Sample records for signaling pathways implicated

  1. Disease implication of hyper-Hippo signalling.

    PubMed

    Wang, Shu-Ping; Wang, Lan-Hsin

    2016-10-01

    The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. © 2016 The Authors.

  2. Disease implication of hyper-Hippo signalling

    PubMed Central

    Wang, Shu-Ping

    2016-01-01

    The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. PMID:27805903

  3. The canonical Wnt signaling pathway in autism.

    PubMed

    Zhang, Yinghua; Yuan, Xiangshan; Wang, Zhongping; Li, Ruixi

    2014-01-01

    Mounting attention is being focused on the canonical Wnt signaling pathway which has been implicated in the pathogenesis of autism in some our and other recent studies. The canonical Wnt pathway is involved in cell proliferation, differentiation and migration, especially during nervous system development. Given its various functions, dysfunction of the canonical Wnt pathway may exert adverse effects on neurodevelopment and therefore leads to the pathogenesis of autism. Here, we review human and animal studies that implicate the canonical Wnt signal transduction pathway in the pathogenesis of autism. We also describe the crosstalk between the canonical Wnt pathway and the Notch signaling pathway in several types of autism spectrum disorders, including Asperger syndrome and Fragile X. Further research on the crosstalk between the canonical Wnt signaling pathway and other signaling cascades in autism may be an efficient avenue to understand the etiology of autism and ultimately lead to alternative medications for autism-like phenotypes.

  4. Clinical implications of hedgehog signaling pathway inhibitors

    PubMed Central

    Liu, Hailan; Gu, Dongsheng; Xie, Jingwu

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841

  5. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    PubMed

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  6. mTOR Pathways in Cancer and Autophagy.

    PubMed

    Paquette, Mathieu; El-Houjeiri, Leeanna; Pause, Arnim

    2018-01-12

    TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

  7. The diverse functions of Src family kinases in macrophages

    PubMed Central

    Abram, Clare L.; Lowell, Clifford A.

    2015-01-01

    Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways. PMID:18508521

  8. The Hippo Pathway: Immunity and Cancer.

    PubMed

    Taha, Zaid; J Janse van Rensburg, Helena; Yang, Xiaolong

    2018-03-28

    Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.

  9. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals.

    PubMed

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2017-07-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development.

  10. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals

    PubMed Central

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2018-01-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development. PMID:28581486

  11. The Hippo Pathway: Immunity and Cancer

    PubMed Central

    J. Janse van Rensburg, Helena

    2018-01-01

    Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work. PMID:29597279

  12. Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission.

    PubMed

    Schmoll, Monika

    2011-01-01

    Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy.

    PubMed

    Ramamoorthi, Ganesan; Sivalingam, Nageswaran

    2014-08-01

    Colon cancer is one of the third most common cancer in man, the second most common cancer in women worldwide, and the second leading cause of mortality in the USA. There are a number of molecular pathways that have been implicated in colon carcinogenesis, including TGF-β/Smad signaling pathway. TGF-β (transforming growth factor-beta) signaling pathway has the potential to regulate various biological processes including cell growth, differentiation, apoptosis, extracellular matrix modeling, and immune response. TGF-β signaling pathway acts as a tumor suppressor, but alterations in TGF-β signaling pathway promotes colon cancer cell growth, migration, invasion, angiogenesis, and metastasis. Here we review the role of TGF-β signaling cascade in colon carcinogenesis and multiple molecular targets of curcumin in colon carcinogenesis. Elucidation of the molecular mechanism of curcumin on TGF-β signaling pathway-induced colon carcinogenesis may ultimately lead to novel and more effective treatments for colon cancer.

  14. Cell Signaling Pathways that Regulate Ag Presentation

    PubMed Central

    Brutkiewicz, Randy R.

    2016-01-01

    Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation--a necessary first step in the activation of innate and adaptive T cells. In this brief review, I will discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s) if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity and cancer. PMID:27824592

  15. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    PubMed Central

    Muñoz Bello, Jesus Omar; Olmedo Nieva, Leslie; Contreras Paredes, Adriana; Fuentes Gonzalez, Alma Mariana; Rocha Zavaleta, Leticia; Lizano, Marcela

    2015-01-01

    Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway. PMID:26295406

  16. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  17. Ras signaling in aging and metabolic regulation.

    PubMed

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  18. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies.

    PubMed

    Spencer, Netanya Y; Engelhardt, John F

    2014-03-18

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases.

  19. The Basic Biology of Redoxosomes in Cytokine-Mediated Signal Transduction and Implications for Disease-Specific Therapies

    PubMed Central

    2015-01-01

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469

  20. Insights into the origin and evolution of the plant hormone signaling machinery.

    PubMed

    Wang, Chunyang; Liu, Yang; Li, Si-Shen; Han, Guan-Zhu

    2015-03-01

    Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. The Caenorhabditis elegans EGL-15 Signaling Pathway Implicates a DOS-Like Multisubstrate Adaptor Protein in Fibroblast Growth Factor Signal Transduction

    PubMed Central

    Schutzman, Jennifer L.; Borland, Christina Z.; Newman, John C.; Robinson, Matthew K.; Kokel, Michelle; Stern, Michael J.

    2001-01-01

    EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15. PMID:11689700

  2. Frontier of Epilepsy Research - mTOR signaling pathway

    PubMed Central

    2011-01-01

    Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839

  3. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications

    PubMed Central

    Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.

    2016-01-01

    Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089

  4. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  5. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  6. Dysregulation of Wnt/β-catenin Signaling in Gastrointestinal Cancers

    PubMed Central

    White, Bryan D.; Chien, Andy J.; Dawson, David W.

    2012-01-01

    Aberrant Wnt/β-catenin signaling is widely implicated in numerous malignancies, including cancers of the gastrointestinal (GI) tract. Dysregulation of signaling is traditionally attributed to mutations in Axin, APC (adenomatous polyposis coli), and β-catenin that lead to constitutive hyperactivation of the pathway. However, Wnt/β-catenin signaling is also modulated through various other mechanisms in cancer, including crosstalk with other altered signaling pathways. A more complex view of Wnt/β-catenin signaling and its role in GI cancers is now emerging as divergent phenotypic outcomes are found to be dictated by temporospatial context and relative levels of pathway activation. This review summarizes the dysregulation of Wnt/β-catenin signaling in colorectal carcinoma, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, with particular emphasis on the latter two. We conclude by addressing some of the major challenges faced in attempting to target the pathway in the clinic. PMID:22155636

  7. The Hippo pathway: regulators and regulations

    PubMed Central

    Yu, Fa-Xing; Guan, Kun-Liang

    2013-01-01

    Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions. PMID:23431053

  8. Activation of the MAPK/ERK Cell-Signaling Pathway in Uterine Smooth Muscle Cells of Women With Adenomyosis.

    PubMed

    Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric

    2015-12-01

    We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. © The Author(s) 2015.

  9. Wnt Signaling in Cardiac Disease.

    PubMed

    Hermans, Kevin C M; Blankesteijn, W Matthijs

    2015-07-01

    Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target. © 2015 American Physiological Society.

  10. Dysregulation of Uterine Signaling Pathways in Progesterone Receptor-Cre Knockout of Dicer

    PubMed Central

    Andreu-Vieyra, Claudia V.; Kim, Tae Hoon; Jeong, Jae-Wook; Hodgson, Myles C.; Chen, Ruihong; Creighton, Chad J.; Lydon, John P.; Gunaratne, Preethi H.; DeMayo, Francesco J.; Matzuk, Martin M.

    2012-01-01

    Epithelial-stromal interactions in the uterus are required for normal uterine functions such as pregnancy, and multiple signaling pathways are essential for this process. Although Dicer and microRNA (miRNA) have been implicated in several reproductive processes, the specific roles of Dicer and miRNA in uterine development are not known. To address the roles of miRNA in the regulation of key uterine pathways, we generated a conditional knockout of Dicer in the postnatal uterine epithelium and stroma using progesterone receptor-Cre. These Dicer conditional knockout females are sterile with small uteri, which demonstrate significant defects, including absence of glandular epithelium and enhanced stromal apoptosis, beginning at approximately postnatal d 15, with coincident expression of Cre and deletion of Dicer. Specific miRNA (miR-181c, −200b, −101, let-7d) were down-regulated and corresponding predicted proapoptotic target genes (Bcl2l11, Aldh1a3) were up-regulated, reflecting the apoptotic phenomenon. Although these mice had normal serum hormone levels, critical uterine signaling pathways, including progesterone-responsive genes, Indian hedgehog signaling, and the Wnt/β-catenin canonical pathway, were dysregulated at the mRNA level. Importantly, uterine stromal cell proliferation in response to progesterone was absent, whereas uterine epithelial cell proliferation in response to estradiol was maintained in adult uteri. These data implicate Dicer and appropriate miRNA expression as essential players in the regulation of multiple uterine signaling pathways required for uterine development and appropriate function. PMID:22798293

  11. C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling

    PubMed Central

    Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis

    2015-01-01

    Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013

  12. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    PubMed

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    PubMed

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

    PubMed

    Yimlamai, Dean; Fowl, Brendan H; Camargo, Fernando D

    2015-12-01

    The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology.

    PubMed

    Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R

    2015-09-01

    Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans.

    PubMed

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.

  17. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans

    PubMed Central

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939

  18. Orexin: a Missing Link Between Sleep Disorders and Heart Failure?

    PubMed

    Pan, Stephen; Cabral, Carolina S; Ashley, Euan A; Perez, Marco V

    2017-04-01

    Sleep disorders represent a significant comorbidity in the heart failure population, and there is mounting evidence that treatment of sleep disorders such as obstructive sleep apnea can significantly improve cardiac function. However, the link between these two disorders is still not entirely clear. Recently, a novel neurohormonal pathway has been elucidated involving signaling molecules now collectively known as the orexins, which have been implicated in regulating autonomic function during sleep/wake cycles. Further evidence has mounted that orexin signaling is deeply perturbed in the setting of sleep disorders, and furthermore that abnormal orexin signaling may be implicated in the pathology of heart failure. The orexin signaling pathway represents an enticing novel target for both the treatment of sleep disorders as well as heart failure, and may represent one facet of the "missing link" between these two prevalent and often comorbid diseases.

  19. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling.

    PubMed

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-11-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.

  20. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling

    PubMed Central

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M.; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-01-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway. PMID:22951405

  1. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer.

    PubMed

    Nguyen, Thanh Hung; Kugler, Jan-Michael

    2018-04-17

    The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.

  2. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The Emerging Role of Insulin and Insulin-Like Growth Factor Signaling in Cancer Stem Cells

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2014-01-01

    Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications. PMID:24550888

  4. Association of Wnt1-inducible signaling pathway protein-1 with the proliferation, migration and invasion in gastric cancer cells.

    PubMed

    Jia, Shuqin; Qu, Tingting; Feng, Mengmeng; Ji, Ke; Li, Ziyu; Jiang, Wenguo; Ji, Jiafu

    2017-06-01

    Wnt1-inducible signaling pathway protein-1 is a cysteine-rich protein that belongs to the CCN family, which has been implicated in mediating the occurrence and progression through distinct molecular mechanisms in several tumor types. However, the association of Wnt1-inducible signaling pathway protein-1 with gastric cancer and the related molecular mechanisms remain to be elucidated. Therefore, this study aimed to clarify the biological role of Wnt1-inducible signaling pathway protein-1 in the proliferation, migration, and invasion in gastric cancer cells and further investigated the associated molecular mechanism on these biological functions. We first detected the expression level of Wnt1-inducible signaling pathway protein-1 in gastric cancer, and the reverse transcription polymerase chain reaction have shown that Wnt1-inducible signaling pathway protein-1 expression levels were upregulated in gastric cancer tissues. The expression of Wnt1-inducible signaling pathway protein-1 in gastric cancer cell lines was also detected by quantitative real-time polymerase chain reaction and Western blotting. Furthermore, two gastric cancer cell lines with high expression of Wnt1-inducible signaling pathway protein-1 were selected to explore the biological function of Wnt1-inducible signaling pathway protein-1 in gastric cancer. Function assays indicated that knockdown of Wnt1-inducible signaling pathway protein-1 suppressed cell proliferation, migration, and invasion in BGC-823 and AGS gastric cancer cells. Further investigation of mechanisms suggested that cyclinD1 was identified as one of Wnt1-inducible signaling pathway protein-1 related genes to accelerate proliferation in gastric cancer cells. In addition, one pathway of Wnt1-inducible signaling pathway protein-1 induced migration and invasion was mainly through the enhancement of epithelial-to-mesenchymal transition progression. Taken together, our findings presented the first evidence that Wnt1-inducible signaling pathway protein-1 was upregulated in gastric cancer and acted as an oncogene by promoting proliferation, migration, and invasion in gastric cancer cells.

  5. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).

    PubMed

    Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V

    2014-01-01

    Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Insulin Signaling and Heart Failure

    PubMed Central

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  7. Disease implications of the Hippo/YAP pathway

    PubMed Central

    Plouffe, Steven W; Hong, Audrey W; Guan, Kun-Liang

    2015-01-01

    The Hippo signaling pathway is important for controlling organ size and tissue homeostasis. Originally identified in Drosophila melanogaster, the core components of the Hippo pathway are highly conserved in mammals. The Hippo pathway can be modulated by a wide range of stimuli, including G protein coupled receptor (GPCR) signaling, changes in the actin cytoskeleton, cell-cell contact, and cell polarity. When activated, the Hippo pathway functions as a tumor suppressor to limit cell growth. However, dysregulation by genetic inactivation of core pathway components, or amplification or gene fusion of its downstream effectors, results in increased cell proliferation and decreased apoptosis and differentiation. Not surprisingly, this can lead to tissue overgrowth, tumorigenesis, and many other diseases. PMID:25702974

  8. Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.

    PubMed

    Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B

    2018-05-15

    Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.

  9. Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus

    PubMed Central

    Daskalakis, Nikolaos P.; De Kloet, Edo Ronald; Yehuda, Rachel; Malaspina, Dolores; Kranz, Thorsten M.

    2015-01-01

    Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders. PMID:26635521

  10. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    PubMed Central

    Su, Hua; Chen, Shan; He, Fang-Fang; Wang, Yu-Mei; Bondzie, Philip; Zhang, Chun

    2015-01-01

    The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation. PMID:25866774

  11. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  12. Role of Hippo signaling in regulating immunity.

    PubMed

    Hong, Lixin; Li, Xun; Zhou, Dawang; Geng, Jing; Chen, Lanfen

    2018-03-22

    The Hippo signaling pathway has been established as a key regulator of organ size control, tumor suppression, and tissue regeneration in multiple organisms. Recently, emerging evidence has indicated that Hippo signaling might play an important role in regulating the immune system in both Drosophila and mammals. In particular, patients bearing a loss-of-function mutation of MST1 are reported to have an autosomal recessive primary immunodeficiency syndrome. MST1/2 kinases, the mammalian orthologs of Drosophila Hippo, may activate the non-canonical Hippo signaling pathway via MOB1A/B and/or NDR1/2 or cross-talk with other essential signaling pathways to regulate both innate and adaptive immunity. In this review, we present and discuss recent findings of cellular mechanisms/functions of Hippo signaling in the innate immunity in Drosophila and in mammals, T cell immunity, as well as the implications of Hippo signaling for tumor immunity.

  13. 2016: Signaling Breakthroughs of the Year.

    PubMed

    Adler, Elizabeth M

    2017-01-03

    Signaling breakthroughs of 2016 clustered mainly in the areas of neuroscience, immunology, and metabolism, with excursions into plant hormone signaling and bacterial manipulation of host signaling pathways. Perhaps reflecting the growing maturity of the discipline of cell signaling, many of this year's breakthroughs have implications for the pathogenesis or treatment of human disease. Copyright © 2017, American Association for the Advancement of Science.

  14. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer

    PubMed Central

    Nguyen, Thanh Hung

    2018-01-01

    The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system. PMID:29673168

  15. Comparison of tumor related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma.

    PubMed

    Xu, Song; Liu, Renwang; Da, Yurong

    2018-06-05

    This study compared tumor-related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype-tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug-pathway network for LUAD was constructed, and molecular docking was carried out. After the integration of 57 LUAD-related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD-related oncogenic pathways were involved in the LUAD drug-pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG-028671, may have potential roles for LUAD treatment but require further experimental verification. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  16. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    PubMed

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  17. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expressionmore » were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.« less

  18. Melatonin and Hippo Pathway: Is There Existing Cross-Talk?

    PubMed

    Lo Sardo, Federica; Muti, Paola; Blandino, Giovanni; Strano, Sabrina

    2017-09-06

    Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.

  19. Molecular Pathways: Translational and Therapeutic Implications of the Notch Signaling Pathway in Cancer

    PubMed Central

    Previs, Rebecca A.; Coleman, Robert L.; Harris, Adrian L.; Sood, Anil K.

    2014-01-01

    Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and crosstalk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3–4, Jagged 1–2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Since the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway. PMID:25388163

  20. Defining a Role for Acid Sphingomyelinase in the p38/Interleukin-6 Pathway*

    PubMed Central

    Perry, David M.; Newcomb, Benjamin; Adada, Mohamad; Wu, Bill X.; Roddy, Patrick; Kitatani, Kazuyuki; Siskind, Leah; Obeid, Lina M.; Hannun, Yusuf A.

    2014-01-01

    Acid sphingomyelinase (ASM) is one of the key enzymes involved in regulating the metabolism of the bioactive sphingolipid ceramide in the sphingolipid salvage pathway, yet defining signaling pathways by which ASM exerts its effects has proven difficult. Previous literature has implicated sphingolipids in the regulation of cytokines such as interleukin-6 (IL-6), but the specific sphingolipid pathways and mechanisms involved in inflammatory signaling need to be further elucidated. In this work, we sought to define the role of ASM in IL-6 production because our previous work showed that a parallel pathway of ceramide metabolism, acid β-glucosidase 1, negatively regulates IL-6. First, silencing ASM with siRNA abrogated IL-6 production in response to the tumor promoter, 4β-phorbol 12-myristate 13-acetate (PMA), in MCF-7 cells, in distinction to acid β-glucosidase 1 and acid ceramidase, suggesting specialization of the pathways. Moreover, treating cells with siRNA to ASM or with the indirect pharmacologic inhibitor desipramine resulted in significant inhibition of TNFα- and PMA-induced IL-6 production in MDA-MB-231 and HeLa cells. Knockdown of ASM was found to significantly inhibit PMA-dependent IL-6 induction at the mRNA level, probably ruling out mechanisms of translation or secretion of IL-6. Further, ASM knockdown or desipramine blunted p38 MAPK activation in response to TNFα, revealing a key role for ASM in activating p38, a signaling pathway known to regulate IL-6 induction. Last, knockdown of ASM dramatically blunted invasion of HeLa and MDA-MB-231 cells through Matrigel. Taken together, these results demonstrate that ASM plays a critical role in p38 signaling and IL-6 synthesis with implications for tumor pathobiology. PMID:24951586

  1. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults.

    PubMed

    Nho, Kwangsik; Ramanan, Vijay K; Horgusluoglu, Emrin; Kim, Sungeun; Inlow, Mark H; Risacher, Shannon L; McDonald, Brenna C; Farlow, Martin R; Foroud, Tatiana M; Gao, Sujuan; Callahan, Christopher M; Hendrie, Hugh C; Niculescu, Alexander B; Saykin, Andrew J

    2015-01-01

    Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.

  2. Encoding of temporal signals by the TGF-β pathway and implications for embryonic patterning

    PubMed Central

    Sorre, Benoit; Warmflash, Aryeh; Brivanlou, Ali H.; Siggia, Eric D.

    2014-01-01

    Summary Genetics and biochemistry have defined the components and wiring of the signaling pathways that pattern the embryo. Among them, the TGF-β pathway has the potential to behave as a morphogen: invitro experiments have clearly established that it can dictate cell fate in a concentration dependent manner. How morphogens convey positional information in a developing embryo, where signal levels are changing with time, is less understood. Using integrated microfluidic cell culture and time-lapse microscopy, we demonstrate here that the speed of ligand presentation has a key and previously unexpected influence on TGF-β signaling outcomes. The response to a TGF-β concentration step is transient and adaptive, slowly increasing the ligand concentration diminishes the response and well-spaced pulses of ligand combine additively resulting in greater pathway output than with constant stimulation. Our results suggest that in an embryonic context, the speed of change of ligand concentration is an instructive signal for patterning. PMID:25065773

  3. Targeting disease through novel pathways of apoptosis and autophagy.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui

    2012-12-01

    Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), β-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, β-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.

  4. RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866

  5. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-07-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.

  6. The neurology of mTOR.

    PubMed

    Lipton, Jonathan O; Sahin, Mustafa

    2014-10-22

    The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.

  7. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis.

    PubMed

    Timberlake, Andrew T; Furey, Charuta G; Choi, Jungmin; Nelson-Williams, Carol; Loring, Erin; Galm, Amy; Kahle, Kristopher T; Steinbacher, Derek M; Larysz, Dawid; Persing, John A; Lifton, Richard P

    2017-08-29

    Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10 -11 ). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.

  8. A Systematic Review of Known Mechanisms of Hydroxyurea-induced Foetal Haemoglobin for Treatment of Sickle Cell Disease

    PubMed Central

    Pule, Gift D.; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S.; Wonkam, Ambroise

    2016-01-01

    Aims To report on molecular mechanisms of foetal haemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of Sickle Cell Disease (SCD). Study Design Systematic review. Results Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways, that modulate γ-globin expression (cAMP/cGMP; Giα/JNK/Jun; methylation and microRNA). Three main molecular pathways have been reported: 1) Epigenetic modifications, transcriptional events and signalling pathways involved in HU-mediated response, 2) Signalling pathways involving HU-mediated response and 3) Post-transcriptional pathways (regulation by microRNAs). Conclusions The complete picture of HU-mediated mechanisms of HbF production in SCD remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome. PMID:26327494

  9. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease.

    PubMed

    Pule, Gift D; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S; Wonkam, Ambroise

    2015-10-01

    To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. Systematic review. Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.

  10. The dark side of hippo signaling: A cancer promoter role.

    PubMed

    Dunn, Brandon; Ma, Xianjue

    2017-10-02

    The Hippo signaling pathway regulates organ size and tissue homeostasis. Given this role it is unsurprising that dysregulation of this pathway has implications for cancer progression. A convincing body of literature shows that the Hippo pathway serves a tumor suppressive function with its inactivation leading to massive overgrowth. However, additional studies have also shown that activation of Hippo signaling can promote tumor progression. It remains unknown how a single pathway can produce such diametrically opposed effects. This lack of knowledge is in part due to our inability to make meaningful comparisons from studies which have taken place in a variety of cell types, tissues, and organisms. Recently however, we have published 2 studies using the Drosophila wing disk to study the Hippo pathway and have found that Hippo pathway activation can promote cell migration and invasion while Hippo pathway inactivation leads to overgrowth. Thus we propose here that Drosophila can provide a research platform with which to begin addressing how the Hippo pathway can both enhance and suppress tumor progression due to published pro- and anti-tumor functionalities of the Hippo pathway in the same tissue.

  11. Protein C receptor stimulates multiple signaling pathways in breast cancer cells.

    PubMed

    Wang, Daisong; Liu, Chunye; Wang, Jingqiang; Jia, Yingying; Hu, Xin; Jiang, Hai; Shao, Zhi-Ming; Zeng, Yi Arial

    2018-01-26

    The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  14. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    PubMed Central

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  15. The Golgi in Cell Migration: Regulation by Signal Transduction and Its Implications for Cancer Cell Metastasis

    PubMed Central

    Millarte, Valentina; Farhan, Hesso

    2012-01-01

    Migration and invasion are fundamental features of metastatic cancer cells. The Golgi apparatus, an organelle involved in posttranslational modification and sorting of proteins, is widely accepted to regulate directional cell migration. In addition, mounting evidence suggests that the Golgi is a hub for different signaling pathways. In this paper we will give an overview on how polarized secretion and microtubule nucleation at the Golgi regulate directional cell migration. We will review different signaling pathways that signal to and from the Golgi. Finally, we will discuss how these signaling pathways regulate the role of the Golgi in cell migration and invasion. We propose that by identifying regulators of the Golgi, we might be able to uncover unappreciated modulators of cell migration. Uncovering the regulatory network that orchestrates cell migration is of fundamental importance for the development of new therapeutic strategies against cancer cell metastasis. PMID:22623902

  16. Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T‑47D Human Ductal Carcinoma Cells

    EPA Science Inventory

    High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implic...

  17. Regulation of the Hippo signaling pathway by ubiquitin modification.

    PubMed

    Kim, Youngeun; Jho, Eek-Hoon

    2018-03-01

    The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].

  18. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia.

    PubMed

    Penny, Morgan K; Finco, Isabella; Hammer, Gary D

    2017-04-15

    The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Extracellular Matrix Signaling from the Cellular Membrane Skeleton to the Nuclear Skeleton: A Model of Gene Regulation

    PubMed Central

    Lelièvre, Sophie; Weaver, Valerie M.; Bissell, Mina J.

    2010-01-01

    It is well established that cells must interact with their microenvironment and that such interaction is crucial for coordinated function and homeostasis. However, how cells receive and integrate external signals leading to gene regulation is far from understood. It is now appreciated that two classes of cooperative signals are implicated: a soluble class including hormones and growth factors and a class of insoluble signals emanating from the extracellular matrix (ECM) directly through contact with the cell surface. Using 3-dimensional culture systems and transgenic mice, we have been able to identify some of the elements of this ECM-signaling pathway responsible for gene regulation in rodent mammary gland differentiation and involution. Our major observations are 1) the requirement for a laminin-rich basement membrane; 2) the existence of a cooperative signaling pathway between basement membrane and the lactogenic hormone prolactin (PRL); 3) the importance of β1-integrins and bHLH transcription factor(s) and the presence of DNA response elements (exemplified by BCE-1, located on a milk protein gene, β-casein); and 4) the induction of mammary epithelial cell programmed cell death following degradation of basement membrane. We hypothesize that this cooperative signaling between ECM and PRL may be achieved through integrin- and laminin-directed restructuring of the cytoskeleton leading to profound changes in nuclear architecture and transcription factor localization. We postulate that the latter changes allow the prolactin signal to activate transcription of the β-casein gene. To further understand the molecular mechanisms underlying ECM and hormonal cooperative signaling, we are currently investigating ECM regulation of a “solid-state” signaling pathway including ECM fiber proteins, plasma membrane receptors, cytoskeleton, nuclear matrix and chromatin. We further postulate that disruption of such a pathway may be implicated in cell disorders including transformation and carcinogenesis. PMID:8701089

  20. Experimentally-Derived Fibroblast Gene Signatures Identify Molecular Pathways Associated with Distinct Subsets of Systemic Sclerosis Patients in Three Independent Cohorts

    PubMed Central

    Johnson, Michael E.; Mahoney, J. Matthew; Taroni, Jaclyn; Sargent, Jennifer L.; Marmarelis, Eleni; Wu, Ming-Ru; Varga, John; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling. PMID:25607805

  1. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway

    PubMed Central

    Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul

    2017-01-01

    The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579

  2. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  3. Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application.

