that long-term high fructose diet caused cardiac hypertrophy and diastolic dysfunction and elevated mitochondrial ROS. However, SkQ1 administration prevented heart hypertrophy and mitochondrial oxidative stress. Cadiomyocytes incubated with fructose or H2O2 exhibited significantly increased cell areas but SkQ1 treatment ameliorated cardiomyocyte hypertrophy induced by high fructose or H2O2 in vitro. Those results revealed that the underlying mechanism for high fructose-induced heart hypertrophy was attributed to mitochondrial oxidative stress. Moreover, CFTR expression was decreased by high fructose intervention and CFTR silence resulted in an increase in mitochondrial ROS, which suggested high fructose diet affected mitochondrial oxidative stress by regulating CFTR expression. Electron transport chain impairment might be related to mitochondrial oxidative damage. In conclusion, our findings indicated that mitochondrial oxidative stress plays a central role in pathogenesis of high fructose-induced cardiac hypertrophy. High fructose decreases CFTR expression to regulate mitochondrial oxidative stress. PMID:27904687

  4. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection

    PubMed Central

    O’Hara, Samantha D.

    2016-01-01

    ABSTRACT Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. PMID:27803182

  5. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    DTIC Science & Technology

    2004-07-01

    coexpression of a constitutively active form of Notch1 in immortalized breast epithelial HMLE cells expressing low levels of oncogenic Ras rendered them...the Notch-Ras pathway interaction revealed that nuclear localization of Notch1 is essential for this cooperation. Dissection of Ras-pathways using the...activates Raf/MAPK pathway, formed efficient colonies with activated Notch1 . Interestingly, I found that expression of activated Notch1 rendered the

  6. The hepatitis B virus X protein downregulates NF-κB signaling pathways through decreasing the Notch signaling pathway in HBx-transformed L02 cells.

    PubMed

    Luo, Jing; Zhou, Haiyan; Wang, Fan; Xia, Xiumei; Sun, Qian; Wang, Ronghua; Cheng, Bin

    2013-05-01

    Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with Notch and NF-κB signaling. This study aimed to investigate the crosstalk between Notch and NF-κB pathways in HBx-related hepatocellular carcinoma. An HBx-transformed non-tumor hepatic cell line L02 (L02/HBx) was previously established. Immunofluorescence assays were performed to visualize HBx and the Notch intracellular domain (NICD) in cell nuclei. Co-immunoprecipitation assays were used to investigate physical interactions between HBx and components of the Notch signaling pathway (NICD and JAG1), NF-κB signaling pathway (p65 and p50) or IκBα. L02/HBx cells were treated with the Notch signal inhibitor DAPT or Notch1 siRNA to inhibit the Notch1 pathway. qRT-PCR was used to quantify the expression of the p65, p50 and IκBα genes. Protein expression changes in cytoplasm and nuclei after treatment with DAPT or Notch1 siRNA were analyzed by western blotting and EMSA assays. We found that HBx directly regulated Notch1 signaling, which cross-talked with the NF-κB pathway. Downregulation of Notch1 decreased the binding of NF-κB p65 to its target gene promoter, reduced NF-κB expression and enhanced IκBα expression. The results suggest that HBx functions through the Notch signaling pathway; Notch contributes to hepatocarcinogenesis partially by regulating the NF-κB pathway. Our findings provide new insights into the role of Notch and NF-κB signaling in the progression of hepatocellular carcinoma related to HBx.

  7. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    SciTech Connect

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  8. Modulation of Wnt/β-catenin signaling pathway by bioactive food components

    PubMed Central

    Tarapore, Rohinton S.; Siddiqui, Imtiaz A.; Mukhtar, Hasan

    2012-01-01

    The Wnt/β-catenin signaling pathway, one of the most conserved intercellular signaling cascade, is a known regulator of cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival and adhesion. Because aberrant Wnt/β-catenin signaling has been observed in a variety of human cancers including a majority of colorectal cancers, about half of prostate cancers and a third of melanomas, inhibitors of its complex signaling pathways are being investigated for therapy as well as chemoprevention of these cancers. During the last decade, several naturally occurring dietary agents have been shown to target intermediates in the Wnt/β-catenin signaling pathway. In this review, we highlight the current understanding of the Wnt/β-catenin signaling pathway and present an analysis of the key findings from laboratory studies on the effects of a panel of dietary agents against a variety of cancers. Promise of these agents for treating and preventing human cancer is then discussed. PMID:22198211

  9. Lgd regulates the activity of the BMP/Dpp signalling pathway during Drosophila oogenesis.

    PubMed

    Morawa, Kim Sara; Schneider, Markus; Klein, Thomas

    2015-04-01

    The tumour suppressor gene lethal (2) giant discs (lgd) is involved in endosomal trafficking of transmembrane proteins in Drosophila. Loss of function results in the ligand-independent activation of the Notch pathway in all imaginal disc cells and follicle cells. Analysis of lgd loss of function has largely been restricted to imaginal discs and suggests that no other signalling pathway is affected. The devotion of Lgd to the Notch pathway was puzzling given that lgd loss of function also affects trafficking of components of other signalling pathways, such as the Dpp (a Drosophila BMP) pathway. Moreover, Lgd physically interacts with Shrub, a fundamental component of the ESCRT trafficking machinery, whose loss of function results in the activation of several signalling pathways. Here, we show that during oogenesis lgd loss of function causes ectopic activation of the Drosophila BMP signalling pathway. This activation occurs in somatic follicle cells as well as in germline cells. The activation in germline cells causes an extra round of division, producing egg chambers with 32 instead of 16 cells. Moreover, more germline stem cells were formed. The lgd mutant cells are defective in endosomal trafficking, causing an accumulation of the type I Dpp receptor Thickveins in maturing endosomes, which probably causes activation of the pathway. Taken together, these results show that lgd loss of function causes various effects among tissues and can lead to the activation of signalling pathways other than Notch. They further show that there is a role for the endosomal pathway during oogenesis.

  10. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs.

    PubMed

    Rahim, Fakher; Allahmoradi, Hossein; Salari, Fatemeh; Shahjahani, Mohammad; Fard, Ali Dehghani; Hosseini, Seyed Ahmad; Mousakhani, Hadi

    2013-01-01

    Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.

  11. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    PubMed

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  12. Current loop signal conditioning: Practical applications

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1995-01-01

    This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature detectors. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.

  13. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    PubMed

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  14. Dissecting Cell-Fate Determination Through Integrated Mathematical Modeling of the ERK/MAPK Signaling Pathway.

    PubMed

    Shin, Sung-Young; Nguyen, Lan K

    2017-01-01

    The past three decades have witnessed an enormous progress in the elucidation of the ERK/MAPK signaling pathway and its involvement in various cellular processes. Because of its importance and complex wiring, the ERK pathway has been an intensive subject for mathematical modeling, which facilitates the unraveling of key dynamic properties and behaviors of the pathway. Recently, however, it became evident that the pathway does not act in isolation but closely interacts with many other pathways to coordinate various cellular outcomes under different pathophysiological contexts. This has led to an increasing number of integrated, large-scale models that link the ERK pathway to other functionally important pathways. In this chapter, we first discuss the essential steps in model development and notable models of the ERK pathway. We then use three examples of integrated, multipathway models to investigate how crosstalk of ERK signaling with other pathways regulates cell-fate decision-making in various physiological and disease contexts. Specifically, we focus on ERK interactions with the phosphoinositide-3 kinase (PI3K), c-Jun N-terminal kinase (JNK), and β-adrenergic receptor (β-AR) signaling pathways. We conclude that integrated modeling in combination with wet-lab experimentation have been and will be instrumental in gaining an in-depth understanding of ERK signaling in multiple biological contexts.

  15. Vital elements of the Wnt-Frizzled signaling pathway in the nervous system.

    PubMed

    Li, Faqi; Chong, Zhao Zhong; Maiese, Kenneth

    2005-10-01

    Wnt proteins are cysteine-rich glycosylated proteins named after the Drosophilia Wingless (Wg) and the mouse Int-1 genes that play a role in embryonic cell patterning, proliferation, differentiation, orientation, adhesion, survival, and programmed cell death (PCD). Wnt proteins involve at least two intracellular signaling pathways. One pathway controls target gene transcription through beta-catenin, generally referred to as the canonical pathway and a second pathway pertains to intracellular calcium (Ca(2+)) release which is termed the non-canonical or Wnt/ Ca(2+) pathway. The majority of Wnt proteins activate gene transcription through the canonical signaling pathway regulated by pathways that include the Frizzled transmembrane receptor and the co-receptor LRP-5/6, Dishevelled, glycogen synthase kinase-3beta (GSK-3beta), adenomatous polyposis coli (APC), and beta-catenin. In contrast, the non-canonical Wnt signaling pathway has two intracellular signaling cascades that consist of the Wnt/ Ca(2+) pathway with protein kinase C (PKC) and the Wnt/PCP pathway involving Rho/Rac small GTPase and Jun N-terminal kinase (JNK). Through a series of signaling pathways, Wnt proteins modulate cell development, proliferation, and cell fate. In regards to cell survival and fate through PCD, Wnt may be critical for the prevention of tissue pathology that involves cytokine and growth factor control during disorders such as neuropsychiatric disease, retinal disease, and Alzheimer's disease. Elucidation of the vital elements that shape and control the Wnt-Frizzled signaling pathway may provide significant prospects for the treatment of disorders of the nervous system.

  16. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    PubMed

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  17. IFNs-signaling effects on lung cancer: an up-to-date pathways-specific review.

    PubMed

    Galani, Vasiliki; Kastamoulas, Michalis; Varouktsi, Anna; Lampri, Evangeli; Mitselou, Antigoni; Arvanitis, Dimitrios L

    2016-07-14

    IFNs have found important applications in clinical medicine, including the treatment of lung malignancies. The biological effect of the IFN-receptor signaling is regulated essentially by three factors: the expression profile of the IFN itself, the profile of the receptor, and the expression of target genes. IFNs initiate their signaling by binding to specific receptors. The activated IFNs can directly induce gene transcription and/or multiple downstream signaling that both induce diverse cellular responses including the cell cycle arrest and the apoptosis in tumor cells. We provided evidence that IFN-γ enhances the pro cell death effects of Fas/CD95 in human neoplastic alveolar epithelial cell line, A549. We also found that p27 protein plays a pivotal role in the inducing cell death of IFNγ-CH-11-treated A549 cells, since it is involved in the Ras/Raf signaling pathway. This article discusses recent insights into these possible additional functions of IFNs in lung cancer treatment.

  18. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.

    PubMed

    Breitling, Rainer; Gilbert, David; Heiner, Monika; Orton, Richard

    2008-09-01

    Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach--qualitative Petri nets, and quantitative approaches--continuous Petri nets and ordinary differential equations (ODEs). We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present a number of novel computational tools that can help to explore alternative modular models in an easy and intuitive manner. These tools, which are based on Petri net theory, offer convenient ways of composing hierarchical ODE models, and permit a qualitative analysis of their behaviour. We illustrate the central concepts using signal transduction as our main example. The ultimate aim is to introduce a general approach that provides the foundations for a structured formal engineering of large-scale models of biochemical networks.

  19. microRNA regulation of Wnt signaling pathways in development and disease

    PubMed Central

    Song, Jia L.; Nigam, Priya; Tektas, Senel S.; Selva, Erica

    2015-01-01

    Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3′untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics. PMID:25843779

  20. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation

    PubMed Central

    Ma, Bin; Hottiger, Michael O.

    2016-01-01

    Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer. PMID:27713747

  1. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    PubMed

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  2. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways.

    PubMed

    Xing, Li-Zhi; Ni, Huai-Jun; Wang, Yu-Ling

    2017-03-13

    MAPK signaling pathways are crucial in regulating osteogenesis, a genetic disorder affecting the bones. Quercitrin, a type of flavonoid, is widely distributed in nature and involved in many pharmacological activities. But its osteoprotective functions and mechanism in osteoporosis are far from being understood clearly. In this paper, the MAPK upregulation was observed in the ovariectomy-induced bone loss. Quercitrin was found to downregulate MAPK signaling pathways and prevent the ovariectomy-induced deterioration of bone mineral density (BMD), trabecular microstructure, and bone mechanical characteristics. In this study, quercitrin was seen to prevent the progression of the postmenopausal osteoporosis among the rats, which may be mediated by the downregulated MAPK signaling pathways.

  3. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    PubMed

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  4. The Extract of Rhodobacter sphaeroides Inhibits Melanogenesis through the MEK/ERK Signaling Pathway

    PubMed Central

    Liu, Wen-Sheng; Kuan, Yu-Diao; Chiu, Kuo-Hsun; Wang, Wei-Kuang; Chang, Fu-Hsin; Liu, Chen-Hsun; Lee, Che-Hsin

    2013-01-01

    Reducing hyperpigmentation has been a big issue for years. Even though pigmentation is a normal mechanism protecting skin from UV-causing DNA damage and oxidative stress, it is still an aesthetic problem for many people. Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen™) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, we sought to investigate an anti-melanogenic signaling pathway in α-melanocyte stimulating hormone (α-MSH)-treated B16F10 melanoma cells and zebrafish. Treatment with Lycogen™ inhibited the cellular melanin contents and expression of melanogenesis-related protein, including microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Moreover, Lycogen™ reduced phosphorylation of MEK/ERK without affecting phosphorylation of p38. Meanwhile, Lycogen™ decreased zebrafish melanin expression in a dose-dependent manner. These findings establish Lycogen™ as a new target in melanogenesis and suggest a mechanism of action through the ERK signaling pathway. Our results suggested that Lycogen™ may have potential cosmetic usage in the future. PMID:23736765

  5. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.

    PubMed

    Chakraborty, Sayan; Njah, Kizito; Pobbati, Ajaybabu V; Lim, Ying Bena; Raju, Anandhkumar; Lakshmanan, Manikandan; Tergaonkar, Vinay; Lim, Chwee Teck; Hong, Wanjin

    2017-03-07

    The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM) cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  6. Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study.

    PubMed

    MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M

    2016-01-01

    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.

  7. Inference Method for Developing Mathematical Models of Cell Signaling Pathways Using Proteomic Datasets.

    PubMed

    Tian, Tianhai; Song, Jiangning

    2017-01-01

    The progress in proteomics technologies has led to a rapid accumulation of large-scale proteomic datasets in recent years, which provides an unprecedented opportunity and valuable resources to understand how living organisms perform necessary functions at systems levels. This work presents a computational method for designing mathematical models based on proteomic datasets. Using the mitogen-activated protein (MAP) kinase pathway as the test system, we first develop a mathematical model including the cytosolic and nuclear subsystems. A key step of modeling is to apply a genetic algorithm to infer unknown model parameters. Then the robustness property of mathematical models is used as a criterion to select appropriate rate constants from the estimated candidates. Moreover, quantitative information such as the absolute protein concentrations is used to further refine the mathematical model. The successful application of this inference method to the MAP kinase pathway suggests that it is a useful and powerful approach for developing accurate mathematical models to gain important insights into the regulatory mechanisms of cell signaling pathways.

  8. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    PubMed

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  9. The inositol phosphate/diacylglycerol signalling pathway in Trypanosoma cruzi.

    PubMed Central

    Docampo, R; Pignataro, O P

    1991-01-01

    Using [32P]Pi and [3H]inositol as precursors, we have detected the presence of phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, and their derivatives inositol phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate respectively, in Trypanosoma cruzi epimastigotes. Using digitonin-permeabilized cells it was possible to detect a stimulation in the formation of inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate as well as an increased generation of diacylglycerol in the presence of 1 mM-CaCl2. These results are consistent with the operation of a functional inositol phosphate/diacylglycerol pathway in T. cruzi, and constitute the first demonstration of the presence and activation of this pathway in a parasitic protozoan. These results also indicate that this pathway is conserved during evolution from lower to higher eukaryotic organisms. Images Fig. 1. PMID:2025225

  10. Along signal paths: an empirical gene set approach exploiting pathway topology

    PubMed Central

    Martini, Paolo; Sales, Gabriele; Massa, M. Sofia; Chiogna, Monica; Romualdi, Chiara

    2013-01-01

    Gene set analysis using biological pathways has become a widely used statistical approach for gene expression analysis. A biological pathway can be represented through a graph where genes and their interactions are, respectively, nodes and edges of the graph. From a biological point of view only some portions of a pathway are expected to be altered; however, few methods using pathway topology have been proposed and none of them tries to identify the signal paths, within a pathway, mostly involved in the biological problem. Here, we present a novel algorithm for pathway analysis clipper, that tries to fill in this gap. clipper implements a two-step empirical approach based on the exploitation of graph decomposition into a junction tree to reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it identifies within these pathways the signal paths having the greatest association with a specific phenotype. We test our approach on simulated and two real expression datasets. Our results demonstrate the efficacy of clipper in the identification of signal transduction paths totally coherent with the biological problem. PMID:23002139

  11. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    PubMed

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  12. Periorbital thermal signal extraction and applications.

    PubMed

    Shastri, Dvijesh; Tsiamyrtzis, Panagiotis; Pavlidis, Ioannis

    2008-01-01

    We propose a novel method that localizes the thermal footprint of the facial and ophthalmic arterial-venous complexes in the periorbital area. This footprint is used to extract the mean thermal signal over time (periorbital signal), which is a correlate of the blood supply to the ocular muscle. Previous work demonstrated that the periorbital signal is associated to autonomic responses and it changes significantly upon the onset of instantaneous stress. The present method enables accurate and consistent extraction of this signal. It aims to replace the heuristic segmentation approach that has been used in stress quantification thus far. Applications in computational psychology and particularly in deception detection are the first to benefit from this new technology. We tested the method on thermal videos of 39 subjects who faced stressful interrogation for a mock crime. The results show that the proposed approach has improved the deception classification success rate to 82%, which is 20% higher compared to the previous approach.

  13. Activation of Alternative Wnt Signaling Pathways in Human Mammary Gland and Breast Cancer Cells

    DTIC Science & Technology

    2006-06-01

    signalling, the antagonistic role of Wnt5a on canonical Wnt signalling, and the fact that the genes regulated by either of these pathways differ in...differentiation, apoptosis, and migration. Wnt/Frizzled signaling is now linked to human hereditary disorders with retinal vascular defects, implicating...www.physiologyonline.org fact that the role of FrzA in vascular biology is not well understood. Wnt Signaling Comes into Play in Human Vascular

  14. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  15. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    PubMed Central

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway. Images PMID:8157002

  16. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke.

    PubMed

    Sun, Jing; Nan, Guangxian

    2016-05-01

    Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.

  17. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  18. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics.

    PubMed

    Wozney, Jocelyn L; Antonarakis, Emmanuel S

    2014-09-01

    Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.

  19. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation

    PubMed Central

    Li, Zhenjian; Chen, Yong; Liu, Dong; Zhao, Nan; Cheng, Hao; Ren, Hengfei; Guo, Ting; Niu, Huanqing; Zhuang, Wei; Wu, Jinglan; Ying, Hanjie

    2015-01-01

    Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae. PMID:25755652

  20. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation.

    PubMed

    Li, Zhenjian; Chen, Yong; Liu, Dong; Zhao, Nan; Cheng, Hao; Ren, Hengfei; Guo, Ting; Niu, Huanqing; Zhuang, Wei; Wu, Jinglan; Ying, Hanjie

    2015-01-01

    Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae.

  1. Teaching the Toolkit: A Laboratory Series to Demonstrate the Evolutionary Conservation of Metazoan Cell Signaling Pathways

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2008-01-01

    A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…

  2. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes

    PubMed Central

    Gazave, Eve; Lapébie, Pascal; Richards, Gemma S; Brunet, Frédéric; Ereskovsky, Alexander V; Degnan, Bernard M; Borchiellini, Carole; Vervoort, Michel; Renard, Emmanuelle

    2009-01-01

    Background Of the 20 or so signal transduction pathways that orchestrate cell-cell interactions in metazoans, seven are involved during development. One of these is the Notch signalling pathway which regulates cellular identity, proliferation, differentiation and apoptosis via the developmental processes of lateral inhibition and boundary induction. In light of this essential role played in metazoan development, we surveyed a wide range of eukaryotic genomes to determine the origin and evolution of the components and auxiliary factors that compose and modulate this pathway. Results We searched for 22 components of the Notch pathway in 35 different species that represent 8 major clades of eukaryotes, performed phylogenetic analyses and compared the domain compositions of the two fundamental molecules: the receptor Notch and its ligands Delta/Jagged. We confirm that a Notch pathway, with true receptors and ligands is specific to the Metazoa. This study also sheds light on the deep ancestry of a number of genes involved in this pathway, while other members are revealed to have a more recent origin. The origin of several components can be accounted for by the shuffling of pre-existing protein domains, or via lateral gene transfer. In addition, certain domains have appeared de novo more recently, and can be considered metazoan synapomorphies. Conclusion The Notch signalling pathway emerged in Metazoa via a diversity of molecular mechanisms, incorporating both novel and ancient protein domains during eukaryote evolution. Thus, a functional Notch signalling pathway was probably present in Urmetazoa. PMID:19825158

  3. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori.

    PubMed

    Liu, Wei; Liu, Jiabin; Lu, Yahong; Gong, Yongchang; Zhu, Min; Chen, Fei; Liang, Zi; Zhu, Liyuan; Kuang, Sulan; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2015-06-01

    The JAK/STAT, Toll, Imd, and RNAi pathways are the major signaling pathways associated with insect innate immunity. To explore the different immune signaling pathways triggered in response to pathogenic micro-organism infections in the silkworm, Bombyx mori, the expression levels of the signal transducer and activator of transcription (BmSTAT), spatzle-1 (Bmspz-1), peptidoglycan-recognition protein LB (BmPGRP-LB), peptidoglycan-recognition protein LE (BmPGRP-LE), argonaute 2 (Bmago2), and dicer-2 (Bmdcr2) genes after challenge with Escherichia coli (E. coli), Serratiamarcescens (Sm), Bacillus bombyseptieus (Bab), Beauveriabassiana (Beb), nucleopolyhedrovirus (BmNPV), cypovirus (BmCPV), bidensovirus (BmBDV), or Nosemabombycis (Nb) were determined using real-time PCR. We found that the JAK/STAT pathway could be activated by challenge with BmNPV and BmBDV, the Toll pathway could be most robustly induced by challenge with Beb, the Imd pathway was mainly activated in response to infection by E. coli and Sm, and the RNAi pathway was not activated by viral infection, but could be triggered by some bacterial infections. These findings yield insights into the immune signaling pathways activated in response to different pathogenic micro-organisms in the silkworm.

  4. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia.

    PubMed

    Rink, Jochen C; Gurley, Kyle A; Elliott, Sarah A; Sánchez Alvarado, Alejandro

    2009-12-04

    The Hedgehog (Hh) signaling pathway plays multiple essential roles during metazoan development, homeostasis, and disease. Although core protein components are highly conserved, the variations in Hh signal transduction mechanisms exhibited by existing model systems (Drosophila, fish, and mammals) are difficult to understand. We characterized the Hh pathway in planarians. Hh signaling is essential for establishing the anterior/posterior axis during regeneration by modulating wnt expression. Moreover, RNA interference methods to reduce signal transduction proteins Cos2/Kif27/Kif7, Fused, or Iguana do not result in detectable Hh signaling defects; however, these proteins are essential for planarian ciliogenesis. Our study expands the understanding of Hh signaling in the animal kingdom and suggests an ancestral mechanistic link between Hh signaling and the function of cilia.

  5. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes

    PubMed Central

    Oschmann, Franziska; Mergenthaler, Konstantin; Obermayer, Klaus

    2017-01-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal. PMID:28192424

  6. Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential

    PubMed Central

    Huang, He; Wang, Hu; Figueiredo-Pereira, Maria E.

    2013-01-01

    The cAMP-signaling pathway has been under intensive investigation for decades. It is a wonder that such a small simple molecule like cAMP can modulate a vast number of diverse processes in different types of cells. The ubiquitous involvement of cAMP-signaling in a variety of cellular events requires tight spatial and temporal control of its generation, propagation, compartmentalization, and elimination. Among the various steps of the cAMP-signaling pathway, G-protein coupled receptors, adenylate cyclases, phosphodiesterases, the two major cAMP targets, i.e. protein kinase A and exchange protein activated by cAMP, as well as the A-kinase anchoring proteins, are potential targets for drug development. Herein we review the recent progress on the regulation and manipulation of different steps of the cAMP-signaling pathway. We end by focusing on the emerging role of cAMP-signaling in modulating protein degradation via the ubiquitin/proteasome pathway. New discoveries on the regulation of the ubiquitin/proteasome pathway by cAMP-signaling support the development of new therapeutic approaches to prevent proteotoxicity in chronic neurodegenerative disorders and other human disease conditions associated with impaired protein turnover by the ubiquitin/proteasome pathway and the accumulation of ubiquitin-protein aggregates. PMID:23686612

  7. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways

    PubMed Central

    Lee, Ho-Jin; Shi, De-Li; Zheng, Jie J

    2015-01-01

    The intracellular signaling molecule Dishevelled (Dvl) mediates canonical and non-canonical Wnt signaling via its PDZ domain. Different pathways diverge at this point by a mechanism that remains unclear. Here we show that the peptide-binding pocket of the Dvl PDZ domain can be occupied by Dvl's own highly conserved C-terminus, inducing a closed conformation. In Xenopus, Wnt-regulated convergent extension (CE) is readily affected by Dvl mutants unable to form the closed conformation than by wild-type Dvl. We also demonstrate that while Dvl cooperates with other Wnt pathway elements to activate canonical Wnt signaling, the open conformation of Dvl more effectively activates Jun N-terminal kinase (JNK). These results suggest that together with other players in the Wnt signaling pathway, the conformational change of Dvl regulates Wnt stimulated JNK activity in the non-canonical Wnt signaling. DOI: http://dx.doi.org/10.7554/eLife.08142.001 PMID:26297804

  8. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  9. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways

    PubMed Central

    Shi, Shaolin; Stanley, Pamela

    2003-01-01

    Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-Jκ, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals. PMID:12697902

  10. Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment.

    PubMed

    Ellert-Miklaszewska, Aleksandra; Poleszak, Katarzyna; Kaminska, Bozena

    2017-01-01

    Short peptides have many advantages, such as low molecular weight, selectivity for a specific target, organelles or cells with minimal toxicity. We describe properties of short peptides, which interfere with communication networks in tumor cells and within microenvironment of malignant gliomas, the most common brain tumors. We focus on ligand/receptor axes and intracellular signaling pathways critical for gliomagenesis that could be targeted with interfering peptides. We review structures and efficacy of organelle-specific and cell-penetrating peptides and describe diverse chemical modifications increasing proteolytic stability and protecting synthetic peptides against degradation. We report results of application of short peptides in glioma therapy clinical trials, their rises and falls. The most advanced examples of therapeutics such as short interfering peptides combined with cell-penetrating peptides that show good effectiveness in disease models are presented. It is foreseen that identification of peptides with better clinical properties may improve their success rates in clinical trials.

  11. Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis

    PubMed Central

    Hou, Jingyi; Ouyang, Yi; Deng, Haiquan; Chen, Zhong; Song, Bin; Xie, Zhongyu; Wang, Peng; Li, Jinteng

    2016-01-01

    Synovium-derived mesenchymal stromal cells (SMSCs) may play an important role in the pathogenesis of rheumatoid arthritis (RA) and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs). Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications. PMID:27642302

  12. Signalling pathways that control vertebrate haematopoietic stem cell specification

    PubMed Central

    Clements, Wilson K.; Traver, David

    2014-01-01

    Haematopoietic stem cells (HSCs) are tissue-specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Clinically, HSCs form the foundation of transplantation-based therapies for leukaemias and congenital blood disorders. Researchers have long been interested in understanding the normal signalling mechanisms that specify HSCs in the embryo, in part because recapitulating these requirements in vitro might provide a means to generate immune-compatible HSCs for transplantation. Recent embryological work has demonstrated the existence of previously unknown signalling requirements. Moreover, it is now clear that gene expression in the nearby somite is integrally involved in regulating the transition of the embryonic endothelium to a haemogenic fate. Here, we review current knowledge of the intraembryonic signals required for the specification of HSCs in vertebrates. PMID:23618830

  13. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways

    PubMed Central

    Ye, Huaxun; Liu, Sanzhen; Tang, Buyun; Chen, Jiani; Xie, Zhouli; Nolan, Trevor M.; Jiang, Hao; Guo, Hongqing; Lin, Hung-Ying; Li, Lei; Wang, Yanqun; Tong, Hongning; Zhang, Mingcai; Chu, Chengcai; Li, Zhaohu; Aluru, Maneesha; Aluru, Srinivas; Schnable, Patrick S.; Yin, Yanhai

    2017-01-01

    Brassinosteroids (BRs) regulate plant growth and stress responses via the BES1/BZR1 family of transcription factors, which regulate the expression of thousands of downstream genes. BRs are involved in the response to drought, however the mechanistic understanding of interactions between BR signalling and drought response remains to be established. Here we show that transcription factor RD26 mediates crosstalk between drought and BR signalling. When overexpressed, BES1 target gene RD26 can inhibit BR-regulated growth. Global gene expression studies suggest that RD26 can act antagonistically to BR to regulate the expression of a subset of BES1-regulated genes, thereby inhibiting BR function. We show that RD26 can interact with BES1 protein and antagonize BES1 transcriptional activity on BR-regulated genes and that BR signalling can also repress expression of RD26 and its homologues and inhibit drought responses. Our results thus reveal a mechanism coordinating plant growth and drought tolerance. PMID:28233777

  14. No-dependent signaling pathways in unloaded skeletal muscle

    PubMed Central

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle. PMID:26582991

  15. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments.

  16. Regulation of PCP by the Fat signaling pathway

    PubMed Central

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  17. Identification of Crosstalk between Phosphoprotein Signaling Pathways in RAW 264.7 Macrophage Cells

    PubMed Central

    Gupta, Shakti; Maurya, Mano Ram; Subramaniam, Shankar

    2010-01-01

    Signaling pathways mediate the effect of external stimuli on gene expression in cells. The signaling proteins in these pathways interact with each other and their phosphorylation levels often serve as indicators for the activity of signaling pathways. Several signaling pathways have been identified in mammalian cells but the crosstalk between them is not well understood. Alliance for Cellular Signaling (AfCS) has measured time-course data in RAW 264.7 macrophage cells on important phosphoproteins, such as the mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STATs), in single- and double-ligand stimulation experiments for 22 ligands. In the present work, we have used a data-driven approach to analyze the AfCS data to decipher the interactions and crosstalk between signaling pathways in stimulated macrophage cells. We have used dynamic mapping to develop a predictive model using a partial least squares approach. Significant interactions were selected through statistical hypothesis testing and were used to reconstruct the phosphoprotein signaling network. The proposed data-driven approach is able to identify most of the known signaling interactions such as protein kinase B (Akt) → glycogen synthase kinase 3α/β (GSKα/β) etc., and predicts potential novel interactions such as P38 → RSK and GSK → ezrin/radixin/moesin. We have also shown that the model has good predictive power for extrapolation. Our novel approach captures the temporal causality and directionality in intracellular signaling pathways. Further, case specific analysis of the phosphoproteins in the network has led us to propose hypothesis about inhibition (phosphorylation) of GSKα/β via P38. PMID:20126526

  18. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway.

    PubMed

    Fuentes, Eduardo N; Pino, Katherine; Navarro, Cristina; Delgado, Iselys; Valdés, Juan Antonio; Molina, Alfredo

    2013-12-01

    Myostatin (MSTN) is the main negative regulator of muscle growth and development in vertebrates. In fish, little is known about the molecular mechanisms behind how MSTN inactivation triggers skeletal muscle enhancement, particularly regarding the signaling pathways involved in this process. Moreover, there have not been reports on the biotechnological applications of MSTN and its signal transduction. In this context, zebrafish underwent compensatory growth using fasting and refeeding trials, and MSTN activity was inactivated with dominant negative LAPD76A recombinant proteins during the refeeding period, when a rapid, compensatory muscle growth was observed. Treated fish displayed an overcompensation of growth characterized by higher muscle hypertrophy and growth performance than constantly fed, control fish. Treatment with LAPD76A recombinant proteins triggered inactivation of the SMAD signaling pathway in skeletal muscle, the main signal transduction used by MSTN to achieve its biological actions. Therefore, transient inactivation of MSTN during the compensatory growth of zebrafish led to a decrease in the SMAD signaling pathway in muscle, triggering muscle hypertrophy and finally improving growth performance, thus, zebrafish achieved an overcompensation of growth. The present study shows an attractive strategy for improving muscle growth in a fish species by mixing a classical strategy, such as compensatory growth, and a biotechnological approach, such as the use of recombinant proteins for inhibiting the biological actions of MSTN. The mix of both strategies may represent a method that could be applied in order to improve growth in commercial fish of interest for aquaculture.

  19. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination.

    PubMed

    Oracz, Krystyna; Karpiński, Stanisław

    2016-01-01

    Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant's photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life.

  20. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling.

    PubMed

    Liu, Chia-Chen; Kanekiyo, Takahisa; Roth, Barbara; Bu, Guojun

    2014-10-03

    Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.

  1. Stress-Related Signaling Pathways in Lethal and Non-Lethal Prostate Cancer

    PubMed Central

    Valdimarsdóttir, Unnur; Fang, Fang; Gerke, Travis; Tyekucheva, Svitlana; Fiorentino, Michelangelo; Lambe, Mats; Sesso, Howard D.; Sweeney, Christopher J.; Wilson, Kathryn M.; Giovannucci, Edward L.; Loda, Massimo

    2015-01-01

    Purpose Recent data suggest that neuroendocrine signaling may influence progression in some cancers. We aimed to determine whether genes within the five major stress-related signaling pathways are differentially expressed in tumor tissue when comparing prostate cancer patients with lethal and non-lethal disease. Experimental Design We measured mRNA expression of 51 selected genes involved in predetermined stress-related signaling pathways (adrenergic, glucocorticoid, dopaminergic, serotoninergic, and muscarinic systems) in tumor tissue and normal prostate tissue collected from prostate cancer patients in the Physicians’ Health Study (n=150; n=82 with normal) and the Health Professionals Follow-Up Study (n=254; n=120 with normal). We assessed differences in pathway expression in relation to prostate cancer lethality as the primary outcome, and to biomarkers as secondary outcomes. Results Differential mRNA expression of genes within the adrenergic (p=0.001), glucocorticoid (p<0.0001), serotoninergic (p=0.0019), and muscarinic (p=0.0045) pathways in tumor tissue was associated with the risk of lethality. The adrenergic pathway was also statistically significant (p=0.001) when comparing against differential expression of genes not involved in the pathways. In adjacent normal prostate tissue, none of the pathways was clearly differentially expressed between lethal and non-lethal prostate cancer. The glucocorticoid and adrenergic pathways were associated with cell proliferation, while the glucocorticoid pathway was additionally associated with angiogenesis and perineural invasion. Conclusions Our study suggests that stress-related signaling pathways, particularly the adrenergic and glucocorticoid, may be dysregulated in the tumors of men whose prostate cancer proves to be lethal, and motivates further investigation of these pathways in functional studies. PMID:26490316

  2. Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer.

    PubMed

    Lusk, Jay B; Lam, Vanessa Y M; Tolwinski, Nicholas S

    2017-02-07

    EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental pathway regulating terminal and dorsal-ventral patterning along with many other aspects of embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila embryogenesis focusing on current uncertainties in the field and areas for future study. This review provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer.

  3. Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer

    PubMed Central

    Lusk, Jay B.; Lam, Vanessa Y. M.; Tolwinski, Nicholas S.

    2017-01-01

    EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental pathway regulating terminal and dorsal-ventral patterning along with many other aspects of embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila embryogenesis focusing on current uncertainties in the field and areas for future study. This review provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer. PMID:28178204

  4. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway.

    PubMed

    Le Sage, Valerie; Cinti, Alessandro; Amorim, Raquel; Mouland, Andrew J

    2016-05-24

    The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs.

  5. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development.

    PubMed

    Walton, Katherine D; Croce, Jenifer C; Glenn, Thomas D; Wu, Shu-Yu; McClay, David R

    2006-12-01

    The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.

  6. Elucidation of the mTOR Pathway and Therapeutic Applications in Dermatology.

    PubMed

    Salido-Vallejo, R; Garnacho-Saucedo, G; Vélez, A

    2016-06-01

    The member of the phosphatidylinositol 3-kinase family, mammalian target of rapamycin, is involved in modulating inflammatory response and regulating cellular processes associated with growth, differentiation, and angiogenesis. Recent years have seen major advances in our understanding of the mammalian target of rapamycin signaling pathway and the implication of this pathway in multiple genetic and inflammatory diseases and tumors. The development of the mammalian target of rapamycin inhibitors has given rise to new treatment approaches that have led to substantially improved outcomes in many diseases. In this article, we review the role of the mammalian target of rapamycin signaling pathway in the different skin diseases with which it has been associated, examine the therapeutic applications of drugs targeting this pathway, and provide an overview of current trends and future directions in research.

  7. Paradigms and paradox in the ethylene signaling pathway and interaction network.

    PubMed

    Zhao, Qiong; Guo, Hong-Wei

    2011-07-01

    Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, EIL1, EIN2, ETR2, EBF1/EBF2, and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/EIL1 act as a convergence point in the ethylene-initiated signaling network.

  8. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway.

    PubMed

    Cho, Gun-Sik; Park, Dong-Seok; Choi, Sun-Cheol; Han, Jin-Kwan

    2017-01-15

    During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.

  9. A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster.

    PubMed Central

    Huang, A M; Rubin, G M

    2000-01-01

    Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila. PMID:11063696

  10. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy.