    PubMed

    Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah

    2017-07-01

    Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  5. Cell-autonomous inactivation of the Reelin pathway impairs adult neurogenesis in the hippocampus

    PubMed Central

    Teixeira, Catia M.; Kron, Michelle M.; Masachs, Nuria; Zhang, Helen; Lagace, Diane C.; Martinez, Albert; Reillo, Isabel; Duan, Xin; Bosch, Carles; Pujadas, Lluis; Brunso, Lucas; Song, Hongjun; Eisch, Amelia J.; Borrell, Victor; Howell, Brian W.; Parent, Jack M.; Soriano, Eduardo

    2012-01-01

    Adult hippocampal neurogenesis is thought to be essential for learning and memory and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of disabled-1 (Dab1), an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain- and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders. PMID:22933789

  6. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis

    PubMed Central

    Paniagua, Ricardo T.; Sharpe, Orr; Ho, Peggy P.; Chan, Steven M.; Chang, Anna; Higgins, John P.; Tomooka, Beren H.; Thomas, Fiona M.; Song, Jason J.; Goodman, Stuart B.; Lee, David M.; Genovese, Mark C.; Utz, Paul J.; Steinman, Lawrence; Robinson, William H.

    2006-01-01

    Tyrosine kinases play a central role in the activation of signal transduction pathways and cellular responses that mediate the pathogenesis of rheumatoid arthritis. Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor developed to treat Bcr/Abl-expressing leukemias and subsequently found to treat c-Kit–expressing gastrointestinal stromal tumors. We demonstrate that imatinib potently prevents and treats murine collagen-induced arthritis (CIA). We further show that micromolar concentrations of imatinib abrogate multiple signal transduction pathways implicated in RA pathogenesis, including mast cell c-Kit signaling and TNF-α release, macrophage c-Fms activation and cytokine production, and fibroblast PDGFR signaling and proliferation. In our studies, imatinib attenuated PDGFR signaling in fibroblast-like synoviocytes (FLSs) and TNF-α production in synovial fluid mononuclear cells (SFMCs) derived from human RA patients. Imatinib-mediated inhibition of a spectrum of signal transduction pathways and the downstream pathogenic cellular responses may provide a powerful approach to treat RA and other inflammatory diseases. PMID:16981009

  7. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  8. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection.

    PubMed

    O'Hara, Samantha D; Garcea, Robert L

    2016-11-01

    Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.

  9. The regulation and deregulation of Wnt signaling by PARK genes in health and disease.

    PubMed

    Berwick, Daniel C; Harvey, Kirsten

    2014-02-01

    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general.

  10. Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage: News Update.

    PubMed

    Ji, Chengyuan; Chen, Gang

    2016-01-01

    The annual incidence of subarachnoid hemorrhage (SAH) caused by intracranial aneurysm rupture is approximately 10.5/10 million people in China, making SAH the third most frequently occurring hemorrhage of the intracranial type after cerebral embolism and hypertensive intracerebral hemorrhage. SAH caused by ruptured aneurysm leads to a mortality rate as high as 67 %, and, because of the sudden onset of this disease, approximately 12-15 % of patients die before they can receive effective treatment. Early brain injury (EBI) is the brain damage occurring within the first 72 h after SAH. Two-thirds of mortality caused by SAH occurs within 48 h, mainly as a result of EBI. With the development of molecular biology and medicine microscopy techniques, various signaling pathways involved in EBI after SAH have been revealed. Understanding these signaling pathways may help clinicians treat EBI after SAH and improve long-term prognosis of SAH patients. This chapter summarizes several important signaling pathways implicated in EBI caused by SAH.

  11. ESCRT proteins

    PubMed Central

    Tu, Chun; Ahmad, Gulzar; Mohapatra, Bhopal; Bhattacharyya, Sohinee; Ortega-Cava, Cesar F; Chung, Byung Min; Wagner, Kay-Uwe; Raja, Srikumar M; Naramura, Mayumi; Band, Vimla

    2011-01-01

    ESCRT pathway proteins play a key role in sorting ubiquitinated membrane receptors towards lysosomes providing an important mechanism for attenuating cell surface receptor signaling. However, recent studies point to a positive role of ESCRT proteins in signal transduction in multiple species studied under physiological and pathological conditions. ESCRT components such as Tsg101 and Hrs are overexpressed in human cancers and Tsg101 depletion is detrimental for cell proliferation, survival and transformed phenotype of tumor cells. However, the mechanisms underlying the positive contributions of ESCRT pathway to surface receptor signaling have remained unclear. In a recent study, we showed that Tsg101 and Vps4 are essential for translocation of active Src from endosomes to focal adhesion and invadopodia, thereby revealing a role of ESCRT pathway in promoting Src-mediated migration and invasion. We discuss the implications of these and other recent studies which together suggest a role for the ESCRT pathway in recycling of endocytic cargo proteins, aside from its role in lysosomal targeting, potentially explaining the positive roles of ESCRT proteins in signal transduction. PMID:21866262

  12. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110more » expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.« less

  13. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    PubMed

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo.

    PubMed

    Olivera-Martinez, Isabel; Schurch, Nick; Li, Roman A; Song, Junfang; Halley, Pamela A; Das, Raman M; Burt, Dave W; Barton, Geoffrey J; Storey, Kate G

    2014-08-01

    Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation. © 2014. Published by The Company of Biologists Ltd.

  15. Target Deconvolution Efforts on Wnt Pathway Screen Reveal Dual Modulation of Oxidative Phosphorylation and SERCA2.

    PubMed

    Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola

    2017-06-21

    Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy

    PubMed Central

    Borahay, Mostafa A; Al-Hendy, Ayman; Kilic, Gokhan S; Boehning, Darren

    2015-01-01

    Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics. PMID:25879625

  17. Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling

    PubMed Central

    Tian, Chenxi; Liu, Jun

    2015-01-01

    Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870

  18. Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis.

    PubMed

    Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang

    2016-04-05

    Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases.

  19. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  20. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model.

    PubMed

    Vargas, Jessica Y; Fuenzalida, Marco; Inestrosa, Nibaldo C

    2014-02-05

    The role of the Wnt signaling pathway during synaptic development has been well established. In the adult brain, different components of Wnt signaling are expressed, but little is known about its role in mature synapses. Emerging in vitro studies have implicated Wnt signaling in synaptic plasticity. Furthermore, activation of Wnt signaling has shown to protect against amyloid-β-induced synaptic impairment. The present study provides the first evidence that in vivo activation of Wnt signaling improves episodic memory, increases excitatory synaptic transmission, and enhances long-term potentiation in adult wild-type mice. Moreover, the activation of Wnt signaling also rescues memory loss and improves synaptic dysfunction in APP/PS1-transgenic mice that model the amyloid pathology of Alzheimer's diseases. These findings indicate that Wnt signaling modulates cognitive function in the adult brain and could be a novel promising target for Alzheimer's disease therapy.

  1. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.

  2. Dynamic Redox Regulation of IL-4 Signaling

    PubMed Central

    Dwivedi, Gaurav; Gran, Margaret A.; Bagchi, Pritha; Kemp, Melissa L.

    2015-01-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  3. Role of ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...

  4. TAM Receptors in Leukemia: Expression, Signaling, and Therapeutic Implications

    PubMed Central

    Brandão, Luis; Migdall-Wilson, Justine; Eisenman, Kristen; Graham, Douglas K.

    2016-01-01

    In the past 30 years there has been remarkable progress in the treatment of leukemia and lymphoma. However, current treatments are largely ineffective against relapsed leukemia and, in the case of pediatric patients, are often associated with severe long-term toxicities. Thus, there continues to be a critical need for the development of effective biologically targeted therapies. The TAM family of receptor tyrosine kinases—Tyro3, Axl, and Mer—plays an important role in normal hematopoiesis, including natural killer cell maturation, macrophage function, and platelet activation and signaling. Furthermore, TAM receptor activation leads to upregulation of pro-survival and proliferation signaling pathways, and aberrant TAM receptor expression contributes to cancer development, including myeloid and lymphoid leukemia. This review summarizes the role of TAM receptors in leukemia. We outline TAM receptor expression patterns in different forms of leukemia, describe potential mechanisms leading to their overexpression, and delineate the signaling pathways downstream of receptor activation that have been implicated in leukemogenesis. Finally, we discuss the current research focused on inhibitors against these receptors in an effort to develop new therapeutic strategies for leukemia. PMID:22150307

  5. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  6. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759

  7. Winding through the WNT pathway during cellular development and demise.

    PubMed

    Li, F; Chong, Z Z; Maiese, K

    2006-01-01

    In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.

  8. mTOR signaling for biological control and cancer.

    PubMed

    Alayev, Anya; Holz, Marina K

    2013-08-01

    Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. Copyright © 2013 Wiley Periodicals, Inc.

  9. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  10. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction.

    PubMed

    Carter, Edward P; Fearon, Abbie E; Grose, Richard P

    2015-04-01

    Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Redox implications of AMPK-mediated signal transduction beyond energetic clues.

    PubMed

    Cardaci, Simone; Filomeni, Giuseppe; Ciriolo, Maria Rosa

    2012-05-01

    Since the discovery of AMP-dependent protein kinase (AMPK), its fundamental role in regulating metabolic pathways and the molecular mechanism underlying the regulation of its activity by adenine nucleotides has been widely studied. AMPK is not only an energy-responsive enzyme, but it also senses redox signals. This review aims at recapitulating the recent lines of evidence that demonstrate the responsiveness of this kinase to metabolic and nitroxidative imbalance, thus providing new insights into the intimate networks of redox-based signals upstream of AMPK. In particular, we discuss its well-recognized activation downstream of mitochondrial dysfunction, debate the recent findings that AMPK is directly targeted by pro-oxidant species, and question alternative redox pathways that allow AMPK to be included into the large class of redox-sensing proteins. The possible therapeutic implications of the role of AMPK in redox-associated pathologies, such as cancer and neurodegeneration, are also discussed in light of recent advances that suggest a role for AMPK in the tuning of redox-dependent processes, such as apoptosis and autophagy.

  12. RhoA, Rho kinase, JAK2, and STAT3 may be the intracellular determinants of longevity implicated in the progeric influence of obesity: Insulin, IGF-1, and leptin may all conspire to promote stem cell exhaustion.

    PubMed

    Tapia, Patrick C

    2006-01-01

    The aging process in higher mammals is increasingly being shown to feature a potentially substantial contribution from the longitudinal deterioration of normative stem cell dynamics seen with the passage of time. The precise mechanistic sequence producing this phenomenon is not entirely understood, but recent evidence has strongly implicated intracellular downstream effectors of endocrinologic pathways thought to be engaged by the obese state, specifically the insulin, IGF-1, and leptin signaling pathways. Among the intracellular effectors of these signals, a uniquely potent influence on stem cell dynamics may be attributable to Rho/ROCK, JAK kinase activity and STAT3 activity. In particular, it has already been shown that specific tyrosine kinase activities, such as that seen with Rho kinase, are presently thought to be associated with adverse health outcomes in numerous clinical contexts. Furthermore, the Rho GTPase is thought to be contributing to end-stage renal disease. However, in addition to its contribution to organ system dysfunction, the Rho/ROCK pathway has recently been shown to be activated by insulin and IGF-1, providing a tantalizing connection to nutrition and aging science. The JAK-STAT pathway, in contrast, has long been associated with pro-inflammatory cytokines, but has recently been implicated in leptin signaling as well. Importantly, JAK-STAT signaling has, similarly to Rho/ROCK signaling, been implicated as capable of accelerating stem cell proliferation. The implications of these recent determinations, in light of the recent finding of telomere attrition in humans associated with obesity, are that the intracellular determinants of aging may already be known, and the known common influence of these signaling elements on longitudinal stem cell dynamics is a pronounced induction of proliferation, an elevation that has been linked to the pathologic evolution of longitudinal organ-level dysfunction and the organismal-level physiologic decline seen with the inexorable passage of time. Besides the obvious utility for the management for human age-related dysfunction that investigation of pharmacologic inhibitors of these proteins would provide, interventions such as caloric restriction and possibly intermittent fasting may beneficially influence stem cell proliferation dynamics and reduce intracellular correlates of mitogenic drive. Integrating the findings present in the present body of research may reveal endocrinological states that are compatible with longevity, and will also provide novel insight into the specific proteomic determinants of age-related physiologic decline, ushering in a new epoch of medicine that fosters the management of the "pre-etiopathology" of chronic disease and disability of aging, therefore mitigating the suffering widely thought to be inherent in the latter stages of life.

  13. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    PubMed Central

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai

    2014-01-01

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146

  14. The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.

    PubMed

    Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang

    2018-05-12

    The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  15. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases.

    PubMed

    Cuda, Carla M; Pope, Richard M; Perlman, Harris

    2016-08-23

    Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.

  16. Wnt Signaling in Adult Epithelial Stem Cells and Cancer.

    PubMed

    Tan, Si Hui; Barker, Nick

    2018-01-01

    Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease.

    PubMed

    Kathiriya, I S; Srivastava, D

    2000-01-01

    Proper morphogenesis and positioning of internal organs requires delivery and interpretation of precise signals along the anterior-posterior, dorsal-ventral, and left-right axes. An elegant signaling cascade determines left- versus right-sided identity in visceral organs in a concordant fashion, resulting in a predictable left-right (LR) organ asymmetry in all vertebrates. The complex morphogenesis of the heart and its connections to the vasculature are particularly dependent upon coordinated LR signaling pathways. Disorganization of LR signals can result in myriad congenital heart defects that are a consequence of abnormal looping and remodeling of the primitive heart tube into a multi-chambered organ. A framework for understanding how LR asymmetric signals contribute to normal organogenesis has emerged and begins to explain the basis of many human diseases of LR asymmetry. Here we review the impact of LR signaling pathways on cardiac development and congenital heart disease.

  18. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.

    PubMed

    Brown, David I; Griendling, Kathy K

    2015-01-30

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. © 2015 American Heart Association, Inc.

  19. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  20. β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway.

    PubMed

    Galaz-Montoya, Monica; Wright, Sara J; Rodriguez, Gustavo J; Lichtarge, Olivier; Wensel, Theodore G

    2017-06-16

    Beta adrenergic receptors (βARs) are G-protein-coupled receptors essential for physiological responses to the hormones/neurotransmitters epinephrine and norepinephrine which are found in the nervous system and throughout the body. They are the targets of numerous widely used drugs, especially in the case of the most extensively studied βAR, β 2 AR, whose ligands are used for asthma and cardiovascular disease. βARs signal through Gα s G-proteins and via activation of adenylyl cyclase and cAMP-dependent protein kinase, but some alternative downstream pathways have also been proposed that could be important for understanding normal physiological functioning of βAR signaling and its disruption in disease. Using fluorescence-based Ca 2+ flux assays combined with pharmacology and gene knock-out methods, we discovered a previously unrecognized endogenous pathway in HEK-293 cells whereby β 2 AR activation leads to robust Ca 2+ mobilization from intracellular stores via activation of phospholipase C and opening of inositol trisphosphate (InsP 3 ) receptors. This pathway did not involve cAMP, Gα s , or Gα i or the participation of the other members of the canonical β 2 AR signaling cascade and, therefore, constitutes a novel signaling mechanism for this receptor. This newly uncovered mechanism for Ca 2+ mobilization by β 2 AR has broad implications for adrenergic signaling, cross-talk with other signaling pathways, and the effects of βAR-directed drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR)*

    PubMed Central

    Foster, David A.; Salloum, Darin; Menon, Deepak; Frias, Maria A.

    2014-01-01

    Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. PMID:24990952

  2. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR).

    PubMed

    Foster, David A; Salloum, Darin; Menon, Deepak; Frias, Maria A

    2014-08-15

    Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SCFSlmb E3 ligase-mediated degradation of Expanded is inhibited by the Hippo pathway in Drosophila

    PubMed Central

    Zhang, Hongtao; Li, Changqing; Chen, Hanqing; Wei, Chuanxian; Dai, Fei; Wu, Honggang; Dui, Wen; Deng, Wu-Min; Jiao, Renjie

    2015-01-01

    Deregulation of the evolutionarily conserved Hippo pathway has been implicated in abnormal development of animals and in several types of cancer. One mechanism of Hippo pathway regulation is achieved by controlling the stability of its regulatory components. However, the executive E3 ligases that are involved in this process, and how the process is regulated, remain poorly defined. In this study, we identify, through a genetic candidate screen, the SCFSlmb E3 ligase as a novel negative regulator of the Hippo pathway in Drosophila imaginal tissues via mediation of the degradation of Expanded (Ex). Mechanistic study shows that Slmb-mediated degradation of Ex is inhibited by the Hippo signaling. Considering the fact that Hippo signaling suppresses the transcription of ex, we propose that the Hippo pathway employs a double security mechanism to ensure fine-tuned homeostasis during development. PMID:25522691

  4. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta.

    PubMed

    Lempereur, A; Canto, P Y; Richard, C; Martin, S; Thalgott, J; Raymond, K; Lebrin, F; Drevon, C; Jaffredo, T

    2018-02-15

    The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Signaling through protein kinases and transcriptional regulators in Candida albicans.

    PubMed

    Dhillon, Navneet K; Sharma, Sadhna; Khuller, G K

    2003-01-01

    The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. Several signaling pathways that regulate morphogenesis have been identified, including various transcription factors that either activate or repress hypha-specific genes. Two well-characterized pathways include the MAP kinase cascade and cAMP-dependent protein kinase pathway that regulate the transcription factors Cph1p and Efg1p, respectively. cAMP also appears to interplay with other second messengers: Ca2+, inositol tri-phosphates in regulating yeast-hyphal transition. Other, less-characterized pathways include two component histidine kinases, cyclin-dependent kinase pathway, and condition specific pathways such as pH and embedded growth conditions. Nrg1 and Rfg1 function as transcriptional repressors of hyphal genes via recruitment of Tup1 co-repressor complex. Different upstream signals converge into a common downstream output during hyphal switch. The levels of expression of several genes have been shown to be associated with hyphal morphogenesis rather than with a specific hypha-inducing condition. Hyphal development is also linked to the expression of a range of other virulence factors. This review explains the relative contribution of multiple pathways that could be used by Candida albican cells to sense subtle differences in the growth conditions of its native host environment.

  6. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination.

    PubMed

    Sun, Xiaoqiang; Bao, Jiguang; You, Zhuhong; Chen, Xing; Cui, Jun

    2016-09-27

    The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance.

  7. Targeting Developmental Pathways: The Achilles Heel of Cancer?

    PubMed

    Dempke, Wolfram C M; Fenchel, Klaus; Uciechowski, Peter; Chevassut, Timothy

    2017-01-01

    Developmental pathways (e.g., Notch, Hippo, Hedgehog, Wnt, and TGF-β/BMP/FGF) are networks of genes that act co-ordinately to establish the body plan, and disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Interestingly, all developmental pathways are highly conserved cell signalling systems present in almost all multicellular organisms. In addition, they have a crucial role in cell proliferation, apoptosis, differentiation, and finally in organ development. Of note, almost all of these pathways promote oncogenesis through synergistic associations with the Hippo signalling pathway, and several lines of evidence have also indicated that these pathways (e.g., Wnt/β-catenin) may be implicated in checkpoint inhibitor resistance (e.g., CTLA-4, PD-1, and PD-L1). Since Notch inhibition in vivo results in partial loss of its stemness features such as self-renewal, chemoresistance, invasive and migratory potential, and tumorigenesis, these highly conserved developmental pathways are regarded as being critical for regulation of self-renewal in both embryonic and adult stem cells and hence are likely to be implicated in the maintenance of cancer stem cells. Many small molecules are currently in preclinical and early clinical development, and only two compounds are approved for treatment of advanced or metastatic basal cell carcinoma (vismodegib and sonidegib). Furthermore, therapeutic targeting of cancer stem cells using drugs that disrupt activated developmental pathways may also represent an attractive strategy that is potentially relevant to many types of malignancy, notably blood cancers, where the evidence for leukaemia stem cells is well established. Future work will hopefully pave the way for the development of new strategies for targeting these pervasive oncogenic pathways. © 2017 S. Karger AG, Basel.

  8. Putative signaling action of amelogenin utilizes the Wnt/beta-catenin pathway.

    PubMed

    Matsuzawa, M; Sheu, T-J; Lee, Y-J; Chen, M; Li, T-F; Huang, C T; Holz, J D; Puzas, J E

    2009-06-01

    While it has long been known that amelogenin is essential for the proper development of enamel, its role has generally been seen as structural in nature. However, our new data implicate this protein in the regulation of cell signaling pathways in periodontal ligament cells and osteoblasts. In this article we report the successful purification of a recombinant mouse amelogenin protein and demonstrate that it has signaling activity in isolated mouse calvarial cells and human periodontal ligament cells. To determine the regulatory function of canonical Wnt signaling by amelogenin, we used TOPGAL transgenic mice. These mice express a beta-galactosidase transgene under the control of a LEF/TCF and beta-catenin-inducible promoter. To investigate in greater detail the molecular mechanisms involved in the beta-catenin signaling pathway, isolated osteoblasts and periodontal ligament cells were exposed to full-length recombinant mouse amelogenin and were evaluated for phenotypic changes and beta-catenin signaling using a TOPFLASH construct and the LacZ reporter gene. In these in vitro models, we showed that amelogenin can activate beta-catenin signaling. Using the TOPGAL transgenic mouse we showed that amelogenin expression in vivo is localized mainly around the root, the periodontal ligament and the alveolar bone.

  9. Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry.

    PubMed

    Lenhart, Kari F; Holtzman, Nathalia G; Williams, Jessica R; Burdine, Rebecca D

    2013-01-01

    Failure to properly establish the left-right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans.

  10. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    PubMed

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  11. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway

    PubMed Central

    Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2016-01-01

    Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031

  12. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.

    PubMed

    Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae; Johnson, Jeffery; Jungnickel, Melissa K; Choksi, Semil P; Garcia, Galo; Busengdal, Henriette; Dougherty, Gerard W; Pennekamp, Petra; Werner, Claudius; Rentzsch, Fabian; Florman, Harvey M; Krogan, Nevan; Wallingford, John B; Omran, Heymut; Reiter, Jeremy F

    2017-12-18

    Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    PubMed

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  14. Epidermal wound repair is regulated by the planar cell polarity signaling pathway

    PubMed Central

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B.; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A.; Murdoch, Jennifer N.; Humbert, Patrick O.; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M.; Jane, Stephen M.

    2010-01-01

    SUMMARY The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3−/− mice, we identified RhoGEF19, a homologue of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerisation, cellular polarity and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling, and broadly implicate this pathway in epidermal repair. PMID:20643356

  15. Sensing the Environment Through Sestrins: Implications for Cellular Metabolism.

    PubMed

    Parmigiani, A; Budanov, A V

    2016-01-01

    Sestrins are a family of stress-responsive genes that have evolved to attenuate damage induced by stress caused to the cell. By virtue of their antioxidant activity, protein products of Sestrin genes prevent the accumulation of reactive oxygen species within the cell, thereby attenuating the detrimental effects of oxidative stress. In parallel, Sestrins participate in several signaling pathways that control the activity of the target of rapamycin protein kinase (TOR). TOR is a crucial sensor of intracellular and extracellular conditions that promotes cell growth and anabolism when nutrients and growth factors are abundant. In addition to reacting to stress-inducing insults, Sestrins also monitor the changes in the availability of nutrients, which allows them to serve as a key checkpoint for the TOR-regulated signaling pathways. In this review, we will discuss how Sestrins integrate signals from numerous stress- and nutrient-responsive signaling pathways to orchestrate cellular metabolism and support cell viability. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors

    PubMed Central

    Bahl, Ethan; Hannah, Claire; Hofammann, Dabney; Acevedo, Summer; Cui, Huxing; McAdams, Carrie J.

    2017-01-01

    Objective Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown. Methods To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating. Results An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating. Conclusions These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating. PMID:28846695

  17. The impact of the unfolded protein response on human disease

    PubMed Central

    Wang, Shiyu

    2012-01-01

    A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease. PMID:22733998

  18. RARE VARIANTS IN THE NEUROTROPHIN SIGNALING PATHWAY IMPLICATED IN SCHIZOPHRENIA RISK

    PubMed Central

    Kranz, Thorsten M.; Goetz, Ray R.; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V.

    2015-01-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. PMID:26215504

  19. Estrogen regulates Hippo signaling via GPER in breast cancer.

    PubMed

    Zhou, Xin; Wang, Shuyang; Wang, Zhen; Feng, Xu; Liu, Peng; Lv, Xian-Bo; Li, Fulong; Yu, Fa-Xing; Sun, Yiping; Yuan, Haixin; Zhu, Hongguang; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2015-05-01

    The G protein-coupled estrogen receptor (GPER) mediates both the genomic and nongenomic effects of estrogen and has been implicated in breast cancer development. Here, we compared GPER expression in cancerous tissue and adjacent normal tissue in patients with invasive ductal carcinoma (IDC) of the breast and determined that GPER is highly upregulated in cancerous cells. Additionally, our studies revealed that GPER stimulation activates yes-associated protein 1 (YAP) and transcriptional coactivator with a PDZ-binding domain (TAZ), 2 homologous transcription coactivators and key effectors of the Hippo tumor suppressor pathway, via the Gαq-11, PLCβ/PKC, and Rho/ROCK signaling pathways. TAZ was required for GPER-induced gene transcription, breast cancer cell proliferation and migration, and tumor growth. Moreover, TAZ expression positively correlated with GPER expression in human IDC specimens. Together, our results suggest that the Hippo/YAP/TAZ pathway is a key downstream signaling branch of GPER and plays a critical role in breast tumorigenesis.

  20. Muscle redox signalling pathways in exercise. Role of antioxidants.

    PubMed

    Mason, Shaun A; Morrison, Dale; McConell, Glenn K; Wadley, Glenn D

    2016-09-01

    Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E (≥260 IU/day) supplementation in impairments to some skeletal muscle cellular adaptations to chronic exercise training. Thus, determining the utility of antioxidant supplementation in athletes likely requires a consideration of training and competition periodization cycles of athletes in addition to type, dose and duration of antioxidant supplementation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  2. Unphosphorylated STATs go nuclear.

    PubMed

    Brown, Stephen; Zeidler, Martin P

    2008-10-01

    The JAK/STAT signal transduction pathway has traditionally been viewed as a cytokine-stimulated activator of gene expression consisting of a straightforward receptor/JAK kinase/STAT transcription factor cascade. Recent studies in Drosophila, have, however consistently identified a range of chromatin-remodelling factors as regulators of in vivo JAK/STAT signalling. Now, the detailed analysis of one of these, heterochromatin protein 1 (HP1), has provided an insight into an unexpected non-canonical in vivo role for STAT. In this model, unphosphorylated STATs associate with and maintain the stability of transcriptionally repressed heterochromatin--an effect countered by the recruitment of STAT to the canonical pathway. We examine the background of this new model and its implications for JAK/STAT pathway requirements in stem cell maintenance and cancer.