    PubMed

    Tang, Xiaoli; Deng, Libin; Chen, Qi; Wang, Yao; Xu, Rong; Shi, Chao; Shao, Jia; Hu, Guohui; Gao, Meng; Rao, Hai; Luo, Shiwen; Lu, Quqin

    2015-05-01

    Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells. Microarray analysis revealed that differentially expressed genes (DEGs) in human cancer cells are enriched in autophagy pathway in response to the inhibition of Hh signaling. Interestingly, inhibition of Hh signaling induced autophagy, whereas activation of Hh signaling by ligand treatments prevented the induction of autophagy. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed cytotoxicity induced by inhibition of Hh signaling. Finally, in autophagy deficient cells, cytotoxic effect triggered by inhibition of Hh signaling was partially reversed, indicating the modulation of autophagy by Hh signaling is autophagy-specific. These results suggest that inhibition of Hh signaling impedes cancer cell proliferation in part through induction of autophagy.

  11. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development.

    PubMed

    Yuan, Guohua; Yang, Guobin; Zheng, Yuqian; Zhu, Xiaojing; Chen, Zhi; Zhang, Zunyi; Chen, YiPing

    2015-01-01

    BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.

  12. miR-577 inhibits glioblastoma tumor growth via the Wnt signaling pathway.

    PubMed

    Zhang, Weiguang; Shen, Chen; Li, Chenguang; Yang, Guang; Liu, Huailei; Chen, Xin; Zhu, Dan; Zou, Huichao; Zhen, Yunbo; Zhang, Daming; Zhao, Shiguang

    2016-05-01

    microRNAs (miRNAs) are commonly altered in glioblastoma. Publicly available algorithms suggest the Wnt pathway is a potential target of miR-577 and the Wnt pathway is commonly altered in glioblastoma. Glioblastoma has not been previously evaluated for miR-577 expression. Glioblastoma tumors and cell lines were evaluated for their expression of miR-577. Cell lines were transfected with miR-577, miR-577-mutant, or control mimics to evaluate the effect of miR-577 expression on cell proliferation in vitro and in an animal model. Wnt pathway markers were also evaluated for their association with miR-577 expression. miR-577 expression was decreased in 33 of 40 (82.5%) glioblastoma tumors and 5 of 6 glioblastoma cell lines. miR-577 expression correlated negatively with cell growth and cell viability. miR-577 down-regulation was associated with increased expression of the Wnt signaling pathway genes lipoprotein receptor-related protein (LRP) 6 (LRP6) and β-catenin. Western blot analysis confirmed decreased expression of the Wnt signaling pathway genes Axin2, c-myc, and cyclin D1 in miR-577 transfected cells. miR-577 expression is down-regulated in glioblastoma. miR-577 directly targets Wnt signaling pathway components LRP6 and β-catenin. miR-577 suppresses glioblastoma multiforme (GBM) growth by regulating the Wnt signaling pathway.

  13. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement.

    PubMed

    Zhai, Haifeng; Li, Yanqin; Wang, Xi; Lu, Lin

    2008-02-01

    Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction.

  14. Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239

  15. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  16. Balancing act: matching growth with environment by the TOR signalling pathway.

    PubMed

    Henriques, Rossana; Bögre, László; Horváth, Beátrix; Magyar, Zoltán

    2014-06-01

    One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures.

  17. Small molecule inhibitors of the hedgehog signaling pathway for the treatment of cancer.

    PubMed

    Yun, Jeong In; Kim, Hyoung Rae; Park, Haeil; Kim, Sang Kyum; Lee, Jongkook

    2012-08-01

    Over the past decade, the Hedgehog signaling pathway has attracted considerable interest because the pathway plays important roles in the tumorigenesis of several types of cancer as well as developmental processes. It has also been observed that Hedgehog signaling regulates the proliferation and self-renewal of cancer stem cells. A great number of Hedgehog pathway inhibitors have been discovered through small molecule screens and subsequent medicinal chemistry efforts. Among the inhibitors, several Smo antagonists have reached the clinical trial phase. It has been proved that the inhibition of Hedgehog signaling with Smo antagonists is beneficial to cancer patients with basal cell carcinoma and medulloblastoma. In this review, we provide an overview of Hedgehog pathway inhibitors with focusing on the preclinical and/or clinical efficacy and molecular mechanisms of these inhibitors.

  18. Targeting the PDGF signaling pathway in tumor treatment.

    PubMed

    Heldin, Carl-Henrik

    2013-12-20

    Platelet-derived growth factor (PDGF) isoforms and PDGF receptors have important functions in the regulation of growth and survival of certain cell types during embryonal development and e.g. tissue repair in the adult. Overactivity of PDGF receptor signaling, by overexpression or mutational events, may drive tumor cell growth. In addition, pericytes of the vasculature and fibroblasts and myofibroblasts of the stroma of solid tumors express PDGF receptors, and PDGF stimulation of such cells promotes tumorigenesis. Inhibition of PDGF receptor signaling has proven to useful for the treatment of patients with certain rare tumors. Whether treatment with PDGF/PDGF receptor antagonists will be beneficial for more common malignancies is the subject for ongoing studies.

  19. Alternate signalling pathways from the interleukin-2 receptor.

    PubMed

    Ellery, Jonathan M; Nicholls, Peter J

    2002-02-01

    Interleukin-2 (IL-2) plays a major role in the proliferation of cell populations during an immune reaction. The beta(c) and gamma(c) subunits of the IL-2 receptor (IL-2R) are sufficient and necessary for signal transduction. Despite lacking known catalytic domains, receptor engagement leads to the activation of a diverse array protein tyrosine kinases (PTKs). In resting or anergised T cells, Jak3 is not activated. Signals arising from the PROX domain of the gamma(c) subunit activate p56(lck) (lck) leading to the induction of anti-apoptotic mechanisms. When Jak3 is activated, in primed T cells, other PTKs predominantly mediate the induction of anti-apoptotic mechanisms and drive cellular proliferation. This review intends to suggest a role for these differences within the context of the immune system.

  20. Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development

    PubMed Central

    Ohazama, Atsushi; Johnson, Eric B.; Ota, Masato S.; Choi, Hong J.; Porntaveetus, Thantrira; Oommen, Shelly; Itoh, Nobuyuki; Eto, Kazuhiro; Gritli-Linde, Amel; Herz, Joachim; Sharpe, Paul T.

    2008-01-01

    The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway. PMID:19116665

  1. [Dual-role regulations of canonical Wnt/beta-catenin signaling pathway].

    PubMed

    Liu, Yang; Zhang, Chen-guang; Zhou, Chun-yan

    2010-04-18

    In recent years, Wnt/beta-catenin signaling has been identified as a key player in embryogenesis and human diseases. Canonical Wnt signaling pathway is controlled by a variety of classic molecules like Wnt, beta-catenin, Axin, APC, GSK-3beta and CK1, which interact and coordinate to regulate the expressions of cell signaling molecules. The latest evidences suggest that some components of the Wnt/beta-catenin signaling, like APC, GSK-3beta, CK1, Dkk2 and WISE, play dual roles different from what they have been thought previously. Here we reviewed some recent discoveries on the canonical Wnt/beta-catenin signaling pathway to provide some new ideas and principles for signaling transduction studies.

  2. Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum.

    PubMed

    van Vliet, Alexander R; Garg, Abhishek D; Agostinis, Patrizia

    2016-07-01

    The endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+ signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+ homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication.

  3. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    DTIC Science & Technology

    2005-07-01

    proteins are activated upon binding to ligands of the Delta/Serrate family. In previous experiments I had found that activated allele of Notch1 cooperates...breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tumorigenic behavior. 15. SUBJECT TERMS Notch, Ras, signaling, transformation, tumorigenesis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  4. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination

    PubMed Central

    Oracz, Krystyna; Karpiński, Stanisław

    2016-01-01

    Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant’s photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life. PMID:27379144

  5. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

    PubMed Central

    Li, Jianmei

    2016-01-01

    Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs) is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from mesenchymal progenitor cells to their terminal maturation of hypertrophic chondrocytes, including bone morphogenetic proteins (BMPs), SRY-related high-mobility group-box gene 9 (Sox9), parathyroid hormone-related peptide (PTHrP), Indian hedgehog (Ihh), fibroblast growth factor receptor 3 (FGFR3), and β-catenin. Except for these molecules, other factors such as adenosine, O2 tension, and reactive oxygen species (ROS) also have a vital role in cartilage formation and chondrocyte maturation. Here, we outlined the complex transcriptional network and the function of key factors in this network that determine and regulate the genetic program of chondrogenesis and chondrocyte differentiation. PMID:28074096

  6. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia.

    PubMed

    Penny, Morgan K; Finco, Isabella; Hammer, Gary D

    2017-04-15

    The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis.

  7. [Advance studies of Slit-Robo signal pathway and its roles in ocular neovascularisation].

    PubMed

    Kong, Yichun; Zhao, Kanxing

    2014-05-01

    The migration and patterning of axons and blood vessels share similar guidance mechanisms. Slits and their Roundabout (Robo) receptors were initially characterized as repulsive guidance cues for neuronal axons and mediate the migration of neuronal precursor cells during neural development. In recent years, the research of Slit/Robo signal pathway on neovascularization has become one of hot topics. This review will focus on the role of Slit/Robo signal pathway in ocular neovascularization to promote the research of Slit/Robo signaling on ophthalmology.

  8. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    PubMed

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  9. Teaching resources. Introduction: Overview of pathways and networks and GPCR signaling.

    PubMed

    Iyengar, Ravi

    2005-02-08

    This Teaching Resource provides the overview to the course "Cell Signaling Systems: A Course for Graduate Students" and lays out the general principles that can be deduced from the current understanding of the organization of cell signaling pathways and networks and how information flows through these pathways and networks. In addition, the lecture provides an overview of G protein-coupled receptor (GPCR) signaling. A description of the lecture, along with a set of slides (http://stke.sciencemag.org/cgi/content/full/sigtrans;2005/270/tr4/DC1) used to present this information, is provided.

  10. Sunlight UV-induced skin cancer relies upon activation of the p38α signaling pathway.

    PubMed

    Liu, Kangdong; Yu, Donghoon; Cho, Yong-Yeon; Bode, Ann M; Ma, Weiya; Yao, Ke; Li, Shengqing; Li, Jixia; Bowden, G Tim; Dong, Ziming; Dong, Zigang

    2013-04-01

    The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis, and treatment. Here, we report parallel protein kinase array studies aimed at determining the dominant signaling pathway involved in SUV irradiation. Our results indicated that the p38-related signal transduction pathway was dramatically affected by SUV irradiation. SUV (60 kJ UVA/m(2)/3.6 kJ UVB/m(2)) irradiation stimulates phosphorylation of p38α (MAPK14) by 5.78-fold, MSK2 (RPS6KA4) by 6.38-fold, and HSP27 (HSPB1) by 34.56-fold compared with untreated controls. By investigating the tumorigenic role of SUV-induced signal transduction in wild-type and p38 dominant-negative (p38 DN) mice, we found that p38 blockade yielded fewer and smaller tumors. These results establish that p38 signaling is critical for SUV-induced skin carcinogenesis.

  11. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    PubMed

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  12. Signaling Through the PI 3-K, Akt, and SGK Pathway in Breast Cancer Progression

    DTIC Science & Technology

    2011-10-01

    ANSI Std. Z39.18 The aggressive behavior of malignant breast cancer is determined by a complex array of signaling pathways that regulate cell...Akt signaling promotes cancer progression. Many of the enzymes that regulate PI 3-K signaling are frequently mutated in human breast cancer , thereby...K, PIK3CA, is the most frequently mutated oncogene in breast cancer . However, recent studies have demonstrated that distinct Akt isoforms can either

  13. The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators.

    PubMed

    Teo, Jia-Ling; Kahn, Michael

    2010-09-30

    Wnt signaling pathways play divergent roles during development, normal homeostasis and disease. The responses that result from the activation of the pathway control both proliferation and differentiation. Tight regulation and controlled coordination of the Wnt signaling cascade is required to maintain the balance between proliferation and differentiation. The non-redundant roles of the coactivator proteins CBP and p300, within the context of Wnt signaling are discussed. We highlight their roles as integrators of the various inputs that a cell receives to elicit the correct and coordinated response. We propose that essentially all cellular information - i.e. from other signaling pathways, nutrient levels, etc. - is funneled down into a choice of coactivators usage, either CBP or p300, by their interacting partner beta-catenin (or catenin-like molecules in the absence of beta-catenin) to make the critical decision to either remain quiescent, or once entering cycle to proliferate without differentiation or to initiate the differentiation process.

  14. Genes that integrate multiple adipogenic signaling pathways in human mesenchymal stem cells.

    PubMed

    Ito, Tomoya; Tsuruta, So; Tomita, Koki; Kikuchi, Kunio; Yokoi, Takahide; Aizawa, Yasunori

    2011-06-17

    Adipogenesis is a well-characterized cell differentiation process. A large body of evidence has revealed the core transcription factors and signaling pathways that govern adipogenesis, but cross-talks between these cellular signals and its functional consequences have not been thoroughly investigated. We, therefore, sought to identify genes that are regulated by multiple signaling pathways during adipogenesis of human mesenchymal stem cells. Focusing on the early stage of adipogenesis, microarray analysis and quantitative RT-PCR identified 12 genes whose transcription levels were dramatically affected by the complete adipogenic induction cocktail but not by the cocktail's individual components. Expression kinetics of these genes indicate diverse mechanisms of transcriptional regulation during adipogenesis. Functional relationships between these genes and adipogenic differentiation were frequently unknown. This study thus provided novel adipogenic gene candidates that likely mediate communications among multiple signaling pathways within human mesenchymal stem cells.

  15. Andrographolide inhibits melanoma tumor growth by inactivating the TLR4/NF-κB signaling pathway.

    PubMed

    Zhang, Qian-Qian; Zhou, Da-Lei; Ding, Yi; Liu, Hong-Ying; Lei, Yan; Fang, Hai-Yan; Gu, Qu-Liang; He, Xiao-Dong; Qi, Cui-Ling; Yang, Yi; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Wu, Xiao-Yun; Yang, Xuesong; Li, Wei-Dong; Wang, Li-Jing

    2014-12-01

    The TLR4/NF-κB signaling pathway plays a critical role in tumor progression. Andrographolide (Andro) has been reported to have anticancer activity in multiple types of cancer. However, the pharmacological activities of Andro in melanoma are not completely understood. In this study, we defined the anticancer effects of Andro in melanoma and elucidated its potential mechanisms of action. Our experiments showed that Andro significantly inhibited melanoma tumor growth and metastasis by inducing cell cycle arrest and apoptosis. In addition, Andro significantly inhibited the TLR4/NF-κB signaling pathway. Furthermore, the inactivation of TLR4/NF-κB signaling inhibited the mRNA and protein expression of CXCR4 and Bcl-6, which are antitumor genes. This work provides evidence that the TLR4/NF-κB signaling pathway is a potential therapeutic target and may also be indispensable in the Andro-mediated anticancer effect in melanoma.

  16. Regulation of Smoothened Trafficking and Hedgehog Signaling by the SUMO Pathway.

    PubMed

    Ma, Guoqiang; Li, Shuang; Han, Yuhong; Li, Shuangxi; Yue, Tao; Wang, Bing; Jiang, Jin

    2016-11-21

    Hedgehog (Hh) signaling plays a central role in development and diseases. Hh activates its signal transducer and GPCR-family protein Smoothened (Smo) by inducing Smo phosphorylation, but whether Smo is activated through other post-translational modifications remains unexplored. Here we show that sumoylation acts in parallel with phosphorylation to promote Smo cell-surface expression and Hh signaling. We find that Hh stimulates Smo sumoylation by dissociating it from a desumoylation enzyme Ulp1. Sumoylation of Smo in turn recruits a deubiquitinase UBPY/USP8 to antagonize Smo ubiquitination and degradation, leading to its cell-surface accumulation and elevated Hh pathway activity. We also provide evidence that Shh stimulates sumoylation of mammalian Smo (mSmo) and that sumoylation promotes ciliary localization of mSmo and Shh pathway activity. Our findings reveal a conserved mechanism whereby the SUMO pathway promotes Hh signaling by regulating Smo subcellular localization and shed light on how sumoylation regulates membrane protein trafficking.

  17. The BMP Pathway is a Programmable Multi-Ligand Signal Processing System

    NASA Astrophysics Data System (ADS)

    Antebi, Yaron

    The BMP signaling pathway comprises multiple ligands and receptors that interact promiscuously and appear in combinations. This feature is often understood in the context of redundancy and tissue specificity, but it has remained unclear whether it enables specific signal processing capabilities. Here, we show that the BMP pathway performs a specific set of computations, including sums, ratios, and balance and imbalance detection, across the multi-dimensional space of ligand concentrations. These computations can arise directly from receptor-ligand interactions without requiring transcriptional regulation. Furthermore, cells can re-program the type of computation performed on specific ligands through changes in receptor expression, allowing different cell types to perceive distinct signals in the same ligand environment. Together, these results may help explain the prevalence of promiscuous ligand-receptor architectures across pathways and enable predictive understanding and control of BMP signaling.

  18. Peptide Ligand Structure and I-Aq Binding Avidity Influence T Cell Signaling Pathway Utilization

    PubMed Central

    Myers, Linda K; Cullins, David L; Park, Jeoung-Eun; Yi, Ae-Kyung; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H

    2015-01-01

    Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-Aq using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokine and attenuation of arthritis. PMID:25982319

  19. Xtalk: a path-based approach for identifying crosstalk between signaling pathways

    PubMed Central

    Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.

    2016-01-01

    Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040

  20. Fluctuation analysis of activity biosensor images for the study of information flow in signaling pathways.

    PubMed

    Vilela, Marco; Halidi, Nadia; Besson, Sebastien; Elliott, Hunter; Hahn, Klaus; Tytell, Jessica; Danuser, Gaudenz

    2013-01-01

    Comprehensive understanding of cellular signal transduction requires accurate measurement of the information flow in molecular pathways. In the past, information flow has been inferred primarily from genetic or protein-protein interactions. Although useful for overall signaling, these approaches are limited in that they typically average over populations of cells. Single-cell data of signaling states are emerging, but these data are usually snapshots of a particular time point or limited to averaging over a whole cell. However, many signaling pathways are activated only transiently in specific subcellular regions. Protein activity biosensors allow measurement of the spatiotemporal activation of signaling molecules in living cells. These data contain highly complex, dynamic information that can be parsed out in time and space and compared with other signaling events as well as changes in cell structure and morphology. We describe in this chapter the use of computational tools to correct, extract, and process information from time-lapse images of biosensors. These computational tools allow one to explore the biosensor signals in a multiplexed approach in order to reconstruct the sequence of signaling events and consequently the topology of the underlying pathway. The extraction of this information, dynamics and topology, provides insight into how the inputs of a signaling network are translated into its biochemical or mechanical outputs.

  1. Testosterone and dihydrotestosterone inhibit gallbladder motility through multiple signalling pathways.

    PubMed

    Kline, Loren W; Karpinski, Edward

    2008-10-01

    Testosterone (T) has been shown to cause vasodilation in rabbit coronary arteries through a nongenomic pathway. Part of this T-induced relaxation was shown to be mediated by opening voltage dependent K(+) channels. T infusion also reduces peripheral resistance in human males with heart failure. The effects of T or its active metabolite 5-alpha dihydrotestosterone (DHT) are not well studied. This study investigates the effect of T and DHT on contraction in guinea pig gallbladder strips. T or DHT induced a concentration-dependent relaxation of cholecystokinin octapeptide (CCK)-induced tension. Pretreatment of the strips with PKA inhibitor 14-22 amide myristolated had no significant effect on the relaxation induced by either T or DHT. Pretreatment of strips with 2-APB, an inhibitor of IP(3) induced Ca(2+) release, produced a significant (p<0.001) reduction in the T- or DHT-induced relaxation. Bisindolymaleimide IV and chelerythrine Cl(-) when used in combination had no significant effect on the amount of CCK-induced tension, but significantly (p<0.01) decreased the amount of T- or DHT-induced relaxation. The flavone chrysin, an aromatase inhibitor, and genistein, an isoflavone, each produced a significant (p<0.01) reduction in CCK-induced tension. Chrysin significantly (p<0.05) increased T-induced relaxation; however, genistein had no effect on T-induced relaxation. It is concluded that T and DHT inhibits gallbladder motility rapidly by nongenomic actions of the hormones. Multiple pathways that include inhibition of intracellular Ca(2+) release, inhibition of extracellular Ca(2+) entry, and the actions of PKC may mediate this effect.

  2. Hypoxia signaling pathways: modulators of oxygen-related organelles

    PubMed Central

    Schönenberger, Miriam J.; Kovacs, Werner J.

    2015-01-01

    Oxygen (O2) is an essential substrate in cellular metabolism, bioenergetics, and signaling and as such linked to the survival and normal function of all metazoans. Low O2 tension (hypoxia) is a fundamental feature of physiological processes as well as pathophysiological conditions such as cancer and ischemic diseases. Central to the molecular mechanisms underlying O2 homeostasis are the hypoxia-inducible factors-1 and -2 alpha (HIF-1α and EPAS1/HIF-2α) that function as master regulators of the adaptive response to hypoxia. HIF-induced genes promote characteristic tumor behaviors, including angiogenesis and metabolic reprogramming. The aim of this review is to critically explore current knowledge of how HIF-α signaling regulates the abundance and function of major O2-consuming organelles. Abundant evidence suggests key roles for HIF-1α in the regulation of mitochondrial homeostasis. An essential adaptation to sustained hypoxia is repression of mitochondrial respiration and induction of glycolysis. HIF-1α activates several genes that trigger mitophagy and represses regulators of mitochondrial biogenesis. Several lines of evidence point to a strong relationship between hypoxia, the accumulation of misfolded proteins in the endoplasmic reticulum, and activation of the unfolded protein response. Surprisingly, although peroxisomes depend highly on molecular O2 for their function, there has been no evidence linking HIF signaling to peroxisomes. We discuss our recent findings that establish HIF-2α as a negative regulator of peroxisome abundance and suggest a mechanism by which cells attune peroxisomal function with O2 availability. HIF-2α activation augments peroxisome turnover by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We discuss potential mechanisms by which HIF-2α might trigger pexophagy and place special emphasis on the potential pathological implications of HIF-2α-mediated pexophagy for human health. PMID:26258123

  3. Phosphatase Specificity and Pathway Insulation in Signaling Networks

    PubMed Central

    Rowland, Michael A.; Harrison, Brian; Deeds, Eric J.

    2015-01-01

    Phosphatases play an important role in cellular signaling networks by regulating the phosphorylation state of proteins. Phosphatases are classically considered to be promiscuous, acting on tens to hundreds of different substrates. We recently demonstrated that a shared phosphatase can couple the responses of two proteins to incoming signals, even if those two substrates are from otherwise isolated areas of the network. This finding raises a potential paradox: if phosphatases are indeed highly promiscuous, how do cells insulate themselves against unwanted crosstalk? Here, we use mathematical models to explore three possible insulation mechanisms. One approach involves evolving phosphatase KM values that are large enough to prevent saturation by the phosphatase’s substrates. Although this is an effective method for generating isolation, the phosphatase becomes a highly inefficient enzyme, which prevents the system from achieving switch-like responses and can result in slow response kinetics. We also explore the idea that substrate degradation can serve as an effective phosphatase. Assuming that degradation is unsaturatable, this mechanism could insulate substrates from crosstalk, but it would also preclude ultrasensitive responses and would require very high substrate turnover to achieve rapid dephosphorylation kinetics. Finally, we show that adaptor subunits, such as those found on phosphatases like PP2A, can provide effective insulation against phosphatase crosstalk, but only if their binding to substrates is uncoupled from their binding to the catalytic core. Analysis of the interaction network of PP2A’s adaptor domains reveals that although its adaptors may isolate subsets of targets from one another, there is still a strong potential for phosphatase crosstalk within those subsets. Understanding how phosphatase crosstalk and the insulation mechanisms described here impact the function and evolution of signaling networks represents a major challenge for

  4. Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway.

    PubMed

    Dong, Shuying; Kong, Jian; Kong, Jinge; Shen, Qiang; Kong, Fandong; Sun, Wenbing; Zheng, Lemin

    2015-01-01

    Accumulating evidences have reported that caffeine has anticancer effects at high blood concentrations. However, whether caffeine has anticancer effects on human hepatocellular carcinoma (HCC) cells at low concentration, especially at physiologically applicable concentration (< 412 μM) is still not well understood. In this study, HCC cell lines HepG2 and Huh7 were used. The cells were incubated with varying concentrations of caffeine (0, 50, 100, 200, 400 or 600 μM). MTT assay was used to investigate the proliferation ability in vitro. Migration and invasion abilities were determined by wound healing assay and transwell assay. The molecular changes were detected by western blot. An ectopic nude mice model which the mice were gavaged with caffeine was used to reveal the anticancer effects of caffeine on HepG2 cells in vivo. Results showed that caffeine could inhibit the proliferation, migration and invasion significantly at physiologically applicable concentration in vitro. Also the associated molecular changes of cancer progression were observed. In animal experiment, the mice gavaged with caffeine also performanced reduced tumor burden in vivo. Moreover, the interrelated protein expression was also observed in vivo which was coincident with the results in vitro. All in all, this observation indicated that caffeine may suppress the progression of HCC through Akt signaling pathway. This makes caffeine a potential candidate for treating HCC which will be a safer and more effective treatment by giving for a long time at physiologically applicable concentration.

  5. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways

    PubMed Central

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Noble, Emily E; Suarez, Andrea N; Thai, Jessica; Nakamoto, Emily M; Kanoski, Scott E

    2015-01-01

    Feeding behavior rarely occurs in direct response to metabolic deficit, yet the overwhelming majority of research on the biology of food intake control has focused on basic metabolic and homeostatic neurobiological substrates. Most animals, including humans, have habitual feeding patterns in which meals are consumed based on learned and/or environmental factors. Here we illuminate a novel neural system regulating higher-order aspects of feeding through which the gut-derived hormone ghrelin communicates with ventral hippocampus (vHP) neurons to stimulate meal-entrained conditioned appetite. Additional results show that the lateral hypothalamus (LHA) is a critical downstream substrate for vHP ghrelin-mediated hyperphagia and that vHP ghrelin activated neurons communicate directly with neurons in the LHA that express the neuropeptide, orexin. Furthermore, activation of downstream orexin-1 receptors is required for vHP ghrelin-mediated hyperphagia. These findings reveal novel neurobiological circuitry regulating appetite through which ghrelin signaling in hippocampal neurons engages LHA orexin signaling. DOI: http://dx.doi.org/10.7554/eLife.11190.001 PMID:26745307

  6. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  7. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    SciTech Connect

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  8. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy

    PubMed Central

    Juan, Wen Chun; Hong, Wanjin

    2016-01-01

    The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy. PMID:27589805

  9. Significance of Notch1-signaling pathway in human pancreatic development and carcinogenesis.

    PubMed

    Hu, Huankai; Zhou, Lan; Awadallah, Amad; Xin, Wei

    2013-05-01

    In animal studies, Notch1-signaling pathway plays an important role in the pancreatic embryogenesis by promoting pancreatic progenitor cells self-renewal and exocrine linage development. The persistent activation of Notch pathway could arrest the organ development and keep cells at an undifferentiated stage. Studies have shown that Notch1-signaling pathway is upregulated in invasive pancreatic ductal adenocarcinoma (PDAC). Here we examined the expression pattern of Notch1 and Hes1 in human fetal pancreatic tissues to elucidate the role of Notch1 in human pancreatic embryonic development. We also compared Notch1 expression in tissues from PDAC, chronic pancreatitis and pancreatic intraepithelial neoplasm. Our data show that Notch1/Hes1-signaling pathway is activated during early pancreatic embryogenesis and reaches the highest at birth. After pancreas is fully developed, Notch1/Hes1 pathway is inactivated even though Notch1 protein cell-surface expression is upregulated. We also showed that the expression of both Notch1 and Hes1 are present in 50% (33/66) of PDACs, but not in pancreatic intraepithelial neoplasms. These findings indicate that Notch1 activation is only apparent in late stage of pancreatic carcinogenesis, suggesting that treatment with Notch-signaling inhibitors including γ-secretase should be selectively used for PDACs with confirmed Notch1-signaling activation.

  10. Prostaglandin F2α regulates the expression of uterine activation proteins via multiple signalling pathways.

    PubMed

    Xu, Chen; You, Xingji; Liu, Weina; Sun, Qianqian; Ding, Xiaoying; Huang, Ying; Ni, Xin

    2015-01-01

    Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.

  11. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    PubMed Central

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  12. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    PubMed

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  13. Distinct Molecular Evolutionary Mechanisms Underlie the Functional Diversification of the Wnt and TGFβ Signaling Pathways

    PubMed Central

    Konikoff, Charlotte E.; Wisotzkey, Robert G.; Stinchfield, Michael J.

    2010-01-01

    The canonical Wnt pathway is one of the oldest and most functionally diverse of animal intercellular signaling pathways. Though much is known about loss-of-function phenotypes for Wnt pathway components in several model organisms, the question of how this pathway achieved its current repertoire of functions has not been addressed. Our phylogenetic analyses of 11 multigene families from five species belonging to distinct phyla, as well as additional analyses employing the 12 Drosophila genomes, suggest frequent gene duplications affecting ligands and receptors as well as co-evolution of new ligand–receptor pairs likely facilitated the expansion of this pathway’s capabilities. Further, several examples of recent gene loss are visible in Drosophila when compared to family members in other phyla. By comparison the TGFβ signaling pathway is characterized by ancient gene duplications of ligands, receptors, and signal transducers with recent duplication events restricted to the vertebrate lineage. Overall, the data suggest that two distinct molecular evolutionary mechanisms can create a functionally diverse developmental signaling pathway. These are the recent dynamic generation of new genes and ligand–receptor interactions as seen in the Wnt pathway and the conservative adaptation of ancient pre-existing genes to new roles as seen in the TGFβ pathway. From a practical perspective, the former mechanism limits the investigator’s ability to transfer knowledge of specific pathway functions across species while the latter facilitates knowledge transfer. Electronic supplementary material The online version of this article (doi:10.1007/s00239-010-9337-z) contains supplementary material, which is available to authorized users. PMID:20339843

  14. Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory

    PubMed Central

    Verhage, Adriaan; Vlaardingerbroek, Ido; Raaymakers, Ciska; Van Dam, Nicole M.; Dicke, Marcel; Van Wees, Saskia C. M.; Pieterse, Corné M. J.

    2011-01-01

    Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae activated MYC2 transcription and stimulated expression of the MYC2-branch marker gene VSP2, while it suppressed transcription of ORA59 and the ERF-branch marker gene PDF1.2. Mutant jin1 and jar1-1 plants, which are impaired in the MYC2-branch of the JA pathway, displayed a strongly enhanced expression of both ORA59 and PDF1.2 upon herbivory, indicating that in wild-type plants the MYC2-branch is prioritized over the ERF-branch during insect feeding. Weight gain of P. rapae larvae in a no-choice setup was not significantly affected, but in a two-choice setup the larvae consistently preferred jin1 and jar1-1 plants, in which the ERF-branch was activated, over wild-type Col-0 plants, in which the MYC2-branch was induced. In MYC2- and ORA59-impaired jin1-1/RNAi-ORA59 plants this preference was lost, while in ORA59-overexpressing 35S:ORA59 plants it was gained, suggesting that the herbivores were stimulated to feed from plants that expressed the ERF-branch rather than that they were deterred by plants that expressed the MYC2-branch. The feeding preference of the P. rapae larvae could not be linked to changes in glucosinolate levels. Interestingly, application of larval oral secretion into wounded leaf tissue stimulated the ERF-branch of the JA pathway, suggesting that compounds in the oral secretion have the potential to manipulate the plant response toward the caterpillar-preferred ERF-regulated branch of the JA response. Our results suggest that by activating the MYC2-branch of the JA pathway, plants prevent stimulation

  15. Lung cancer therapeutics that target signaling pathways: an update.

    PubMed

    Ray, M Roshni; Jablons, David; He, Biao

    2010-10-01

    Claiming more than 150,000 lives each year, lung cancer is the deadliest cancer in the USA. First-line treatments in lung cancer include surgical resection and chemotherapy, the latter of which offers only modest survival benefits at the expense of often severe and debilitating side effects. Recent advances in elucidating the molecular biology of lung carcinogenesis have elucidated novel drug targets, and treatments are rapidly evolving into specialized agents that hone in on specific aspects of the disease. Of particular interest is blocking tumor growth by targeting the physiological processes surrounding angiogenesis, pro-tumorigenic growth factor activation, anti-apoptotic cascades and other cancer-promoting signal transduction events. This article looks at several areas of interest to lung cancer therapeutics and considers the current state of affairs surrounding the development of these therapies.

  16. PRR-signaling pathways: Learning from microbial tactics.

    PubMed

    Sellge, Gernot; Kufer, Thomas A

    2015-03-01

    Recognition of bacterial pathogens by the mammalian host relies on the induction of early innate immune responses initiated by the activation of pattern-recognition receptors (PRRs) upon sensing of their cognate microbe-associated-patterns (MAMPs). Successful pathogens have evolved to intercept PRR activation and signaling at multiple steps. The molecular dissection of the underlying mechanisms revealed many of the basic mechanisms used by the immune system. Here we provide an overview of the different strategies used by bacterial pathogens and commensals to subvert and reprogram PPR-mediated innate immune responses. A particular attention is given to recent discoveries highlighting novel molecular details of the host inflammatory response in mammalian cells and current advances in our understanding of the interaction of commensals with PRR-mediated responses.

  17. Signaling molecules and pathways regulating the fate of spermatogonial stem cells

    PubMed Central

    He, Zuping; Kokkinaki, Maria; Dym, Martin

    2009-01-01

    Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs. And then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally we point out potential future directions to pursue in research on signaling pathways of SSCs. PMID:19263492

  18. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration.

    PubMed

    Yang, Xianguang; Zhu, Lin; Zhao, Weiming; Shi, Yaohuang; He, Chuncui; Xu, Cunshuan

    2016-12-05

    P38MAPK signaling pathway was closely related to cell proliferation, apoptosis, cell differentiation, cell survival, cell death, and so on. However, the regulatory mechanism of P38MAPK signaling pathway in liver regeneration (LR) was unclear. In order to further reveal the roles of P38MAPK signaling pathway in rat liver regeneration, Ingenuity Pathway Analysis (IPA) software and related data sites were used to construct P38MAPK signaling pathway, and the pathway was confirmed by relevant documents literature. The expression changes of P38MAPK signaling pathway-related gene in eight type cells were further analyzed by Rat Genome 230 2.0 Array, and the results showed that 95 genes in P38MAPK signaling pathway had significant changes. H-cluster analysis showed that hepatocyte cell (HC), pit cell (PC), oval cell (OC) and biliary epithelial cell (BEC) are clustered together; and the same as Kupffer cell (KC), sinusoidal endothelial cell (SEC), dendritic cell (DC) and hepatic stellate cell (HSC). IPA software and expression analysis systematic explorer (EASE) were applied to functional enrichment analysis, and the results showed that P38MAPK signaling pathway was mainly involved in apoptosis, cell death, cell proliferation, cell survival, cell viability, activation, cell cycle progression, necrosis, synthesis of DNA and other physical activity during LR. In conclusion, P38MAPK signaling pathway regulated various physiological activities of LR through multiple signaling pathways.

  19. Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent.

    PubMed

    Liu, Jun-Bao; Dai, Chun-Mei; Su, Xiao-Yun; Cao, Lu; Qin, Rui; Kong, Qing-Bo

    2014-01-01

    To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-β signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

  20. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors

    PubMed Central

    Zhu, Yun; Kawaguchi, Kayoko; Kiyama, Ryoiti

    2017-01-01

    Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81) with that of estrogen (17β-estradiol or E2). Significant correlations were observed among lignans (R values: 0.77 to 0.97), and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1) secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level. PMID:28152041

  1. Discovery of GPCR ligands for probing signal transduction pathways

    PubMed Central

    Brogi, Simone; Tafi, Andrea; Désaubry, Laurent; Nebigil, Canan G.

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity. PMID:25506327

  2. Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway.

    PubMed

    Maya-Bernal, José Luis; Ramírez-Santiago, Guillermo

    2016-03-01

    We studied the spatio-temporal dynamics of a cell signal cascade with negative feedback that quantitatively emulates the regulative process that occurs in the Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK) pathway. The model consists of a set of six coupled reaction-diffusion equations that describes the dynamics of the six-module pathway. In the basic module the active form of the protein transmits the signal to the next pathway’s module. As suggested by experiments, the model considers that the fifth module's kinase down-regulates the first and third modules. The feedback parameter is defined as, μ(r)( j)= k(kin)5/k(kin)(j), (j = 1, 3). We analysed the pathway's dynamics for μ(r)( j) = 0.10, 1.0, and 10 in the kinetic regimes: i) saturation of both kinases and phosphatases, ii) saturation of the phosphatases and iii) saturation of the kinases. For a regulated pathway the Total Activated Protein Profiles (TAPPs) as a function of time develop a maximum during the transient stage in the three kinetic regimes. These maxima become higher and their positions shift to longer times downstream. This scenario also applies to the TAPP's regulatory kinase that sums up its inhibitory action to that of the phosphatases leading to a maximum. Nevertheless, when μ(r)(j)= 1.0 , the TAPPs develop two maxima, with the second maximum being almost imperceptible. These results are in qualitative agreement with experimental data obtained from NIH 3T3 mouse fibroblasts. In addition, analyses of the stationary states as a function of position indicate that in the kinetic regime i) which is of physiological interest, signal transduction occurs with a relatively large propagation length for the three values of the regulative parameter. However, for μ(r)(j)= 0.10 , the sixth module concentration profile is transmitted with approximately 45% of its full value. The results obtained for μ(r)(j) = 10 , indicate that the first five concentration profiles are

  3. Inflammatory signaling pathways in self-renewing breast cancer stem cells.

    PubMed

    Hinohara, Kunihiko; Gotoh, Noriko

    2010-12-01

    Cancer stem cells (CSCs), which make up only a small proportion of heterogeneous tumor cells, may possess greater ability to maintain tumorigenesis than do other tumor cell types. Breast cancer tissue is reported to contain cancer stem-like cells. In order to eradicate tumor cells, various approaches have been taken to identify the critical molecules and signaling pathways in breast CSCs. Recent findings suggest that inflammatory signaling pathways are important for the maintenance of breast CSCs. Here, we review the current understanding of the role of inflammatory pathways in these cells and discuss future perspectives of the research on and the possibility of targeting the molecules involved in these pathways for developing treatments for breast cancer.