  3. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  4. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies.

    PubMed

    Rath, Eva; Haller, Dirk

    2011-06-01

    Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.

  5. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  6. Chemotactic Cues for NOTCH1-Dependent Leukemia

    PubMed Central

    Piovan, Erich; Tosello, Valeria; Amadori, Alberto; Zanovello, Paola

    2018-01-01

    The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL. PMID:29666622

  7. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    PubMed

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  8. Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway

    PubMed Central

    Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong

    2009-01-01

    Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763

  9. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    PubMed

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  11. Targeting kinase signaling pathways with constrained peptide scaffolds

    PubMed Central

    Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.

    2017-01-01

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915

  12. Oxidation of methionine residues: the missing link between stress and signalling responses in plants.

    PubMed

    Emes, Michael J

    2009-08-13

    In response to biotic and abiotic stresses, plants induce a complex array of pathways and protein phosphorylation cascades which generally lead to a response aimed at mitigating the particular insult. In many cases, H2O2 has been implicated as the signalling molecule, but, although progress has been made in assembling the downstream components of these signalling pathways, far less is known about the mechanism by which the signal is perceived. In this issue of the Biochemical Journal, Hardin et al. provide evidence for a plausible mechanism by which plants perceive H2O2. Evidence is presented for chemical oxidation of methionine residues by H2O2 at critical hydrophobic positions within the canonical motifs that define the phosphorylation sites of a number of enzymes, thus inhibiting binding of protein kinases. This process is reversible by MSR (methionine sulfoxide reductase) activity in vivo. Using synthetic peptides for a number of enzymes which are phosphorylated by families of protein kinases, including the CDPK (calcium-dependent protein kinase) and AMPK (AMP-activated protein kinase) families, coupled with in vivo studies of assimilatory plant nitrate reductase, the authors demonstrate that this mechanism regulates the ability of kinases to bind the target protein, directly linking oxidative signals to changes in protein phosphorylation. These results may have widespread implications for the perception of redox signalling in plants and animals.

  13. Tauroursodeoxycholic Acid Prevents Amyloid-β Peptide–Induced Neuronal Death Via a Phosphatidylinositol 3-Kinase–Dependent Signaling Pathway

    PubMed Central

    Solá, Susana; Castro, Rui E; Laires, Pedro A; Steer, Clifford J; Rodrigues, Cecília MP

    2003-01-01

    Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease, where a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we explored the cell death pathway and signaling mechanisms involved in Aβ-induced toxicity and further investigated the anti-apoptotic effect(s) of TUDCA. Our data show significant induction of apoptosis in isolated cortical neurons incubated with Aβ peptide. Apoptosis was associated with translocation of pro-apoptotic Bax to the mitochondria, followed by cytochrome c release, caspase activation, and DNA and nuclear fragmentation. In addition, there was almost immediate but weak activation of the serine/threonine protein kinase Akt. Inhibition of the phosphatidylinositide 3′-OH kinase (PI3K) pathway with wortmannin did not markedly affect Aβ-induced cell death, suggesting that this signaling pathway is not crucial for Aβ-mediated toxicity. Notably, co-incubation with TUDCA significantly modulated each of the Aβ-induced apoptotic events. Moreover, wortmannin decreased TUDCA protection against Aβ-induced apoptosis, reduced Akt phosphorylation, and increased Bax translocation to mitochondria. Together, these findings indicate that Aβ-induced apoptosis of cortical neurons proceeds through a Bax mitochondrial pathway. Further, the PI3K signaling cascade plays a role in regulating the anti-apoptotic effects of TUDCA. PMID:15208744

  14. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.

    2015-01-01

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826

  15. Regulation of the protein kinase activity of Shaggy(Zeste-white3) by components of the wingless pathway in Drosophila cells and embryos.

    PubMed

    Ruel, L; Stambolic, V; Ali, A; Manoukian, A S; Woodgett, J R

    1999-07-30

    The protein-serine kinase Shaggy(Zeste-white3) (Sgg(Zw3)) is the Drosophila homolog of mammalian glycogen synthase kinase-3 and has been genetically implicated in signal transduction pathways necessary for the establishment of patterning. Sgg(Zw3) is a putative component of the Wingless (Wg) pathway, and epistasis analyses suggest that Sgg(Zw3) function is repressed by Wg signaling. Here, we have investigated the biochemical consequences of Wg signaling with respect to the Sgg(Zw3) protein kinase in two types of Drosophila cell lines and in embryos. Our results demonstrate that Sgg(Zw3) activity is inhibited following exposure of cells to Wg protein and by expression of downstream components of Wg signaling, Drosophila frizzled 2 and dishevelled. Wg-dependent inactivation of Sgg(Zw3) is accompanied by serine phosphorylation. We also show that the level of Sgg(Zw3) activity regulates the stability of Armadillo protein and modulates the level of phosphorylation of D-Axin and Armadillo. Together, these results provide direct biochemical evidence in support of the genetic model of Wg signaling and provide a model for dissecting the molecular interactions between the signaling proteins.

  16. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis.

    PubMed

    Kyrmizi, Irene; Ferreira, Helena; Carvalho, Agostinho; Figueroa, Julio Alberto Landero; Zarmpas, Pavlos; Cunha, Cristina; Akoumianaki, Tonia; Stylianou, Kostas; Deepe, George S; Samonis, George; Lacerda, João F; Campos, António; Kontoyiannis, Dimitrios P; Mihalopoulos, Nikolaos; Kwon-Chung, Kyung J; El-Benna, Jamel; Valsecchi, Isabel; Beauvais, Anne; Brakhage, Axel A; Neves, Nuno M; Latge, Jean-Paul; Chamilos, Georgios

    2018-05-30

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca 2+ signalling pathway that depends on intracellular Ca 2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca 2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca 2+ -CaM signalling in aspergillosis. Finally, we demonstrate that Ca 2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca 2+ -CaM signalling to inhibit LAP. These findings reveal the important role of Ca 2+ -CaM signalling in antifungal immunity and identify an immunological function of Ca 2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

  17. Molecular Genetics of the PI3K-AKT-mTOR Pathway in Genodermatoses: Diagnostic Implications and Treatment Opportunities.

    PubMed

    Vahidnezhad, Hassan; Youssefian, Leila; Uitto, Jouni

    2016-01-01

    A number of critical signaling pathways are required for homeostatic regulation of cell survival, differentiation, and proliferation during organogenesis. One of them is the PI3K-AKT-mTOR pathway consisting of a cascade of inhibitor/activator molecules. Recently, a number of heritable diseases with skin involvement, manifesting particularly with tissue overgrowth, have been shown to result from mutations in the genes in the PI3K-AKT-mTOR and interacting intracellular pathways. Many of these conditions represent an overlapping spectrum of phenotypic manifestations forming a basis for novel, unifying classifications. Identification of the mutant genes and specific mutations in these patients has implications for diagnostics and genetic counseling and provides a rational basis for the development of novel treatment modalities for this currently intractable group of disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    NASA Astrophysics Data System (ADS)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01327e

  19. The Hippo pathway in disease and therapy: cancer and beyond

    PubMed Central

    2014-01-01

    The Hippo tumour suppressor pathway co-ordinates cell proliferation, cell death and cell differentiation to regulate tissue growth control. In mammals, a conserved core Hippo signalling module receives signal inputs on different levels to ensure the proper regulation of YAP/TAZ activities as transcriptional co-activators. While the core module members MST1/2, Salvador, LATS1/2 and MOB1 have been attributed tumour suppressive functions, YAP/TAZ have been mainly described to have oncogenic roles, although some reports provided evidence supporting growth suppressive roles of YAP/TAZ in certain cancer settings. Intriguingly, mammalian Hippo signalling is also implicated in non-cancer diseases and plays a role in tissue regeneration following injury. Cumulatively, these findings indicate that the pharmacological inhibition or activation of the Hippo pathway could be desirable depending on the disease context. In this review, we first summarise the functions of the mammalian Hippo pathway in tumour formation, and then discuss non-cancer diseases involving Hippo signalling core components with a specific focus on our current understanding of the non-cancer roles of MST1/2 and YAP/TAZ. In addition, the pros and cons of possible pharmacological interventions with Hippo signalling will be reviewed, with particular emphasis on anti-cancer drug development and regenerative medicine. PMID:25097725

  20. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    PubMed

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  1. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?

    PubMed

    Moreau, Nathan; Mauborgne, Annie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2017-01-01

    Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood–nerve barrier disruption. A crosstalk between Wnt/β-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood–nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.

  2. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  3. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment.

    PubMed

    Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain

    2013-02-01

    Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  5. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  6. The history and regulatory mechanism of the Hippo pathway

    PubMed Central

    Kim, Wantae; Jho, Eek-hoon

    2018-01-01

    How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed. PMID:29397869

  7. Expression of Wnt pathway genes in polyps and medusa-like structures of Ectopleura larynx (Cnidaria: Hydrozoa).

    PubMed

    Nawrocki, Annalise M; Cartwright, Paulyn

    2013-01-01

    The canonical Wnt signaling pathway is conserved in its role in axial patterning throughout Metazoa. In some hydrozoans (Phylum Cnidaria), Wnt signaling is implicated in oral-aboral patterning of the different life cycle stages-the planula, polyp and medusa. Unlike most hydrozoans, members of Aplanulata lack a planula larva and the polyp instead develops directly from a brooded or encysted embryo. The Aplanulata species Ectopleura larynx broods such embryos within gonophores. These gonophores are truncated medusae that remain attached to the polyps from which they bud, and retain evolutionary remnants of medusa structures. In E. larynx, gonophores differ between males and females in their degree of medusa truncation, making them an ideal system for examining truncated medusa development. Using next-generation sequencing, we isolated genes from Wnt signaling pathways and examined their expression in E. larynx. Our data are consistent with the Wnt pathway being involved in axial patterning of the polyp and truncated medusa. Changes in the spatial expression of Wnt pathway genes are correlated with the development of different oral structures in male and female gonophores. The absence of expression of components of the Wnt pathway and presence of a Wnt pathway antagonist SFRP in the developing anterior end of the gonophore suggest that downregulation of the Wnt pathway could play a role in medusa reduction in E. larynx. © 2013 Wiley Periodicals, Inc.

  8. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis.

    PubMed

    van den Bosch, Martijn H; Blom, Arjen B; Schelbergen, Rik F P; Vogl, Thomas; Roth, Johannes P; Slöetjes, Annet W; van den Berg, Wim B; van der Kraan, Peter M; van Lent, Peter L E M

    2016-01-01

    Both alarmins S100A8/A9 and canonical Wnt signaling have been found to play active roles in the development of experimental osteoarthritis (OA). However, what activates canonical Wnt signaling remains unknown. This study was undertaken to investigate whether S100A8 induces canonical Wnt signaling and whether S100 proteins exert their effects via activation of Wnt signaling. Expression of the genes for S100A8/A9 and Wnt signaling pathway members was measured in an experimental OA model. Selected Wnt signaling pathway members were overexpressed, and levels of S100A8/A9 were measured. Activation of canonical Wnt signaling was determined after injection of S100A8 into naive joints and induction of collagenase-induced OA in S100A9-deficient mice. Expression of Wnt signaling pathway members was tested in macrophages and fibroblasts after S100A8 stimulation. Canonical Wnt signaling was inhibited in vivo to determine if the effects of S100A8 injections were dependent on Wnt signaling. The alarmins S100A8/A9 and members of the Wnt signaling pathway showed coinciding expression in synovial tissue in an experimental OA model. Synovial overexpression of selected Wnt signaling pathway members did not result in increased expression of S100 proteins. In contrast, intraarticular injection of S100A8 increased canonical Wnt signaling, whereas canonical Wnt signaling was decreased after induction of experimental OA in S100A9-deficient mice. S100A8 stimulation of macrophages, but not fibroblasts, resulted in increased expression of canonical Wnt signaling members. Overexpression of Dkk-1 to inhibit canonical Wnt signaling decreased the induction of matrix metalloproteinase 3, interleukin-6, and macrophage inflammatory protein 1α after injection of S100A8. Our findings indicate that the alarmin S100A8 induces canonical Wnt signaling in macrophages and murine knee joints. The effects of S100A8 are partially dependent on activation of canonical Wnt signaling. © 2016, American College of Rheumatology.

  9. Implications of Green Tea and Its Constituents in the Prevention of Cancer via the Modulation of Cell Signalling Pathway

    PubMed Central

    Rahmani, Arshad H.; Al shabrmi, Fahad M.; Allemailem, Khaled S.; Aly, Salah M.; Khan, Masood A.

    2015-01-01

    Green tea is commonly used as a beverage worldwide, especially in China, Japan, Morocco, and Saudi Arabia. Green tea and its constituents have been considered very effective in the prevention and treatment of various diseases. It contains a variety of catechins, which show a pivotal role in the modulation of biological activities and also act as chemopreventive agents. Earlier studies have confirmed that green tea and its chief constituent epigallocatechin gallate (EGCG) have a potential role in the management of cancer through the modulation of cell signaling pathways. In this review, we focused on the beneficial effects of green tea and its constituents in the cancer prevention and treatment and its impact on modulation of molecular pathways. PMID:25977926

  10. Regulation of the Hippo Pathway Transcription Factor TEAD.

    PubMed

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-11-01

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling

    PubMed Central

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  12. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-03-29

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adi, Y. A., E-mail: yudi.adi@math.uad.ac.id; Department of Mathematic Faculty of MIPA Universitas Gadjah Mada; Kusumo, F. A.

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present amore » mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.« less

  14. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  15. Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation

    PubMed Central

    Meyer, Colette; Sims, Andrew H; Morgan, Kevin; Harrison, Beth; Muir, Morwenna; Bai, Jianing; Faratian, Dana; Millar, Robert P; Langdon, Simon P

    2013-01-01

    GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used transcriptomic and proteomic profiling approaches to characterize the effects of GNRHR activation in sensitive cells (HEK293-GNRHR, SCL60) in vitro and in vivo, compared to unresponsive HEK293. Analyses of gene expression demonstrated a dynamic response to the GNRH superagonist Triptorelin. Early and mid-phase changes (0.5–1.0 h) comprised mainly transcription factors. Later changes (8–24 h) included a GNRH target gene, CGA, and up- or downregulation of transcripts encoding signaling and cell division machinery. Pathway analysis identified altered MAPK and cell cycle pathways, consistent with occurrence of G2/M arrest and apoptosis. Nuclear factor kappa B (NF-κB) pathway gene transcripts were differentially expressed between control and Triptorelin-treated SCL60 cultures. Reverse-phase protein and phospho-proteomic array analyses profiled responses in cultured cells and SCL60 xenografts in vivo during Triptorelin anti-proliferation. Increased phosphorylated NF-κB (p65) occurred in SCL60 in vitro, and p-NF-κB and IκBϵ were higher in treated xenografts than controls after 4 days Triptorelin. NF-κB inhibition enhanced the anti-proliferative effect of Triptorelin in SCL60 cultures. This study reveals details of pathways interacting with intense GNRHR signaling, identifies potential anti-proliferative target genes, and implicates the NF-κB survival pathway as a node for enhancing GNRH agonist-induced anti-proliferation. PMID:23202794

  16. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders

    PubMed Central

    2014-01-01

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment. PMID:24656144

  17. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders.

    PubMed

    Wong, Christine T; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A

    2014-03-23

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.

  18. The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism

    PubMed Central

    Bermingham, Daniel P.; Snider, Sam L.; Miller, David M.

    2017-01-01

    The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function. SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo. Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders. PMID:28842414

  19. The JAK/STAT pathway in obesity and diabetes.

    PubMed

    Gurzov, Esteban N; Stanley, William J; Pappas, Evan G; Thomas, Helen E; Gough, Daniel J

    2016-08-01

    Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes. © 2016 Federation of European Biochemical Societies.

  20. How a RING finger protein and a steroid hormone control autophagy.

    PubMed

    Lindmo, Karine; Stenmark, Harald

    2006-01-01

    Previous work in our laboratory has indicated that the steroid hormone ecdysone triggers programmed autophagy in the fat body of Drosophila larvae by downregulating the class I phosphoinositide 3-kinase (PI3K) pathway. We recently found evidence that Deep orange (Dor), a Drosophila RING finger protein implicated in late-endosomal trafficking, controls ecdysone signaling as well as autolysosome fusion, thus exerting a dual regulation of autophagy. We found that dor mutants are defective in programmed autophagy. The mutant larvae showed impaired upregulation of ecdysone signaling during development, accompanied by a failure to downregulate the PI3K pathway. Downregulation of the PI3K pathway could be restored by feeding the dor mutants with ecdysone. Even though ecdysone signaling and autophagy were impaired in the dor mutants, we detected an accumulation of autophagosomes in dor mutant fat bodies. This could probably be attributed to the failure of autophagosomes to fuse with lysosomes. In this Addendum we review these findings and provide some speculations about how Dor may control both ecdysone signalling and autolysosomal fusion.

  1. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    PubMed

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Mediated Growth in Rice

    PubMed Central

    Hu, Xingming; Qian, Qian; Xu, Ting; Zhang, Yu'e; Dong, Guojun; Gao, Ting; Xie, Qi; Xue, Yongbiao

    2013-01-01

    Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development. PMID:23526892

  3. Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal.

    PubMed

    Pal, Shaifali; Yadav, Akhilesh Kumar; Singh, Anup Kumar; Rastogi, Shubhra; Gupta, Madan Mohan; Verma, Rajesh Kumar; Nagegowda, Dinesh A; Pal, Anirban; Shasany, Ajit Kumar

    2017-01-01

    The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.

  4. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation.

    PubMed

    Keogh, Ciara E; Scholz, Carsten C; Rodriguez, Javier; Selfridge, Andrew C; von Kriegsheim, Alexander; Cummins, Eoin P

    2017-07-07

    CO 2 is a physiological gas normally produced in the body during aerobic respiration. Hypercapnia (elevated blood pCO 2 >≈50 mm Hg) is a feature of several lung pathologies, e.g. chronic obstructive pulmonary disease. Hypercapnia is associated with increased susceptibility to bacterial infections and suppression of inflammatory signaling. The NF-κB pathway has been implicated in these effects; however, the molecular mechanisms underpinning cellular sensitivity of the NF-κB pathway to CO 2 are not fully elucidated. Here, we identify several novel CO 2 -dependent changes in the NF-κB pathway. NF-κB family members p100 and RelB translocate to the nucleus in response to CO 2 A cohort of RelB protein-protein interactions ( e.g. with Raf-1 and IκBα) are altered by CO 2 exposure, although others are maintained ( e.g. with p100). RelB is processed by CO 2 in a manner dependent on a key C-terminal domain located in its transactivation domain. Loss of the RelB transactivation domain alters NF-κB-dependent transcriptional activity, and loss of p100 alters sensitivity of RelB to CO 2 Thus, we provide molecular insight into the CO 2 sensitivity of the NF-κB pathway and implicate altered RelB/p100-dependent signaling in the CO 2 -dependent regulation of inflammatory signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Eliminating Late Recurrence to Eradicate Breast Cancer

    DTIC Science & Technology

    2013-09-01

    translocation of proteins with a specific signal sequence that (in CMA) is recognized by the LAMP2A receptor on the lysosome (1). This review focuses on...signal sequence directing it to the conventional secretory pathway via the Golgi apparatus and the endoplasmic reticulum (ER). Interestingly, recent...clear- ance (55, 56). Autophagy has been implicated in the etiology of this disease by genome -wide association studies identifying disease-related

  6. The Syk kinase as a therapeutic target in leukemia and lymphoma.

    PubMed

    Efremov, Dimitar G; Laurenti, Luca

    2011-05-01

    The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.

  7. Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells

    PubMed Central

    Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E

    2009-01-01

    Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143

  8. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer.

    PubMed

    Kavitha, K; Kowshik, J; Kishore, T Kranthi Kiran; Baba, Abdul Basit; Nagini, S

    2013-10-01

    The oncogenic transcription factors NF-κB and β-catenin, constitutively activated by upstream serine/threonine kinases control several cellular processes implicated in malignant transformation including apoptosis evasion. The aim of this study was to investigate the chemopreventive effects of astaxanthin, an antioxidant carotenoid, in the hamster buccal pouch (HBP) carcinogenesis model based on its ability to modulate NF-κB and Wnt signaling pathways and induce apoptosis. We determined the effect of dietary supplementation of astaxanthin on the oncogenic signaling pathways - NF-κB and Wnt/β-catenin, their upstream activator kinases - Erk/MAPK and PI-3K/Akt, and the downstream event - apoptosis evasion by real-time quantitative RT-PCR, western blot, and immunohistochemical analyses. We found that astaxanthin inhibits NF-κB and Wnt signaling by downregulating the key regulatory enzymes IKKβ and GSK-3β. Analysis of gene expression and docking interactions revealed that inhibition of these pathways may be mediated via inactivation of the upstream signaling kinases Erk/Akt by astaxanthin. Astaxanthin also induced caspase-mediated mitochondrial apoptosis by downregulating the expression of antiapoptotic Bcl-2, p-Bad, and survivin and upregulating proapoptotic Bax and Bad, accompanied by efflux of Smac/Diablo and cytochrome-c into the cytosol, and induced cleavage of poly (ADP-ribose) polymerase (PARP). The results provide compelling evidence that astaxanthin exerts chemopreventive effects by concurrently inhibiting phosphorylation of transcription factors and signaling kinases and inducing intrinsic apoptosis. Astaxanthin targets key molecules in oncogenic signaling pathways and induces apoptosis and is a promising candidate agent for cancer prevention and therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded

    PubMed Central

    Yu, Jianzhong; Zheng, Yonggang; Dong, Jixin; Klusza, Stephen; Deng, Wu-Min; Pan, Duojia

    2010-01-01

    Summary The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra (Kbr) as another upstream component of the Hippo signaling pathway. We show that Kbr functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function, and implicate Kbr as a potential tumor suppressor with relevance to neurofibromatosis. PMID:20159598

  10. Endocardial Hippo signaling regulates myocardial growth and cardiogenesis.

    PubMed

    Artap, Stanley; Manderfield, Lauren J; Smith, Cheryl L; Poleshko, Andrey; Aghajanian, Haig; See, Kelvin; Li, Li; Jain, Rajan; Epstein, Jonathan A

    2018-08-01

    The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Estrogen regulates Hippo signaling via GPER in breast cancer

    PubMed Central

    Zhou, Xin; Wang, Shuyang; Wang, Zhen; Feng, Xu; Liu, Peng; Lv, Xian-Bo; Li, Fulong; Yu, Fa-Xing; Sun, Yiping; Yuan, Haixin; Zhu, Hongguang; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2015-01-01

    The G protein–coupled estrogen receptor (GPER) mediates both the genomic and nongenomic effects of estrogen and has been implicated in breast cancer development. Here, we compared GPER expression in cancerous tissue and adjacent normal tissue in patients with invasive ductal carcinoma (IDC) of the breast and determined that GPER is highly upregulated in cancerous cells. Additionally, our studies revealed that GPER stimulation activates yes-associated protein 1 (YAP) and transcriptional coactivator with a PDZ-binding domain (TAZ), 2 homologous transcription coactivators and key effectors of the Hippo tumor suppressor pathway, via the Gαq-11, PLCβ/PKC, and Rho/ROCK signaling pathways. TAZ was required for GPER-induced gene transcription, breast cancer cell proliferation and migration, and tumor growth. Moreover, TAZ expression positively correlated with GPER expression in human IDC specimens. Together, our results suggest that the Hippo/YAP/TAZ pathway is a key downstream signaling branch of GPER and plays a critical role in breast tumorigenesis. PMID:25893606

  12. Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk.

    PubMed

    Kranz, Thorsten M; Goetz, Ray R; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V

    2015-10-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer.

    PubMed

    Hwang, Rosa F; Moore, Todd T; Hattersley, Maureen Mertens; Scarpitti, Meghan; Yang, Bin; Devereaux, Erik; Ramachandran, Vijaya; Arumugam, Thiruvengadam; Ji, Baoan; Logsdon, Craig D; Brown, Jeffrey L; Godin, Robert

    2012-09-01

    The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment.

  14. Altered Molecular Expression of the TLR4/NF-κB Signaling Pathway in Mammary Tissue of Chinese Holstein Cattle with Mastitis

    PubMed Central

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977

  15. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.

    PubMed

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

  16. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction.

    PubMed

    Yang, Deying; Lian, Ting; Tu, Jianbo; Gaur, Uma; Mao, Xueping; Fan, Xiaolan; Li, Diyan; Li, Ying; Yang, Mingyao

    2016-09-27

    Dietary restriction (DR) extends lifespan in many species which is a well-known phenomenon. Long non-coding RNAs (lncRNAs) play an important role in regulation of cell senescence and important age-related signaling pathways. Here, we profiled the lncRNA and mRNA transcriptome of fruit flies at 7 day and 42 day during DR and fully-fed conditions, respectively. In general, 102 differentially expressed lncRNAs and 1406 differentially expressed coding genes were identified. Most informatively we found a large number of differentially expressed lncRNAs and their targets enriched in GO and KEGG analysis. We discovered some new aging related signaling pathways during DR, such as hippo signaling pathway-fly, phototransduction-fly and protein processing in endoplasmic reticulum etc. Novel lncRNAs XLOC_092363 and XLOC_166557 are found to be located in 10 kb upstream sequences of hairy and ems promoters, respectively. Furthermore, tissue specificity of some novel lncRNAs had been analyzed at 7 day of DR in fly head, gut and fat body. Also the silencing of lncRNA XLOC_076307 resulted in altered expression level of its targets including Gadd45 (involved in FoxO signaling pathway). Together, the results implicated many lncRNAs closely associated with dietary restriction, which could provide a resource for lncRNA in aging and age-related disease field.

  17. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways by blocking eicosanoid biosynthesis.

    PubMed

    Hwang, Jihyun; Park, Youngjin; Kim, Yonggyun; Hwang, Jihyun; Lee, Daeweon

    2013-07-01

    Immune-associated genes of the beet armyworm, Spodoptera exigua, were predicted from 454 pyrosequencing transcripts of hemocytes collected from fifth instar larvae challenged with bacteria. Out of 22,551 contigs and singletons, 36% of the transcripts had at least one significant hit (E-value cutoff of 1e-20) and used to predict immune-associated genes implicated in pattern recognition, prophenoloxidase activation, intracellular signaling, and antimicrobial peptides (AMPs). Immune signaling and AMP genes were further confirmed in their expression patterns in response to different types of microbial challenge. To discriminate the AMP expression signaling between Toll and Imd pathways, RNA interference was applied to specifically knockdown each signal pathway; the separate silencing treatments resulted in differential suppression of AMP genes. An entomopathogenic bacterium, Xenorhabdus nematophila, suppressed expression of most AMP genes controlled by Toll and Imd pathways, while challenge with heat-killed X. nematophila induced expression of all AMPs in experimental larvae. Benzylideneacetone (BZA), a metabolite of X. nematophila, suppressed the AMP gene inductions when it was co-injected with the heat-killed X. nematophila. However, arachidonic acid, a catalytic product of PLA2 , significantly reversed the inhibitory effect of BZA on the AMP gene expression. This study suggests that X. nematophila suppresses AMP production controlled by Toll and Imd pathways by inhibiting eicosanoid biosynthesis in S. exigua. © 2013 Wiley Periodicals, Inc.