  4. Daunorubicin induces cell death via activation of apoptotic signalling pathway and inactivation of survival pathway in muscle-derived stem cells.

    PubMed

    Stulpinas, Aurimas; Imbrasaitė, Aušra; Kalvelytė, Audronė Valerija

    2012-04-01

    Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.

  5. A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

    PubMed Central

    2016-01-01

    Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways. PMID:27433166

  6. Roles of microRNA and signaling pathway in osteoarthritis pathogenesis*

    PubMed Central

    Xu, Bin; Li, Yao-yao; Ma, Jun; Pei, Fu-xing

    2016-01-01

    Osteoarthritis (OA) is a common chronic degenerative joint disease, with complicated pathogenic factors and undefined pathogenesis. Various signaling pathways play important roles in OA pathogenesis, including genetic expression, matrix synthesis and degradation, cell proliferation, differentiation, apoptosis, and so on. MicroRNA (miRNA) is a class of non-coding RNA in Eukaryon, regulating genetic expression on the post-transcriptional level. A great number of miRNAs are involved in the development of OA, and are closely associated with different signaling pathways. This article reviews the roles of miRNAs and signaling pathways in OA, looking toward having a better understanding of its pathogenesis mechanisms and providing new therapeutic targets for its treatment. PMID:26984840

  7. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  8. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review)

    PubMed Central

    YAN, KUO; GAO, LI-NA; CUI, YUAN-LU; ZHANG, YI; ZHOU, XIN

    2016-01-01

    During development of disease, complex intracellular signaling pathways regulate an intricate series of events, including resistance to external toxins, the secretion of cytokines and the production of pathological phenomena. Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression. This review aimed to provide an understanding of the effects of the cAMP signaling pathway and the associated factors on disease occurrence and development by examining the information from a new perspective. These novel insights aimed to promote the development of novel therapeutic approaches and aid in the development of new drugs. PMID:27035868

  9. Genetic/molecular alterations of meningiomas and the signaling pathways targeted

    PubMed Central

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Ruiz, Laura; Miranda, David; Sousa, Pablo; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2015-01-01

    Meningiomas are usually considered to be benign central nervous system tumors; however, they show heterogenous clinical, histolopathological and cytogenetic features associated with a variable outcome. In recent years important advances have been achieved in the identification of the genetic/molecular alterations of meningiomas and the signaling pathways involved. Thus, monosomy 22, which is often associated with mutations of the NF2 gene, has emerged as the most frequent alteration of meningiomas; in addition, several other genes (e.g. AKT1, KLF4, TRAF7, SMO) and chromosomes have been found to be recurrently altered often in association with more complex karyotypes and involvement of multiple signaling pathways. Here we review the current knowledge about the most relevant genes involved and the signaling pathways targeted by such alterations. In addition, we summarize those proposals that have been made so far for classification and prognostic stratification of meningiomas based on their genetic/genomic features. PMID:25965831

  10. Structural modeling and analysis of signaling pathways based on Petri nets.

    PubMed

    Li, Chen; Suzuki, Shunichi; Ge, Qi-Wei; Nakata, Mitsuru; Matsuno, Hiroshi; Miyano, Satoru

    2006-10-01

    The purpose of this paper is to discuss how to model and analyze signaling pathways by using Petri net. Firstly, we propose a modeling method based on Petri net by paying attention to the molecular interactions and mechanisms. Then, we introduce a new notion "activation transduction component" in order to describe an enzymic activation process of reactions in signaling pathways and shows its correspondence to a so-called elementary T-invariant in the Petri net models. Further, we design an algorithm to effectively find basic enzymic activation processes by obtaining a series of elementary T-invariants in the Petri net models. Finally, we demonstrate how our method is practically used in modeling and analyzing signaling pathway mediated by thrombopoietin as an example.

  11. The signaling pathway of uromodulin and its role in kidney diseases.

    PubMed

    Mao, Song; Zhang, Aihua; Huang, Songming

    2014-12-01

    The uromodulin (UMOD) is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. UMOD acts as a regulatory protein in health and in various conditions. For kidney diseases, its role remains elusive. On one hand, UMOD plays a role in binding and excretion of various potentially injurious products from the tubular fluid. On the other hand, chronic kidney disease is associated with higher serum levels of UMOD. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for UMOD to the investigators who were interested in the role of UMOD in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of UMOD and its role in the pathogenesis of kidney diseases.

  12. Differentially expressed microRNAs and affected signaling pathways in placentae of transgenic cloned cattle.

    PubMed

    Liu, Feng-Jun; Jin, Li-Jun; Ma, Xue-Gang; Zhang, Yu-Ling; Zhai, Xiao-Wei; Chen, Jun-Jie; Yang, Xue-Yi

    2014-07-15

    Placental deficiencies are related to the developmental abnormalities of transgenic cattle produced by somatic cell nuclear transfer, but the concrete molecular mechanism is not very clear. Studies have shown that placental development can be regulated by microRNAs (miRNAs) in normal pregnancy. Thus, this study screened differentially expressed miRNAs by the next-generation sequencing technology to reveal the relationship between miRNAs expression and aberrant development of placentae produced by the transgenic-clone technology. Expressions of miRNAs and mRNAs in different placentae were compared, the placentae derived from one natural pregnancy counterpart (PNC), one natural pregnancy of a cloned offspring as a mother (PCM), and two transgenic (human beta-defensin-3) cloned pregnancy: one offspring was alive after birth (POL) and the other offspring was dead in 2 days after birth (POD). Further, signaling pathway analysis was conducted. The results indicated that 694 miRNAs were differentially expressed in four placental samples, such as miR-210, miR-155, miR-21, miR-128, miR-183, and miR-145. Signaling pathway analysis revealed that compared with PNC, significantly upregulated pathways in POL, POD, and PCM mainly included focal adhesion, extracellular matrix-receptor interaction, pathways in cancer, regulation of actin cytoskeleton, endosytosis, and adherens junction, and significantly downregulated pathways mainly included malaria, nucleotide binding oligomerization domain-like receptor signaling, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway. In conclusion, this study confirmed alterations of the expression profile of miRNAs and signaling pathways in placentae from transgenic (hBD-3) cloned cattle (PTCC), which could lead to the morphologic and histologic deficiencies of PTCC. This information would be useful for the relative research in future.

  13. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle

    PubMed Central

    Littlejohn, Mathew D.; Henty, Kristen M.; Tiplady, Kathryn; Johnson, Thomas; Harland, Chad; Lopdell, Thomas; Sherlock, Richard G.; Li, Wanbo; Lukefahr, Steven D.; Shanks, Bruce C.; Garrick, Dorian J.; Snell, Russell G.; Spelman, Richard J.; Davis, Stephen R.

    2014-01-01

    Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (PRL) and its receptor (PRLR) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation. PMID:25519203

  14. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  15. Radiotracers For Lipid Signaling Pathways In Biological Systems

    SciTech Connect

    Gatley, S. J.

    2016-09-26

    The primary focus of this project continues to be the development of radiotracers and radiotracer methodology for studying physiology and biochemistry. The compounds that have been labeled areacylethanolamines and acylglycerols that are, as classes, represented in both in plants and in animals. In the latter, some of these act as ligands for cannabinoid receptors and they are therefore known as endocannabinoids. Cannabinoid receptors are not found in plant genomes so that plants must contain other receptors and signaling systems that use acylethanolamines. Relatively little work has been done on that issue, though acylethanolamines do modulate plant growth and stress resistance, thus possessing obvious relevance to agriculture and energy production. Progress has been described in five peer-reviewed papers and seven meeting abstracts. Preparation of 2-acylglycerol lipid messengers in high purity. A novel enzymatic synthesis was developedthat gave pure 2-acylglycerols free of any rearrrangement to the thermodynamically more stable 1(3)-acylglycerol byproducts. The method utilized 1,3-dibutyryl-2-acylglycerol substrate ethanolysis by a resinimobilized lipase. Thus, pure radiolabeled 2-acylglycerols can now be conveniently prepared just prior to their utilization. These synthetic studies were published in the Journal of Medicinal Chemistry, 2011. Diacylglycerol lipase assay methodology. Diacylglycerol lipases (DAGLs) generate 2- acylglycerols, and are thus potential targets for disease- or growth-modifying agents, by means of reducing formation of 2-acylglycerols. A radioTLC assay of the hydrolysis of radiolabeled diglyceride substrate [1''-carbon-14]2-arachidonoyl-1-stearoyl-sn-glycerol has been implemented, and used to validate a novel, potentially highthroughput fluorescence resonance energy transfer (FRET) based assay. A number of new DAGL inhibitors that have selectivity for DAGLs were synthesized and screened. This work was very recently published in Bioorganic

  16. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees.

  17. IL-12 Family Cytokines: General Characteristics, Pathogenic Microorganisms, Receptors, and Signalling Pathways.

    PubMed

    Behzadi, Payam; Behzadi, Elham; Ranjbar, Reza

    2016-03-01

    Among a wide range of cytokines, the Interleukin 12 (IL-12) family has its unique structural, functional, and immunological characteristics that have made this family as important immunological playmakers. Because of the importance of IL-12 heterodimeric cytokines in microbial infections, autoimmune diseases, and cancers, the authors of this literature discuss about the general characteristics of IL-12 family members, the interactions between IL-12 cytokines and pathogenic microorganisms, the interleukins receptors and their strategies for selecting different signalling pathways. IL-12 and IL-23 are similar in p40 subunits and both are involved in proinflammatory responses while, IL-27 and IL-35 contribute to anti-inflammatory activities; however, IL-27 is also involved in pro-inflammatory responses. There are some similarities and dissimilarities among IL-12 family members which make them a unique bridge between innate and adaptive immune systems. The bioactivities of IL-12 family indicate a brilliant promise for their applications in different fields of medicine. The members of IL-12 family are candidate for several therapeutics including gene therapy, cancer therapy, tumour therapy, and vaccination. To have an accurate diagnostic technique and definite treatment regarding to infectious diseases, the playmakers of IL-12 family as effective criteria together with microarray technology are the best choices for current and future applications.

  18. LKB1 suppresses proliferation and invasion of prostate cancer through hedgehog signaling pathway.

    PubMed

    Xu, Peiyuan; Cai, Fei; Liu, Xiaofei; Guo, Lele

    2014-01-01

    Activation of the hedgehog (Hh) signaling pathway has been implicated in the development of many human malignancies. Hh signaling target genes, such as patched (PTCH), smoothened (SMO) and sonic hedgehog (SHH), are markers of Hh signaling activation in most Hh-associated tumors. The protein kinase LKB1 has been shown to slow proliferation and induce cell-cycle arrest in many cell lines. However, the function of LKB1 in prostate cancer development remains largely unclear. In this study, the expression of LKB1 in human prostate cancer tissue samples and prostate cancer cell lines was detected, and the effects of LKB1 on prostate cancer cell proliferation and invasion were evaluated. Moreover, the influence of LKB1 on target genes of the Hh signaling pathway was analyzed. The results indicated that knockdown of LKB1 expression by RNA interference promoted cell proliferation, colony formation and invasion. Meanwhile, we observed that LKB1 siRNA increased the expression of factors related to Hh signaling reporter activity in prostate cancer cells, including PTCH, SMO and SHH. These findings suggest that LKB1 is a putative tumor suppressor gene in prostate cancer, and that LKB1 is negatively correlated with the expression of Hh signaling related transcription factors. Our results suggest that LKB1 may inhibit tumorigenesis by regulating the Hh signaling pathway in certain cancers.

  19. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia.

    PubMed

    Li, Junguo; Zhang, Li; Li, Bing

    2017-01-01

    The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia.

  20. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia

    PubMed Central

    Li, Junguo; Zhang, Li; Li, Bing

    2017-01-01

    The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia. PMID:28123480

  1. Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis.

    PubMed

    Vit, Jean-Philippe; Rosselli, Filippo

    2003-11-27

    Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.

  2. Characterization of Notch Signalling Pathway Members in Normal Prostate, Prostatic Intraepithelial Neoplasia (PIN) and Prostatic Adenocarcinoma.

    PubMed

    Soylu, Hakan; Acar, Nuray; Ozbey, Ozlem; Unal, Betul; Koksal, Ismail Turker; Bassorgun, Ibrahim; Ciftcioglu, Akif; Ustunel, Ismail

    2016-01-01

    Prostate Cancer (PCa) holds the second place in terms of cancer-related mortality rate among men. The Notch signalling pathway regulates the proliferation and differentiation in embryonic and adult tissues and determines the cell fate. The body of knowledge in the present literature is currently controversial about the effect of the Notch pathway on prostatic cancer. Therefore, the present study aimed to examine the immunolocalization and expression levels of Notch1-4, Jagged1-2, Delta, HES1 and HES5 from among the members of the Notch signalling pathway in tissues of normal, prostatic intraepithelial neoplasia (PIN) and malignant prostate. The current study included a sample of 20 patients with localised prostatic adenocarcinoma, 18 patients with high grade PIN (H-PIN) and 18 normal prostatic tissue. Immunolocalisations of Notch1, 2, 3, 4, Jagged1, 2, Delta, HES1 and HES5 were identified through the immunohistochemical method. The findings of the present study showed that all in-scope members of the Notch signalling pathway were localised in PIN structures to a greater extent than in other tissues and from amongst these members, specifically Notch1, Notch4, Jagged1 and HES1 were at more significant levels. Consequently, the findings of the present study may indicate that the Notch signalling pathway can play a role especially in the formation of PIN structures.

  3. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons

    PubMed Central

    Ohtake, Yosuke; Wong, Daniella; Abdul-Muneer, P. M.; Selzer, Michael E.; Li, Shuxin

    2016-01-01

    Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors. PMID:27849007

  4. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development

    PubMed Central

    Azevedo, Andreia; Cunha, Virginia; Teixeira, Ana Luisa; Medeiros, Rui

    2011-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine involved in prostate regulation and in prostate cancer (PC) development/progression. IL-6 acts as a paracrine and autocrine growth stimulator in benign and tumor prostate cells. The levels of IL-6 and respective receptors are increased during prostate carcinogenesis and tumor progression. Several studies reported that increased serum and plasma IL-6 and soluble interleukin-6 receptor levels are associated with aggressiveness of the disease and are associated with a poor prognosis in PC patients. In PC treatment, patients diagnosed with advanced stages are frequently submitted to hormonal castration, although most patients will eventually fail this therapy and die from recurrent castration-resistant prostate cancer (CRPC). Therefore, it is important to understand the mechanisms involved in CRPC. Several pathways have been proposed to be involved in CRPC development, and their understanding will improve the way to more effective therapies. In fact, the prostate is known to be dependent, not exclusively, on androgens, but also on growth factors and cytokines. The signaling pathway mediated by IL-6 may be an alternative pathway in the CRPC phenotype acquisition and cancer progression, under androgen deprivation conditions. The principal goal of this review is to evaluate the role of IL-6 pathway signaling in human PC development and progression and discuss the interaction of this pathway with the androgen recepto pathway. Furthermore, we intend to evaluate the inclusion of IL-6 and its receptor levels as a putative new class of tumor biomarkers.The IL-6/IL-6R signaling pathway may be included as a putative molecular marker for aggressiveness in PC and it may be able to maintain tumor growth through the AR pathway under androgen-deprivation conditions. The importance of the IL-6/IL-6R pathway in regulation of PC cells makes it a good candidate for targeted therapy. PMID:22171281

  5. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland.

    PubMed

    Campo Verde Arboccó, Fiorella; Persia, Fabio Andres; Hapon, María Belén; Jahn, Graciela A

    2017-04-05

    Thyroid pathologies have deleterious effects on lactation. Especially hypothyroidism (HypoT) induces premature mammary involution at the end of lactation and decreases milk production and quality in mid lactation. Milk synthesis is controlled by JAK2/STAT5 signaling pathway and prolactin (PRL), which activates the pathway. In this work we analyzed the effect of chronic 6-propyl-2- thiouracil (PTU)-induced HypoT on PRL signaling pathway on mammary glands from rats on lactation (L) days 2, 7 and 14. HypoT decreased prolactin receptor expression, and expression and activation of Stat5a/b protein. Expression of members of the SOCS-CIS family, inhibitors of the JAK-STAT pathway, decreased in L2 and L7, possibly as a compensatory response of the mammary cells to maintain PRL responsiveness. However, on L14, the level of these inhibitors was normal and the transcription of α-lactoalbumin (lalba), a target gene of the PRL pathway, decreased by half. HypoT altered the transcriptional capacity of the cell and decreased mRNA levels of Prlr and Stat5b on L14. Stat5b gene has functional thyroid hormone response elements in the regulatory regions, that bind thyroid hormone receptor β (TRβ) differentially and in a thyroid hormone dependent manner. The overall decrease in the PRL signaling pathway and consequently in target gene (lalba) mRNA transcription explain the profound negative impact of HypoT on mammary function through lactation.

  6. BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways.

    PubMed

    Cook, Brandoch D; Evans, Todd

    2014-07-17

    Bone morphogenetic protein (BMP) signaling regulates early hematopoietic development, proceeding from mesoderm patterning through the progressive commitment and differentiation of progenitor cells. The BMP pathway signals largely through receptor-mediated activation of Mothers Against Decapentaplegic homolog (SMAD) proteins, although alternate pathways are modulated through various components of mitogen-activated protein kinase (MAPK) signaling. Using a conditional, short hairpin RNA (shRNA)-based knockdown system in the context of differentiating embryonic stem cells (ESCs), we demonstrated previously that Smad1 promotes hemangioblast specification, but then subsequently restricts primitive progenitor potential. Here we show that co-knockdown of Smad5 restores normal progenitor potential of Smad1-depleted cells, suggesting opposing functions for Smad1 and Smad5. This balance was confirmed by cotargeting Smad1/5 with a specific chemical antagonist, LDN193189 (LDN). However, we discovered that LDN treatment after hemangioblast commitment enhanced primitive myeloid potential. Moreover, inhibition with LDN (but not SMAD depletion) increased expression of Delta-like ligands Dll1 and Dll3 and NOTCH activity; abrogation of NOTCH activity restored LDN-enhanced myeloid potential back to normal, corresponding with expression levels of the myeloid master regulator, C/EBPα. LDN but not SMAD activity was also associated with activation of the p38MAPK pathway, and blocking this pathway was sufficient to enhance myelopoiesis. Therefore, NOTCH and p38MAPK pathways balance primitive myeloid progenitor output downstream of the BMP pathway.

  7. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  8. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway.

    PubMed

    Kim, So Yong; Kim, Tae Jin; Lee, Ki-Young

    2008-06-11

    We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.

  9. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition

    PubMed Central

    Peixoto, Christina Alves; Nunes, Ana Karolina Santana; Garcia-Osta, Ana

    2015-01-01

    Phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a potential therapeutic strategy for neuroinflammatory, neurodegenerative, and memory loss diseases. Mechanistically, PDE5-Is produce an anti-inflammatory and neuroprotection effect by increasing expression of nitric oxide synthases and accumulation of cGMP and activating protein kinase G (PKG), the signaling pathway of which is thought to play an important role in the development of several neurodiseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The aim of this paper was to review present knowledge of the signaling pathways that underlie the use of PDE5-Is in neuroinflammation, neurogenesis, learning, and memory. PMID:26770022

  10. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae.

    PubMed

    Hughes Hallett, James E; Luo, Xiangxia; Capaldi, Andrew P

    2014-10-01

    TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases-Gtr1, Gtr2, and Rho1-bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and ribosome synthesis genes and upregulation of 100 PP2A-dependent nitrogen assimilation and amino acid synthesis genes. Here, using bandshift assays and microarray measurements, we show that the TORC1 pathway also populates three other stress/starvation states. First, in glucose starvation conditions, the AMP-activated protein kinase (AMPK/Snf1) and at least one other factor push the TORC1 pathway into an off state, in which Sch9-branch signaling and PP2A-branch signaling are both inhibited. Remarkably, the TORC1 pathway remains in the glucose starvation (PP2A inhibited) state even when cells are simultaneously starved for nitrogen and glucose. Second, in osmotic stress, the MAPK Hog1/p38 drives the TORC1 pathway into a different state, in which Sch9 signaling and PP2A-branch signaling are inhibited, but PP2A-branch signaling can still be activated by nitrogen starvation. Third, in oxidative stress and heat stress, TORC1-Sch9 signaling is blocked while weak PP2A-branch signaling occurs. Together, our data show that the TORC1 pathway acts as an information-processing hub, activating different genes in different conditions to ensure that available energy is allocated to drive growth, amino acid synthesis, or a stress response, depending on the needs of the cell.

  11. Association between FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue microarray analysis

    PubMed Central

    Chen, Hong; Wang, Jingjing; Yang, Hong; Chen, Dan; Li, Panpan

    2016-01-01

    Forkhead box M1 (FOXM1) and hedgehog (Hh) signaling pathway are implicated in the formation and development of human tumors, including cervical cancer. Previous studies have indicated that FOXM1 may be a downstream target gene of the Hh signaling pathway, but their association in cervical cancer is largely unknown. In the present study, the expression of FOXM1 and Hh signaling molecules was evaluated by immunohistochemical analysis in a tissue microarray that contained 70 cervical cancer tissues and 10 normal cervical tissues. In addition, the association of these molecules with clinicopathological parameters, and the association between FOXM1 and various molecules involved in the Hh signaling pathway was investigated. The results indicated that FOXM1 and Hh signaling molecules were overexpressed in cervical cancer tissues. The protein expression levels of FOXM1, glioma-associated oncogene 1 (GLI1) and smoothened (SMO) correlated with the clinical stage of the tumors, while the protein expression levels of Sonic Hh (SHh), patched 1 (PTCH1) and GLI1 correlated with the pathological grade of the tumors. The expression levels of GLI1 were lower in tissues without lymph node metastasis than in tissues with lymph node metastasis. In addition, FOXM1 expression correlated with GLI1, SHh and PTCH1 expression in cancer tissues. These findings confirmed the participation of FOXM1 and the Hh signaling pathway in cervical cancer. Furthermore, the finding that FOXM1 may be a downstream target gene of the Hh signaling pathway in cervical cancer provides a potential novel diagnostic and therapeutic target for cervical cancer. PMID:27698840

  12. Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development

    PubMed Central

    Doroquez, David B.; Orr-Weaver, Terry L.; Rebay, Ilaria

    2007-01-01

    The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen’s role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development. PMID:17588724

  13. Drosophila melanogaster Hedgehog cooperates with Frazzled to guide axons through a non-canonical signalling pathway.

    PubMed

    Ricolo, Delia; Butí, Elisenda; Araújo, Sofia J

    2015-08-01

    We report that the morphogen Hedgehog (Hh) is an axonal chemoattractant in the midline of Drosophila melanogaster embryos. Hh is present in the ventral nerve cord during axonal guidance and overexpression of hh in the midline causes ectopic midline crossing of FasII-positive axonal tracts. In addition, we show that Hh influences axonal guidance via a non-canonical signalling pathway dependent on Ptc. Our results reveal that the Hh pathway cooperates with the Netrin/Frazzled pathway to guide axons through the midline in invertebrates.

  14. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Yen, Hilo; Karino, Masaki; Tobe, Toru

    2016-01-01

    Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed. PMID:27617233

  15. Pathway Analyses Identify Novel Variants in the WNT Signaling Pathway Associated with Tuberculosis in Chinese Population

    PubMed Central

    Hu, Xuejiao; Zhou, Juan; Chen, Xuerong; Zhou, Yanhong; Song, Xingbo; Cai, Bei; Zhang, Jingya; Lu, Xiaojun; Ying, Binwu

    2016-01-01

    Tuberculosis remains a global public health problem, and its immunopathogenesis is still poorly understood. In this study, 25 single nucleotide polymorphisms (SNPs) in the WNT pathway were evaluated in relation to tuberculosis risk in a Chinese Han discovery set, and 6 candidate susceptible SNPs were further validated in a Chinese Tibetan cohort. Luciferase reporter assay, RT-qPCR and Western blot were used to assess the functionality of the important WNT polymorphisms. Five polymorphisms were associated with tuberculosis susceptibility after Bonferroni correction: SFRP1 rs4736958, CTNNB1 rs9859392, rs9870255 and rs3864004 showed decreased tuberculosis risk; SFRP1 rs7832767 was related to an increased risk (OR = 1.81, 95% CI = 1.30–2.52, p = 0.010). Patients with TT genotype of rs4736958 and rs7832767 correlated with higher CRP concentrations (p = 0.003, <0.001, respectively). Functional assays revealed that mutant alleles of rs9859392 (G), rs9870255 (C) and rs3864004 (A) were associated with significantly decreased transcriptional activity, lower CTNNB1 mRNA expression and p-β-catenin level, which were consistent with their effects of decreasing TB risk. Our results provide evidences that WNT pathway polymorphisms influence tuberculosis susceptibility and host immune response to Mycobacterium tuberculosis, suggesting that these variations may serve as novel markers for identifying the risk of developing tuberculosis. PMID:27334567

  16. Induction of Cancer Cell Death by Isoflavone: The Role of Multiple Signaling Pathways

    PubMed Central

    Li, Yiwei; Kong, Dejuan; Bao, Bin; Ahmad, Aamir; Sarkar, Fazlul H.

    2011-01-01

    Soy isoflavones have been documented as dietary nutrients broadly classified as “natural agents” which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR), p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s) by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials. PMID:22200028

  17. Tetramethylpyrazine Produces Antidepressant-Like Effects in Mice Through Promotion of BDNF Signaling Pathway

    PubMed Central

    Jiang, Bo; Huang, Chao; Chen, Xiang-Fan; Tong, Li-Juan

    2015-01-01

    Background: Current antidepressants are clinically effective only after several weeks of administration. Tetramethylpyrazine (TMP) is an identified component of Ligusticum wallichii with neuroprotective effects. Here, we investigated the antidepressant effects of TMP in mice models of depression. Methods: Antidepressant effects of TMP were first detected in the forced swim test (FST) and tail suspension test (TST), and further assessed in the chronic social defeat stress (CSDS) model. Changes in the brain-derived neurotrophic factor (BDNF) signaling pathway and in hippocampal neurogenesis after CSDS and TMP treatment were then investigated. A tryptophan hydroxylase inhibitor and BDNF signaling inhibitors were also used to determine the mechanisms of TMP. Results: TMP exhibited potent antidepressant effects in the FST and TST without affecting locomotor activity. TMP also prevented the CSDS-induced symptoms. Moreover, TMP completely restored the CSDS-induced decrease of BDNF signaling pathway and hippocampal neurogenesis. Furthermore, a blockade of the BDNF signaling pathway prevented the antidepressant effects of TMP, while TMP produced no influence on the monoaminergic system. Conclusions: In conclusion, these data provide the first evidence that TMP has antidepressant effects, and this was mediated by promoting the BDNF signaling pathway. PMID:25618406

  18. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori.

    PubMed

    Liang, Shuang; Chen, Rui-Ting; Zhang, Deng-Pan; Xin, Hu-Hu; Lu, Yan; Wang, Mei-Xian; Miao, Yun-Gen

    2015-10-01

    Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates.

  19. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans.

    PubMed Central

    Tissenbaum, H A; Ruvkun, G

    1998-01-01

    Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling. PMID:9504918

  20. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma.

    PubMed

    Kanda, Shiori; Mitsuyasu, Takeshi; Nakao, Yu; Kawano, Shintaro; Goto, Yuichi; Matsubara, Ryota; Nakamura, Seiji

    2013-09-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation.

  1. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.

    PubMed

    Seda, Vaclav; Mraz, Marek

    2015-03-01

    The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.

  2. Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.

    PubMed

    Chen, Xiaochu; Xu, Lan

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

  3. [Lipid signaling pathways in plants and their roles in response to water constraints].

    PubMed

    Leprince, Anne-Sophie; Savouré, Arnould

    2010-01-01

    Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive these environmental signals and to transduce them by signaling pathways in order to trigger adaptative responses. Lipid signaling elements play a central role in these pathways in plants. A key element is phosphatidic acid (PA), which can be produced by two pathways. In the first one, phospholipids are hydrolysed by phospholipase D (PLD) to release PA. In the second one, PA is produced through the activity of phospholipase C (PLC) to produce diacylglycerol (DAG) which is then phosphorylated by DAG kinase (DAGK). The amount of PA in the cell is regulated by PA kinase, which phosphorylates PA to produce diacylglycerolpyrophosphate (DGPP), considered as a second messenger as well. PLCs play a dual role in cell signaling by regulating the amount of intracellular Ca(2+), another essential second messenger. Phosphoinositides, such as PI3P, PI4P and PI(4,5)P(2), are substrates of PLCs and PLDs and are considered as second messengers also. In this review, we present recent data regarding the specific features of these lipid signaling pathways in plant compared with other eukaryotes.

  4. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells.

    PubMed

    Niwa, Hitoshi; Ogawa, Kazuya; Shimosato, Daisuke; Adachi, Kenjiro

    2009-07-02

    The cytokine leukaemia inhibitory factor (LIF) integrates signals into mouse embryonic stem (ES) cells to maintain pluripotency. Although the Jak-Stat3 pathway is essential and sufficient to mediate LIF signals, it is still unclear how these signals are linked to the core circuitry of pluripotency-associated transcription factors, consisting of Oct3/4 (also called Pou5f1), Sox2 and Nanog. Here we show that two LIF signalling pathways are each connected to the core circuitry via different transcription factors. In mouse ES cells, Klf4 is mainly activated by the Jak-Stat3 pathway and preferentially activates Sox2, whereas Tbx3 is preferentially regulated by the phosphatidylinositol-3-OH kinase-Akt and mitogen-activated protein kinase pathways and predominantly stimulates Nanog. In the absence of LIF, artificial expression of Klf4 or Tbx3 is sufficient to maintain pluripotency while maintaining the expression of Oct3/4. Notably, overexpression of Nanog supports LIF-independent self-renewal of mouse ES cells in the absence of Klf4 and Tbx3 activity. Therefore, Klf4 and Tbx3 are involved in mediating LIF signalling to the core circuitry but are not directly associated with the maintenance of pluripotency, because ES cells keep pluripotency without their expression in the particular context.

  5. Maternal Chromium Restriction Leads to Glucose Metabolism Imbalance in Mice Offspring through Insulin Signaling and Wnt Signaling Pathways

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    An adverse intrauterine environment, induced by a chromium-restricted diet, is a potential cause of metabolic disease in adult life. Up to now, the relative mechanism has not been clear. C57BL female mice were time-mated and fed either a control diet (CD), or a chromium-restricted diet (CR) throughout pregnancy and the lactation period. After weaning, some offspring continued the diet diagram (CD-CD or CR-CR), while other offspring were transferred to another diet diagram (CD-CR or CR-CD). At 32 weeks of age, glucose metabolism parameters were measured, and the liver from CR-CD group and CD-CD group was analyzed using a gene array. Quantitative real-time polymerase chain reaction (qPCR) and Western blot were used to verify the result of the gene array. A maternal chromium-restricted diet resulted in obesity, hyperglycemia, hyperinsulinemia, increased area under the curve (AUC) of glucose in oral glucose tolerance testing and homeostasis model assessment of insulin resistance (HOMA-IR). There were 463 genes that differed significantly (>1.5-fold change, p < 0.05) between CR-CD offspring (264 up-regulated genes, 199 down-regulated genes) and control offspring. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis revealed that the insulin signaling pathway and Wnt signaling pathway were in the center of the gene network. Our study provides the first evidence that maternal chromium deficiency influences glucose metabolism in pups through the regulation of insulin signaling and Wnt signaling pathways. PMID:27782077

  6. The Wnt pathway limits BMP signaling outside of the germline stem cell niche in Drosophila ovaries.

    PubMed

    Mottier-Pavie, Violaine I; Palacios, Victor; Eliazer, Susan; Scoggin, Shane; Buszczak, Michael

    2016-09-01

    The mechanisms that modulate and limit the signaling output of adult stem cell niches remain poorly understood. To gain further insights into how these microenvironments are regulated in vivo, we performed a candidate gene screen designed to identify factors that restrict BMP signal production to the cap cells that comprise the germline stem cell (GSC) niche of Drosophila ovaries. Through these efforts, we found that disruption of Wnt4 and components of the canonical Wnt pathway results in a complex germ cell phenotype marked by an expansion of GSC-like cells, pre-cystoblasts and cystoblasts in young females. This phenotype correlates with an increase of decapentaplegic (dpp) mRNA levels within escort cells and varying levels of BMP responsiveness in the germline. Further genetic experiments show that Wnt4, which exhibits graded expression in somatic cells of germaria, activates the Wnt pathway in posteriorly positioned escort cells. The activation of the Wnt pathway appears to be limited by the BMP pathway itself, as loss of Mad in escort cells results in the expansion of Wnt pathway activation. Wnt pathway activity changes within germaria during the course of aging, coincident with changes in dpp production. These data suggest that mutual antagonism between the BMP and Wnt pathways in somatic cells helps to regulate germ cell differentiation.

  7. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes

    PubMed Central

    Dadgostar, Hajir; Zarnegar, Brian; Hoffmann, Alexander; Qin, Xiao-Feng; Truong, Uyen; Rao, Govinda; Baltimore, David; Cheng, Genhong

    2002-01-01

    CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-κB pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests, in principle, that distinct biological behaviors that depend on distinct gene expression subsets can be manipulated by targeting specific signaling pathways. PMID:11830667

  8. Six plant extracts delay yeast chronological aging through different signaling pathways

    PubMed Central

    Lutchman, Vicky; Dakik, Pamela; McAuley, Mélissa; Cortes, Berly; Ferraye, George; Gontmacher, Leonid; Graziano, David; Moukhariq, Fatima-Zohra; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway. PMID:27447556

  9. [Research Progress on Notch Signal Pathway in Acute Graft-Versus-Host Disease -Review].

    PubMed

    Guo, Dong-Mei; Li, Ban-Ban; Li, Chun-Pu; Teng, Qing-Liang

    2017-02-01

    The Notch signaling pathway is a highly conserved cell signaling system that plays an essential role in many biological processes. Notch signaling regulates multiple aspects of hematopoiesis, especially during T cell develop-ment. Recent data suggest that Notch also regulates mature T cell differentiation and function. The latest data show that Notch also plays an essential role in alloreactive T cells mediating acute graft-versus-host disease (aGVHD), the most severe complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Notch inhibition in donor-derived T cells or blockade of individual Notch ligands and receptors after transplantation can reduce GVHD severity and mortality in mouse models of allo-HSCT, without causing global immunosuppression. These findings indicate Notch in T cells as an attractive therapeutic target to control aGVHD. In this article, the pathophysiology of aGVHD, the Notch signal pathway and aGVHD are reviewed.

  10. Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology

    PubMed Central

    Arango-Lievano, Margarita; Peguet, Camille; Catteau, Matthias; Parmentier, Marie-Laure; Wu, Synphen; Chao, Moses V; Ginsberg, Stephen D.; Jeanneteau, Freddy

    2016-01-01

    Glucocorticoid resistance is a risk factor for Alzheimer’s disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions. PMID:27849045

  11. Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation

    PubMed Central

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S.; Dulchavsky, Scott A.; Gautam, Subhash C.

    2013-01-01

    Xanthohumol (XN), a prenylated chalcone present in hops exhibits anti-inflammatory, antioxidant and anticancer activity. In the present study we show that XN inhibits the proliferation of mouse lymphoma cells and IL-2 induced proliferation and cell cycle progression in mouse splenic T cells. The suppression of T cell proliferation by XN was due to the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. XN also inhibited proliferation-related cellular proteins such as c-Myc, c-Fos and NF-κB and cyclin D1. Thus, understanding of IL-2 induced cell signaling pathways in normal T cells, which are constitutively turned on in T cell lymphomas may facilitate development of XN for the treatment of hematologic cancers. PMID:22946339

  12. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes.

    PubMed

    Fleuren, Wilco W M; Linssen, Margot M L; Toonen, Erik J M; van der Zon, Gerard C M; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H A; Ouwens, D Margriet; Alkema, Wynand

    2013-05-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids.