  18. The cellular mastermind(?) – Mechanotransduction and the nucleus

    PubMed Central

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  19. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    PubMed

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  20. The long tail of oncogenic drivers in prostate cancer.

    PubMed

    Armenia, Joshua; Wankowicz, Stephanie A M; Liu, David; Gao, Jianjiong; Kundra, Ritika; Reznik, Ed; Chatila, Walid K; Chakravarty, Debyani; Han, G Celine; Coleman, Ilsa; Montgomery, Bruce; Pritchard, Colin; Morrissey, Colm; Barbieri, Christopher E; Beltran, Himisha; Sboner, Andrea; Zafeiriou, Zafeiris; Miranda, Susana; Bielski, Craig M; Penson, Alexander V; Tolonen, Charlotte; Huang, Franklin W; Robinson, Dan; Wu, Yi Mi; Lonigro, Robert; Garraway, Levi A; Demichelis, Francesca; Kantoff, Philip W; Taplin, Mary-Ellen; Abida, Wassim; Taylor, Barry S; Scher, Howard I; Nelson, Peter S; de Bono, Johann S; Rubin, Mark A; Sawyers, Charles L; Chinnaiyan, Arul M; Schultz, Nikolaus; Van Allen, Eliezer M

    2018-05-01

    Comprehensive genomic characterization of prostate cancer has identified recurrent alterations in genes involved in androgen signaling, DNA repair, and PI3K signaling, among others. However, larger and uniform genomic analysis may identify additional recurrently mutated genes at lower frequencies. Here we aggregate and uniformly analyze exome sequencing data from 1,013 prostate cancers. We identify and validate a new class of E26 transformation-specific (ETS)-fusion-negative tumors defined by mutations in epigenetic regulators, as well as alterations in pathways not previously implicated in prostate cancer, such as the spliceosome pathway. We find that the incidence of significantly mutated genes (SMGs) follows a long-tail distribution, with many genes mutated in less than 3% of cases. We identify a total of 97 SMGs, including 70 not previously implicated in prostate cancer, such as the ubiquitin ligase CUL3 and the transcription factor SPEN. Finally, comparing primary and metastatic prostate cancer identifies a set of genomic markers that may inform risk stratification.

  1. RIP4 is a target of multiple signal transduction pathways in keratinocytes: Implications for epidermal differentiation and cutaneous wound repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Stephanie; Munz, Barbara, E-mail: barbara.munz@charite.de

    2010-01-01

    Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury andmore » might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.« less

  2. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    PubMed Central

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  3. ROS-dependent signal transduction.

    PubMed

    Reczek, Colleen R; Chandel, Navdeep S

    2015-04-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Arrestin-related proteins mediate pH signaling in fungi.

    PubMed

    Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier

    2005-08-23

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.

  5. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  6. A Screen for Modifiers of Hedgehog Signaling in Drosophila melanogaster Identifies swm and mts

    PubMed Central

    Casso, David J.; Liu, Songmei; Iwaki, D. David; Ogden, Stacey K.; Kornberg, Thomas B.

    2008-01-01

    Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway—patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn+ finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity. PMID:18245841

  7. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.

    PubMed

    Bullen, Hayley E; Soldati-Favre, Dominique

    2016-08-01

    Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa. © 2016 Federation of European Biochemical Societies.

  8. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits.

    PubMed

    Bertrand, Stephanie; Camasses, Alain; Somorjai, Ildiko; Belgacem, Mohamed R; Chabrol, Olivier; Escande, Marie-Line; Pontarotti, Pierre; Escriva, Hector

    2011-05-31

    FGF signaling is one of the few cell-cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head.

  9. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  10. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less

  11. Fgfr1 regulates development through the combinatorial use of signaling proteins.

    PubMed

    Brewer, J Richard; Molotkov, Andrei; Mazot, Pierre; Hoch, Renée V; Soriano, Philippe

    2015-09-01

    Fibroblast growth factor (Fgf) signaling governs multiple processes important in development and disease. Many lines of evidence have implicated Erk1/2 signaling induced through Frs2 as the predominant effector pathway downstream from Fgf receptors (Fgfrs), but these receptors can also signal through other mechanisms. To explore the functional significance of the full range of signaling downstream from Fgfrs in mice, we engineered an allelic series of knock-in point mutations designed to disrupt Fgfr1 signaling functions individually and in combination. Analysis of each mutant indicates that Frs2 binding to Fgfr1 has the most pleiotropic functions in development but also that the receptor uses multiple proteins additively in vivo. In addition to Frs2, Crk proteins and Plcγ also contribute to Erk1/2 activation, affecting axis elongation and craniofacial and limb development and providing a biochemical mechanism for additive signaling requirements. Disruption of all known signaling functions diminished Erk1/2 and Plcγ activation but did not recapitulate the peri-implantation Fgfr1-null phenotype. This suggests that Erk1/2-independent signaling pathways are functionally important for Fgf signaling in vivo. © 2015 Brewer et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Custos controls β-catenin to regulate head development during vertebrate embryogenesis.

    PubMed

    Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond

    2014-09-09

    Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.

  13. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  14. Cellular and molecular perspectives in rheumatoid arthritis.

    PubMed

    Veale, Douglas J; Orr, Carl; Fearon, Ursula

    2017-06-01

    Synovial immunopathology in rheumatoid arthritis is complex involving both resident and infiltrating cells. The synovial tissue undergoes significant neovascularization, facilitating an influx of lymphocytes and monocytes that transform a typically acellular loose areolar membrane into an invasive tumour-like pannus. The microvasculature proliferates to form straight regularly-branching vessels; however, they are highly dysfunctional resulting in reduced oxygen supply and a hypoxic microenvironment. Autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies are found at an early stage, often before arthritis has developed, and they have been implicated in the pathogenesis of RA. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species actively induce inflammation. Key pro-inflammatory cytokines, chemokines and growth factors and their signalling pathways, including nuclear factor κB, Janus kinase-signal transducer, are highly activated when immune cells are exposed to hypoxia in the inflamed rheumatoid joint show adaptive survival reactions by activating. This review attempts to highlight those aberrations in the innate and adaptive immune systems including the role of genetic and environmental factors, autoantibodies, cellular alterations, signalling pathways and metabolism that are implicated in the pathogenesis of RA and may therefore provide an opportunity for therapeutic intervention.

  15. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  16. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia

    PubMed Central

    Berridge, Michael J.

    2013-01-01

    Neurons have highly developed Ca2+ signaling systems responsible for regulating a large number of neural functions such as the control of brain rhythms, information processing and the changes in synaptic plasticity that underpin learning and memory. The tonic excitatory drive, which is activated by the ascending arousal system, is particularly important for processes such as sensory perception, cognition and consciousness. The Ca2+ signaling pathway is a key component of this arousal system that regulates the neuronal excitability responsible for controlling the neural brain rhythms required for information processing and cognition. Dysregulation of the Ca2+ signaling pathway responsible for many of these neuronal processes has been implicated in the development of some of the major neural diseases in man such as Alzheimer disease, bipolar disorder and schizophrenia. Various treatments, which are known to act by reducing the activity of Ca2+ signaling, have proved successful in alleviating the symptoms of some of these neural diseases. PMID:22895098

  17. Caveolae: a regulatory platform for nutritional modulation of inflammatory diseases

    PubMed Central

    Layne, Joseph; Majkova, Zuzana; Smart, Eric J.; Toborek, Michal; Hennig, Bernhard

    2010-01-01

    Dietary intervention strategies have proven to be an effective means of decreasing several risk factors associated with the development of atherosclerosis. Endothelial cell dysfunction influences vascular inflammation and is involved in promoting the earliest stages of lesion formation. Caveolae are lipid raft microdomains abundant within the plasma membrane of endothelial cells and are responsible for mediating receptor-mediated signal transduction. Caveolae have been implicated in the regulation of enzymes associated with several key signaling pathways capable of determining intracellular redox status. Diet and plasma-derived nutrients may modulate an inflammatory outcome by interacting with and altering caveolae-associated cellular signaling. For example, omega-3 fatty acids and several polyphenolics have been shown to improve endothelial cell function by decreasing the formation of ROS and increasing NO bioavailability, events associated with altered caveolae composition. Thus, nutritional modulation of caveolae-mediated signaling events may provide an opportunity to ameliorate inflammatory signaling pathways capable of promoting the formation of vascular diseases, including atherosclerosis. PMID:21292468

  18. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway.

    PubMed

    Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M

    1995-05-05

    A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.

  19. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina

    PubMed Central

    Field, Greg D.; Greschner, Martin; Gauthier, Jeffrey L.; Rangel, Carolina; Shlens, Jonathon; Sher, Alexander; Marshak, David W.; Litke, Alan M.; Chichilnisky, E.J.

    2009-01-01

    Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. Here we show that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions (<0.01 P*/rod/s). Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. We discuss three implications of these findings. First, more retinal circuits than previously thought may multiplex rod and cone signals, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the <20 RGC types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels. PMID:19668201

  1. Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP).

    PubMed

    Wang, Haitao; Shore, Eileen M; Pignolo, Robert J; Kaplan, Frederick S

    2018-04-01

    Fibrodysplasia ossificans progressiva (FOP), is caused by mutations in the type I BMP receptor ACVR1 that lead to increased activation of the BMP-pSmad1/5/8 signaling pathway. Recent findings suggest that Activin A (Act A) promiscuously stimulates the bone morphogenetic protein (BMP) signaling pathway in vitro and mediates heterotopic ossification (HO) in mouse models of FOP, but primary data from FOP patient cells are lacking. To examine BMP-pSmad1/5/8 pathway signaling and chondro-osseous differentiation in response to endogenous and exogenous Act A in primary connective tissue progenitor cells [CTPCs; also known as stem cells from human exfoliated deciduous teeth (SHED) cells] from patients with FOP. These cells express the common FOP mutation, ACVR1 (R206H). We found that Act A amplifies dysregulated BMP pathway signaling in human FOP primary CTPCs cells through the Smad1/5/8 pathway and induces chondro-osseous differentiation. Amplification of BMP-pSmad1/5/8 signaling was inhibited by Follistatin and by a neutralizing antibody to Activin A. The increased basal pSmad1/5/8 activity, as well as the hypoxia-induced stimulation of FOP CTPCs cells, were BMP4 and Act A independent. Importantly, either BMP4 or Act A stimulated pSmad1/5/8 pathway signaling but BMP4 signaling was not dependent on Activin A and vice versa. Circulating plasma levels of Act A or BMP4 are similar in controls compared to FOP patients, and suggest the potential for an autocrine or paracrine route for pathological signaling. The mutated FOP receptor [ACVR1 (R206H)] is hypersensitive to BMP4 and uniquely sensitive (compared to the wild type receptor) to Act A. Both canonical and non-canonical ligands have a synergistic effect on BMP-pSmad1/5/8 signaling in FOP CTPCs and may cooperate to alter the threshold for HO in FOP. Our findings in primary human FOP CTPCs have important implications for the design of clinical trials to inhibit dysregulated BMP pathway signaling in humans who have FOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion.

    PubMed

    Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A

    2011-05-17

    Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.

  3. Activation of the Hedgehog Signaling Pathway in the Developing Lens Stimulates Ectopic FoxE3 Expression and Disruption in Fiber Cell Differentiation

    PubMed Central

    Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.

    2012-01-01

    Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411

  4. Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective

    PubMed Central

    Albalat, Ricard; Brunet, Frédéric; Laudet, Vincent; Schubert, Michael

    2011-01-01

    Although the physiological relevance of retinoids and steroids in vertebrates is very well established, the origin and evolution of the genetic machineries implicated in their metabolic pathways is still very poorly understood. We investigated the evolution of these genetic networks by conducting an exhaustive survey of components of the retinoid and steroid pathways in the genome of the invertebrate chordate amphioxus (Branchiostoma floridae). Due to its phylogenetic position at the base of chordates, amphioxus is a very useful model to identify and study chordate versus vertebrate innovations, both on a morphological and a genomic level. We have characterized more than 220 amphioxus genes evolutionarily related to vertebrate components of the retinoid and steroid pathways and found that, globally, amphioxus has orthologs of most of the vertebrate components of these two pathways, with some very important exceptions. For example, we failed to identify a vertebrate-like machinery for retinoid storage, transport, and delivery in amphioxus and were also unable to characterize components of the adrenal steroid pathway in this invertebrate chordate. The absence of these genes from the amphioxus genome suggests that both an elaboration and a refinement of the retinoid and steroid pathways took place at the base of the vertebrate lineage. In stark contrast, we also identified massive amplifications in some amphioxus gene families, most extensively in the short-chain dehydrogenase/reductase superfamily, which, based on phylogenetic and genomic linkage analyses, were likely the result of duplications specific to the amphioxus lineage. In sum, this detailed characterization of genes implicated in retinoid and steroid signaling in amphioxus allows us not only to reconstruct an outline of these pathways in the ancestral chordate but also to discuss functional innovations in retinoid homeostasis and steroid-dependent regulation in both cephalochordate and vertebrate evolution. PMID:21856648

  5. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy.

    PubMed

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-03-16

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.

  6. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. TRYPTASE/PAR-2 INTERACTIONS INDUCE SELECTIVE MAPK SIGNALING AND COLLAGEN SYNTHESIS BY CARDIAC FIBROBLASTS

    PubMed Central

    McLarty, Jennifer L.; Meléndez, Giselle C.; Brower, Gregory L.; Janicki, Joseph S.; Levick, Scott P.

    2012-01-01

    The mast cell product, tryptase, has recently been implicated in fibrosis in the hypertensive heart. Tryptase has been shown to mediate non-cardiac fibroblast function via activation of protease activated receptor-2 and subsequent activation of the mitogen-activated protein kinase pathway, including extracellular signal-regulated kinase1/2. Therefore, we hypothesized that this pathway may be a mechanism leading to fibrosis in the hypertensive heart. Isolated adult cardiac fibroblasts were treated with tryptase, which induced activation of extracellular signal-regulated kinase1/2 via protease activated receptor-2. Blockade of protease activated receptor-2 with FSLLRY (10 μM) and inhibition of the extracellular signal-regulated kinase pathway with PD98059 (10 μM) prevented collagen synthesis in isolated cardiac fibroblasts stimulated with tryptase. p38 mitogen activated protein kinase and stress-activated protein/c-Jun N-terminal kinase were not activated by tryptase. Cardiac fibroblasts isolated from spontaneously hypertensive rats showed this same pattern of activation and treatment of spontaneously hypertensive rats with FSLLRY prevented fibrosis in these animals indicating the in vivo applicability of the cultured fibroblast findings. Also, tryptase induced a myofibroblastic phenotype indicated by elevations in α smooth muscle actin and ED-A fibronectin. Thus, the results from this study demonstrate the importance of tryptase for inducing a cardiac myofibroblastic phenotype, ultimately leading to the development of cardiac fibrosis through the activation of the extracellular signal-regulated kinase pathway. Specifically, tryptase causes cardiac fibroblasts to increase collagen synthesis via a mechanism involving activation of protease activated receptor-2 and subsequent induction of extracellular signal-regulated kinase signaling. PMID:21730297

  8. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.

    PubMed

    Nakajima, Ken-ichiro; Wess, Jürgen

    2012-10-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.

  9. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  10. Lens fibre cell differentiation and organelle loss: many paths lead to clarity

    PubMed Central

    Wride, Michael A.

    2011-01-01

    The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin–proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted. PMID:21402582

  11. AKT signaling displays multifaceted functions in neural crest development.

    PubMed

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Brassinosteroid biosynthesis and signalling in Petunia hybrida.

    PubMed

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-05-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.

  13. Tiam–Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion

    PubMed Central

    2016-01-01

    Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion. PMID:27597758

  14. Essential Role of the m2R-RGS6-IKACh Pathway in Controlling Intrinsic Heart Rate Variability

    PubMed Central

    Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G.; Wickman, Kevin; Martemyanov, Kirill A.

    2013-01-01

    Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-IKACh intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-IKACh signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-IKACh signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714

  15. B-cell receptor signaling as a driver of lymphoma development and evolution.

    PubMed

    Niemann, Carsten U; Wiestner, Adrian

    2013-12-01

    The B-cell receptor (BCR) is essential for normal B-cell development and maturation. In an increasing number of B-cell malignancies, BCR signaling is implicated as a pivotal pathway in tumorigenesis. Mechanisms of BCR activation are quite diverse and range from chronic antigenic drive by microbial or viral antigens to autostimulation of B-cells by self-antigens to activating mutations in intracellular components of the BCR pathway. Hepatitis C virus infection can lead to the development of splenic marginal zone lymphoma, while Helicobacter pylori infection is associated with the development of mucosa-associated lymphoid tissue lymphomas. In some of these cases, successful treatment of the infection removes the inciting antigen and results in resolution of the lymphoma. Chronic lymphocytic leukemia has been recognized for decades as a malignancy of auto-reactive B-cells and its clinical course is in part determined by the differential response of the malignant cells to BCR activation. In a number of B-cell malignancies, activating mutations in signal transduction components of the BCR pathway have been identified; prominent examples are activated B-cell-like (ABC) diffuse large B-cell lymphomas (DLBCL) that carry mutations in CD79B and CARD11 and display chronic active BCR signaling resulting in constitutive activation of the NF-κB pathway. Despite considerable heterogeneity in biology and clinical course, many mature B-cell malignancies are highly sensitive to kinase inhibitors that disrupt BCR signaling. Thus, targeted therapy through inhibition of BCR signaling is emerging as a new treatment paradigm for many B-cell malignancies. Here, we review the role of the BCR in the pathogenesis of B-cell malignancies and summarize clinical results of the emerging class of kinase inhibitors that target this pathway. Copyright © 2013. Published by Elsevier Ltd.

  16. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    PubMed Central

    2012-01-01

    Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614

  17. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  18. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12.

    PubMed

    Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi

    2018-03-01

    Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  20. An integrated analysis of genes and functional pathways for aggression in human and rodent models.

    PubMed

    Zhang-James, Yanli; Fernàndez-Castillo, Noèlia; Hess, Jonathan L; Malki, Karim; Glatt, Stephen J; Cormand, Bru; Faraone, Stephen V

    2018-06-01

    Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.

  1. Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches?

    PubMed

    Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M

    2014-03-01

    Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.

  2. From Hans Selye’s Discovery of Biological Stress to the Identification of Corticotropin Releasing Factor signaling pathways: Implication in Stress-Related Functional Bowel Diseases

    PubMed Central

    Taché, Yvette; Brunnhuber, Stefan

    2010-01-01

    Selye’s pioneer the concept of biological stress in 1936 culminating to the identification of the corticotropin releasing factor (CRF) signaling pathways by Vale’s group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2 and urocortin 3, the cloning of CRF1 and CRF2 receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable to unravel the importance of CRF1 receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system) and immune responses. The activation of CRF1 receptors is also part of key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF1 receptor antagonists in blunting these stress-related components. The importance of CRF1 signaling pathways in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in subset of patients. PMID:19120089

  3. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

  4. Recent developments in anti-cancer agents targeting PI3K, Akt and mTORC1/2.

    PubMed

    Dienstmann, Rodrigo; Rodon, Jordi; Markman, Ben; Tabernero, Josep

    2011-05-01

    Inappropriate PI3K signaling is one of the most frequent occurrences in human cancer and is critical for tumor progression. A variety of genetic mutations and amplifications have been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex downstream signalling, interactions and crosstalk. This knowledge, combined with the limited clinical antitumor activity of mTOR complex 1 inhibitors, has led to the development of rationally designed drugs targeting key elements of this pathway, such as pure PI3K inhibitors (both pan-PI3K and isoform-specific), dual PI3K/ mTOR inhibitors, Akt inhibitors, and mTOR complexes 1 and 2 catalytic site inhibitors. This review will focus primarily on an analysis of newly developed inhibitors of this pathway that have entered clinical trials, and recently registered patents in this field.

  5. Basic Fibroblast Growth Factor Activates Serum Response Factor Gene Expression by Multiple Distinct Signaling Mechanisms

    PubMed Central

    Spencer, Jeffrey A.; Major, Michael L.; Misra, Ravi P.

    1999-01-01

    Serum response factor (SRF) plays a central role in the transcriptional response of mammalian cells to a variety of extracellular signals. It is a key regulator of many cellular early response genes which are believed to be involved in cell growth and differentiation. The mechanism by which SRF activates transcription in response to mitogenic agents has been extensively studied; however, significantly less is known about regulation of the SRF gene itself. Previously, we identified distinct regulatory elements in the SRF promoter that play a role in activation, including a consensus ETS domain binding site, a consensus overlapping Sp/Egr-1 binding site, and two SRF binding sites. We further showed that serum induces SRF by a mechanism that requires an intact SRF binding site, also termed a CArG box. In the present study we demonstrate that in response to stimulation of cells by a purified growth factor, basic fibroblast growth factor (bFGF), the SRF promoter is upregulated by a complex pathway that involves at least two independent mechanisms: a CArG box-independent mechanism that is mediated by an ETS binding site, and a novel CArG box-dependent mechanism that requires both an Sp factor binding site and the CArG motifs for maximal stimulation. Our analysis indicates that the CArG/Sp element activation mechanism is mediated by distinct signaling pathways. The CArG box-dependent component is targeted by a Rho-mediated pathway, and the Sp binding site-dependent component is targeted by a Ras-mediated pathway. Both SRF and bFGF have been implicated in playing an important role in mediating cardiogenesis during development. The implications of our findings for SRF expression during development are discussed. PMID:10330138

  6. Characterizing the Growth Kinetics in Estrogen Responsive T47D Cells After Exposure to 2000 Environmental Chemicals

    EPA Science Inventory

    There is a need to develop high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals for endocrine disrupting potential. The estrogen signaling pathway is a known xenobiotic target that has been implicated in a variety of adverse health effects...

  7. ZN2+ INDUCES CYTOKINE EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH THE ACTIVATION OF MULTIPLE SIGNALING PATHWAYS

    EPA Science Inventory

    A number of studies have implicated the metallic content of ambient particulate matter (PM) with various indices of pulmonary and cardiovascular morbidity. Among the ambient PM metals, zinc is a ubiquitous contaminant known to cause adverse health effects. To assess its potential...

  8. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  9. Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies.

    PubMed

    Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis

    2014-06-01

    The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.

  10. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    PubMed

    Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  11. High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    PubMed Central

    Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107

  12. Could drugs inhibiting the mevalonate pathway also target cancer stem cells?

    PubMed

    Likus, Wirginia; Siemianowicz, Krzysztof; Bieńk, Konrad; Pakuła, Małgorzata; Pathak, Himani; Dutta, Chhanda; Wang, Qiong; Shojaei, Shahla; Assaraf, Yehuda G; Ghavami, Saeid; Cieślar-Pobuda, Artur; Łos, Marek J

    2016-03-01

    Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    PubMed Central

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  14. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo

    PubMed Central

    Passier, Robert; Zeng, Hong; Frey, Norbert; Naya, Francisco J.; Nicol, Rebekka L.; McKinsey, Timothy A.; Overbeek, Paul; Richardson, James A.; Grant, Stephen R.; Olson, Eric N.

    2000-01-01

    Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca2+-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca2+/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy. PMID:10811847

  15. Alternative Splicing in the Hippo Pathway—Implications for Disease and Potential Therapeutic Targets

    PubMed Central

    Porazinski, Sean; Ladomery, Michael

    2018-01-01

    Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets. PMID:29534050

  16. Age-Related Alterations in Signaling Pathways in Articular Chondrocytes: Implications for the Pathogenesis and Progression of Osteoarthritis - A Mini-Review.

    PubMed

    van der Kraan, Peter; Matta, Csaba; Mobasheri, Ali

    2017-01-01

    Musculoskeletal conditions are a major burden on individuals, healthcare systems, and social care systems throughout the world, with indirect costs having a predominant economic impact. Aging is a major contributing factor to the development and progression of arthritic and musculoskeletal diseases. Indeed, aging and inflammation (often referred to as 'inflammaging') are critical risk factors for the development of osteoarthritis (OA), which is one of the most common forms of joint disease. The term 'chondrosenescence' has recently been introduced to define the age-dependent deterioration of chondrocyte function and how it undermines cartilage function in OA. An important component of chondrosenescence is the age-related deregulation of subcellular signaling pathways in chondrocytes. This mini-review discusses the role of age-related alterations in chondrocyte signaling pathways. We focus our attention on two major areas: age-dependent alterations in transforming growth factor-β signaling and changes in protein kinase and phosphoprotein phosphatase activities in aging chondrocytes. A better understanding of the basic signaling mechanisms underlying aging in chondrocytes is likely to facilitate the development of new therapeutic and preventive strategies for OA and a range of other age-related osteoarticular disorders. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Developmental origins of novel gut morphology in frogs

    PubMed Central

    Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette

    2013-01-01

    SUMMARY Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. PMID:23607305

  18. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    PubMed

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  19. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance

    PubMed Central

    Ahmed, Sunjida; Bradshaw, Azore-Dee; Gera, Shweta; Dewan, M. Zahidunnabi; Xu, Ruliang

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human cancers due to its complicated genomic instability. PDAC frequently presents at an advanced stage with extensive metastasis, which portends a poor prognosis. The known risk factors associated with PDAC include advanced age, smoking, long-standing chronic pancreatitis, obesity, and diabetes. Its association with genomic and somatic mutations is the most important factor for its aggressiveness. The most common gene mutations associated with PDAC include KRas2, p16, TP53, and Smad4. Among these, Smad4 mutation is relatively specific and its inactivation is found in more than 50% of invasive pancreatic adenocarcinomas. Smad4 is a member of the Smad family of signal transducers and acts as a central mediator of transforming growth factor beta (TGF-β) signaling pathways. The TGF-β signaling pathway promotes many physiological processes, including cell growth, differentiation, proliferation, fibrosis, and scar formation. It also plays a major role in the development of tumors through induction of angiogenesis and immune suppression. In this review, we will discuss the molecular mechanism of TGF-β/Smad4 signaling in the pathogenesis of pancreatic adenocarcinoma and its clinical implication, particularly potential as a prognostic factor and a therapeutic target. PMID:28067794

  20. Post-synaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity and Disease

    PubMed Central

    Yoshii, Akira; Constantine-Paton, Martha

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: the mitogen-activated protein kinase (MAPK), the phospholipase Cγ (PLC PLCγ), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity while PLCγ regulates intracellular Ca2+ that can drive transcription via cyclic AMP and a Protein Kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the post-synaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood in order to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases. PMID:20186705

  1. Modulating inflammation through the negative regulation of NF-κB signaling.

    PubMed

    Rothschild, Daniel E; McDaniel, Dylan K; Ringel-Scaia, Veronica M; Allen, Irving C

    2018-02-01

    Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies. ©2018 Society for Leukocyte Biology.

  2. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  3. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen

    PubMed Central

    Sullivan, Kelly G.; Levin, Michael

    2016-01-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969

  4. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat

    PubMed Central

    Liu, Hongwei; Carvalhais, Lilia Costa; Kazan, Kemal; Schenk, Peer M.

    2016-01-01

    ABSTRACT The jasmonic acid (JA) signaling pathway plays key roles in a diverse array of plant development, reproduction, and responses to biotic and abiotic stresses. Most of our understanding of the JA signaling pathway derives from the dicot model plant Arabidopsis thaliana, while corresponding knowledge in wheat is somewhat limited. In this study, the expression of 41 genes implicated in the JA signaling pathway has been assessed on 10 day-old bread wheat seedlings, 24 h, 48 h, and 72 h after methyl-jasmonate (MeJA) treatment using quantitative real-time PCR. The examined genes have been previously reported to be involved in JA biosynthesis and catabolism, JA perception and signaling, and pathogen defense in wheat shoots and roots. This study provides evidence to suggest that the effect of MeJA treatment is more prominent in shoots than roots of wheat seedlings, and substantial regulation of the JA pathway-dependent defense genes occurs at 72 h after MeJA treatment. Results show that the expression of 22 genes was significantly affected by MeJA treatment in wheat shoots. However, only PR1.1 and PR3 were significantly differentially expressed in wheat roots, both at 24 h post-MeJA treatment, with other genes showing large variation in their gene expression in roots. While providing marker genes on JA signaling in wheat, future work may focus on elucidating the regulatory function of JA-modulated transcription factors, some of which have well-studied potential orthologs in Arabidopsis. PMID:27115051

  5. Therapeutic modulators of STAT signalling for human diseases

    PubMed Central

    Miklossy, Gabriella; Hilliard, Tyvette S.; Turkson, James

    2014-01-01

    The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials. PMID:23903221

  6. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways.

    PubMed

    Zhao, Qingwei David; Viswanadhapalli, Suryavathi; Williams, Paul; Shi, Qian; Tan, Chunyan; Yi, Xiaolan; Bhandari, Basant; Abboud, Hanna E

    2015-02-17

    NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived reactive oxygen species in the myocardium. We investigated the role of Nox4 and Nox4-associated signaling pathways in the development of cardiac remodeling. Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: (1) control mice, littermates that are negative for hNox4 transgene but Cre positive; (2) c-hNox4 Tg mice; (3) angiotensin II (AngII)-infused control mice; and (4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited an ≈10-fold increase in Nox4 protein expression and an 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII infusion to control mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. The Tg mice receiving AngII exhibited more advanced cardiac remodeling and robust elevation in Nox4 expression, indicating that AngII worsens cardiac injury, at least in part by enhancing Nox4 expression. Moreover, hNox4 transgene and AngII infusion induced the expression of cardiac fetal genes and activated the Akt-mTOR and NFκB signaling pathways. Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed the Akt-mTOR and NFκB signaling pathways, and attenuated cardiac remodeling. Upregulation of Nox4 in the myocardium causes cardiac remodeling through activating Akt-mTOR and NFκB signaling pathways. Inhibition of Nox4 has therapeutic potential to treat cardiac remodeling. © 2015 American Heart Association, Inc.

  7. NADPH Oxidase 4 Induces Cardiac Fibrosis and Hypertrophy through Activating Akt/mTOR and NFκB Signaling Pathways

    PubMed Central

    Zhao, Qingwei David; Viswanadhapalli, Suryavathi; Williams, Paul; Shi, Qian; Tan, Chunyan; Yi, Xiaolan; Bhandari, Basant; Abboud, Hanna E.

    2015-01-01

    Background NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived ROS in the myocardium. We investigated the role of Nox4 and Nox4 associated signaling pathways in the development of cardiac remodeling. Methods and Results Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: 1) control mice (CTL): littermates that are negative for hNox4 transgene but Cre positive; 2) c-hNox4 Tg mice; 3) angiotensin II (AngII)-infused CTL mice and 4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited approximately 10-fold increase in Nox4 protein expression and 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII-infusion to CTL mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. The Tg mice receiving AngII exhibited more advanced cardiac remodeling and robust elevation in Nox4 expression, indicating that AngII worsens cardiac injury, at least partially by enhancing Nox4 expression. Moreover, hNox4 transgene and/or AngII-infusion induced the expression of cardiac fetal genes and activated the Akt-mTOR and NFκB signaling pathways. Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed Akt-mTOR and NFκB signaling pathway and attenuated cardiac remodeling. Conclusion Upregulation of Nox4 in the myocardium causes cardiac remodeling through activating Akt-mTOR and NFκB signaling pathways. Inhibition of Nox4 has therapeutic potential to treat cardiac remodeling. PMID:25589557

  8. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  9. The Hippo signal transduction pathway in soft tissue sarcomas.

    PubMed

    Mohamed, Abdalla D; Tremblay, Annie M; Murray, Graeme I; Wackerhage, Henning

    2015-08-01

    Sarcomas are rare cancers (≈1% of all solid tumours) usually of mesenchymal origin. Here, we review evidence implicating the Hippo pathway in soft tissue sarcomas. Several transgenic mouse models of Hippo pathway members (Nf2, Mob1, LATS1 and YAP1 mutants) develop various types of sarcoma. Despite that, Hippo member genes are rarely point mutated in human sarcomas. Instead, WWTR1-CAMTA1 and YAP1-TFE3 fusion genes are found in almost all cases of epithelioid haemangioendothelioma. Also copy number gains of YAP1 and other Hippo members occur at low frequencies but the most likely cause of perturbed Hippo signalling in sarcoma is the cross-talk with commonly mutated cancer genes such as KRAS, PIK3CA, CTNNB1 or FBXW7. Current Hippo pathway-targeting drugs include compounds that target the interaction between YAP and TEAD G protein-coupled receptors (GPCR) and the mevalonate pathway (e.g. statins). Given that many Hippo pathway-modulating drugs are already used in patients, this could lead to early clinical trials testing their efficacy in different types of sarcoma. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Ror receptor tyrosine kinases: orphans no more.

    PubMed

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  11. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

    PubMed Central

    Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Kempf, C. Ruth; Long, Jacquelyn; Laidler, Piotr; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Stivala, Franca; Mazzarino, Maria C.; Donia, Marco; Fagone, Paolo; Malaponte, Graziella; Nicoletti, Ferdinando; Libra, Massimo; Milella, Michele; Tafuri, Agostino; Bonati, Antonio; Bäsecke, Jörg; Cocco, Lucio; Evangelisti, Camilla; Martelli, Alberto M.; Montalto, Giuseppe; Cervello, Melchiorre; McCubrey, James A.

    2011-01-01

    Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health. PMID:21422497

  12. Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems

    PubMed Central

    Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa

    2016-01-01

    Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161

  13. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    PubMed

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  15. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.

    PubMed

    Singh, Rakesh Kumar; Krishna, Malini

    2005-12-01

    Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.

  16. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    PubMed

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The STAT3-Ser/Hes3 signaling axis in cancer.

    PubMed

    Poser, Steven W; Park, Deric M; Androutsellis-Theotokis, Andreas

    2014-01-01

    Disrupting the regenerative capacity of tumorigenic cells is a major focus in medicine. These regenerative properties are carried by a subpopulation of cells within the tumor, termed cancer stem cells. Current therapies don't effectively tackle the disease suggesting these cells employ yet unidentified molecular mechanisms allowing them to evade targeting. Recent observations in neural stem cells reveal an extraordinary plasticity in the signaling pathways they utilize to grow. These findings are being extended to the cancer stem cell field, illuminating conceptually novel treatment strategies. Tumorigenic cells can make use of distinct, even opposing pathways, including JAK/STAT and the non-canonical STAT3-Ser/Hes3 signaling axis. This plasticity may not be confined to the cancer stem cell population, but may be shared by various cell types within the tumor, blurring the line distinguishing cancer stem cells from other tumor cell types. The implications to anti-cancer medicine are highly significant, since these findings demonstrate that inhibiting one cell growth pathway may actually enhance the activity of alternative ones. Drug discovery programs will also benefit from these concepts.

  18. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  19. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.

    PubMed

    Namani, Akhileshwar; Li, Yulong; Wang, Xiu Jun; Tang, Xiuwen

    2014-09-01

    Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes

    PubMed Central

    Duric, Vanja

    2014-01-01

    Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response. PMID:22585060

  1. Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective.

    PubMed

    Bell, Danielle; Ranganathan, Sarangarajan; Tao, Junyan; Monga, Satdarshan P

    2017-02-10

    Hepatoblastoma is the most common pediatric liver malignancy, typically striking children within the first 3 years of their young lives. While advances in chemotherapy and newer surgical techniques have improved survival in patients with localized disease, unfortunately, for the 25% of patients with metastasis, the overall survival remains poor. These tumors, which are thought to arise from hepatic progenitors or hepatoblasts, hence the name hepatoblastoma, can be categorized by histological subtyping based on their level of cell differentiation. Genomic and histological analysis of human tumor samples has shown exon-3 deletions or missense mutations in gene coding for β-catenin, a downstream effector of the Wnt signaling pathway, in up to 90% of hepatoblastoma cases. The current article will review key aberrations in molecular pathways that are implicated in various subtypes of hepatoblastoma with an emphasis on Wnt signaling. It will also discuss cooperation among components of pathways such as β-catenin and Yes-associated protein in cancer development. Understanding the complex network of molecular signaling in oncogenesis will undoubtedly aid in the discovery of new therapeutics to help combat hepatoblastoma.

  2. Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective

    PubMed Central

    Bell, Danielle; Ranganathan, Sarangarajan; Tao, Junyan; Monga, Satdarshan P. S.

    2017-01-01

    Hepatoblastoma is the most common pediatric liver malignancy, typically striking children within the first 3 years of their young lives. While advances in chemotherapy and newer surgical techniques have improved survival in patients with localized disease, unfortunately, for the 25% of patients with metastasis, the overall survival remains poor. These tumors, which are thought to arise from hepatic progenitors or hepatoblasts, hence the name hepatoblastoma, can be categorized by histological subtyping based on their level of cell differentiation. Genomic and histological analysis of human tumor samples has shown exon-3 deletions or missense mutations in gene coding for β-catenin, a downstream effector of the Wnt signaling pathway, in up to 90% of hepatoblastoma cases. The current article will review key aberrations in molecular pathways that are implicated in various subtypes of hepatoblastoma with an emphasis on Wnt signaling. It will also discuss cooperation among components of pathways such as β-catenin and Yes-associated protein in cancer development. Understanding the complex network of molecular signaling in oncogenesis will undoubtedly aid in the discovery of new therapeutics to help combat hepatoblastoma. PMID:27938502

  3. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  4. Oncogenic NRAS, Required for Pathogenesis of Embryonic Rhabdomyosarcoma, Relies upon the HMGA2–IGF2BP2 Pathway

    PubMed Central

    Li, Zhizhong; Zhang, Yunyu; Ramanujan, Krishnan; Ma, Yan; Kirsch, David G.; Glass, David J.

    2013-01-01

    Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin–like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2–IGFBP2–NRAS signaling pathway as a critical oncogenic driver in ERMS. PMID:23536553

  5. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives

    PubMed Central

    Ghosh, Arnab

    2017-01-01

    Abstract Significance: Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. Critical Issues: In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. Future Directions: We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182–190. PMID:26983679

  6. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.

    PubMed

    Edifizi, Diletta; Schumacher, Björn

    2017-11-04

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.

  7. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2017-01-01

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067

  8. Structure of the human smoothened receptor 7TM bound to an antitumor agent

    PubMed Central

    Wang, Chong; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Liu, Wei; Siu, Fai Yiu; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.

    2013-01-01

    The smoothened (SMO) receptor, a key signal transducer in the Hedgehog (Hh) signaling pathway is both responsible for the maintenance of normal embryonic development and implicated in carcinogenesis. The SMO receptor is classified as a class Frizzled (class F) G protein-coupled receptor (GPCR), although the canonical Hh signaling pathway involves the transcription factor Gli and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure at 2.5 Å resolution of the transmembrane domain of the human SMO receptor bound to the small molecule antagonist LY2940680. Although the SMO receptor shares the seven transmembrane helical (7TM) fold, most conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulfide bonds. The ligand binds at the extracellular end of the 7TM bundle and forms extensive contacts with the loops. PMID:23636324

  9. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    PubMed Central

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  10. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor

    PubMed Central

    Nakajima, Ken-ichiro

    2012-01-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M3 muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types. PMID:22821234

  11. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    PubMed

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    PubMed Central

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD+ homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. PMID:25096760

  13. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Plant volatiles not only have multiple defense functions against herbivores, fungi, and bacteria, but also have been implicated in signaling within the plant and toward other organisms. Elucidating the function of individual plant volatiles will require more knowledge of their biosynthesis and regul...

  14. Detoxification of nitric oxide by flavohemoglobin and the denitrification pathway in the maize pathogen Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    The ephemeral nitric oxide (NO) is a free radical, highly reactive, environmentally rare, and a potent signaling molecule in organisms across kingdoms of life. This gaseous small molecule can freely transverse membranes and has been implicated in aspects of pathogenicity both in animal and plant ho...

  15. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    EPA Science Inventory

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  16. Brassinosteroid biosynthesis and signalling in Petunia hybrida

    PubMed Central

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-01-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways. PMID:23599276

  17. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    PubMed

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  18. Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor β/δ (FABP5-PPARβ/δ) Signaling Pathway*

    PubMed Central

    Armstrong, Eric H.; Goswami, Devrishi; Griffin, Patrick R.; Noy, Noa; Ortlund, Eric A.

    2014-01-01

    Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain “activating” fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. PMID:24692551

  19. Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse.

    PubMed

    Golani, Idit; Tadmor, Hagar; Buonanno, Andres; Kremer, Ilana; Shamir, Alon

    2014-11-01

    The ErbB signaling pathway has been genetically and functionally implicated in schizophrenia. Numerous findings support the dysregulation of Neuregulin (NRG) and epidermal growth factor (EGF) signaling in schizophrenia. However, it is unclear whether alterations of these pathways in the adult brain or during development are involved in the pathophysiology of schizophrenia. Herein we characterized the behavioral profile and molecular changes resulting from pharmacologically blocking the ErbB signaling pathway during a critical period in the development of decision making, planning, judgments, emotions, social cognition and cognitive skills, namely adolescence. We demonstrate that chronic administration of the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ) to adolescent mice elevated striatal dopamine levels and reduced preference for sucrose without affecting locomotor activity and exploratory behavior. In adulthood, adolescent JNJ-treated mice continue to consume less sucrose and needed significantly more correct-response trials to reach the learning criterion during the discrimination phase of the T-maze reversal learning task than their saline-injected controls. In addition, JNJ mice exhibited deficit in reference memory but not in working memory as measured in the radial arm maze. Inhibition of the pathway during adolescence did not affect exploratory behavior and locomotor activity in the open field, social interaction, social memory, and reversal learning in adult mice. Our data suggest that alteration of ErbB signaling during adolescence resulted in changes in the dopaminergic systems that emerge in pathological learning and hedonic behavior in adulthood, and pinpoints the possible role of the pathway in the development of cognitive skills and motivated behavior. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  20. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions.

    PubMed

    Yan, Maocai; Li, Guanqun; An, Jing

    2017-06-01

    The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.

  1. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

    PubMed

    Perkins, L A; Johnson, M R; Melnick, M B; Perrimon, N

    1996-11-25

    Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional functions of Csw. Our results indicate that Csw operates positively downstream of other Drosophila RTKs such as the Drosophila epidermal growth factor receptor (DER), the fibroblast growth factor receptor (Breathless), and likely other RTKs. This model is substantiated by specific dosage interactions between csw and DER. It is proposed that Csw is part of the evolutionarily conserved "signaling cassette" that operates downstream of all RTKs. In support of this hypothesis, we demonstrate that SHP-2, a vertebrate PTPase similar to Csw and previously implicated in RTK signaling, encodes the functional vertebrate homologue of Csw.

  2. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease

    PubMed Central

    Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James

    2015-01-01

    Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100

  3. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision

    PubMed Central

    2017-01-01

    Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193818

  4. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision.

    PubMed

    Takeshita, Daisuke; Smeds, Lina; Ala-Laurila, Petri

    2017-04-05

    Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold.This article is part of the themed issue 'Vision in dim light'. © 2017 The Authors.

  5. [Colorectal oncogenesis].

    PubMed

    Laurent-Puig, P; Agostini, J; Maley, K

    2010-11-01

    Recent progress in the field of molecular biology has allowed us to identify at least two different molecular mechanisms implicated in colorectal carcinogenesis (CRC): chromosomal instability (CIN) and genetic instability. Even though the two molecular mechanisms differ, their signalling pathways, implicated in malignant transformation of colonic epithelial cells, appear to be similar. The most frequent group of CRC, which represents 80% of sporadic CRC, is characterized by allelic losses on the short arm of chromosome 17 and 8 and on the long arm of chromosome 5, 18 and 22. These allelic losses are associated with mutations in TP53, APC, SMAD2 and SMAD4 genes. All of these alterations are grouped under the phenotype CIN. A genetic instability termed MSI (microsatellite instability), which results from a mismatch repair (MMR) deficiency, appears in 12-15% of CRC cases. The presence of MMR deficiency leads to the accumulation of mutations in genes controlling cell cycle and apoptosis (TGFBRII, BAX or CASPASE5). More recently, the existence of a third phenotype was suggested. The main alteration associated with this group of tumors is the hypermethylation of the promoter region of numerous genes, leading to their inactivation. An activating mutation of BRAF is frequently associated with this phenotype. As described above, CRC shows genetic heterogeneity, however the consequences in terms of signalling pathway alterations are similar. For example, the activation of Wnt signalling pathways can result from the inactivation of the APC gene in the CIN phenotype or from an activating mutation in the β-catenin gene in MSI tumors. The inactivation of TGFβ pathways is also present in both tumor types and is driven by SMAD4, and more rarely by a SMAD2 inactivating mutation in CIN tumors, or by the existence of a frame-shift mutation occurring in a polyG coding track of the TGFβ (transforming growth factor) receptor type II in MSI tumors. The RAS-MAP kinase pathway is activated by KRAS mutations in CIN tumors or by BRAF mutations in MSI tumors. The p53 pathway is inactivated by TP53 inactivation in CIN tumors or by BAX inactivating mutations in MSI tumors.

  6. Overlapping 16p13.11 deletion and gain of copies variations associated with childhood onset psychosis include genes with mechanistic implications for autism associated pathways: Two case reports.

    PubMed

    Brownstein, Catherine A; Kleiman, Robin J; Engle, Elizabeth C; Towne, Meghan C; D'Angelo, Eugene J; Yu, Timothy W; Beggs, Alan H; Picker, Jonathan; Fogler, Jason M; Carroll, Devon; Schmitt, Rachel C O; Wolff, Robert R; Shen, Yiping; Lip, Va; Bilguvar, Kaya; Kim, April; Tembulkar, Sahil; O'Donnell, Kyle; Gonzalez-Heydrich, Joseph

    2016-05-01

    Copy number variability at 16p13.11 has been associated with intellectual disability, autism, schizophrenia, epilepsy, and attention-deficit hyperactivity disorder. Adolescent/adult- onset psychosis has been reported in a subset of these cases. Here, we report on two children with CNVs in 16p13.11 that developed psychosis before the age of 7. The genotype and neuropsychiatric abnormalities of these patients highlight several overlapping genes that have possible mechanistic relevance to pathways previously implicated in Autism Spectrum Disorders, including the mTOR signaling and the ubiquitin-proteasome cascades. A careful screening of the 16p13.11 region is warranted in patients with childhood onset psychosis. © 2016 Wiley Periodicals, Inc.

  7. Overlapping 16p13.11 Deletion and Gain of Copies Variations Associated with Childhood Onset Psychosis Include Genes with Mechanistic Implications for Autism Associated Pathways: Two Case Reports

    PubMed Central

    Brownstein, Catherine A.; Kleiman, Robin J.; Engle, Elizabeth C.; Towne, Meghan C.; D’Angelo, Eugene J.; Yu, Timothy W.; Beggs, Alan H.; Picker, Jonathan; Fogler, Jason M.; Carroll, Devon; Schmitt, Rachel C. O.; Wolff, Robert R.; Shen, Yiping; Lip, Va; Bilguvar, Kaya; Kim, April; Tembulkar, Sahil; O’Donnell, Kyle; Gonzalez-Heydrich, Joseph

    2016-01-01

    Copy number variability at 16p13.11 has been associated with intellectual disability, autism, schizophrenia, epilepsy and attention-deficit hyperactivity disorder. Adolescent/adult- onset psychosis has been reported in a subset of these cases. Here, we report on two children with CNVs in 16p13.11 that developed psychosis before the age of 7. The genotype and neuropsychiatric abnormalities of these patients highlight several overlapping genes that have possible mechanistic relevance to pathways previously implicated in Autism Spectrum Disorders, including the mTOR signaling and the ubiquitin-proteasome cascades. A careful screening of the 16p13.11 region is warranted in patients with childhood onset psychosis. PMID:26887912

  8. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling

    PubMed Central

    Pontier, Dominique; Albrieux, Catherine; Joyard, Jacques; Lagrange, Thierry; Block, Maryse

    2007-01-01

    Protoporphyrin IX is the last common intermediate between the haem and chlorophyll biosynthesis pathways. The addition of Mg directs this molecule toward chlorophyll biosynthesis. The first step downstream from the branchpoint is catalyzed by the Mg chelatase and is a highly regulated process. The corresponding product, Mg protoporphyrin IX, has been proposed to play an important role as a signaling molecule implicated in plastid-to-nucleus communication. In order to get more information on the chlorophyll biosynthesis pathway and on Mg protoporphyrin IX derivative functions, we have identified an Mg protoporphyrin IX methyltransferase (CHLM) knock-out mutant in Arabidopsis in which the mutation induces a blockage downstream from Mg protoporphyrin IX and an accumulation of this chlorophyll biosynthesis intermediate. Our results demonstrate that the CHLM gene is essential for the formation of chlorophyll and subsequently for the formation of photosystems I and II and cyt b6f complexes. Analysis of gene expression in the chlm mutant provides an independent indication that Mg protoporphyrin IX is a negative effector of nuclear photosynthetic gene expression, as previously reported. Moreover, it suggests the possible implication of Mg protoporphyrin IX methylester, the product of CHLM, in chloroplast-to-nucleus signaling. Finally, post-transcriptional up-regulation of the level of the CHLH subunit of the Mg chelatase has been detected in the chlm mutant and most likely corresponds to specific accumulation of this protein inside plastids. This result suggests that the CHLH subunit might play an important regulatory role when the chlorophyll biosynthetic pathway is disrupted at this particular step. PMID:17135235

  9. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  10. Metabolic Reprogramming in Glioma

    PubMed Central

    Strickland, Marie; Stoll, Elizabeth A.

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state. PMID:28491867

  11. PTEN, the Achilles' heel of myocardial ischaemia/reperfusion injury?

    PubMed Central

    Mocanu, M M; Yellon, D M

    2007-01-01

    Myocardial ischaemia/reperfusion injury leading to myocardial infarction is one of the most frequent causes of debilitation and death in man. Considerable research has been undertaken to investigate the possibility of reducing myocardial infarction and increasing cell survival by activating certain endogenous prosurvival signaling pathways. Thus, it has been established that the activation of the PI3K (Phosphoinositide-3 kinase)/Akt (Protein kinase B, PKB) signaling pathway is essential for protection against ischaemia/reperfusion injury. This pathway has been shown to be activated by mechanical procedures (e.g. pre and post conditioning) as well as by a number of pharmacological agents. Although the activation of this prosurvival signaling pathway induces the phosphorylation of a large number of substrates implicated in increased cell survival, when activated over a prolonged period this pathway can have detrimental consequences by facilitating unwanted growth and malignancies. Importantly PTEN (phosphatase and tensin homolog deleted on chromosome ten), is the main phosphatase which negatively regulates the PI3K/Akt pathway. In this review we discuss: a) the significance and the limitations of inhibiting PTEN in myocardial ischaemia/reperfusion injury; b) PTEN and its relationship to ischaemic preconditioning, c) the role of PTEN in the development of tolerance to chronic administration of drugs known to limit infarction by activating PI3K/Akt pathway when given acutely, and d) the possible role of PTEN in the ischaemic/reperfused diabetic heart. The experimental evidence discussed in this review illustrates the importance of PTEN inhibition in the protection of the heart against ischaemia/reperfusion injury. PMID:17293884

  12. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression.

    PubMed

    López-Peláez, Marta; Soria-Castro, Irene; Boscá, Lisardo; Fernández, Margarita; Alemany, Susana

    2011-06-01

    LPS stimulation activates IKK and different MAP kinase pathways, as well as the PI3K-Akt-mTOR-p70 S6k pathway, a negative regulator of these MyD88-dependent intracellular signals. Here, we show that Cot/tpl2, a MAP3K responsible for the activation of the MKK1-Erk1/2, controls P-Ser473 Akt and P-Thr389 p70 S6k phosphorylation in LPS-stimulated macrophages. Analysis of the intracellular signalling in Cot/tpl2 KO macrophages versus WT macrophages reveals lower IκBα recovery and higher phosphorylation of JNK and p38α after 1 h of LPS stimulation. Moreover, Cot/tpl2 deficiency increases LPS-induced NO synthase 2 (NOS2) expression in macrophages. Inhibition of the PI3K pathway abolishes the differences in IκBα and NOS2 expression between Cot/tpl2 KO and WT macrophages following LPS administration. Furthermore, in zymosan- and polyI:C-stimulated macrophages, Cot/tpl2 mediates P-Ser473 Akt phosphorylation, increases IκBα levels and decreases NOS2 expression. In conclusion, these data reveal a novel role for the Cot/tpl2 pathway in mediating TLR activation of the Akt-mTOR-p70 S6k pathway, allowing Cot/tpl2 to fine-control the activation state of other signalling pathways. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Wnt/β-Catenin Expression Does Not Correlate with Serum Alkaline Phosphatase Concentration in Canine Osteosarcoma Patients

    PubMed Central

    Piskun, Caroline M.; Muthuswamy, Anantharaman; Huelsmeyer, Michael K.; Thompson, Victoria; Stein, Timothy J.

    2011-01-01

    Osteosarcoma is an aggressive malignancy of the bone and an increase in serum alkaline phosphatase concentration has clinical prognostic value in both humans and canines. Increased serum alkaline phosphatase concentration at the time of diagnosis has been associated with poorer outcomes for osteosarcoma patients. The biology underlying this negative prognostic factor is poorly understood. Given that activation of the Wnt signaling pathway has been associated with alkaline phosphatase expression in osteoblasts, we hypothesized that the Wnt/β-catenin signaling pathway would be differentially activated in osteosarcoma tissue based on serum ALP status. Archived canine osteosarcoma samples and primary canine osteosarcoma cell lines were used to evaluate the status of Wnt/β-catenin signaling pathway activity through immunohistochemical staining, western immunoblot analyses, quantitative reverse-transcription polymerase chain reaction, and a Wnt-responsive promoter activity assay. We found no significant difference in β-catenin expression or activation between OSA populations differing in serum ALP concentration. Pathway activity was mildly increased in the primary OSA cell line generated from a patient with increased serum ALP compared to the normal serum ALP OSA cell line. Further investigation into the mechanisms underlying differences in serum ALP concentration is necessary to improve our understanding of the biological implications of this negative prognostic indicator. PMID:22022527

  14. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.

    PubMed

    Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D

    2017-07-01

    The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.

  15. Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells

    NASA Astrophysics Data System (ADS)

    Fateye, Babasola; Chen, Bin

    2011-02-01

    The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.

  16. Identification and comparison of long non-conding RNA in Jinhua and Landrace pigs.

    PubMed

    Miao, Zhiguo; Wang, Shan; Zhang, Jinzhou; Wei, Panpeng; Guo, Liping; Liu, Dongyang; Wang, Yimin; Shi, Mingyan

    2018-06-23

    The regulatory role of long non-coding RNAs (lncRNAs) in various biological functions has been demonstrated. However, their role in fat deposition and lipid metabolism in pigs remains less understood. To explore the expression profile of lncRNAs in Jinhua and Landrace pigs, we investigated the expression levels of lncRNAs in intramuscular adipose tissues obtained from these pigs. Results showed that the expression levels of lncRNAs in these pig breeds significantly (Fold Change ≥ 2.0, FDR < 0.05) differed. A total of 4910 lncRNAs were identified, and 119 of these lncRNAs were differentially expressed. Of these differentially expressed lncRNAs, 60 and 59 were up- and down-regulated, respectively. The differentially expressed lncRNAs are involved in mitogen-activated protein kinase (MAPK) signaling pathway, Ras signaling pathway, PI3k-Akt signaling pathway. We then compared these differentially expressed lncRNAs with mRNAs and found that six of the co-expressed lncRNAs were implicated in pathways related to fat deposition and lipid metabolism. Overall, our results revealed a remarkable difference in fat metabolism in intramuscular adipose tissues of pigs, and provide a basis for subsequent research on fat deposition. Copyright © 2018. Published by Elsevier Inc.

  17. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.

    PubMed

    Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W

    2012-01-01

    Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.

  18. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters measured in this report.

  19. Combined TRAF6 Targeting and Proteasome Blockade Has Anti-myeloma and Anti-Bone Resorptive Effects.

    PubMed

    Chen, Haiming; Li, Mingjie; Sanchez, Eric; Wang, Cathy S; Lee, Tiffany; Soof, Camilia M; Casas, Christian E; Cao, Jasmin; Xie, Colin; Udd, Kyle A; DeCorso, Kevin; Tang, George Y; Spektor, Tanya M; Berenson, James R

    2017-05-01

    TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF-κB-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14 + monocytes, induced with RANKL and mCSF , and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss. Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598-609. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    PubMed Central

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  1. Diversity of actions of GnRHs mediated by ligand-induced selective signaling

    PubMed Central

    Millar, Robert P.; Pawson, Adam J.; Morgan, Kevin; Rissman, Emilie F.; Lu, Zhi-Liang

    2009-01-01

    Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the Gq signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention. PMID:17976709

  2. Developmental origins of a novel gut morphology in frogs.

    PubMed

    Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette

    2013-05-01

    Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. © 2013 Wiley Periodicals, Inc.

  3. Defective downregulation of receptor tyrosine kinases in cancer

    PubMed Central

    Bache, Kristi G; Slagsvold, Thomas; Stenmark, Harald

    2004-01-01

    Most growth factors control cellular functions by activating specific receptor tyrosine kinases (RTKs). While overactivation of RTK signalling pathways is strongly associated with carcinogenesis, it is becoming increasingly clear that impaired deactivation of RTKs may also be a mechanism in cancer. A major deactivation pathway, receptor downregulation, involves ligand-induced endocytosis of the RTK and subsequent degradation in lysosomes. A complex molecular machinery that uses the small protein ubiquitin as a key regulator assures proper endocytosis and degradation of RTKs. Here we discuss evidence that implicates deregulation of this machinery in cancer. PMID:15229652

  4. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario

    PubMed Central

    Arrázola, Macarena S.; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C.

    2015-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  5. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis

    PubMed Central

    Newaz, Khalique; Sriram, K.; Bera, Debajyoti

    2015-01-01

    Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948

  6. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol.

    PubMed

    Jagannathan, Radhika; Schimizzi, Gregory V; Zhang, Kun; Loza, Andrew J; Yabuta, Norikazu; Nojima, Hitoshi; Longmore, Gregory D

    2016-10-15

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. Copyright © 2016 Jagannathan et al.

  7. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol

    PubMed Central

    Jagannathan, Radhika; Schimizzi, Gregory V.; Zhang, Kun; Loza, Andrew J.; Yabuta, Norikazu; Nojima, Hitoshi

    2016-01-01

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. PMID:27457617

  8. Novel Directions for Diabetes Mellitus Drug Discovery

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui

    2012-01-01

    Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114

  9. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed

    Rothwell, Patrick E

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.

  10. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed Central

    Rothwell, Patrick E.

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789

  11. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  12. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor

    PubMed Central

    Zuccarini, Mariachiara; Giuliani, Patricia; Ziberi, Sihana; Carluccio, Marzia; Di Iorio, Patrizia; Caciagli, Francesco

    2018-01-01

    Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM. PMID:29462960

  13. Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy

    PubMed Central

    Caraballo-Miralles, Víctor; Cardona-Rossinyol, Andrea; Garcera, Ana; Torres-Benito, Laura; Soler, Rosa M.; Tabares, Lucía; Lladó, Jerònia; Olmos, Gabriel

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons. PMID:23759991

  14. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas

    PubMed Central

    Showler, Kaye; Nishimura, Mayumi; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J.; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro

    2017-01-01

    Abstract The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. PMID:27738081

  15. Crosstalk of the EphA2 Receptor with a Serine/Threonine Phosphatase Suppresses the Akt-mTORC1 Pathway in Cancer Cells

    PubMed Central

    Yang, Nai-Ying; Fernandez, Carlos; Richter, Melanie; Xiao, Zhan; Valencia, Fatima; Tice, David A.; Pasquale, Elena B.

    2010-01-01

    Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways. PMID:20837138

  16. Cloning and characterization of an MRNA encoding an insulin receptor from the horned scarab beetle Onthophagus nigriventris (Coleoptera: scarabaeidae)

    USDA-ARS?s Scientific Manuscript database

    The insulin signaling pathway has been implicated in the control of insect polyphenisms for some caste-forming insects and potentially has a role in horn dimorphisms in beetles. Males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a magnificent thoracic horn up to twice the l...

  17. Age-dependent changes in the sphingolipid composition of CD4+ T cell membranes and immune synapses implicate glucosylceramides in age-related T cell dysfunction

    USDA-ARS?s Scientific Manuscript database

    Sphingolipid (SL4) composition can influence the biophysical properties of cell membranes. Additionally, specific SL modulate signaling pathways involved in proliferation, senescence, and apoptosis. We investigated age-dependent changes in the SL composition of CD4+ T cells, and the impact of these ...

  18. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration

    USDA-ARS?s Scientific Manuscript database

    The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). T...

  19. Oxytocin in the regulation of social behaviours in medial amygdala-lesioned mice via the inhibition of the extracellular signal-regulated kinase signalling pathway.

    PubMed

    Wang, Yu; Zhao, Shanshan; Wu, Zhe; Feng, Yu; Zhao, Chuansheng; Zhang, Chaodong

    2015-05-01

    The neuropeptide oxytocin (OXT) has been implicated in the pathophysiology of behavioural deficits among patients with autism spectrum disorder (ASD). However, the molecular mechanisms underlying its role in ASD remain unclear. In the present study, a murine model with ASD-like phenotypes was induced by intra-medial amygdala injection of N-methyl-d-aspartate, and it was used to investigate the role of OXT in behaviour regulation. Behavioural tests were performed to verify the ASD-like phenotypes of N-methyl-d-aspartate-treated mice, and the results showed that mice with bilateral medial amygdala lesions presented significant behavioural deficits, including impaired learning and memory and increased anxiety and depression. We also observed a notably decreased level of OXT in both the plasma and the hypothalamus of medial amygdala-lesioned mice, and the extracellular signal-regulated kinase (ERK) was activated. Further studies demonstrated that the administration of OXT alleviated ASD-like symptoms and significantly inhibited phosphorylation of ERK; the inhibitory effect was similar to that of U0126, an ERK signalling inhibitor. In addition, OXT administration modulated the expression of downstream proteins of the ERK signalling pathway, such as cyclic adenosine monophosphate response element binding and c-fos. Taken together, our data indicate that OXT plays an important role in ameliorating behavioural deficits in an ASD-like mouse model, which was mediated by inhibiting the ERK signalling pathway and its downstream proteins. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  1. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia.

    PubMed

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M; Bargalló-Gispert, Núria; López-Soriano, Francisco J; Barreiro, Esther

    2018-06-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta 2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 10 8 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta 2 agonist formoterol in the cachectic muscles through several key biological pathways. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  3. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation.

    PubMed

    Lasarge, Candi L; Danzer, Steve C

    2014-01-01

    The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.

  4. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats.

    PubMed

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-03-28

    Aripiprazole, a dopamine D₂ receptor (D₂R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D₂R antagonist) and bifeprunox (a D₂R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D₂Rs.

  5. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  6. Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Ng, Yvonne; Meoli, Christopher C.; Kumar, Ansu; Khoo, Poh-Sim; Fazakerley, Daniel J.; Junutula, Jagath R.; Vali, Shireen; James, David E.; Stöckli, Jacqueline

    2012-01-01

    Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5–22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease. PMID:22207758

  7. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    PubMed Central

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  8. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    PubMed Central

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways. PMID:16202132

  9. TNF-α signaling in Fanconi anemia

    PubMed Central

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2013-01-01

    Tumor necrosis factor-alpha (TNF-α is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contribute to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. PMID:23890415

  10. TNF-α signaling in Fanconi anemia.

    PubMed

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2014-01-01

    Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. © 2013.

  11. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    PubMed

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  12. Targeted Elimination of Peroxisomes During Viral Infection: Lessons from HIV and Other Viruses.

    PubMed

    Wong, Cheung Pang; Xu, Zaikun; Power, Christopher; Hobman, Tom C

    2018-05-01

    Peroxisomes are membrane-bound organelles that are best known for their roles in lipid metabolism. Mounting evidence indicates that they are also important nodes for antiviral signaling. While research over the past few decades has revealed effective viral strategies to block antiviral signalling pathways from the plasma membrane, mitochondria and/or the nucleus, until recently, very little was known about how viruses interfere with peroxisome-based antiviral signaling. In this essay, we review how viruses use a variety of strategies to interfere with peroxisome biogenesis, a phenomenon that has implications for evasion of the host immune system as well as pathogenesis.

  13. MEK5-ERK5 Signaling in Cancer: Implications for Targeted Therapy

    PubMed Central

    Hoang, Van T.; Yan, Thomas J.; Cavanaugh, Jane E.; Flaherty, Patrick T.; Beckman, Barbara S.; Burow, Matthew E.

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MAPK kinase 5-extracellular signal-regulated kinase 5 (MEK5-ERK5) pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents. PMID:28153789

  14. Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism.

    PubMed

    Zaiatz-Bittencourt, Vanessa; Finlay, David K; Gardiner, Clair M

    2018-06-15

    Cytokines stimulate rapid metabolic changes in human NK cells, including increases in both glycolysis and oxidative phosphorylation pathways. However, how these are subsequently regulated is not known. In this study, we demonstrate that TGF-β can inhibit many of these metabolic changes, including oxidative phosphorylation, glycolytic capacity, and respiratory capacity. TGF-β also inhibited cytokine-induced expression of the transferrin nutrient receptor CD71. In contrast to a recent report on murine NK cells, TGF-β-mediated suppression of these metabolic responses did not involve the inhibition of the metabolic regulator mTORC1. Inhibition of the canonical TGF-β signaling pathway was able to restore almost all metabolic and functional responses that were inhibited by TGF-β. These data suggest that pharmacological inhibition of TGF-β could provide a metabolic advantage to NK cells that is likely to result in improved functional responses. This has important implications for NK cell-based cancer immunotherapies. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. Mesenchymal chemotaxis requires selective inactivation of Myosin II at the leading edge via a non-canonical PLCγ/PKCα pathway

    PubMed Central

    Asokan, Sreeja B.; Johnson, Heath E.; Rahman, Anisur; King, Samantha J.; Rotty, Jeremy D.; Lebedeva, Irina P.; Haugh, Jason M.; Bear, James E.

    2014-01-01

    Summary Chemotaxis, migration towards soluble chemical cues, is critical for processes such as wound healing and immune surveillance, and is exhibited by various cell types from rapidly-migrating leukocytes to slow-moving mesenchymal cells. To interrogate the mechanisms involved in mesenchymal chemotaxis, we observed cell migration in microfluidic chambers that generate stable gradients of the chemoattractant PDGF. Surprisingly, we found that pathways implicated in amoeboid chemotaxis, such as PI3K and mTOR signaling, are dispensable for chemotaxis to PDGF. Instead, we find that local inactivation of Myosin IIA, through a non-canonical Ser1/2 phosphorylation of the regulatory light chain, is essential. This site is phosphorylated by PKCα, which is activated by an intracellular gradient of diacylglycerol generated by PLCγ. Using a combination of TIRF imaging and gradients of activators/inhibitors in the microfluidic chambers, we demonstrate that this signaling pathway and subsequent inhibition of Myosin II activity at the leading edge is required for mesenchymal chemotaxis. PMID:25482883

  16. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    PubMed Central

    Kusminski, Christine M.; Gallardo-Montejano, Violeta I.; Wang, Zhao V.; Hegde, Vijay; Bickel, Perry E.; Dhurandhar, Nikhil V.; Scherer, Philipp E.

    2015-01-01

    Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. PMID:26500839

  17. miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling

    PubMed Central

    Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.

    2014-01-01

    Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646

  18. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  19. Signaling Pathways Involved in 1-Octen-3-ol-Mediated Neurotoxicity in Drosophila melanogaster: Implication in Parkinson’s Disease

    PubMed Central

    Masurekar, Prakash; Hossain, Muhammad; Richardson, Jason R.; Bennett, Joan W.

    2014-01-01

    Previously, we have pioneered Drosophila melanogaster as a reductionist model to show that 1-octen-3-ol, a musty-smelling volatile compound emitted by fungi and other organisms, causes loss of dopaminergic neurons and Parkinson’s disease-like symptoms in flies. Using our in vivo Drosophila system, the modulatory roles of important signaling pathways—JNK, Akt and the caspase-3-dependent apoptotic pathway were investigated in the context of 1-octen-3-ol-induced dopamine neurotoxicity. When heterozygous flies carrying mutant alleles for these proteins were exposed to 0.5 ppm of 1-octen-3-ol, they had shorter survival times than wild-type Drosophila. The overexpressed levels of wild-type JNK and Akt, (UAS-bsk and UAS-Akt) with TH-GAL4 and elav-GAL4 drivers improved the survival duration of exposed flies compared with controls. Thus, we found that Akt and JNK both protect against loss of dopamine activity associated with 1-octen-3-ol exposure, indicating the pro-survival role of these signaling pathways. Further, 1-octen-3-ol exposure was associated with activation of caspase 3, a hallmark for apoptosis. PMID:23959949

  20. MicroRNA-Directed Cancer Therapies: Implications in Melanoma Intervention.

    PubMed

    Thyagarajan, Anita; Shaban, Ahmed; Sahu, Ravi Prakash

    2018-01-01

    Acquired tumor resistance to cancer therapies poses major challenges in the treatment of cancers including melanoma. Among several signaling pathways or factors that affect neocarcinogenesis, cancer progression, and therapies, altered microRNAs (miRNAs) expression has been identified as a crucial player in modulating the key pathways governing these events. While studies in the miRNA field have grown exponentially in the last decade, much remains to be discovered, particularly with respect to their roles in cancer therapies. Since immune and nonimmune signaling cascades prevail in cancers, identification and evaluation of miRNAs, their molecular mechanisms and cellular targets involved in the underlying development of cancers, and acquired therapeutic resistance would help in devising new strategies for the prognosis, treatment, and an early detection of recurrence. Importantly, in-depth validation of miRNA-targeted molecular events could lead to the development of accurate progression-risk biomarkers, improved effectiveness, and improved patient responses to standard therapies. The current review focuses on the roles of miRNAs with recent updates on regulated cell cycle and proliferation, immune responses, oncogenic/epigenetic signaling pathways, invasion, metastasis, and apoptosis, with broader attention paid to melanomagenesis and melanoma therapies. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    PubMed

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-12-01

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato[OPEN

    PubMed Central

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong

    2018-01-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea. Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea. PMID:29511053

  3. Activation of the GP130-STAT3 axis and its potential implications in nonalcoholic fatty liver disease

    PubMed Central

    Min, Hae-Ki; Mirshahi, Faridoddin; Verdianelli, Aurora; Pacana, Tommy; Patel, Vaishali; Park, Chun-Geon; Choi, Aejin; Lee, Jeong-Hoon; Park, Chung-Berm; Ren, Shunlin

    2015-01-01

    The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis. PMID:25747354

  4. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia.

    PubMed

    Loktev, Alexander V; Jackson, Peter K

    2013-12-12

    Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Discovery and development of small molecule SHIP phosphatase modulators.

    PubMed

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. © 2013 Wiley Periodicals, Inc.

  6. Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling

    PubMed Central

    Segrelles, Carmen; Moral, Marta; Lorz, Corina; Santos, Mirentxu; Lu, Jerry; Cascallana, José Luis; Lara, M. Fernanda; Carbajal, Steve; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Beltran, Linda; Segovia, José C.; Bravo, Ana

    2008-01-01

    Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Aktwt), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity. PMID:17959825

  7. Small Molecular Weight Soybean Protein-Derived Peptides Nutriment Attenuates Rat Burn Injury-Induced Muscle Atrophy by Modulation of Ubiquitin-Proteasome System and Autophagy Signaling Pathway.

    PubMed

    Zhao, Fen; Yu, Yonghui; Liu, Wei; Zhang, Jian; Liu, Xinqi; Liu, Lingying; Yin, Huinan

    2018-03-21

    This article describes results of the effect of dietary supplementation with small molecular weight soybean protein-derived peptides on major rat burn injury-induced muscle atrophy. As protein nutrients have been previously implicated to play an important role in improving burn injury outcomes, optimized more readily absorbed small molecular weight soybean protein-derived peptides were evaluated. Thus, the quantity, sodium dodecyl sulfate polyacrylamide-gel electrophoresis patterns, molecular weight distribution, and composition of amino acids of the prepared peptides were analyzed, and a major full-thickness 30% total body surface area burn-injury rat model was utilized to assess the impact of supplementation with soybean protein-derived peptides on initial systemic inflammatory responses as measured by interferon-gamma (IFN-γ), chemokine (C-C motif) ligand 2 (CCL2, also known as MCP-1), chemokine (C-C motif) ligand 7 (CCL7, also known as MCP-3), and generation of muscle atrophy as measured by tibialis anterior muscle (TAM) weight relative to total body weight. Induction of burn injury-induced muscle atrophy ubiquitin-proteasome system (UPS) signaling pathways in effected muscle tissues was determined by Western blot protein expression measurements of E3 ubiquitin-protein ligase TRIM-63 (TRIM63, also known as MuRF1) and F-box only protein 32 (FBXO32, also known as atrogin-1 or MAFbx). In addition, induction of burn injury-induced autophagy signaling pathways associated with muscle atrophy in effected muscle tissues was assessed by immunohistochemical analysis as measured by microtubule-associated proteins 1 light chain 3 (MAP1LC3, or commonly abbreviated as LC3) and beclin-1 (BECN1) expression, as well as relative induction of cytoplasmic-liberated form of MAP1LC3 (LC3-I) and phagophore and autophagosome membrane-bound form of MAP1LC3 (LC3-II), and BECN1 protein expression by Western blot analysis. Nutrient supplementation with small molecular weight soybean protein-derived peptides resulted a significant reduction in burn injury-induced inflammatory markers, muscle atrophy, induction of TRIM63 and FBXO32 muscle atrophy signaling pathways, and induction of autophagy signaling pathways LC3 and BECN1 associated with muscle atrophy. These results implicated that small molecular weight soybean-derived peptides dietary supplementation could be used as an adjunct therapy in burn injury management to reduce the development or severity of muscle atrophy for improved burn patient outcomes.

  8. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment

    PubMed Central

    Sun, Xiao-xiao; Yu, Qiang

    2015-01-01

    Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies. PMID:26388155

  9. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220

  10. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.

    PubMed

    Ashraf, Asma; Pervaiz, Shazib

    2015-12-01

    Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.

    PubMed

    Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A

    2013-12-23

    The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.

  12. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.

    PubMed

    Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M

    2016-06-01

    Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.

  13. Worming our way to novel drug discovery with the Caenorhabditis elegans proteostasis network, stress response and insulin-signaling pathways.

    PubMed

    O'Reilly, Linda P; Benson, Joshua A; Cummings, Erin E; Perlmutter, David H; Silverman, Gary A; Pak, Stephen C

    2014-09-01

    Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.

  14. Multi-functional regulation of 4E-BP gene expression by the Ccr4-Not complex.

    PubMed

    Okada, Hirokazu; Schittenhelm, Ralf B; Straessle, Anna; Hafen, Ernst

    2015-01-01

    The mechanistic target of rapamycin (mTOR) signaling pathway is highly conserved from yeast to humans. It senses various environmental cues to regulate cellular growth and homeostasis. Deregulation of the pathway has been implicated in many pathological conditions including cancer. Phosphorylation cascades through the pathway have been extensively studied but not much is known about the regulation of gene expression of the pathway components. Here, we report that the mRNA level of eukaryotic translation initiation factor (eIF) subunit 4E-binding protein (4E-BP) gene, one of the key mTOR signaling components, is regulated by the highly conserved Ccr4-Not complex. RNAi knockdown of Not1, a putative scaffold protein of this protein complex, increases the mRNA level of 4E-BP in Drosophila Kc cells. Examination of the gene expression mechanism using reporter swap constructs reveals that Not1 depletion increases reporter mRNAs with the 3'UTR of 4E-BP gene, but decreases the ones with the 4E-BP promoter region, suggesting that Ccr4-Not complex regulates both degradation and transcription of 4E-BP mRNA. These results indicate that the Ccr4-Not complex controls expression of a single gene at multiple levels and adjusts the magnitude of the total effect. Thus, our study reveals a novel regulatory mechanism of a key component of the mTOR signaling pathway at the level of gene expression.

  15. Rooster feathering, androgenic alopecia, and hormone dependent tumor growth: What is in common?

    PubMed Central

    Mayer, Julie Ann; Chuong, Cheng-Ming; Widelitz, Randall

    2015-01-01

    Different epithelial organs form as a result of epithelial - mesenchymal interactions and share a common theme modulated by variations (Chuong edit. In Molecular Basis of Epithelial Appendage Morphogenesis, 1998). One of the major modulators is the sex hormone pathway that acts on the prototype signaling pathway to alter organ phenotypes. Here we focus on how the sex hormone pathway interfaces with epithelia morphogenesis related signaling pathways. We first survey these sex hormone regulated morphogenetic processes in various epithelial organs. Sexual dimorphism of hairs and feathers has implications in sexual selection. Diseases of these pathways result in androgenic alopecia, hirsutism, henny feathering, etc. The growth and development of mammary glands, prostate glands and external genitalia essential for reproductive function are also dependent on sex hormones. Diseases affecting these organs include congenital anomalies and hormone dependent type of breast and prostate cancers. To study the role of sex hormones in new growth in the context of system biology / pathology, an in vivo model in which organ formation starts from stem cells is essential. With recent developments (Yu et al., The morphogenesis of feathers. Nature 420:308–312, 2002), the growth of tail feathers in roosters and hens has become a testable model in which experimental manipulations are possible. We show exemplary data of differences in their growth rate, proliferative cell population and signaling molecule expression. Working hypotheses are proposed on how the sex hormone pathways may interact with growth pathways. It is now possible to test these hypotheses using the chicken model to learn fundamental mechanisms on how sex hormones affect organogenesis, epithelial organ cycling, and growth related tumorigenesis. PMID:15617560

  16. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    PubMed

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  17. Attacking a Nexus of the Oncogenic Circuitry by Reversing Aberrant eIF4F-Mediated Translation

    PubMed Central

    Bitterman, Peter B.; Polunovsky, Vitaly A.

    2012-01-01

    Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one-by-one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell towards malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacological response to therapeutics targeting eIF4F remains an unmet challenge. PMID:22572598

  18. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis.

    PubMed

    O'Brien, Daniel; Jones, Laura M; Good, Sarah; Miles, Jo; Vijayabaskar, M S; Aston, Rebecca; Smith, Catrin E; Westhead, David R; van Oosten-Hawle, Patricija

    2018-06-26

    In metazoans, tissues experiencing proteotoxic stress induce "transcellular chaperone signaling" (TCS) that activates molecular chaperones, such as hsp-90, in distal tissues. How this form of inter-tissue communication is mediated to upregulate systemic chaperone expression and whether it can be utilized to protect against protein misfolding diseases remain open questions. Using C. elegans, we identified key components of a systemic stress signaling pathway that links the innate immune response with proteostasis maintenance. We show that mild perturbation of proteostasis in the neurons or the intestine activates TCS via the GATA zinc-finger transcription factor PQM-1. PQM-1 coordinates neuron-activated TCS via the innate immunity-associated transmembrane protein CLEC-41, whereas intestine-activated TCS depends on the aspartic protease ASP-12. Both TCS pathways can induce hsp-90 in muscle cells and facilitate amelioration of Aβ 3-42 -associated toxicity. This may have powerful implications for the treatment of diseases related to proteostasis dysfunction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Chemical Probes of Endocannabinoid Metabolism

    PubMed Central

    2013-01-01

    The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics. PMID:23512546

  1. JAK signaling globally counteracts heterochromatic gene silencing.

    PubMed

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2006-09-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

  2. JAK signaling globally counteracts heterochromatic gene silencing

    PubMed Central

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2011-01-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059

  3. The DAN family: modulators of TGF-β signaling and beyond.

    PubMed

    Nolan, Kristof; Thompson, Thomas B

    2014-08-01

    Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF-β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening-selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF-β family. However, unlike other TGF-β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways. © 2014 The Protein Society.

  4. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  5. Modulation of neuronal signal transduction and memory formation by synaptic zinc.

    PubMed

    Sindreu, Carlos; Storm, Daniel R

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.

  6. Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc

    PubMed Central

    Sindreu, Carlos; Storm, Daniel R.

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630

  7. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas

    PubMed Central

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Fukuzawa, Hideya; Ishiura, Masahiro

    2017-01-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. PMID:28333924

  8. Role of platelet-derived growth factors in physiology and medicine

    PubMed Central

    Andrae, Johanna; Gallini, Radiosa; Betsholtz, Christer

    2008-01-01

    Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-α signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-β signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial–mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts. PMID:18483217

  9. Models of crk adaptor proteins in cancer.

    PubMed

    Bell, Emily S; Park, Morag

    2012-05-01

    The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.

  10. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway.

    PubMed

    Armstrong, Eric H; Goswami, Devrishi; Griffin, Patrick R; Noy, Noa; Ortlund, Eric A

    2014-05-23

    Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain "activating" fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.

    PubMed

    Akiva, Izzet; Birgül Iyison, Necla

    2018-01-08

    The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the stable overexpression of MGAT1 gene in Huh7 cell lines lead to a significant increase in tumor growth rate in Severe Combined Immunodeficient (SCID) mice. Taken together, we showed for the first time that MGAT is a novel Wnt/β-catenin pathway target that has important implications for tumorigenesis.

  12. Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.

    PubMed

    Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C

    2010-03-25

    Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.

  13. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  15. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  16. The role of IL‐23 receptor signaling in inflammation‐mediated erosive autoimmune arthritis and bone remodeling

    PubMed Central

    Razawy, Wida; van Driel, Marjolein

    2018-01-01

    Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561

  17. Secreted and Transmembrane Wnt Inhibitors and Activators

    PubMed Central

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  18. Kinase cascades and ligand-directed signaling at the kappa opioid receptor.

    PubMed

    Bruchas, Michael R; Chavkin, Charles

    2010-06-01

    The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.

  19. Molecular and Cell Signaling Targets for PTSD Pathophysiology and Pharmacotherapy

    PubMed Central

    Hauger, Richard L.; Olivares-Reyes, J. Alberto; Dautzenberg, Frank M.; Lohr, James B.; Braun, Sandra; Oakley, Robert H.

    2012-01-01

    The reasons for differences in vulnerability or resilience to the development of posttraumatic stress disorder (PTSD) are unclear. Here we review key genetic diatheses and molecular targets especially signaling pathways that mediate responses to trauma and severe stress and their potential contribution to the etiology of PTSD. Sensitization of glucocorticoid receptor (GR) signaling and dysregulation of GR modulators FKBP5, STAT5B, Bcl-2, and Bax have been implicated in PTSD pathophysiology. Furthermore, Akt, NFκB, MKP-1, and p11, which are G protein-coupled receptor (GPCR) pathway molecules, can promote or prevent sustained high anxiety and depressive-like behavior following severe stress. Agonist-induced activation of the corticotropin-releasing factor CRF1 receptor is crucial for survival in the context of serious danger or trauma, but persistent CRF1 receptor hypersignaling when a threatening or traumatic situation is no longer present is maladaptive. CRF1 receptor single nucleotide polymorphisms (SNPs) can confer susceptibility or resilience to childhood trauma while a SNP for the PAC1 receptor, another class B1 GPCR, has been linked genetically to PTSD. GRK3 phosphorylation of the CRF1 receptor protein and subsequent binding of βarrestin2 rapidly terminate Gs-coupled CRF1 receptor signaling by homologous desensitization. A deficient GRK-βarrestin2 mechanism would result in excessive CRF1 receptor signaling thereby contributing to PTSD and co-morbid posttraumatic depression. Clinical trials are needed to assess if small molecule CRF1 receptor antagonists are effective prophylactic agents when administered immediately after trauma. βarrestin2-biased agonists for CRF receptors and possibly other GPCRs implicated in PTSD, however, may prove to be novel pharmacotherapy with greater selectivity and therapeutic efficacy. PMID:22122881

  20. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation.

    PubMed

    Montgomery, Ellyn R; Temple, Brenda R S; Peters, Kimberly A; Tolbert, Caitlin E; Booker, Brandon K; Martin, Joseph W; Hamilton, Tyler P; Tagliatela, Alicia C; Smolski, William C; Rogers, Stephen L; Jones, Alan M; Meigs, Thomas E

    2014-04-01

    The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.

  1. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology.

    PubMed

    Singh, Nandini; Dutka, Tara; Devenney, Benjamin M; Kawasaki, Kazuhiko; Reeves, Roger H; Richtsmeier, Joan T

    2015-03-01

    Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS. © 2015. Published by The Company of Biologists Ltd.

  2. Genomic variants in the ASS1 gene, involved in the nitric oxide biosynthesis and signaling pathway, predict hydroxyurea treatment efficacy in compound sickle cell disease/β-thalassemia patients.

    PubMed

    Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P

    2016-03-01

    Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.

  3. Secretion and extracellular space travel of Wnt proteins.

    PubMed

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Hedgehog Signaling in Prostate Cancer and Its Therapeutic Implication

    PubMed Central

    Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin

    2013-01-01

    Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition. PMID:23880852

  5. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    PubMed

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  6. Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice.

    PubMed

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Moretti, Morgana; Ribeiro, Camille M; Lopes, Mark W; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2014-11-01

    Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3β (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana.

    PubMed

    Kim, Duck-Hyun; Puthumana, Jayesh; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Kim, Il-Chan; Lee, Jin Wuk; Lee, Jae-Seong

    2016-10-01

    Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts*

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.

    2015-01-01

    Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis. PMID:26491017

  9. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    NASA Technical Reports Server (NTRS)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  10. Neuroprotective effects of neurokinin receptor one in dopaminergic neurons are mediated through Akt/PKB cell signaling pathway.

    PubMed

    Chu, John M T; Chen, L W; Chan, Y S; Yung, Ken K L

    2011-12-01

    Neurokinin one (NK1) receptor is Substance P (SP) receptor and it is abundantly distributed in the basal ganglia. Growing evidences were shown on their possible roles in the pathogenesis and treatment of Parkinson's disease (PD). NK1 receptor is a kind of G-protein-coupled-receptor (GPCR) and it links to various downstream survival signaling pathways. In the present study, treatment of NK1 receptor agonist septide [(Pyr6, Pro9)-SP (6-11)] was found to ameliorate the motor deficit in 6-hydroxydopamine (6-OHDA) lesioned rats in apomorphine rotation test. Septide treatments were also demonstrated to provide neuroprotection. In 6-OHDA lesioned rats, protection of TH immunoreactive neurons and terminals in substantia nigra (SN) and striatum was found after septide treatment. In SH-SY5Y cultures, cytotoxicity of 6-OHDA was reduced by septide pretreatment. In addition, up-regulations of phosphorylated serine-threonine kinase Akt and phosphorylated mitochondrial apoptotic protein BAD were observed in both in vivo and in vitro models, indicating the inhibition of apoptotic pathway by septide. In conclusion, septide could trigger the pro-survival Akt/PKB signaling pathway and protect dopaminergic neurons in in vivo and in vitro models against 6-OHDA toxicity. Therefore septide treatment may have therapeutic implications in treatment of PD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering

    PubMed Central

    Zhang, Fugui; Song, Jinglin; Zhang, Hongmei; Huang, Enyi; Song, Dongzhe; Tollemar, Viktor; Wang, Jing; Wang, Jinhua; Mohammed, Maryam; Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Liu, Feng; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Luu, Hue H.; Lee, Michael J.; He, Tong-Chuan; Ji, Ping

    2016-01-01

    Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade. PMID:28491933

  12. Transgenic Arabidopsis Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling[W

    PubMed Central

    Perera, Imara Y.; Hung, Chiu-Yueh; Moore, Candace D.; Stevenson-Paulik, Jill; Boss, Wendy F.

    2008-01-01

    The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP3) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca2+ responses to a cold or salt stimulus were reduced by ∼30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP3 is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP3 signal reveals unanticipated interconnections between signaling pathways. PMID:18849493

  13. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing.

    PubMed

    Zhou, Yiqing; Jiang, Rong; An, Liqin; Wang, Hong; Cheng, Sicheng; Qiong, Shi; Weng, Yaguang

    2017-06-01

    Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression. In vitro studies, we employed C3H10T1/2 and bone marrow mesenchymal stem cells (BM-MSCs) with BaP and discovered that BaP impaired innate properties of MSCs. Further investigation into MSCs showed that exposure to BaP activated Ahr signaling and inhibited TGF-β1/SMAD4 and TGF-β1/ERK/AKT signaling pathways. Corresponding with the outcomes, tibial fracture calluses produced by BaP-administered rats appeared to delay healing. This effect of BaP was abrogated by resveratrol, a natural Ahr antagonist, in vitro and in vivo. These data demonstrated that Ahr may play a key role in BaP-impaired innate properties by inhibiting SMAD-dependent signaling pathways TGF-β1/SMAD4 and SMAD-independent TGF-β1/ERK/AKT signaling pathways. Furthermore, resveratrol inhibited MSCs from adverse effects caused by BaP. Copyright © 2017. Published by Elsevier B.V.

  14. Targeting fibroblast growth factor pathways in endometrial cancer.

    PubMed

    Winterhoff, Boris; Konecny, Gottfried E

    Novel treatments that improve outcomes for patients with recurrent or metastatic endometrial cancer (EC) remain an unmet need. Aberrant signaling by fibroblast growth factors (FGFs) and FGF receptors (FGFRs) has been implicated in several human cancers. Activating mutations in FGFR2 have been found in up to 16% of ECs, suggesting an opportunity for targeted therapy. This review summarizes the role of the FGF pathway in angiogenesis and EC, and provides an overview of FGFR-targeted therapies under clinical development for the treatment of EC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    PubMed

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  16. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types.

    PubMed Central

    Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y

    1993-01-01

    A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types. Images PMID:8388543

  17. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy

    PubMed Central

    Armas-López, Leonel; Zúñiga, Joaquín; Arrieta, Oscar; Ávila-Moreno, Federico

    2017-01-01

    Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients. PMID:28948003

  18. Genome-wide pathway analysis of memory impairment in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks.

    PubMed

    Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J

    2012-12-01

    Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.

  19. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    PubMed

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  20. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    PubMed

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.

  1. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways

    PubMed Central

    2014-01-01

    Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. Conclusions This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response. PMID:24443808

  2. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells.

    PubMed

    Ouyang, Weiming; Li, Jingxia; Ma, Qian; Huang, Chuanshu

    2006-04-01

    Skin is a major target of carcinogenic trivalent arsenic (arsenite, As3+). It has been thought that cell proliferation is one of the central events involved in the carcinogenic effect of arsenite. Cyclin D1, a nuclear protein playing a pivotal role in cell proliferation and cell cycle transition from G1 to S phases, has been reported to be induced in human fibroblast by arsenite via uncertain molecular mechanisms. In the present study, the potential roles of PI-3K/Akt/IKKbeta/NFkappaB signal pathway in cyclin D1 induction by arsenite were addressed in mouse epidermal Cl41 cells. We found that exposure of Cl41 cells to arsenite was able to induce cell proliferation, activate PI-3K-->Akt/p70(S6k) signal pathway and increase cyclin D1 expression at both transcription and protein levels. Pre-treatment of Cl41 cells with PI-3K inhibitor, wortmannin, significantly inhibited the phosphorylation of Akt and p70(S6k) and thereby dramatically impaired the cyclin D1 induction by arsenite, implicating the importance of the PI-3K signal pathway in the cyclin D1 induction by arsenite. Furthermore, inhibition of PI-3K/Akt by overexpression of Deltap85 or DN-Akt blocked arsenite-induced IKK phosphorylation, IkappaBalpha degradation and cyclin D1 expression, indicating that IKK/NFkappaB is the downstream transducer of arsenite-triggered PI-3K/Akt cascade. Moreover, inhibition of IKKbeta/NFkappaB signal pathway by overexpression of its dominant negative mutant, IKKbeta-KM, also significantly blocked arsenite-induced cyclin D1 expression. Overall, arsenite exposure triggered PI-3K/Akt/IKKbeta/NFkappaB signal cascade which in turn plays essential roles in inducing cyclin D1 expression.

  4. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    PubMed

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of diffusible species in the stomach that have not only a local but also a general impact.

  5. Primary cilia: cellular sensors for the skeleton.

    PubMed

    Anderson, Charles T; Castillo, Alesha B; Brugmann, Samantha A; Helms, Jill A; Jacobs, Christopher R; Stearns, Tim

    2008-09-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions.

  6. Primary Cilia: Cellular Sensors for the Skeleton

    PubMed Central

    Anderson, Charles T.; Castillo, Alesha B.; Brugmann, Samantha A.; Helms, Jill A.; Jacobs, Christopher R.; Stearns, Tim

    2010-01-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions. PMID:18727074

  7. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats

    PubMed Central

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole, a dopamine D2 receptor (D2R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D2R antagonist) and bifeprunox (a D2R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D2Rs. PMID:27043526

  8. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus

    PubMed Central

    Jiang, Bo; Xiong, Zhe; Yang, Jun; Wang, Wei; Wang, Yue; Hu, Zhuang-Li; Wang, Fang; Chen, Jian-Guo

    2012-01-01

    BACKGROUND AND PURPOSE Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients of Panax ginseng with little toxicity and has been shown to have neuroprotective effects. In this study, we investigated the antidepressant-like effect of Rg1 in models of depression in mice. EXPERIMENTAL APPROACH The effects of Rg1 were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Rg1 was also investigated in the chronic mild stress (CMS) mouse model of depression with imipramine as the positive control. Changes in hippocampal neurogenesis and spine density, the brain-derived neurotrophic factor (BDNF) signalling pathway, and serum corticosterone level after chronic stress and Rg1 treatment were then investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressive mechanisms of Rg1. KEY RESULTS Ginsenoside Rg1 exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. It was also effective in the CMS model of depression. Furthermore, Rg1 up-regulated the BDNF signalling pathway in the hippocampus and down-regulated serum corticosterone level during the CMS procedure. In addition, Rg1 was able to reverse the decrease in dendritic spine density and hippocampal neurogenesis caused by CMS. However, Rg1 had no discernable effect on the monoaminergic system. CONCLUSIONS AND IMPLICATIONS Our results provide the first evidence that Rg1 has antidepressant activity via activation of the BDNF signalling pathway and up-regulation of hippocampal neurogenesis. PMID:22335772

  9. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  10. GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling*

    PubMed Central

    Tarahi Tabrizi, Shabnam; Sawicki, Artur; Zhou, Shuaixiang; Luo, Meizhong; Willows, Robert D.

    2016-01-01

    The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a1Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285–298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a1Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a1Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a1Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a1Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus. PMID:26969164

  11. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhen-Yu; Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province; Zhong, Zhi-Gang

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our datamore » suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.« less

  12. Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity?

    PubMed Central

    Handley, Matthew E; Rasaiyaah, Jane; Chain, Benjamin M; Katz, David R

    2007-01-01

    This review summarizes current knowledge about the mixed lineage kinases (MLKs) and explores their potential role in inflammation and immunity. MLKs were identified initially as signalling molecules in the nervous system. They were also shown to play a role in the cell cycle. Further studies documented three groups of MLKs, and showed that they may be activated via the c-Jun NH2 terminal kinase (JNK) pathway, and by Rho GTPases. The biochemistry of the MLKs has been investigated in considerable detail. Homodimerization and heterodimerization can occur, and both autophosphorylation and autoinhibition are seen. The interaction between MLKs and JNK interacting protein (JIP) scaffolds, and the resultant effects on mitogen activated protein kinases, have been identified. Clearly, there is some redundancy within the MLK pathway(s), since mice which lack the MLK3 molecule are not abnormal. However, using a combination of biochemical analysis and pharmacological inhibitors, several recent studies in vitro have suggested that MLKs are not only expressed in cells of the immune system (as well as in the nervous system), but also may be implicated selectively in the signalling pathway that follows on toll-like receptor ligation in innate sentinel cells, such as the dendritic cell. PMID:17408454

  13. Immune pathways and defence mechanisms in honey bees Apis mellifera

    PubMed Central

    Evans, J D; Aronstein, K; Chen, Y P; Hetru, C; Imler, J-L; Jiang, H; Kanost, M; Thompson, G J; Zou, Z; Hultmark, D

    2006-01-01

    Social insects are able to mount both group-level and individual defences against pathogens. Here we focus on individual defences, by presenting a genome-wide analysis of immunity in a social insect, the honey bee Apis mellifera. We present honey bee models for each of four signalling pathways associated with immunity, identifying plausible orthologues for nearly all predicted pathway members. When compared to the sequenced Drosophila and Anopheles genomes, honey bees possess roughly one-third as many genes in 17 gene families implicated in insect immunity. We suggest that an implied reduction in immune flexibility in bees reflects either the strength of social barriers to disease, or a tendency for bees to be attacked by a limited set of highly coevolved pathogens. PMID:17069638

  14. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    PubMed

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  15. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  16. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  17. Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces

    PubMed Central

    Abdel Hadi, Loubna; Di Vito, Clara; Riboni, Laura

    2016-01-01

    Complex sphingolipids are essential structural components of intestinal membranes, providing protection and integrity to the intestinal mucosa and regulating intestinal absorption processes. The role of sphingolipid signaling has been established in numerous cellular events, including intestinal cell survival, growth, differentiation, and apoptosis. A significant body of knowledge demonstrates that intestinal sphingolipids play a crucial role, as such and through their signaling pathways, in immunity and inflammatory disorders. In this review, we report on and discuss the current knowledge on the metabolism, signaling, and functional implications of sphingolipids in inflammatory bowel disease (IBD), focusing on the different aspects of sphingolipid actions on inflammatory responses and on the potential of sphingolipid-targeted molecules as anti-IBD therapeutic agents. PMID:26880864

  18. Multiplexing in the primate motion pathway.

    PubMed

    Huk, Alexander C

    2012-06-01

    This article begins by reviewing recent work on 3D motion processing in the primate visual system. Some of these results suggest that 3D motion signals may be processed in the same circuitry already known to compute 2D motion signals. Such "multiplexing" has implications for the study of visual cortical circuits and neural signals. A more explicit appreciation of multiplexing--and the computations required for demultiplexing--may enrich the study of the visual system by emphasizing the importance of a structured and balanced "encoding/decoding" framework. In addition to providing a fresh perspective on how successive stages of visual processing might be approached, multiplexing also raises caveats about the value of "neural correlates" for understanding neural computation.

  19. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins

    PubMed Central

    Schwarz, Lindsay A.; Patrick, Gentry N.

    2011-01-01

    Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, synaptic development and function. Endocytic membrane trafficking of receptors can ensure that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism to control receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function. PMID:21884797

  20. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    PubMed

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  1. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus.

    PubMed

    Reynolds, Lisa A; Harcus, Yvonne; Smith, Katherine A; Webb, Lauren M; Hewitson, James P; Ross, Ewan A; Brown, Sheila; Uematsu, Satoshi; Akira, Shizuo; Gray, David; Gray, Mohini; MacDonald, Andrew S; Cunningham, Adam F; Maizels, Rick M

    2014-09-15

    Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4(+) cells. In addition, MyD88(-/-) mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain-containing adapter-inducing IFN-β adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1(-/-) mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R-MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1(-/-) and MyD88(-/-) mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1(-/-)) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice. Copyright © 2014 The Authors.

  2. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease.

    PubMed

    Li, Pin-Lan; Zhang, Yang

    2013-01-01

    Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.

  3. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling

    PubMed Central

    2011-01-01

    Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182

  4. Novel strategies targeting cancer stem cells through phytochemicals and their analogs

    PubMed Central

    Dandawate, Prasad; Padhye, Subhash; Ahmad, Aamir

    2013-01-01

    Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity of self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase–Akt–mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs. Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate. With the inclusion of a novel derivative of curcumin, CDF, we showcase how natural agents can be effectively modified to increase their efficacy, particularly against CSCs. We hope that this article will generate interest among researchers for further mechanistic and clinical studies exploiting the cancer preventive and therapeutic role of nutraceuticals by targeted elimination of CSCs. PMID:24076568

  5. IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies

    PubMed Central

    Hardaway, Aimalie L; Podgorski, Izabela

    2013-01-01

    Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967

  6. IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.

    PubMed

    Hardaway, Aimalie L; Podgorski, Izabela

    2013-06-01

    Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.

  7. New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes.

    PubMed

    Russell, Eileen G; Cotter, Thomas G

    2015-01-01

    Reactive oxygen species (ROS) were once considered to be deleterious agents, contributing to a vast range of pathologies. But, now their protective effects are being appreciated. Both their damaging and beneficial effects are initiated when they target distinct molecules and consequently begin functioning as part of complex signal-transduction pathways. The recognition of ROS as signaling mediators has driven a wealth of research into their roles in both normal and pathophysiological states. The present review assesses the relevant recent literature to outline the current perspectives on redox-signaling mechanisms, physiological implications, and therapeutic strategies. This study highlights that a more fundamental knowledge about many aspects of redox signaling will allow better targeting of ROS, which would in turn improve prophylactic and pharmacotherapy for redox-associated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Intracellular amyloid beta expression leads to dysregulation of the mitogen-activated protein kinase and bone morphogenetic protein-2 signaling axis

    PubMed Central

    Cruz, Eric; Kumar, Sushil; Yuan, Li; Arikkath, Jyothi

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative syndrome classically depicted by the parenchymal accumulation of extracellular amyloid beta plaques. However, recent findings suggest intraneuronal amyloid beta (iAβ1–42) accumulation precedes extracellular deposition. Furthermore, the pathologic increase in iAβ1–42 has been implicated in dysregulation of cellular mechanisms critically important in axonal transport. Owing to neuronal cell polarity, retrograde and anterograde axonal transport are essential trafficking mechanism necessary to convey membrane bound neurotransmitters, neurotrophins, and endosomes between soma and synaptic interfaces. Although iAβ1–42 disruption of axonal transport has been implicated in dysregulation of neuronal synaptic transmission, the role of iAβ1–42 and its influence on signal transduction involving the mitogen-activated protein kinase (MAPK) and morphogenetic signaling axis are unknown. Our biochemical characterization of intracellular amyloid beta accumulation on MAPK and morphogenetic signaling have revealed increased iAβ1–42 expression leads to significant reduction in ERK 1/2 phosphorylation and increased bone morphogenetic protein 2 dependent Smad 1/5/8 phosphorylation. Furthermore, rescue of iAβ1–42 mediated attenuation of MAPK signaling can be accomplished with the small molecule PLX4032 as a downstream enhancer of the MAPK pathway. Consequently, our observations regarding the dysregulation of these gatekeepers of neuronal viability may have important implications in understanding the iAβ1–42 mediated effects observed in AD. PMID:29470488

  9. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  10. pkc-1 regulates daf-2 insulin/IGF signalling-dependent control of dauer formation in Caenorhabditis elegans.

    PubMed

    Monje, José M; Brokate-Llanos, Ana M; Pérez-Jiménez, Mercedes M; Fidalgo, Manuel A; Muñoz, Manuel J

    2011-12-01

    In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf-12. We have isolated a pkc-1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc-1 suppressor mutant are similar to those described for daf-12 or the DAF-12 coregulator din-1. Moreover, we show that the expression of the DAF-12 target daf-9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc-1 mutant background, suggesting that pkc-1 could link the daf-12 and insulin/IGF pathways. pkc-1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc-1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc-1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc-1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc-1 in the regulation of the insulin/IGF pathway. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  11. Notch signalling in T cell lymphoblastic leukaemia/lymphoma and other haematological malignancies

    PubMed Central

    Aster, Jon C.; Blacklow, Stephen C.; Pear, Warren S.

    2010-01-01

    Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle yet important roles in other forms of hematologic malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye toward targeted therapeutics. PMID:20967796

  12. Oxidative Stress in Hypertension: Role of the Kidney

    PubMed Central

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618

  13. Interplay between sugar and hormone signaling pathways modulate floral signal transduction

    PubMed Central

    Matsoukas, Ianis G.

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research. PMID:25165468

  14. Interplay between sugar and hormone signaling pathways modulate floral signal transduction.

    PubMed

    Matsoukas, Ianis G

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.

  15. Characterization of Hippo Pathway Components by Gene Inactivation.

    PubMed

    Plouffe, Steven W; Meng, Zhipeng; Lin, Kimberly C; Lin, Brian; Hong, Audrey W; Chun, Justin V; Guan, Kun-Liang

    2016-12-01

    The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation through the JNK signaling pathway.

    PubMed

    Jeong, Byung-Chul

    2018-05-15

    Tumor necrosis factor (TNF)-α, which is a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions. Activating transcription factor 3 (ATF3), which is a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, the precise interactions between ATF3 and the TNF-α signaling pathway in the regulation of osteoblast differentiation remain unclear. In this study, we examined the role of ATF3 in the TNF-α-mediated inhibition of osteoblast differentiation and investigated the signaling pathways involved. The treatment of cells with TNF-α downregulated osteogenic markers, but significantly upregulated the expression of Atf3. The inhibition of Atf3 by small interfering RNAs rescued osteogenesis, which was inhibited by TNF-α. Conversely, the enforced expression of Atf3 enhanced the TNF-α-mediated inhibition of osteoblast differentiation, as revealed by the measurement of osteogenic markers and alkaline phosphatase staining. Mechanistically, TNF-α-induced Atf3 expression was significantly suppressed by the inhibition of the c-Jun N-terminal kinase (JNK) pathway. Furthermore, the overexpression of Atf3 did not affect the rescue effect that inhibiting TNF-α expression using a JNK inhibitor had on alkaline phosphatase activity and mineralization. Taken together, these results indicate that ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation and that the TNF-α-activated JNK pathway is responsible for the induction of Atf3 expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Genistein and daidzein: different molecular effects on prostate cancer.

    PubMed

    Adjakly, Mawussi; Ngollo, Marjolaine; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2013-01-01

    Diet is believed to play an important role in cancer. It has been revealed by epidemiological studies that Asian populations, who consume phytoestrogens in large amounts, have a lower incidence of prostate cancer in comparison with the Western world, where consumption of soy is lower. Genistein and daidzein, the soy phytoestrogens most widely studied, are believed to be potent anticancer agents and have been shown to possess anticancer properties. It has been shown that these compounds inhibit the growth of cancer cells through the modulation of genes controlling cell-cycle progression. Genistein inhibits the activation of the kappa light polypeptide gene enhancer in B-cells (NF-κB), signaling pathway, which is implicated in the balance between cell survival and programmed cell death (apoptosis). Antioxidant and antiangiogenesis properties of genistein have been also described. Soy isoflavones are also implicated in reversion of epigenetic events observed in prostate cancer. Significant advances have been made for understanding how soy isoflavones are implicated in protection against prostate cancer. However, more studies are needed to better-understand and elucidate all pathways mobilized by genistein and daidzein, in order to fully exploit their anticancer properties.

  18. Implications of microbiota and bile acid in liver injury and regeneration

    PubMed Central

    Liu, Hui-Xin; Keane, Ryan; Sheng, Lili; Wan, Yu-Jui Yvonne

    2015-01-01

    Summary Studies examining the mechanisms by which the liver injures and regenerates usually focus on factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years that have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Despite many correlative findings, the intricate networks of pathways involved along with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, and host response. Such knowledge would better elucidate the molecular mechanisms that link microbiota alteration to host physiological response and vice-versa. PMID:26256437

  19. Genetic studies of body mass index yield new insights for obesity biology.

    PubMed

    Locke, Adam E; Kahali, Bratati; Berndt, Sonja I; Justice, Anne E; Pers, Tune H; Day, Felix R; Powell, Corey; Vedantam, Sailaja; Buchkovich, Martin L; Yang, Jian; Croteau-Chonka, Damien C; Esko, Tonu; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Kutalik, Zoltán; Luan, Jian'an; Mägi, Reedik; Randall, Joshua C; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Faul, Jessica D; Smith, Jennifer A; Zhao, Jing Hua; Zhao, Wei; Chen, Jin; Fehrmann, Rudolf; Hedman, Åsa K; Karjalainen, Juha; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bolton, Jennifer L; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Deng, Guohong; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Goel, Anuj; Gong, Jian; Jackson, Anne U; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Medland, Sarah E; Nalls, Michael A; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Shungin, Dmitry; Stančáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Isaacs, Aaron; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Attwood, Antony P; Bandinelli, Stefania; Barrett, Amy; Bas, Isabelita N; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blagieva, Roza; Blüher, Matthias; Böhringer, Stefan; Bonnycastle, Lori L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Caspersen, Ida H; Chen, Yii-Der Ida; Clarke, Robert; Daw, E Warwick; de Craen, Anton J M; Delgado, Graciela; Dimitriou, Maria; Doney, Alex S F; Eklund, Niina; Estrada, Karol; Eury, Elodie; Folkersen, Lasse; Fraser, Ross M; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Goodall, Alison H; Gordon, Scott D; Gorski, Mathias; Grabe, Hans-Jörgen; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; Groves, Christopher J; Gusto, Gaëlle; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hengstenberg, Christian; Holmen, Oddgeir; Hottenga, Jouke-Jan; James, Alan L; Jeff, Janina M; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Kinnunen, Leena; Koenig, Wolfgang; Koskenvuo, Markku; Kratzer, Wolfgang; Laitinen, Jaana; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lo, Ken Sin; Lobbens, Stéphane; Lorbeer, Roberto; Lu, Yingchang; Mach, François; Magnusson, Patrik K E; Mahajan, Anubha; McArdle, Wendy L; McLachlan, Stela; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Nagaraja, Ramaiah; Nöthen, Markus M; Nolte, Ilja M; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Rettig, Rainer; Ried, Janina S; Ripke, Stephan; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Scott, William R; Seufferlein, Thomas; Shi, Jianxin; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tan, Sian-Tsung; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tyrer, Jonathan P; Uh, Hae-Won; Vandenput, Liesbeth; Verhulst, Frank C; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Warren, Helen R; Waterworth, Dawn; Weedon, Michael N; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Brennan, Eoin P; Choi, Murim; Dastani, Zari; Drong, Alexander W; Eriksson, Per; Franco-Cereceda, Anders; Gådin, Jesper R; Gharavi, Ali G; Goddard, Michael E; Handsaker, Robert E; Huang, Jinyan; Karpe, Fredrik; Kathiresan, Sekar; Keildson, Sarah; Kiryluk, Krzysztof; Kubo, Michiaki; Lee, Jong-Young; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McCarroll, Steven A; McKnight, Amy J; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Okada, Yukinori; Perry, John R B; Dorajoo, Rajkumar; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Scott, Robert A; Stolk, Lisette; Takahashi, Atsushi; Tanaka, Toshihiro; van 't Hooft, Ferdinand M; Vinkhuyzen, Anna A E; Westra, Harm-Jan; Zheng, Wei; Zondervan, Krina T; Heath, Andrew C; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Blangero, John; Bovet, Pascal; Campbell, Harry; Caulfield, Mark J; Cesana, Giancarlo; Chakravarti, Aravinda; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Cusi, Daniele; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Dominiczak, Anna F; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Felix, Stephan B; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Homuth, Georg; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hyppönen, Elina; Illig, Thomas; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Johansen, Berit; Jousilahti, Pekka; Jukema, J Wouter; Jula, Antti M; Kaprio, Jaakko; Kastelein, John J P; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Knekt, Paul; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Marchand, Loic Le; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Moll, Frans L; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Madden, Pamela A F; Pasterkamp, Gerard; Peden, John F; Peters, Annette; Postma, Dirkje S; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Rioux, John D; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schunkert, Heribert; Schwarz, Peter E H; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Trégouët, David-Alexandre; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Völker, Uwe; Waeber, Gérard; Willemsen, Gonneke; Witteman, Jacqueline C; Zillikens, M Carola; Adair, Linda S; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bornstein, Stefan R; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul I W; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hui, Jennie; Hunter, David J; Hveem, Kristian; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Metspalu, Andres; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sattar, Naveed; Schadt, Eric E; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Heid, Iris M; O'Connell, Jeffrey R; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Abecasis, Gonçalo R; Franke, Lude; Frayling, Timothy M; McCarthy, Mark I; Visscher, Peter M; Scherag, André; Willer, Cristen J; Boehnke, Michael; Mohlke, Karen L; Lindgren, Cecilia M; Beckmann, Jacques S; Barroso, Inês; North, Kari E; Ingelsson, Erik; Hirschhorn, Joel N; Loos, Ruth J F; Speliotes, Elizabeth K

    2015-02-12

    Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

  20. Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications

    PubMed Central

    Xiong, Xia; Lai, Rui

    2018-01-01

    Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs. PMID:29750172

  1. A Chemical Biology Approach to Interrogate Quorum Sensing Regulated Behaviors at the Molecular and Cellular Level

    PubMed Central

    Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008

  2. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle.

    PubMed

    Hau, Pok Man; Tsao, Sai Wah

    2017-11-16

    The Epstein-Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt's lymphoma, Hodgkin's lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.

  3. Genetic studies of body mass index yield new insights for obesity biology

    PubMed Central

    Day, Felix R.; Powell, Corey; Vedantam, Sailaja; Buchkovich, Martin L.; Yang, Jian; Croteau-Chonka, Damien C.; Esko, Tonu; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Kutalik, Zoltán; Luan, Jian’an; Mägi, Reedik; Randall, Joshua C.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Faul, Jessica D.; Smith, Jennifer A.; Zhao, Jing Hua; Zhao, Wei; Chen, Jin; Fehrmann, Rudolf; Hedman, Åsa K.; Karjalainen, Juha; Schmidt, Ellen M.; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bolton, Jennifer L.; Bragg-Gresham, Jennifer L.; Buyske, Steven; Demirkan, Ayse; Deng, Guohong; Ehret, Georg B.; Feenstra, Bjarke; Feitosa, Mary F.; Fischer, Krista; Goel, Anuj; Gong, Jian; Jackson, Anne U.; Kanoni, Stavroula; Kleber, Marcus E.; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Medland, Sarah E.; Nalls, Michael A.; Palmer, Cameron D.; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J.; Prokopenko, Inga; Shungin, Dmitry; Stančáková, Alena; Strawbridge, Rona J.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V.; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Isaacs, Aaron; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M.; Attwood, Antony P.; Bandinelli, Stefania; Barrett, Amy; Bas, Isabelita N.; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blagieva, Roza; Blüher, Matthias; Böhringer, Stefan; Bonnycastle, Lori L.; Böttcher, Yvonne; Boyd, Heather A.; Bruinenberg, Marcel; Caspersen, Ida H.; Chen, Yii-Der Ida; Clarke, Robert; Daw, E. Warwick; de Craen, Anton J. M.; Delgado, Graciela; Dimitriou, Maria; Doney, Alex S. F.; Eklund, Niina; Estrada, Karol; Eury, Elodie; Folkersen, Lasse; Fraser, Ross M.; Garcia, Melissa E.; Geller, Frank; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S.; Golay, Alain; Goodall, Alison H.; Gordon, Scott D.; Gorski, Mathias; Grabe, Hans-Jörgen; Grallert, Harald; Grammer, Tanja B.; Gräßler, Jürgen; Grönberg, Henrik; Groves, Christopher J.; Gusto, Gaëlle; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L.; Helmer, Quinta; Hengstenberg, Christian; Holmen, Oddgeir; Hottenga, Jouke-Jan; James, Alan L.; Jeff, Janina M.; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Kinnunen, Leena; Koenig, Wolfgang; Koskenvuo, Markku; Kratzer, Wolfgang; Laitinen, Jaana; Lamina, Claudia; Leander, Karin; Lee, Nanette R.; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lo, Ken Sin; Lobbens, Stéphane; Lorbeer, Roberto; Lu, Yingchang; Mach, François; Magnusson, Patrik K. E.; Mahajan, Anubha; McArdle, Wendy L.; McLachlan, Stela; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Monda, Keri L.; Morken, Mario A.; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W.; Nagaraja, Ramaiah; Nöthen, Markus M.; Nolte, Ilja M.; Pilz, Stefan; Rayner, Nigel W.; Renstrom, Frida; Rettig, Rainer; Ried, Janina S.; Ripke, Stephan; Robertson, Neil R.; Rose, Lynda M.; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R.; Scott, William R.; Seufferlein, Thomas; Shi, Jianxin; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V.; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stringham, Heather M.; Sundström, Johan; Swertz, Morris A.; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Tayo, Bamidele O.; Thorand, Barbara; Thorleifsson, Gudmar; Tyrer, Jonathan P.; Uh, Hae-Won; Vandenput, Liesbeth; Verhulst, Frank C.; Vermeulen, Sita H.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Warren, Helen R.; Waterworth, Dawn; Weedon, Michael N.; Wilkens, Lynne R.; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Wright, Alan F.; Zhang, Qunyuan; Brennan, Eoin P.; Choi, Murim; Dastani, Zari; Drong, Alexander W.; Eriksson, Per; Franco-Cereceda, Anders; Gådin, Jesper R.; Gharavi, Ali G.; Goddard, Michael E.; Handsaker, Robert E.; Huang, Jinyan; Karpe, Fredrik; Kathiresan, Sekar; Keildson, Sarah; Kiryluk, Krzysztof; Kubo, Michiaki; Lee, Jong-Young; Liang, Liming; Lifton, Richard P.; Ma, Baoshan; McCarroll, Steven A.; McKnight, Amy J.; Min, Josine L.; Moffatt, Miriam F.; Montgomery, Grant W.; Murabito, Joanne M.; Nicholson, George; Nyholt, Dale R.; Okada, Yukinori; Perry, John R. B.; Dorajoo, Rajkumar; Reinmaa, Eva; Salem, Rany M.; Sandholm, Niina; Scott, Robert A.; Stolk, Lisette; Takahashi, Atsushi; Tanaka, Toshihiro; van ’t Hooft, Ferdinand M.; Vinkhuyzen, Anna A. E.; Westra, Harm-Jan; Zheng, Wei; Zondervan, Krina T.; Heath, Andrew C.; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Blangero, John; Bovet, Pascal; Campbell, Harry; Caulfield, Mark J.; Cesana, Giancarlo; Chakravarti, Aravinda; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Crawford, Dana C.; Cupples, L. Adrienne; Cusi, Daniele; Danesh, John; de Faire, Ulf; den Ruijter, Hester M.; Dominiczak, Anna F.; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G.; Farrall, Martin; Felix, Stephan B.; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G.; Forrester, Terrence; Franco, Oscar H.; Gansevoort, Ron T.; Gejman, Pablo V.; Gieger, Christian; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Alistair S.; Harris, Tamara B.; Hattersley, Andrew T.; Hicks, Andrew A.; Hindorff, Lucia A.; Hingorani, Aroon D.; Hofman, Albert; Homuth, Georg; Hovingh, G. Kees; Humphries, Steve E.; Hunt, Steven C.; Hyppönen, Elina; Illig, Thomas; Jacobs, Kevin B.; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Johansen, Berit; Jousilahti, Pekka; Jukema, J. Wouter; Jula, Antti M.; Kaprio, Jaakko; Kastelein, John J. P.; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Knekt, Paul; Kooner, Jaspal S.; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Marchand, Loic Le; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C.; McKenzie, Colin A.; McKnight, Barbara; Moll, Frans L.; Morris, Andrew D.; Morris, Andrew P.; Murray, Jeffrey C.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Madden, Pamela A. F.; Pasterkamp, Gerard; Peden, John F.; Peters, Annette; Postma, Dirkje S.; Pramstaller, Peter P.; Price, Jackie F.; Qi, Lu; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ridker, Paul M.; Rioux, John D.; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schunkert, Heribert; Schwarz, Peter E. H.; Sever, Peter; Shuldiner, Alan R.; Sinisalo, Juha; Stolk, Ronald P.; Strauch, Konstantin; Tönjes, Anke; Trégouët, David-Alexandre; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Völker, Uwe; Waeber, Gérard; Willemsen, Gonneke; Witteman, Jacqueline C.; Zillikens, M. Carola; Adair, Linda S.; Amouyel, Philippe; Asselbergs, Folkert W.; Assimes, Themistocles L.; Bochud, Murielle; Boehm, Bernhard O.; Boerwinkle, Eric; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C.; Chanock, Stephen J.; Cooper, Richard S.; de Bakker, Paul I. W.; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Groop, Leif C.; Haiman, Christopher A.; Hamsten, Anders; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Kaplan, Robert C.; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G.; März, Winfried; Melbye, Mads; Metspalu, Andres; Moebus, Susanne; Munroe, Patricia B.; Njølstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E.; Saleheen, Danish; Sattar, Naveed; Schadt, Eric E.; Schlessinger, David; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Weir, David R.; Wichmann, H-Erich; Wilson, James F.; Zanen, Pieter; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Heid, Iris M.; O’Connell, Jeffrey R.; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; Franke, Lude; Frayling, Timothy M.; McCarthy, Mark I.; Visscher, Peter M.; Scherag, André; Willer, Cristen J.; Boehnke, Michael; Mohlke, Karen L.; Lindgren, Cecilia M.; Beckmann, Jacques S.; Barroso, Inês; North, Kari E.; Ingelsson, Erik; Hirschhorn, Joel N.; Loos, Ruth J. F.; Speliotes, Elizabeth K.

    2015-01-01

    Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis. PMID:25673413

  4. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    PubMed

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance.

    PubMed

    Ranji, Peyman; Salmani Kesejini, Tayyebali; Saeedikhoo, Sara; Alizadeh, Ali Mohammad

    2016-10-01

    Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.

  6. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells.

    PubMed

    Lo, Angela Kwok-Fung; Dawson, Christopher W; Young, Lawrence S; Ko, Chuen-Wai; Hau, Pok-Man; Lo, Kwok-Wai

    2015-10-01

    Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Anorexia in cancer: role of feeding-regulatory peptides

    PubMed Central

    Perboni, Simona; Inui, Akio

    2006-01-01

    Anorexia is one of the most common symptoms in advanced cancer and is a frequent cause of discomfort for cancer patients and their families. The pathogenesis of cancer anorexia is multi-factorial and involves most of the hypothalamic neuronal signalling pathways modulating energy homeostasis. It is considered to be the result of a failure of usual appetite and satiety signals. Loss of appetite can arise from decreased taste and smell of food, as well as from dysfunctional hypothalamic signalling pathways and cytokine production. Cytokines in particular, appear to play a key role in energy balance through persistent activation of the melanocortin system and inhibition of the neuropeptide Y pathway. The imbalance between anorexigenic and orexigenic peptides leads to suppression of appetite, and increased satiety and satiation associated with marked weight loss and decline in physical performance. High levels of serotonin also appear to contribute to these effects and recent findings implicate corticotropin-releasing factor in the pathogenesis of cancer anorexia as well. Despite significant advances in our understanding of the regulation of food intake and energy expenditure, few effective therapies are available. A better appreciation of the molecular and neuronal mechanisms that control body weight homeostasis may lead to the development of new therapies for improving the survival and quality of life of these patients. PMID:16815804

  8. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes

    PubMed Central

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125

  9. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes.

    PubMed

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium -infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite.

  10. Communication Between the Calcium and cAMP Pathways Regulate the Expression of the TSH Receptor: TRPC2 in the Center of Action

    PubMed Central

    Löf, Christoffer; Sukumaran, Pramod; Viitanen, Tero; Vainio, Minna; Kemppainen, Kati; Pulli, Ilari; Näsman, Johnny; Kukkonen, Jyrki P.

    2012-01-01

    Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function. PMID:23015753

  11. Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway

    PubMed Central

    Lee, Jaetae; Lee, Young Sup

    2015-01-01

    The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114] PMID:24965577

  12. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways.

    PubMed

    Lee, Sun-Hwa; Suk, Kyoungho

    2018-04-20

    Despite the considerable social and economic burden on the healthcare system worldwide due to neurodegenerative diseases, there are currently few disease-altering treatment options for many of these conditions. Therefore, new approaches for both prevention and intervention for neurodegenerative diseases are urgently required. Microglia-mediated neurotoxicity is one of the pathologic hallmarks common to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Current therapeutic approaches to target microglia-mediated neurotoxicity are focused on the identification of glia phenotype modulators (GPMs), which can inhibit the 'classical' pro-inflammatory and neurotoxic phenotypes of microglia. Areas covered: This article reviews selected microglial molecular targets and pathways involved in either neurotoxicity or neuroprotection and how their identification. Expert opinion: Microglial activation and their signaling pathways have important implications in the neurotoxicity and brain disorders. Pharmacological modulation of microglial activation may serve as a potential therapeutic approach for targeting microglia-mediated neurotoxicity. However, given that microglia change their activation states depending on the timing, stage, and severity of disease, and even aging, the appropriate window should be considered for this approach to be clinically effective. In the future, the identification of unknown extracellular signals and intracellular molecular switches that control phenotypic shifts may facilitate the development of novel therapeutics targeting microglia-mediated neurotoxicity.

  13. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution.

    PubMed

    Matus, David Q; Magie, Craig R; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H

    2008-01-15

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.

  14. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution

    PubMed Central

    Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.

    2008-01-01

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria. PMID:18068698

  15. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    PubMed

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature.

    PubMed

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-12-28

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC.

  17. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature

    PubMed Central

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-01-01

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC. PMID:21139932

  18. Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways

    PubMed Central

    Rahmani, Arshad H.; Alzohairy, Mohammad A.; Khan, Masood A.; Aly, Salah M.

    2014-01-01

    The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways. PMID:24959190

  19. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonicalmore » Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.« less

  20. Multidimensional Single-Cell Analysis of BCR Signaling Reveals Proximal Activation Defect As a Hallmark of Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Palomba, M. Lia; Piersanti, Kelly; Ziegler, Carly G. K.; Decker, Hugo; Cotari, Jesse W.; Bantilan, Kurt; Rijo, Ivelise; Gardner, Jeff R.; Heaney, Mark; Bemis, Debra; Balderas, Robert; Malek, Sami N.; Seymour, Erlene; Zelenetz, Andrew D.

    2014-01-01

    Purpose Chronic Lymphocytic Leukemia (CLL) is defined by a perturbed B-cell receptor-mediated signaling machinery. We aimed to model differential signaling behavior between B cells from CLL and healthy individuals to pinpoint modes of dysregulation. Experimental Design We developed an experimental methodology combining immunophenotyping, multiplexed phosphospecific flow cytometry, and multifactorial statistical modeling. Utilizing patterns of signaling network covariance, we modeled BCR signaling in 67 CLL patients using Partial Least Squares Regression (PLSR). Results from multidimensional modeling were validated using an independent test cohort of 38 patients. Results We identified a dynamic and variable imbalance between proximal (pSYK, pBTK) and distal (pPLCγ2, pBLNK, ppERK) phosphoresponses. PLSR identified the relationship between upstream tyrosine kinase SYK and its target, PLCγ2, as maximally predictive and sufficient to distinguish CLL from healthy samples, pointing to this juncture in the signaling pathway as a hallmark of CLL B cells. Specific BCR pathway signaling signatures that correlate with the disease and its degree of aggressiveness were identified. Heterogeneity in the PLSR response variable within the B cell population is both a characteristic mark of healthy samples and predictive of disease aggressiveness. Conclusion Single-cell multidimensional analysis of BCR signaling permitted focused analysis of the variability and heterogeneity of signaling behavior from patient-to-patient, and from cell-to-cell. Disruption of the pSYK/pPLCγ2 relationship is uncovered as a robust hallmark of CLL B cell signaling behavior. Together, these observations implicate novel elements of the BCR signal transduction as potential therapeutic targets. PMID:24489640

  1. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    PubMed Central

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  2. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  3. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  4. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    PubMed Central

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  5. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing.

    PubMed

    Feng, Yi; Sanders, Andrew J; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G; Jiang, Wen G

    2016-11-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.

  6. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  7. Implication of the ERK/MAPK pathway in antipsychotics-induced dopamine D2 receptor upregulation and in the preventive effects of (±)-α-lipoic acid in SH-SY5Y neuroblastoma cells.

    PubMed

    Deslauriers, Jessica; Desmarais, Christian; Sarret, Philippe; Grignon, Sylvain

    2014-03-01

    Chronic administration of antipsychotics (APs) has been associated with dopamine D2 receptor (D2R) upregulation and tardive dyskinesia. We previously showed that haloperidol, a first-generation AP, exerted a more robust increase in D2R expression than amisulpride, a second-generation AP and that (±)-α-lipoic acid pre-treatment reversed the AP-induced D2R upregulation. We also demonstrated that the Akt/GSK-3β/β-catenin pathway is involved in the control of D2R expression levels, but is unlikely implicated in the preventive effects of (±)-α-lipoic acid since co-treatment with haloperidol and (±)-α-lipoic acid exerts synergistic effects on Akt/GSK-3β activation. These findings led us to examine whether the ERK/MAPK signaling pathway may be involved in D2R upregulation elicited by APs, and in its reversal by (±)-α-lipoic acid, in SH-SY5Y human neuroblastoma cells. Our results revealed that haloperidol, in parallel with an elevation in D2R mRNA levels, induced a larger increase of ERK (p42/p44) phosphorylation than amisulpride. Pre-treatment with the selective ERK inhibitor U0126 attenuated haloperidol-induced increase in D2R upregulation. Furthermore, (±)-α-lipoic acid prevented AP-induced ERK activation. These results show that (1) the ERK/MAPK pathway is involved in haloperidol-induced D2R upregulation; (2) the preventive effect of (±)-α-lipoic acid on haloperidol-induced D2R upregulation is in part mediated by an ERK/MAPK-dependent signaling cascade. Taken together, our data suggest that (±)-α-lipoic acid exerts synergistic effects with haloperidol on the Akt/GSK-3β pathway, potentially involved in the therapeutic effects of APs, and antagonism of ERK activation and D2R upregulation, potentially involved in tardive dyskinesia and treatment resistance.

  8. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia

    PubMed Central

    Huang, Peng; Schier, Alexander F.

    2009-01-01

    Summary Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators. PMID:19700616

  9. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  10. [Is endometriosis a precancerous lesion? Perspectives and clinical implications].

    PubMed

    Chene, G; Caloone, J; Moret, S; Le Bail-Carval, K; Chabert, P; Beaufils, E; Mellier, G; Lamblin, G

    2016-02-01

    Epidemiological studies have shown a relationship between endometriosis and clear cell/endometrioid ovarian cancers (named "Endometriosis Associated Ovarian Cancer" or EAOC). The recent discovery of signaling pathways (especially the SWI/SNF and PI3K/AKT/mTOR pathways) that linked endometriosis and EAOC could lead to the development of specific biomarkers as ARID1A to screen benign to premalignant endometriosis and to new targeted treatment. Moreover, the better understanding of the pathogenesis of the epithelial ovarian cancer arising from the Fallopian tube could allow new early prevention strategies that will be described in this review. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  12. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    PubMed Central

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL, Figueiredo ML. 2016. Inorganic arsenic–related changes in the stromal tumor microenvironment in a prostate cancer cell–conditioned media model. Environ Health Perspect 124:1009–1015; http://dx.doi.org/10.1289/ehp.1510090 PMID:26588813

  13. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling.

    PubMed

    Razawy, Wida; van Driel, Marjolein; Lubberts, Erik

    2018-02-01

    The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach

    PubMed Central

    Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth

    2016-01-01

    Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716

  15. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    PubMed

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  16. Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells.

    PubMed

    Castellana, Bàrbara; Aasen, Trond; Moreno-Bueno, Gema; Dunn, Sandra E; Ramón y Cajal, Santiago

    2015-11-10

    Epithelial to mesenchymal transition (EMT) induces cell plasticity and promotes metastasis. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) and the pleiotropic cytokine interleukin 6 (IL-6) have both been implicated in tumor cell metastasis and EMT, but via distinct pathways. Here, we show that direct interplay between YB-1 and IL-6 regulates breast cancer metastasis. Overexpression of YB-1 in breast cancer cell lines induced IL-6 production while stimulation with IL-6 increased YB-1 expression and YB-1 phosphorylation. Either approach was sufficient to induce EMT features, including increased cell migration and invasion. Silencing of YB-1 partially reverted the EMT and blocked the effect of IL-6 while inhibition of IL-6 signaling blocked the phenotype induced by YB-1 overexpression, demonstrating a clear YB-1/IL-6 interdependence. Our findings describe a novel signaling network in which YB-1 regulates IL-6, and vice versa, creating a positive feed-forward loop driving EMT-like metastatic features during breast cancer progression. Identification of signaling partners or pathways underlying this co-dependence may uncover novel therapeutic opportunities.

  17. A truncated Wnt7a retains full biological activity in skeletal muscle

    NASA Astrophysics Data System (ADS)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  18. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    PubMed

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  19. The histone code reader SPIN1 controls RET signaling in liposarcoma

    PubMed Central

    Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland

    2015-01-01

    The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy. PMID:25749382

  20. Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling

    PubMed Central

    Novikov, Natasha; Evans, Todd

    2013-01-01

    Biphasic control of WNT signaling is essential during cardiogenesis, but how the pathway switches from promoting cardiac mesoderm to restricting cardiomyocyte progenitor fate is unknown. We identified genes expressed in lateral mesoderm that are dysregulated in zebrafish when both gata5 and gata6 are depleted, causing a block to cardiomyocyte specification. This screen identified tmem88a, which is expressed in the early cardiac progenitor field and was previously implicated in WNT modulation by overexpression studies. Depletion of tmem88a results in a profound cardiomyopathy, secondary to impaired cardiomyocyte specification. In tmem88a morphants, activation of the WNT pathway exacerbates the cardiomyocyte deficiency, whereas WNT inhibition rescues progenitor cells and cardiogenesis. We conclude that specification of cardiac fate downstream of gata5/6 involves activation of the tmem88a gene to constrain WNT signaling and expand the number of cardiac progenitors. Tmem88a is a novel component of the regulatory mechanism controlling the second phase of biphasic WNT activity essential for embryonic cardiogenesis. PMID:23903195

Top