  13. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes

    PubMed Central

    Fleuren, Wilco W. M.; Linssen, Margot M. L.; Toonen, Erik J. M.; van der Zon, Gerard C. M.; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H. A.; Ouwens, D. Margriet

    2013-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids. PMID:23506355

  14. Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling

    PubMed Central

    Aldridge, Bree B.; Saez-Rodriguez, Julio; Muhlich, Jeremy L.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2009-01-01

    When modeling cell signaling networks, a balance must be struck between mechanistic detail and ease of interpretation. In this paper we apply a fuzzy logic framework to the analysis of a large, systematic dataset describing the dynamics of cell signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma cells. Simulations based on fuzzy logic recapitulate most features of the data and generate several predictions involving pathway crosstalk and regulation. We uncover a relationship between MK2 and ERK pathways that might account for the previously identified pro-survival influence of MK2. We also find unexpected inhibition of IKK following EGF treatment, possibly due to down-regulation of autocrine signaling. More generally, fuzzy logic models are flexible, able to incorporate qualitative and noisy data, and powerful enough to produce quantitative predictions and new biological insights about the operation of signaling networks. PMID:19343194

  15. New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors.

    PubMed

    Bisson, Melanie M A; Groth, Georg

    2011-01-01

    The membrane protein ETHYLENE INSENSITIVE2 (EIN2), which is supposed to act between the soluble serine/threonine kinase CTR1 and the EIN3/EIL family of transcription factors, is a central and most critical element of the ethylene signaling pathway in Arabidopsis. In a recent study, we have identified that EIN2 interacts tightly with all members of the Arabidopsis ethylene receptor family - proteins that mark the starting point of the signaling pathway. Our studies show consistently that the kinase domain of the receptors is essential for the formation of the EIN2-receptor complex. Furthermore, mutational analysis demonstrates that phosphorylation is a key mechanism in controlling the interaction of EIN2 and the ethylene receptors. Interaction studies in the presence of the ethylene agonist cyanide revealed a causal link between hormone binding and complex formation. In the presence of the plant hormone agonist the auto-kinase activity of the receptors is inhibited and the non-phosphorylated kinase domain of the receptors binds tightly to the carboxyl-terminal domain of EIN2. In the absence of cyanide inhibition of the auto-kinase activity is relieved and complex formation with the phosphorylated kinase domain of the receptors is reduced. Our data suggest a novel model on the integration of EIN2 in the ethylene signaling pathway.

  16. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer.

    PubMed

    Brechbiel, Jillian; Miller-Moslin, Karen; Adjei, Alex A

    2014-07-01

    The hedgehog (Hh) pathway is aberrantly activated in a number of tumors. In medulloblastoma, basal cell carcinoma, and rhabdomyosarcoma, mutations in Hh pathway genes lead to ligand-independent pathway activation. In many other tumor types, ligand-dependent activation of Hh signaling is potentiated through crosstalk with other critical molecular signaling pathways. Among such pathways, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch are of particular interest because agents that selectively inhibit these pathways are available and can be readily combined with agents such as vismodegib, sonidegib (LDE225), and BMS-833923, which target smoothened-a key Hh pathway regulator. Numerous preclinical studies have revealed the ways in which Hh intersects with each of these pathways, and combination therapies have resulted in improved antitumor efficacy and survival in animal models. Hh also plays an important role in hematopoiesis and in the maintenance of BCR-ABL-driven leukemic stem cells. Thus, combined inhibition of the Hh pathway and BCR-ABL has emerged as a promising potential therapeutic strategy in chronic myeloid leukemia (CML). A number of clinical trials evaluating combinations of Hh inhibitors with other targeted agents are now underway in CML and a variety of solid tumors. This review highlights these trials and summarizes preclinical evidence of crosstalk between Hh and four other actionable pathways-RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch-as well as the role of Hh in the maintenance of BCR-ABL-driven leukemic stem cells.

  17. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases.

    PubMed

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent.

  18. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  19. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells.

    PubMed

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Wu, Wei-Chi; Hsu, Jason; Weng, Shih-Ting; Lin, Tsai-Leng; Liu, Chun-Yi; Hseu, Ruey-Shyang; Huang, Ching-Tsan

    2008-04-01

    Ganoderma lucidum, a medicinal fungus is thought to possess and enhance a variety of human immune functions. An immuno-modulatory protein, Ling Zhi-8 (LZ-8) isolated from G. lucidum exhibited potent mitogenic effects upon human peripheral blood lymphocytes (PBL). However, LZ-8-mediated signal transduction in the regulation of interleukin-2 (IL-2) gene expression within human T cells is largely unknown. Here we cloned the LZ-8 gene of G. lucidum, and expressed the recombinant LZ-8 protein (rLZ-8) by means of a yeast Pichia pastoris protein expression system. We found that rLZ-8 induces IL-2 gene expression via the Src-family protein tyrosine kinase (PTK), via reactive oxygen species (ROS), and differential protein kinase-dependent pathways within human primary T cells and cultured Jurkat T cells. In essence, we have established the nature of the rLZ-8-mediated signal-transduction pathways, such as PTK/protein kinase C (PKC)/ROS, PTK/PLC/PKCalpha/ERK1/2, and PTK/PLC/PKCalpha/p38 pathways in the regulation of IL-2 gene expression within human T cells. Our current results of analyzing rLZ-8-mediated signal transduction in T cells might provide a potential application for rLZ-8 as a pharmacological immune-modulating agent.

  20. Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma.

    PubMed

    DeNardo, Bradley D; Holloway, Michael P; Ji, Qinqin; Nguyen, Kevin T; Cheng, Yan; Valentine, Marcus B; Salomon, Arthur; Altura, Rachel A

    2013-01-01

    Neuroblastoma is an embryonal tumor of childhood with a heterogenous clinical presentation that reflects differences in activation of complex biological signaling pathways. Protein phosphorylation is a key component of cellular signal transduction and plays a critical role in processes that control cancer cell growth and survival. We used shotgun LC/MS to compare phosphorylation between a human MYCN amplified neuroblastoma cell line (NB10), modeling a resistant tumor, and a human neural precursor cell line (NPC), modeling a normal baseline neural crest cell. 2181 unique phosphorylation sites representing 1171 proteins and 2598 phosphopeptides were found. Protein kinases accounted for 6% of the proteome, with a predominance of tyrosine kinases, supporting their prominent role in oncogenic signaling pathways. Highly abundant receptor tyrosine kinase (RTK) phosphopeptides in the NB10 cell line relative to the NPC cell line included RET, insulin-like growth factor 1 receptor/insulin receptor (IGF-1R/IR), and fibroblast growth factor receptor 1 (FGFR1). Multiple phosphorylated peptides from downstream mediators of the PI3K/AKT/mTOR and RAS pathways were also highly abundant in NB10 relative to NPC. Our analysis highlights the importance of RET, IGF-1R/IR and FGFR1 as RTKs in neuroblastoma and suggests a methodology that can be used to identify potential novel biological therapeutic targets. Furthermore, application of this previously unexploited technology in the clinic opens the possibility of providing a new wide-scale molecular signature to assess disease progression and prognosis.

  1. Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation

    PubMed Central

    2014-01-01

    Background MLK3 gene mutations were described to occur in about 20% of microsatellite unstable gastrointestinal cancers and to harbor oncogenic activity. In particular, mutation P252H, located in the kinase domain, was found to have a strong transforming potential, and to promote the growth of highly invasive tumors when subcutaneously injected in nude mice. Nevertheless, the molecular mechanism underlying the oncogenic activity of P252H mutant remained elusive. Methods In this work, we performed Illumina Whole Genome arrays on three biological replicas of human HEK293 cells stably transfected with the wild-type MLK3, the P252H mutation and with the empty vector (Mock) in order to identify the putative signaling pathways associated with P252H mutation. Results Our microarray results showed that mutant MLK3 deregulates several important colorectal cancer- associated signaling pathways such as WNT, MAPK, NOTCH, TGF-beta and p53, helping to narrow down the number of potential MLK3 targets responsible for its oncogenic effects. A more detailed analysis of the alterations affecting the WNT signaling pathway revealed a down-regulation of molecules involved in the canonical pathway, such as DVL2, LEF1, CCND1 and c-Myc, and an up-regulation of DKK, a well-known negative regulator of canonical WNT signaling, in MLK3 mutant cells. Additionally, FZD6 and FZD10 genes, known to act as negative regulators of the canonical WNT signaling cascade and as positive regulators of the planar cell polarity (PCP) pathway, a non-canonic WNT pathway, were found to be up-regulated in P252H cells. Conclusion The results provide an overall view of the expression profile associated with mutant MLK3, and they support the functional role of mutant MLK3 by showing a deregulation of several signaling pathways known to play important roles in the development and progression of colorectal cancer. The results also suggest that mutant MLK3 may be a novel modulator of WNT signaling, and pinpoint the

  2. Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue.

    PubMed

    Ding, Lei; Wang, Liyong; Sui, Leiming; Zhao, Huanying; Xu, Xiaoxue; Li, Tengyan; Wang, Xiaonan; Li, Wenjing; Zhou, Ping; Kong, Lu

    2016-08-01

    The claudin family of proteins is integral to the structure and function of tight junctions. The role of claudin-7 (Cldn-7, CLDN7) in regulating the integrin/focal adhesion kinase (FAK)/ERK signaling pathway remains poorly understood. Therefore, we investigated differences in gene expression, primarily focusing on CLDN7 and integrin/FAK/ERK signaling pathway genes, between colon cancer and adjacent normal tissues. Quantitative real-time reverse transcription-PCR and immunohistochemistry were utilized to verify the results of mRNA and protein expression, respectively. In silico analysis was used to predict co-regulation between Cldn-7 and integrin/FAK/ERK signaling pathway components, and the STRING database was used to analyze protein-protein interaction pairs among these proteins. Meta-analysis of expression microarrays in The Cancer Genome Atlas (TCGA) database was used to identify significant correlations between Cldn-7 and components of predicted genes in the integrin/FAK/ERK signaling pathway. Our results showed marked cancer stage-specific decreases in the protein expression of Cldn-7, Gelsolin, MAPK1 and MAPK3 in colon cancer samples, and the observed changes for all proteins except Cldn-7 were in agreement with changes in the corresponding mRNA levels. Cldn-7 might indirectly regulate MAPK3 via KRT8 due to KRT8 co-expression with MAPK3 or CLDN7. Our bioinformatics methods supported the hypothesis that Cldn-7 does not directly regulate any genes in the integrin/FAK/ERK signaling pathway. These factors may participate in a common network that regulates cancer progression in which the MAPK pathway serves as the central node.

  3. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm.

    PubMed

    Carmena, Ana; Buff, Eugene; Halfon, Marc S; Gisselbrecht, Stephen; Jiménez, Fernando; Baylies, Mary K; Michelson, Alan M

    2002-04-15

    Convergent intercellular signals must be precisely integrated in order to elicit specific biological responses. During specification of muscle and cardiac progenitors from clusters of equivalent cells in the Drosophila embryonic mesoderm, the Ras/MAPK pathway--activated by both epidermal and fibroblast growth factor receptors--functions as an inductive cellular determination signal, while lateral inhibition mediated by Notch antagonizes this activity. A critical balance between these signals must be achieved to enable one cell of an equivalence group to segregate as a progenitor while its neighbors assume a nonprogenitor identity. We have investigated whether these opposing signals directly interact with each other, and we have examined how they are integrated by the responding cells to specify their unique fates. Our findings reveal that Ras and Notch do not function independently; rather, we have uncovered several modes of cross-talk between these pathways. Ras induces Notch, its ligand Delta, and the epidermal growth factor receptor antagonist, Argos. We show that Delta and Argos then synergize to nonautonomously block a positive autoregulatory feedback loop that amplifies a fate-inducing Ras signal. This feedback loop is characterized by Ras-mediated upregulation of proximal components of both the epidermal and fibroblast growth factor receptor pathways. In turn, Notch activation in nonprogenitors induces its own expression and simultaneously suppresses both Delta and Argos levels, thereby reinforcing a unidirectional inhibitory response. These reciprocal interactions combine to generate the signal thresholds that are essential for proper specification of progenitors and nonprogenitors from groups of initially equivalent cells.

  4. Drosophila DDX3/Belle Exerts Its Function Outside of the Wnt/Wingless Signaling Pathway

    PubMed Central

    Basler, Konrad

    2016-01-01

    The helicases human DDX3 and Drosophila Belle (Bel) are part of a well-defined subfamily of the DEAD-box helicases. Individual subfamily-members perform a myriad of functions in nuclear and cytosolic RNA metabolism. It has also been reported that DDX3X is involved in cell signaling, including IFN-α and IFN-β inducing pathways upon viral infection as well as in Wnt signaling. Here we used a collection of EMS-induced bel alleles recovered from a Wingless (Wg) suppressor screen to analyze the role of the Drosophila homolog of DDX3 in Wg/Wnt signaling. These EMS alleles, as well as a P-element induced null allele and RNAi-mediated knock down of bel, all suppressed the phenotype of ectopic Wg signaling in the eye. However, they did not affect the expression of known Wg target genes like senseless, Distalless or wingful/Notum. Ectopic Wg signaling in eye imaginal discs induces apoptosis by increasing grim expression. Mutations in bel revert grim expression to wild-type levels. Together, these results indicate that Bel does not function as a core component in the Drosophila Wg pathway, and that mutations affecting its helicase function suppress the effects of ectopic Wg signaling downstream of the canonical pathway. PMID:28030561

  5. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    PubMed Central

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  6. [Recording and data processing of electrical signals of the specific atrioventricular conduction pathways in man].

    PubMed

    Héron, F; Mialet, G; Schuller, C; Breton, D; Perrin, J; Degeorges, M

    1979-01-01

    Signals of the electrical activity of the specific atrioventricular conduction pathways were recorded with an unipolar lead to obtain an exact time reference. The amplifier used had special characteristics: high gain settings (up to 300,000), very low noise levels, and wide filter range (2 Hz - 1,600 Hz). The low amplitude of the signals under study, of the order of a microvolt, and the wide filter range of the amplifier necessitated placing the patient in a Faraday cage. The signals recorded on magnetic tape were treated by a system of analysis for signal treatment. The method of averaging was used to extract the signal from background noise especially that arising from somatic muscle. The amplitude of the Hisian signal was much larger than that usually obtained with other methods. The intervals were determined with precision of the order of 1 millisecond. Frequential analysis of the signals gave another representation of the information contained in the time signals. This new representation seems to give better discrimination of the different zones of activation of the specific atrioventricular conduction pathways.

  7. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana.

    PubMed

    Kim, Duck-Hyun; Puthumana, Jayesh; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Kim, Il-Chan; Lee, Jin Wuk; Lee, Jae-Seong

    2016-10-01

    Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment.

  8. Expanding the Interactome of the Noncanonical NF-κB Signaling Pathway

    PubMed Central

    Willmann, Katharina L.; Krolo, Ana; Knapp, Sylvia; Bennett, Keiryn L.; Boztug, Kaan

    2017-01-01

    NF-κB signaling is a central pathway of immunity and integrates signal transduction upon a wide array of inflammatory stimuli. Noncanonical NF-κB signaling is activated by a small subset of TNF family receptors and characterized by NF-κB2/p52 transcriptional activity. The medical relevance of this pathway has recently re-emerged from the discovery of primary immunodeficiency patients that have loss-of-function mutations in the MAP3K14 gene encoding NIK. Nevertheless, knowledge of protein interactions that regulate noncanonical NF-κB signaling is sparse. Here we report a detailed state-of-the-art mass spectrometry-based protein−protein interaction network including the non-canonical NF-κB signaling nodes TRAF2, TRAF3, IKKα, NIK, and NF-κB2/p100. The value of the data set was confirmed by the identification of interactions already known to regulate this pathway. In addition, a remarkable number of novel interactors were identified. We provide validation of the novel NIK and IKKα interactor FKBP8, which may regulate processes downstream of noncanonical NF-κB signaling. To understand perturbed noncanonical NF-κB signaling in the context of misregulated NIK in disease, we also provide a differential interactome of NIK mutants that cause immunodeficiency. Altogether, this data set not only provides critical insight into how protein−protein interactions can regulate immune signaling but also offers a novel resource on noncanonical NF-κB signaling. PMID:27416764

  9. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?

    PubMed Central

    Romero-Guevara, Ricardo; Cencetti, Francesca; Donati, Chiara; Bruni, Paola

    2015-01-01

    Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future

  10. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    SciTech Connect

    Borziak, Kirill; Jouline, Igor B

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similarity to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.

  11. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells

    SciTech Connect

    Hollborn, Margrit . E-mail: hollbm@medizin.uni-leipzig.de; Bringmann, Andreas; Faude, Frank; Wiedemann, Peter; Kohen, Leon

    2006-06-09

    We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.

  12. Curcumin inhibits the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.

    PubMed

    Yang, Jingzhe; Wang, Chengli; Zhang, Zhijie; Chen, Xiaojun; Jia, Yusen; Wang, Bin; Kong, Tao

    2017-02-01

    Prostate cancer is one of the most common malignancies in men, and it urgently demands precise interventions that target the signaling pathways implicated in its initiation, progression, and metastasis. The Notch-1 signaling pathway is closely associated with the pathophysiology of prostate cancer. This study investigated the antitumor effects and mechanisms of curcumin, which is a well-known natural compound from curcuminoids, in prostate cancer cells. Viability, proliferation, and migration were analyzed in two prostate cancer cell lines, DU145 and PC3, after curcumin treatment. Whether the Notch-1 signaling pathway is involved in the antitumor effects of curcumin was examined. Curcumin inhibited the survival and proliferation of PC3 and DU145 cells in a dose- and time-dependent manner and inhibited DU145 migration. Curcumin did not affect the expression of Notch-1 or its active product NICD, but it did inhibit the expression of MT1-MMP and MMP2 proteins in DU145 cells. We found that curcumin inhibited the DNA-binding ability of NICD in DU145 cells. In conclusion, curcumin inhibited the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.

  13. LMO2 attenuates tumor growth by targeting the Wnt signaling pathway in breast and colorectal cancer

    PubMed Central

    Liu, Ye; Huang, Di; Wang, Zhaoyang; Wu, Chao; Zhang, Zhao; Wang, Dan; Li, Zongjin; Zhu, Tianhui; Yang, Shuang; Sun, Wei

    2016-01-01

    The proto-oncogene LIM-domain only 2 (lmo2) was traditionally considered to be a pivotal transcriptional regulator in hematopoiesis and leukemia. Recently, the cytosolic localization of LMO2 was revealed in multiple epithelial tissues and a variety of solid tumors. However, the function of LMO2 in these epithelia and solid tumors remains largely unclear. The Wnt signaling pathway is a crucial determinant of development, and abnormalities in several key segments of this pathway contribute to oncogenesis. The current study demonstrated that LMO2 participates in the regulation of canonical Wnt signaling in the cytoplasm by binding to Dishevelled-1/2 (DVL-1/2) proteins. These interactions occurred at the PDZ domain of Dishevelled, and LMO2 subsequently attenuated the activation of the key factor β-catenin in the canonical Wnt signaling pathway. Meanwhile, significantly decreased expression of LMO2 was detected in breast and colorectal cancers, and the downregulation of LMO2 in these cells increased cell proliferation and reduced apoptosis. Taken together, the data in this study revealed a novel crosstalk between LMO2 and the Wnt signaling pathway during tumorigenesis and suggested that LMO2 might be a tumor suppressor in certain solid tumors, in contrast to its traditional oncogenic role in the hematopoietic system. PMID:27779255

  14. Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target.

    PubMed

    Inestrosa, Nibaldo C; Varela-Nallar, Lorena; Grabowski, Catalina P; Colombres, Marcela

    2007-01-01

    Recent evidence supports a role of the Wnt pathway in neurodegenerative disorders such as Alzheimer's disease (AD). A relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmatic levels of beta-catenin has been proposed. Also, the inhibition of glycogen synthase kinase (GSK-3beta), a central modulator of the pathway, protects rat hippocampal neurons from Abeta-induced damage. Interestingly, during the progression of AD, it has been described that active GSK-3beta is found in neuronal cell bodies and neurites, co-localizing with pre-neurofibrillary tangles observed in disease brains. Since Abeta oligomers are associated with the post-synaptic region and we have found that the non-canonical Wnt signaling modulates PSD-95 and glutamate receptors, we propose that the synaptic target for Abeta oligomers in AD is the postsynaptic region and at the molecular level is the non-canonical Wnt signaling pathway. Altogether, our evidence suggests that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in AD brains and that the activation of this signaling pathway could be of therapeutic interest in AD.

  15. A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

    PubMed Central

    Childers, W. S.; Shapiro, Lucy

    2014-01-01

    Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood) signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS) signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1). The strict unidirectional flow from histidine kinase (HK) to the response regulator (RR), observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.

  16. The role of IL17B-IL17RB signaling pathway in breast cancer.

    PubMed

    Alinejad, Vahideh; Dolati, Sanam; Motallebnezhad, Morteza; Yousefi, Mehdi

    2017-04-01

    Breast cancer is the most important cause of death in women globally. Though, improved survival is due to the developments in the screening techniques, initial diagnosis, and advances in treatments. Numerous factors contributed in the progression of breast cancer, such as inflammation. The most significant factor involved in the inflammatory process, is T helper 17 (Th17) cells. Th17 cells have an exceptional role in many of inflammatory diseases like psoriasis, rheumatoid arthritis, and breast cancer through production of proinflammatory cytokine (IL17). As the collected indication recommends a possible relevance between chronic inflammation and cancer tumorigenesis, it appears that this cytokine can stimulate the tumorigenesis of breast tumor cells. The IL17 family consist of 6 protein members, among them IL17B and its receptor, and IL17RB signaling pathway plays a key role in development and progression of breast cancer, and targeting this signaling pathway or its specific downstream mediators by a chemotherapy drug and small interfering RNA interference is a potentially novel therapeutic pathway for inhibition of this disease. This comprehensive review details the recognition of activity, signaling, and the roles of IL17B-IL17RB in breast cancer have caused to determination of new therapeutic mechanisms with the purpose of introduction this system and the regulation of its signaling pathway.

  17. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.

    PubMed

    Farrow, John M; Pesci, Everett C

    2007-05-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised patients and those with cystic fibrosis (CF). This gram-negative bacterium uses multiple cell-to-cell signals to control numerous cellular functions and virulence. One of these signals is 2-heptyl-3-hydroxy-4-quinolone, which is referred to as the Pseudomonas quinolone signal (PQS). This signal functions as a coinducer for a transcriptional regulator (PqsR) to positively control multiple virulence genes and its own synthesis. PQS production is required for virulence in multiple models of infection, and it has been shown to be produced in the lungs of CF patients infected by P. aeruginosa. One of the precursor compounds from which PQS is synthesized is the metabolite anthranilate. This compound can be derived from the conversion of chorismate to anthranilate by an anthranilate synthase or through the degradation of tryptophan via the anthranilate branch of the kynurenine pathway. In this study, we present data which help to define the kynurenine pathway in P. aeruginosa and show that the kynurenine pathway serves as a critical source of anthranilate for PQS synthesis. We also show that the kyn pathway genes are induced during growth with tryptophan and that they are autoregulated by kynurenine. This study provides solid foundations for the understanding of how P. aeruginosa produces the anthranilate that serves as a precursor to PQS and other 4-quinolones.

  18. Suppression of β-catenin Signaling Pathway in Human Prostate Cancer PC3 Cells by Delphinidin

    PubMed Central

    Lee, Wooje; Yun, Jung-Mi

    2016-01-01

    Delphinidin possesses strong anti-oxidant, anti-inflammatory, and anti-cancer properties. Suppression of the Wnt/β-catenin signaling pathway is a potential strategy for chemoprevention and therapy. As aberrant activation of the β-catenin signaling pathway contributes to prostate cancer progression, we evaluated the effect of delphinidin on this pathway in human PC3 prostate cancer cells. An MTT assay showed that treatment with delphinidin (15–180 μM, 72 hours) resulted in a dose-dependent growth inhibition of cells. Treatment with delphinidin increased the phosphorylation of serine or threonine residues on β-catenin and decreased the levels of cytoplasmic β-catenin. Moreover, treatment with delphinidin inhibited the nuclear translocation of β-catenin and the expression of β-catenin target genes such as cyclin D1, c-myc, Axin-2, and T cell factor-1. Delphinidin also induced the phosphorylation of glycogen synthase kinase 3β and the expression of adenomatous polyposis coli and Axin proteins. Our results indicate that inhibition of cell growth by delphinidin is mediated, at least in part, through modulation of the β-catenin signaling pathway. We suggest that delphinidin is a potent inhibitor of Wnt/β-catenin signaling in prostate cancer cells. PMID:27390740

  19. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality.

  20. Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses

    PubMed Central

    Petrenko, Natalia; Chereji, Raˇzvan V.; McClean, Megan N.; Morozov, Alexandre V.; Broach, James R.

    2013-01-01

    All cells perceive and respond to environmental stresses through elaborate stress-sensing networks. Yeast cells sense stress through diverse signaling pathways that converge on the transcription factors Msn2 and Msn4, which respond by initiating rapid, idiosyncratic cycles into and out of the nucleus. To understand the role of Msn2/4 nuclear localization dynamics, we combined time-lapse studies of Msn2-GFP localization in living cells with computational modeling of stress-sensing signaling networks. We find that several signaling pathways, including Ras/protein kinase A, AMP-activated kinase, the high-osmolarity response mitogen-activated protein kinase pathway, and protein phosphatase 1, regulate activation of Msn2 in distinct ways in response to different stresses. Moreover, we find that bursts of nuclear localization elicit a more robust transcriptional response than does sustained nuclear localization. Using stochastic modeling, we reproduce in silico the responses of Msn2 to different stresses, and demonstrate that bursts of localization arise from noise in the signaling pathways amplified by the small number of Msn2 molecules in the cell. This noise imparts diverse behaviors to genetically identical cells, allowing cell populations to “hedge their bets” in responding to an uncertain future, and to balance growth and survival in an unpredictable environment. PMID:23615444

  1. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration.

    PubMed

    Rogato, Alessandra; Valkov, Vladimir Totev; Alves, Ludovico Martins; Apone, Fabio; Colucci, Gabriella; Chiurazzi, Maurizio

    2016-06-01

    G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program. In order to investigate the putative hierarchic role played by GCR1 in these symbiotic pathways we identified and characterized the Lotus japonicus gene encoding the seven transmembrane GCR1 protein. The detailed molecular and topological analyses of LjGCR1 expression patterns that are presented suggest a possible involvement in the early steps of nodule organogenesis. Furthermore, phenotypic analyses of independent transgenic RNAi lines, showing a significant LjGCR1 expression down regulation, suggest an epistatic action in the control of molecular markers of nodulation pathways, although no macroscopic symbiotic phenotypes could be revealed.

  2. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  3. Cdk9 T-loop Phosphorylation is Regulated by the Calcium Signaling Pathway

    PubMed Central

    Ramakrishnan, Rajesh; Rice, Andrew P.

    2011-01-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Calcium/Calmodulin- dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4+ T lymphocytes, we found that the Ca2+ signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca2+ signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca2+ signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca2+ pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function. PMID:21448926

  4. Tyrosinase kinetics in epidermal melanocytes: analysis of DAG-PKC-dependent signaling pathway

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2001-05-01

    Tyrosinase is the key enzyme of melanogenesis with unusual enzyme kinetics. Protein kinase C plays an important role in regulating of tyrosinase activity. In the paper the mathematical model of PKC-DAG-dependent signal transduction pathway for UV-radiation is presented.

  5. Signaling Pathways Used by Ergot Alkaloids to Inhibit Bovine Sperm Motility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids exert their toxic or pharmaceutical effects through membrane receptor-mediated activities. This study investigated the signaling pathways involved in the in vitro inhibitory effects of both ergotamine (ET) and dihydroergotamine (DEHT) on bovine sperm motility using specific inhibitor...

  6. Noninvasive imaging of receptor function: signal transduction pathways and physiological readouts.

    PubMed

    Rudin, Markus

    2008-09-01

    Intracellular signaling describes the process of information propagation from the cell surface to the location within the cell where a biological response is executed. Signaling pathways involve a complex network of interacting molecular species. It is obvious that information on the activation of individual pathways is highly relevant in biomedical research, both from a diagnostic point of view and for evaluating therapeutic interventions. Modern molecular imaging approaches are capable of providing such information in a temporo-spatially resolved manner. Two strategies can be pursued: imaging individual pathway molecules or targeting protein-protein interactions, which are key elements of the signaling networks. Assays such as fluorescence resonance energy transfer, two-hybrid, protein fragment complementation or protein splicing have been adapted to allow studies in live mice. The major issues in imaging signal transduction are sensitivity, as critical species occur at low concentration, and the fact that the processes targeted are intracellular, that is, exogenous probes have to cross the cell membrane. Currently, the majority of these imaging methods are based on genetic engineering approaches and are therefore confined to experimental studies in animals. Exogenous probes for targeting intracellular pathway molecules are being developed and may allow translation into the clinic.

  7. The Inositide Signaling Pathway As a Target for Treating Gastric Cancer and Colorectal Cancer

    PubMed Central

    Kim, Hong Jun; Lee, Suk-young; Oh, Sang Cheul

    2016-01-01

    Gastric cancer and colorectal cancer are the leading cause of cancer mortality and have a dismal prognosis. The introduction of biological agents to treat these cancers has resulted in improved outcomes, and combination chemotherapy with targeted agents and conventional chemotherapeutic agents is regarded as standard therapy. Additional newly clarified mechanisms of oncogenesis and resistance to targeted agents require the development of new biologic agents. Aberrant activation of the inositide signaling pathway by a loss of function PTEN mutation or gain of function mutation/amplification of PIK3CA is an oncogenic mechanism in gastric cancer and colorectal cancer. Clinical trials with biologic agents that target the inositide signaling pathway are being performed to further improve treatment outcomes of patients with advanced gastric cancer and metastatic colorectal cancer (CRC). In this review we summarize the inositide signaling pathway, the targeted agents that inhibit abnormal activation of this signaling pathway and the clinical trials currently being performed in patients with advanced or metastatic gastric cancer and metastatic CRC using these targeted agents. PMID:27242542

  8. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway.

    PubMed

    Ramakrishnan, Rajesh; Rice, Andrew P

    2012-02-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.

  9. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways

    PubMed Central

    Piloto, Obdulio; Wright, Melissa; Brown, Patrick; Kim, Kyu-Tae; Levis, Mark; Small, Donald

    2007-01-01

    Continuous treatment of malignancies with tyrosine kinase inhibitors (TKIs) may select for resistant clones (ie, imatinib mesylate). To study resistance to TKIs targeting FLT3, a receptor tyrosine kinase that is frequently mutated in acute myelogenous leukemia (AML), we developed resistant human cell lines through prolonged coculture with FLT3 TKIs. FLT3 TKI-resistant cell lines and primary samples still exhibit inhibition of FLT3 phosphorylation on FLT3 TKI treatment. However, FLT3 TKI-resistant cell lines and primary samples often show continued activation of downstream PI3K/Akt and/or Ras/MEK/MAPK signaling pathways as well as continued expression of genes involved in FLT3-mediated cellular transformation. Inhibition of these signaling pathways restores partial sensitivity to FLT3 TKIs. Mutational screening of FLT3 TKI-resistant cell lines revealed activating N-Ras mutations in 2 cell lines that were not present in the parental FLT3 TKI-sensitive cell line. Taken together, these data indicate that FLT3 TKI-resistant cells most frequently become FLT3 independent because of activation of parallel signaling pathways that provide compensatory survival/proliferation signals when FLT3 is inhibited. Anti-FLT3 mAb treatment was still cytotoxic to FLT3 TKI-resistant clones. An approach combining FLT3 TKIs with anti-FLT3 antibodies and/or inhibitors of important pathways downstream of FLT3 may reduce the chances of developing resistance. PMID:17047150

  10. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    PubMed

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  11. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients.

    PubMed

    Zhou, Wen-Ya; Zheng, Hong; Du, Xiao-Ling; Yang, Ji-Long

    2016-06-01

    The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.

  12. Inhibitors beta-amyloid-induced toxicity by modulating the Akt signaling pathway.

    PubMed

    Nakagami, Yasuhiro

    2004-12-01

    The Akt signaling pathway plays a crucial role in neuronal survival, leading to inhibition of apoptosis. Many stimulants including neurotrophins are reported to activate this pathway in preclinical studies; however, there are no drugs for neurodegenerative diseases adopting such a concept on the market so far. Among neurodegenerative diseases, Alzheimer's disease is the most common and characterized by senile plaques and neurofibrillary tangles, which consist of beta-amyloid and hyperphosphorylated tau, respectively. Recent studies suggest that activation of Akt inhibits toxicity of beta-amyloid and formation of neurofibrillary tangles, leading to protection of neurons against apoptosis. This review discusses the possibility of treatment of Alzheimer's disease by activating the Akt signaling pathway.

  13. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients

    PubMed Central

    Zhou, Wen-Ya; Zheng, Hong; Du, Xiao-Ling; Yang, Ji-Long

    2016-01-01

    The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research. PMID:27458533

  14. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway

    PubMed Central

    Le Sage, Valerie; Cinti, Alessandro; Amorim, Raquel; Mouland, Andrew J.

    2016-01-01

    The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs. PMID:27231932

  15. Crosstalk events in the estrogen signaling pathway may affect tamoxifen efficacy in breast cancer molecular subtypes.

    PubMed

    de Anda-Jáuregui, Guillermo; Mejía-Pedroza, Raúl A; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-12-01

    Steroid hormones are involved on cell growth, development and differentiation. Such effects are often mediated by steroid receptors. One paradigmatic example of this coupling is the estrogen signaling pathway. Its dysregulation is involved in most tumors of the mammary gland. It is thus an important pharmacological target in breast cancer. This pathway, however, crosstalks with several other molecular pathways, a fact that may have consequences for the effectiveness of hormone modulating drug therapies, such as tamoxifen. For this work, we performed a systematic analysis of the major routes involved in crosstalk phenomena with the estrogen pathway - based on gene expression experiments (819 samples) and pathway analysis (493 samples) - for biopsy-captured tissue and contrasted in two independent datasets with in vivo and in vitro pharmacological stimulation. Our results confirm the presence of a number of crosstalk events across the estrogen signaling pathway with others that are dysregulated in different molecular subtypes of breast cancer. These may be involved in proliferation, invasiveness and apoptosis-evasion in patients. The results presented may open the way to new designs of adjuvant and neoadjuvant therapies for breast cancer treatment.

  16. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors.

    PubMed

    Rimkus, Tadas K; Carpenter, Richard L; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-02-15

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.

  17. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway.

    PubMed

    Paradkar, Prasad N; Duchemin, Jean-Bernard; Voysey, Rhonda; Walker, Peter J

    2014-04-01

    Despite their importance as vectors of human and livestock diseases, relatively little is known about innate antiviral immune pathways in mosquitoes and other insects. Previous work has shown that Culex Vago (CxVago), which is induced and secreted from West Nile virus (WNV)-infected mosquito cells, acts as a functional homolog of interferon, by activating Jak-STAT pathway and limiting virus replication in neighbouring cells. Here we describe the Dicer-2-dependent pathway leading to WNV-induced CxVago activation. Using a luciferase reporter assay, we show that a NF-κB-like binding site in CxVago promoter region is conserved in mosquito species and is responsible for induction of CxVago expression following WNV infection. Using dsRNA-based gene knockdown, we show that the NF-κB ortholog, Rel2, plays significant role in the signaling pathway that activates CxVago in mosquito cells in vitro and in vivo. Using similar approaches, we also show that TRAF, but not TRAF-3, is involved in activation of Rel2 after viral infection. Overall the study shows that a conserved signaling pathway, which is similar to mammalian interferon activation pathway, is responsible for the induction and antiviral activity of CxVago.

  18. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    PubMed Central

    Rimkus, Tadas K.; Carpenter, Richard L.; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-01-01

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials. PMID:26891329

  19. Association of Single Nucleotide Polymorphisms in Wnt Signaling Pathway Genes with Breast Cancer in Saudi Patients

    PubMed Central

    Shaik, Jilani Purusottapatnam; Alabdulkarim, Huda A.; Ajaj, Sana Abdulla; Khan, Zahid

    2013-01-01

    Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni's correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas. PMID:23516639

  20. Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients.

    PubMed

    Alanazi, Mohammad Saud; Parine, Narasimha Reddy; Shaik, Jilani Purusottapatnam; Alabdulkarim, Huda A; Ajaj, Sana Abdulla; Khan, Zahid

    2013-01-01

    Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni's correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas.

  1. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  2. Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy.

    PubMed

    Pandolfi, Silvia; Stecca, Barbara

    2015-02-09

    The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.

  3. Clinicopathological Implications of Wingless/int1 (WNT) Signaling Pathway in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Nakamoto, Mitsuhiro; Hisaoka, Masanori

    2016-03-01

    Pancreatic cancer is still one of the most lethal malignancies in the world, and a more thorough understanding of its detailed pathogenetic mechanisms and the development of more effective therapeutic strategies are urgently required. Pancreatic ductal adenocarcinoma (PDA), the most common type of pancreatic cancer, is characterized by consistent genetic abnormalities such as point mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) and in the tumor suppressor protein p53 (TP53) genes. Alterations in intracellular core signal pathways have also been shown to induce the development or progression of PDA. The Wingless/int1 (WNT) signal pathway plays a pivotal role in embryonic development, cellular proliferation and differentiation, and dysregulation of WNT signaling can lead to neoplastic transformation in a variety of organ systems, including the pancreas. Recent studies have shown that altered WNT signaling is associated with a poor prognosis in patients with PDA, suggesting that the pathway is a predictor of patients' survival and a potential therapeutic target of PDA. In this review, the clinicopathological implications of WNT signaling in PDA are highlighted.

  4. OTUB1 modulates c-IAP1 stability to regulate signalling pathways

    PubMed Central

    Goncharov, Tatiana; Niessen, Kyle; de Almagro, Maria Cristina; Izrael-Tomasevic, Anita; Fedorova, Anna V; Varfolomeev, Eugene; Arnott, David; Deshayes, Kurt; Kirkpatrick, Donald S; Vucic, Domagoj

    2013-01-01

    The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability. PMID:23524849

  5. The Role of Phospholipase D in Modulating the MTOR Signaling Pathway in Polycystic Kidney Disease

    PubMed Central

    Liu, Yang; Käch, Andres; Ziegler, Urs; Ong, Albert C. M.; Wallace, Darren P.; Arcaro, Alexandre; Serra, Andreas L.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD. PMID:24009738

  6. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    PubMed

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied