Science.gov

Sample records for signaling regulates actin

  1. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis.

    PubMed

    Henty-Ridilla, Jessica L; Li, Jiejie; Day, Brad; Staiger, Christopher J

    2014-01-01

    Conserved microbe-associated molecular patterns (MAMPs) are sensed by pattern recognition receptors (PRRs) on cells of plants and animals. MAMP perception typically triggers rearrangements to actin cytoskeletal arrays during innate immune signaling. However, the signaling cascades linking PRR activation by MAMPs to cytoskeleton remodeling are not well characterized. Here, we developed a system to dissect, at high spatial and temporal resolution, the regulation of actin dynamics during innate immune signaling in plant cells. Within minutes of MAMP perception, we detected changes to single actin filament turnover in epidermal cells treated with bacterial and fungal MAMPs. These MAMP-induced alterations phenocopied an ACTIN DEPOLYMERIZING FACTOR4 (ADF4) knockout mutant. Moreover, actin arrays in the adf4 mutant were unresponsive to a bacterial MAMP, elf26, but responded normally to the fungal MAMP, chitin. Together, our data provide strong genetic and cytological evidence for the inhibition of ADF activity regulating actin remodeling during innate immune signaling. This work is the first to directly link an ADF/cofilin to the cytoskeletal rearrangements elicited directly after pathogen perception in plant or mammalian cells.

  2. TOR complex 2–Ypk1 signaling regulates actin polarization via reactive oxygen species

    PubMed Central

    Niles, Brad J.; Powers, Ted

    2014-01-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells. PMID:25253719

  3. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.

  4. Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish.

    PubMed

    Li, Yu-Long; Shao, Ming; Shi, De-Li

    2017-08-26

    Dynamic cytoskeleton organization is essential for polarized cell behaviours in a wide variety of morphogenetic events. In zebrafish, epiboly involves coordinated cell shape changes and expansion of cell layers to close the blastopore, but many important regulatory aspects are still unclear. Especially, the spatio-temporal regulation and function of actin structures remain to be determined for a better understanding of the mechanisms that coordinate epiboly movement. Here we show that Rac1 signalling, likely functions downstream of phosphatiditylinositol-3 kinase, is required for F-actin organization during epiboly progression in zebtafish. Using a dominant negative mutant of Rac1 and specific inhibitors to block the activation of this pathway, we find that marginal contractile actin ring is sensitive to inhibition of Rac1 signalling. In particular, we identify a novel function for this actin structure in retaining the external yolk syncytial nuclei within the margin of enveloping layer for coordinated movement toward the vegetal pole. Furthermore, we find that F-actin bundles, progressively formed in the vegetal cortex of the yolk cell, act in concert with marginal actin ring and play an active role in pulling external yolk syncytial nuclei toward the vegetal pole direction. This study uncovers novel roles of different actin structures in orchestrating epiboly movement. It helps to provide insight into the mechanisms regulating cellular polarization during early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Kindlin-2 directly binds actin and regulates integrin outside-in signaling

    PubMed Central

    Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta

    2016-01-01

    Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892

  6. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin

    PubMed Central

    Xu, Chenguang; Gu, Xiaomei; Niu, Linlin; Wang, Jinzhi; Sun, Xiaoyu; Bai, Xiaoming; Xuan, Xingtian; Li, Qubei; Shi, Chunwei; Yu, Bing; Miller, Heather; Yang, Gangyi; Westerberg, Lisa S.; Liu, Wanli; Song, Wenxia; Zhao, Xiaodong

    2017-01-01

    As the central hub of the metabolism machinery, the mammalian target of rapamycin complex 2 (mTORC2) has been well studied in lymphocytes. As an obligatory component of mTORC2, the role of Rictor in T cells is well established. However, the role of Rictor in B cells still remains elusive. Rictor is involved in B cell development, especially the peripheral development. However, the role of Rictor on B cell receptor (BCR) signaling as well as the underlying cellular and molecular mechanism is still unknown. This study used B cell–specfic Rictor knockout (KO) mice to investigate how Rictor regulates BCR signaling. We found that the key positive and negative BCR signaling molecules, phosphorylated Brutons tyrosine kinase (pBtk) and phosphorylated SH2-containing inositol phosphatase (pSHIP), are reduced and enhanced, respectively, in Rictor KO B cells. This suggests that Rictor positively regulates the early events of BCR signaling. We found that the cellular filamentous actin (F-actin) is drastically increased in Rictor KO B cells after BCR stimulation through dysregulating the dephosphorylation of ezrin. The high actin-ezrin intensity area restricts the lateral movement of BCRs upon stimulation, consequently reducing BCR clustering and BCR signaling. The reduction in the initiation of BCR signaling caused by actin alteration is associated with a decreased humoral immune response in Rictor KO mice. The inhibition of actin polymerization with latrunculin in Rictor KO B cells rescues the defects of BCR signaling and B cell differentiation. Overall, our study provides a new pathway linking cell metablism to BCR activation, in which Rictor regulates BCR signaling via actin reorganization. PMID:28821013

  7. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.

    PubMed

    Head, Brian P; Patel, Hemal H; Roth, David M; Murray, Fiona; Swaney, James S; Niesman, Ingrid R; Farquhar, Marilyn G; Insel, Paul A

    2006-09-08

    Microtubules and actin filaments regulate plasma membrane topography, but their role in compartmentation of caveolae-resident signaling components, in particular G protein-coupled receptors (GPCR) and their stimulation of cAMP production, has not been defined. We hypothesized that the microtubular and actin cytoskeletons influence the expression and function of lipid rafts/caveolae, thereby regulating the distribution of GPCR signaling components that promote cAMP formation. Depolymerization of microtubules with colchicine (Colch) or actin microfilaments with cytochalasin D (CD) dramatically reduced the amount of caveolin-3 in buoyant (sucrose density) fractions of adult rat cardiac myocytes. Colch or CD treatment led to the exclusion of caveolin-1, caveolin-2, beta1-adrenergic receptors (beta1-AR), beta2-AR, Galpha(s), and adenylyl cyclase (AC)5/6 from buoyant fractions, decreasing AC5/6 and tyrosine-phosphorylated caveolin-1 in caveolin-1 immunoprecipitates but in parallel increased isoproterenol (beta-AR agonist)-stimulated cAMP production. Incubation with Colch decreased co-localization (by immunofluorescence microscopy) of caveolin-3 and alpha-tubulin; both Colch and CD decreased co-localization of caveolin-3 and filamin (an F-actin cross-linking protein), decreased phosphorylation of caveolin-1, Src, and p38 MAPK, and reduced the number of caveolae/mum of sarcolemma (determined by electron microscopy). Treatment of S49 T-lymphoma cells (which possess lipid rafts but lack caveolae) with CD or Colch redistributed a lipid raft marker (linker for activation of T cells (LAT)) and Galpha(s) from lipid raft domains. We conclude that microtubules and actin filaments restrict cAMP formation by regulating the localization and interaction of GPCR-G(s)-AC in lipid rafts/caveolae.

  8. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton

    PubMed Central

    Britton, Graham J; Ambler, Rachel; Clark, Danielle J; Hill, Elaine V; Tunbridge, Helen M; McNally, Kerrie E; Burton, Bronwen R; Butterweck, Philomena; Sabatos-Peyton, Catherine; Hampton-O’Neil, Lea A; Verkade, Paul; Wuelfing, Christoph; Wraith, David Cameron

    2017-01-01

    Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.20003.001 PMID:28112644

  9. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other.

    PubMed

    Vicker, Michael G; Grutsch, James F

    2008-10-01

    Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.

  10. Regulation of Actin Cytoskeleton Dynamics in Cells

    PubMed Central

    Lee, Sung Haeng; Dominguez, Roberto

    2014-01-01

    The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly. PMID:20446344

  11. MYO6 Regulates Spatial Organization of Signaling Endosomes Driving AKT Activation and Actin Dynamics.

    PubMed

    Masters, Thomas A; Tumbarello, David A; Chibalina, Margarita V; Buss, Folma

    2017-06-06

    APPL1- and RAB5-positive signaling endosomes play a crucial role in the activation of AKT in response to extracellular stimuli. Myosin VI (MYO6) and two of its cargo adaptor proteins, GIPC and TOM1/TOM1L2, localize to these peripheral endosomes and mediate endosome association with cortical actin filaments. Loss of MYO6 leads to the displacement of these endosomes from the cell cortex and accumulation in the perinuclear space. Depletion of this myosin not only affects endosome positioning, but also induces actin and lipid remodeling consistent with endosome maturation, including accumulation of F-actin and the endosomal lipid PI(3)P. These processes acutely perturb endosome function, as both AKT phosphorylation and RAC-dependent membrane ruffling were markedly reduced by depletion of either APPL1 or MYO6. These results place MYO6 and its binding partners at a central nexus in cellular signaling linking actin dynamics at the cell surface and endosomal signaling in the cell cortex. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells

    SciTech Connect

    Ohira, Koji; Homma, Koichi J.; Hirai, Hirohisa; Nakamura, Shun; Hayashi, Motoharu . E-mail: hayashi@pri.kyoto-u.ac.jp

    2006-04-14

    Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.

  13. Actin-Regulator Feedback Interactions during Endocytosis

    PubMed Central

    Wang, Xinxin; Galletta, Brian J.; Cooper, John A.; Carlsson, Anders E.

    2016-01-01

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  14. Actin dynamics is rapidly regulated by the PTEN and PIP2 signaling pathways leading to myocyte hypertrophy.

    PubMed

    Li, Jieli; Tanhehco, Elaine J; Russell, Brenda

    2014-12-01

    Mature cardiac myocytes are terminally differentiated, and the heart has limited capacity to replace lost myocytes. Thus adaptation of myocyte size plays an important role in the determination of cardiac function. The hypothesis tested is that regulation of the dynamic exchange of actin leads to cardiac hypertrophy. ANG II was used as a hypertrophic stimulant in mouse heart and neonatal rat ventricular myocytes (NRVMs) in culture for assessment of a mechanism for regulation of actin dynamics by phosphatidylinositol 4,5-bisphosphate (PIP2). Actin dynamics in NRVMs rapidly increased in a PIP2-dependent manner, measured by imaging and fluorescence recovery after photobleaching (FRAP). A significant increase in PIP2 levels was found by immunoblotting in both adult mouse heart tissue and cultured NRVMs. Inhibition of phosphatase and tensin homolog (PTEN) in NRVMs markedly blunted ANG II-induced increases in actin dynamics, the PIP2 level, and cell size. Furthermore, PTEN activity was dramatically upregulated in ANG II-treated NRVMs but downregulated when PTEN inhibitors were used. The time course of the rise in the PIP2 level was inversely related to the fall in the PIP3 level, which was significant by 30 min in ANG II-treated NRVMs. However, significant translocation of PTEN to the plasma membrane occurred by 10 min, suggesting a crucial initial step for PTEN for the cellular responses to ANG II. In conclusion, PTEN and PIP2 signaling may play an important role in myocyte hypertrophy by the regulation of actin filament dynamics, which is induced by ANG II stimulation. Copyright © 2014 the American Physiological Society.

  15. Actin dynamics is rapidly regulated by the PTEN and PIP2 signaling pathways leading to myocyte hypertrophy

    PubMed Central

    Li, Jieli; Tanhehco, Elaine J.

    2014-01-01

    Mature cardiac myocytes are terminally differentiated, and the heart has limited capacity to replace lost myocytes. Thus adaptation of myocyte size plays an important role in the determination of cardiac function. The hypothesis tested is that regulation of the dynamic exchange of actin leads to cardiac hypertrophy. ANG II was used as a hypertrophic stimulant in mouse heart and neonatal rat ventricular myocytes (NRVMs) in culture for assessment of a mechanism for regulation of actin dynamics by phosphatidylinositol 4,5-bisphosphate (PIP2). Actin dynamics in NRVMs rapidly increased in a PIP2-dependent manner, measured by imaging and fluorescence recovery after photobleaching (FRAP). A significant increase in PIP2 levels was found by immunoblotting in both adult mouse heart tissue and cultured NRVMs. Inhibition of phosphatase and tensin homolog (PTEN) in NRVMs markedly blunted ANG II-induced increases in actin dynamics, the PIP2 level, and cell size. Furthermore, PTEN activity was dramatically upregulated in ANG II-treated NRVMs but downregulated when PTEN inhibitors were used. The time course of the rise in the PIP2 level was inversely related to the fall in the PIP3 level, which was significant by 30 min in ANG II-treated NRVMs. However, significant translocation of PTEN to the plasma membrane occurred by 10 min, suggesting a crucial initial step for PTEN for the cellular responses to ANG II. In conclusion, PTEN and PIP2 signaling may play an important role in myocyte hypertrophy by the regulation of actin filament dynamics, which is induced by ANG II stimulation. PMID:25260617

  16. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions

    PubMed Central

    Xiao, Chang; Ogle, Sally A.; Schumacher, Michael A.; Schilling, Neal; Tokhunts, Robert A.; Orr-Asman, Melissa A.; Miller, Marian L.; Robbins, David J.; Hollande, Frederic

    2010-01-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5Ski) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/ShhKO) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5Ski cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/ShhKO mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1. PMID:20847300

  17. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  18. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.

  19. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  20. In Vivo Role of Focal Adhesion Kinase in Regulating Pancreatic β-Cell Mass and Function Through Insulin Signaling, Actin Dynamics, and Granule Trafficking

    PubMed Central

    Cai, Erica P.; Casimir, Marina; Schroer, Stephanie A.; Luk, Cynthia T.; Shi, Sally Yu; Choi, Diana; Dai, Xiao Qing; Hajmrle, Catherine; Spigelman, Aliya F.; Zhu, Dan; Gaisano, Herbert Y.; MacDonald, Patrick E.; Woo, Minna

    2012-01-01

    Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic β-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)–driven Cre-loxP recombination system to specifically delete FAK in pancreatic β-cells. These RIPcre+fakfl/fl mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell viability and proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal–related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient β-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca2+ influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic β-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking. PMID:22498697

  1. Guanine Nucleotides in the Meiotic Maturation of Starfish Oocytes: Regulation of the Actin Cytoskeleton and of Ca2+ Signaling

    PubMed Central

    Kyozuka, Keiichiro; Chun, Jong T.; Puppo, Agostina; Gragnaniello, Gianni; Garante, Ezio; Santella, Luigia

    2009-01-01

    Background Starfish oocytes are arrested at the first prophase of meiosis until they are stimulated by 1-methyladenine (1-MA). The two most immediate responses to the maturation-inducing hormone are the quick release of intracellular Ca2+ and the accelerated changes of the actin cytoskeleton in the cortex. Compared with the later events of oocyte maturation such as germinal vesicle breakdown, the molecular mechanisms underlying the early events involving Ca2+ signaling and actin changes are poorly understood. Herein, we have studied the roles of G-proteins in the early stage of meiotic maturation. Methodology/Principal Findings By microinjecting starfish oocytes with nonhydrolyzable nucleotides that stabilize either active (GTPγS) or inactive (GDPβS) forms of G-proteins, we have demonstrated that: i) GTPγS induces Ca2+ release that mimics the effect of 1-MA; ii) GDPβS completely blocks 1-MA-induced Ca2+; iii) GDPβS has little effect on the amplitude of the Ca2+ peak, but significantly expedites the initial Ca2+ waves induced by InsP3 photoactivation, iv) GDPβS induces unexpectedly striking modification of the cortical actin networks, suggesting a link between the cytoskeletal change and the modulation of the Ca2+ release kinetics; v) alteration of cortical actin networks with jasplakinolide, GDPβS, or actinase E, all led to significant changes of 1-MA-induced Ca2+ signaling. Conclusions/Significance Taken together, these results indicate that G-proteins are implicated in the early events of meiotic maturation and support our previous proposal that the dynamic change of the actin cytoskeleton may play a regulatory role in modulating intracellular Ca2+ release. PMID:19617909

  2. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling.

    PubMed

    Gao, Ying; Chen, Haiqi; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2017-04-01

    A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling. Copyright © 2017 Endocrine Society.

  3. Fascin regulates nuclear actin during Drosophila oogenesis

    PubMed Central

    Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.

    2016-01-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  4. Signalling Pathways Controlling Cellular Actin Organization.

    PubMed

    Steffen, Anika; Stradal, Theresia E B; Rottner, Klemens

    2017-01-01

    The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

  5. Anti-Tumor Activity of Yuanhuacine by Regulating AMPK/mTOR Signaling Pathway and Actin Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lee, Hye-Jung; Bae, Song Yi; Jung, Cholomi; Park, Hyen Joo; Lee, Sang Kook

    2015-01-01

    Yuanhuacine (YC), a daphnane diterpenoid from the flowers of Daphne genkwa, exhibited a potential growth inhibitory activity against human non-small cell lung cancer (NSCLC) cells. YC also suppressed the invasion and migration of lung cancer cells. However, the precise molecular mechanisms remain to be elucidated. In the present study, we report that YC significantly activated AMP-activated protein kinase (AMPK) signaling pathway and suppressed mTORC2-mediated downstream signaling pathway in H1993 human NSCLC cells. AMPK plays an important role in energy metabolism and cancer biology. Therefore, activators of AMPK signaling pathways can be applicable to the treatment of cancer. YC enhanced the expression of p-AMPKα. The co-treatment of YC and compound C (an AMPK inhibitor) or metformin (an AMPK activator) also confirmed that YC increases p-AMPKα. YC also suppressed the activation of the mammalian target of rapamycin (mTOR) expression, a downstream target of AMPK. Further study revealed that YC modulates mTORC2-associated downstream signaling pathways with a decreased expressions of p-Akt, p-protein kinase C alpha (PKCα), p-ras-related C3 botulinum toxin substrate 1 (Rac1) and filamentous actin (F-actin) that are known to activate cell growth and organize actin cytoskeleton. In addition, YC inhibited the tumor growth in H1993 cell-implanted xenograft nude mouse model. These data suggest the YC could be a potential candidate for cancer chemotherapeutic agents derived from natural products by regulating AMPK/mTORC2 signaling pathway and actin cytoskeleton organization. PMID:26656173

  6. Actin cortex architecture regulates cell surface tension.

    PubMed

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2017-06-01

    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  7. Osmotically induced electrical signals from actin filaments.

    PubMed Central

    Cantiello, H F; Patenaude, C; Zaner, K

    1991-01-01

    Actin filaments, F-actin, a major component of the cortical cytoskeleton, play an important role in a variety of cell functions. In this report we have assessed the role of osmotic stress on the electrochemical properties of F-actin. The spontaneous Donnan potential of a polymerized actin solution (5 mg/ml) was -3.93 +/- 1.84 mV, which was linearly reduced by osmotic stress on the order of 1-20 mOsm (0.28 +/- 0.06 mV/mM). Calculated surface charge density was reduced and eventually reversed by increasing the osmotic stress as expected for a phase transition behavior. The electro-osmotic behavior of F-actin disappeared at pH 5.5 and was dependent on its filamentous nature. Furthermore, osmotically stressed F-actin displayed a nonlinear electric response upon application of electric fields on the order of 500-2,000 V/cm. These data indicate that F-actin in solution may display nonideal electro-osmotic properties consistent with ionic "cable" behavior which may be of biological significance in the processing and conduction of electrical signals within the cellular compartment. PMID:1873465

  8. Polymerization of actin does not regulate desensitization in human basophils

    PubMed Central

    MacGlashan, Donald; Vilariño, Natalia

    2009-01-01

    Previous studies have suggested that maintenance of IgE-mediated signaling results from regulation of the activity of signaling complexes by actin polymerization. This process is also hypothesized to be related to desensitization of basophils and mast cells. Recent studies demonstrated that any signaling process dependent on syk or PI-3K activity cannot be a mechanism of desensitization, and in this context, syk and PI-3K inhibitors were found to inhibit actin polymerization. Inhibitors of actin polymerization were tested for their effect on desensitization of human peripheral blood basophils. Latrunculin A, in particular, removed all resting and stimulated f-actin but did not inhibit desensitization. Cytochalasin D and latrunculin A also did not reverse the loss of syk phosphorylation that accompanies desensitization. These results demonstrate that desensitization mechanisms are not dependent on actin polymerization. In this context, it was also shown that progressive immobilization of FcεRI during aggregation was sensitive to syk or actin polymerization inhibition. Therefore, desensitization is also not dependent on receptor immobilization. These studies demonstrate that desensitization is not the result of two signaling pathways once considered relevant to down-regulation of IgE-mediated signaling. PMID:19150851

  9. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  10. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

    PubMed

    Schevzov, Galina; Kee, Anthony J; Wang, Bin; Sequeira, Vanessa B; Hook, Jeff; Coombes, Jason D; Lucas, Christine A; Stehn, Justine R; Musgrove, Elizabeth A; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T; Hardeman, Edna C; Gunning, Peter W

    2015-07-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.

  11. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments

    PubMed Central

    Schevzov, Galina; Kee, Anthony J.; Wang, Bin; Sequeira, Vanessa B.; Hook, Jeff; Coombes, Jason D.; Lucas, Christine A.; Stehn, Justine R.; Musgrove, Elizabeth A.; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T.; Hardeman, Edna C.; Gunning, Peter W.

    2015-01-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells. PMID:25971798

  12. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  13. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    PubMed

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  14. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  15. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement.

    PubMed

    Disanza, A; Steffen, A; Hertzog, M; Frittoli, E; Rottner, K; Scita, G

    2005-05-01

    Dynamic assembly of actin filaments generates the forces supporting cell motility. Several recent biochemical and genetic studies have revealed a plethora of different actin binding proteins whose coordinated activity regulates the turnover of actin filaments, thus controlling a variety of actin-based processes, including cell migration. Additionally, emerging evidence is highlighting a scenario whereby the same basic set of actin regulatory proteins is also the convergent node of different signaling pathways emanating from extracellular stimuli, like those from receptor tyrosine kinases. Here, we will focus on the molecular mechanisms of how the machinery of actin polymerization functions and is regulated, in a signaling-dependent mode, to generate site-directed actin assembly leading to cell motility.

  16. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    PubMed Central

    Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  17. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  18. Calcium Regulation of an Actin Spring

    PubMed Central

    Tam, Barney K.; Shin, Jennifer H.; Pfeiffer, Emily; Matsudaira, P.; Mahadevan, L.

    2009-01-01

    Abstract Calcium is essential for many biological processes involved in cellular motility. However, the pathway by which calcium influences motility, in processes such as muscle contraction and neuronal growth, is often indirect and complex. We establish a simple and direct mechanochemical link that shows how calcium quantitatively regulates the dynamics of a primitive motile system, the actin-based acrosomal bundle of horseshoe crab sperm. The extension of this bundle requires the continuous presence of external calcium. Furthermore, the extension rate increases with calcium concentration, but at a given concentration, we find that the volumetric rate of extension is constant. Our experiments and theory suggest that calcium sequentially binds to calmodulin molecules decorating the actin filaments. This binding leads to a collective wave of untwisting of the actin filaments that drives bundle extension. PMID:19686660

  19. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    PubMed

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  20. The β-actin mRNA zipcode regulates epithelial adherens junction assembly but not maintenance

    PubMed Central

    Gutierrez, Natasha; Eromobor, Itua; Petrie, Ryan J.; Vedula, Pavan; Cruz, Lissette; Rodriguez, Alexis J.

    2014-01-01

    Epithelial cell-cell contact stimulates actin cytoskeleton remodeling to down-regulate branched filament polymerization-driven lamellar protrusion and subsequently to assemble linear actin filaments required for E-cadherin anchoring during adherens junction complex assembly. In this manuscript, we demonstrate that de novo protein synthesis, the β-actin 3′ UTR, and the β-actin mRNA zipcode are required for epithelial adherens junction complex assembly but not maintenance. Specifically, we demonstrate that perturbing cell-cell contact-localized β-actin monomer synthesis causes epithelial adherens junction assembly defects. Consequently, inhibiting β-actin mRNA zipcode/ZBP1 interactions with β-actin mRNA zipcode antisense oligonucleotides, to intentionally delocalize β-actin monomer synthesis, is sufficient to perturb adherens junction assembly following epithelial cell-cell contact. Additionally, we demonstrate active RhoA, the signal required to drive zipcode-mediated β-actin mRNA targeting, is localized at epithelial cell-cell contact sites in a β-actin mRNA zipcode-dependent manner. Moreover, chemically inhibiting Src kinase activity prevents the local stimulation of β-actin monomer synthesis at cell-cell contact sites while inhibiting epithelial adherens junction assembly. Together, these data demonstrate that epithelial cell-cell contact stimulates β-actin mRNA zipcode-mediated monomer synthesis to spatially regulate actin filament remodeling, thereby controlling adherens junction assembly to modulate cell and tissue adhesion. PMID:24681968

  1. Regulation of Sodium Channel Activity by Capping of Actin Filaments

    PubMed Central

    Shumilina, Ekaterina V.; Negulyaev, Yuri A.; Morachevskaya, Elena A.; Hinssen, Horst; Khaitlina, Sofia Yu

    2003-01-01

    Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells. PMID:12686620

  2. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Zheng, Bin; Han, Mei; Bernier, Michel; Wen, Jin-kun

    2010-01-01

    Nuclear actin is involoved in transcription of all three RNA polymerases, chromatin remodeling, and formation of hnRNP complexes as well as recruitment of histone modifier to the active gene. In addition, actin-binding proteins (ABPs) control actin nucleation, bundling, filament capping, fragmentation, and monomer availability in the cytoplasm. In recent years, more and more attention is on the role of actin and ABPs in the modulation of the subcellular localization of transcriptional regulators. This review focuses on the recent developments about transcription and transcriptional regulation by nuclear actin, regulation of muscle-specific gene expression, nuclear receptor and transcription complexes by ABPs. Among them, STARS and ABLIM regulate actin dynamics and SRF-dependent muscle-specific gene expression. Functionally and structurally unrelated cytoplasmic ABPs interact cooperatively with nuclear receptor and regulate its transactivation. Furthermore, ABPs also participate in the formation of transcription complexes. PMID:19459931

  3. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    PubMed

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  4. Regulation of actin catch-slip bonds with a RhoA-formin module

    NASA Astrophysics Data System (ADS)

    Lee, Cho-Yin; Lou, Jizhong; Wen, Kuo-Kuang; McKane, Melissa; Eskin, Suzanne G.; Rubenstein, Peter A.; Chien, Shu; Ono, Shoichiro; Zhu, Cheng; McIntire, Larry V.

    2016-10-01

    The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions.

  5. Regulation of actin catch-slip bonds with a RhoA-formin module

    PubMed Central

    Lee, Cho-yin; Lou, Jizhong; Wen, Kuo-Kuang; McKane, Melissa; Eskin, Suzanne G.; Rubenstein, Peter A.; Chien, Shu; Ono, Shoichiro; Zhu, Cheng; McIntire, Larry V.

    2016-01-01

    The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions. PMID:27731359

  6. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity.

    PubMed

    Kalo, Alon; Kanter, Itamar; Shraga, Amit; Sheinberger, Jonathan; Tzemach, Hadar; Kinor, Noa; Singer, Robert H; Lionnet, Timothée; Shav-Tal, Yaron

    2015-04-21

    The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF) protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  7. Inside view of cell locomotion through single-molecule: fast F-/G-actin cycle and G-actin regulation of polymer restoration

    PubMed Central

    Watanabe, Naoki

    2010-01-01

    The actin cytoskeleton drives cell locomotion and tissue remodeling. The invention of live-cell fluorescence single-molecule imaging opened a window for direct viewing of the actin remodeling processes in the cell. Since then, a number of unanticipated molecular functions have been revealed. One is the mechanism of F-actin network breakdown. In lamellipodia, one third of newly polymerized F-actin disassembles within 10 seconds. This fast F-actin turnover is facilitated by the filament severing/disrupting activity involving cofilin and AIP1. Astoundingly fast dissociation kinetics of the barbed end interactors including capping protein suggests that F-actin turnover might proceed through repetitive disruption/reassembly of the filament near the barbed end. The picture of actin polymerization is also being revealed. At the leading edge of the cell, Arp2/3 complex is highly activated in a narrow edge region. In contrast, mDia1 and its related Formin homology proteins display a long-distance directional molecular movement using their processive actin capping ability. Recently, these two independently-developed projects converged into a discovery of the spatiotemporal coupling between mDia1-mediated filament nucleation and actin disassembly. Presumably, the local concentration fluctuation of G-actin regulates the actin nucleation efficiency of specific actin nucleators including mDia1. Pharmacological perturbation and quantitative molecular behavior analysis synergize to reveal hidden molecular linkages in the actin turnover cycle and cell signaling. PMID:20075609

  8. Phosphorylated filamin A regulates actin-linked caveolae dynamics.

    PubMed

    Muriel, Olivia; Echarri, Asier; Hellriegel, Christian; Pavón, Dácil M; Beccari, Leonardo; Del Pozo, Miguel A

    2011-08-15

    Caveolae are relatively stable membrane invaginations that compartmentalize signaling, regulate lipid metabolism and mediate viral entry. Caveolae are closely associated with actin fibers and internalize in response to diverse stimuli. Loss of cell adhesion is known to induce rapid and robust caveolae internalization and trafficking toward a Rab11-positive recycling endosome; however, pathways governing this process are poorly understood. Here, we report that filamin A is required to maintain the F-actin-dependent linear distribution of caveolin-1. High spatiotemporal resolution particle tracking of caveolin-1-GFP vesicles by total internal reflection fluorescence (TIRF) microscopy revealed that FLNa is required for the F-actin-dependent arrest of caveolin-1 vesicles in a confined area and their stable anchorage to the plasma membrane. The linear distribution and anchorage of caveolin-1 vesicles are both required for proper caveolin-1 inwards trafficking. De-adhesion-triggered caveolae inward trafficking towards a recycling endosome is impaired in FLNa-depleted HeLa and FLNa-deficient M2-melanoma cells. Inwards trafficking of caveolin-1 requires both the ability of FLNa to bind actin and cycling PKCα-dependent phosphorylation of FLNa on Ser2152 after cell detachment. © 2011. Published by The Company of Biologists Ltd

  9. Cigarette Smoke-Related Hydroquinone Induces Filamentous Actin Reorganization and Heat Shock Protein 27 Phosphorylation through p38 and Extracellular Signal-Regulated Kinase 1/2 in Retinal Pigment Epithelium

    PubMed Central

    Pons, Marianne; Cousins, Scott W.; Csaky, Karl G.; Striker, Gary; Marin-Castaño, Maria E.

    2010-01-01

    Retinal pigment epithelium (RPE)-derived membranous debris named blebs, may accumulate and contribute to sub-RPE deposit formation, which is the earliest sign of age-related macular degeneration (AMD). Oxidative injury to the RPE might play a significant role in AMD. However, the underlying mechanisms are unknown. We previously reported that hydroquinone (HQ), a major pro-oxidant in cigarette smoke, foodstuff, and atmospheric pollutants, induces actin rearrangement and membrane blebbing in RPE cells as well as sub-RPE deposits in mice. Here, we show for the first time that phosphorylated Heat shock protein 27 (Hsp27), a key regulator of actin filaments dynamics, is up-regulated in RPE from patients with AMD. Also, HQ-induced nonlethal oxidative injury led to Hsp27mRNA up-regulation, dimer formation, and Hsp27 phosphorylation in ARPE-19 cells. Furthermore, we found that a cross talk between p38 and extracellular signal-regulated kinase (ERK) mediates HQ-induced Hsp27 phosphorylation and actin aggregate formation, revealing ERK as a novel upstream mediator of Hsp27 phosphorylation. Finally, we demonstrated that Hsp25, p38, and ERK phosphorylation are increased in aging C57BL/6 mice chronically exposed to HQ, whereas Hsp25 expression is decreased. Our data suggest that phosphorylated Hsp27 might be a key mediator in AMD and HQ-induced oxidative injury to the RPE, which may provide helpful insights into the early cellular events associated with actin reorganization and bleb formation involved in sub-RPE deposits formation relevant to the pathogenesis of AMD. PMID:20651235

  10. New Insights into Mechanism and Regulation of Actin Capping Protein

    PubMed Central

    Cooper, John A.; Sept, David

    2008-01-01

    The heterodimeric actin capping protein, referred to here as “CP,” is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology. PMID:18544499

  11. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    PubMed Central

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion. PMID:23051736

  12. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  13. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing. © 2015 by The American Society of Hematology.

  14. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  15. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-08

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  16. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae.

    PubMed

    Gourlay, C W; Ayscough, K R

    2006-09-01

    Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.

  17. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    PubMed

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction.

  18. Triggering signaling pathways using F-actin self-organization.

    PubMed

    Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z

    2016-10-04

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.

  19. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  20. Actin is an essential component of plant gravitropic signaling pathways

    NASA Astrophysics Data System (ADS)

    Braun, Markus; Hauslage, Jens; Limbach, Christoph

    2003-08-01

    A role of the actin cytoskeleton in the different phases of gravitropism in higher plant organs seems obvious, but experimental evidence is still inconclusive and contradictory. In gravitropically tip-growing rhizoids and protonemata, however, it is well documented that actin is an essential component of the tip-growth machinery and is involved either in the cellular mechanisms that lead to gravity sensing and in the processes of the graviresponses that result in the reorientation of the growth direction. All these processes depend on a complexly organized and highly dynamic organization of actin filaments whose diverse functions are coordinated by numerous associated proteins. Actin filaments and myosins mediate the transport of secretory vehicles to the growing tip and precisely control the delivery of cell wall material. In addition, both cell types use a very efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. The studies presented in this paper provide evidence for the essential role of actin in plant gravity sensing and the gravitropic responses. A unique actin-organizing center exists in the tip of characean rhizoids and protonemata which is associated with and dynamically regulated by a specific set of actin-dynamizing proteins. It is concluded that this highly dynamic apical actin array is an essential prerequisite for gravity sensing and gravity-oriented tip growth.

  1. Cutting Edge: Drebrin-Regulated Actin Dynamics Regulate IgE-Dependent Mast Cell Activation and Allergic Responses.

    PubMed

    Law, Mankit; Lee, YongChan; Morales, J Luis; Ning, Gang; Huang, Weishan; Pabon, Jonathan; Kannan, Arun K; Jeong, Ah-Reum; Wood, Amie; Carter, Chavez; Mohinta, Sonia; Song, Jihong; August, Avery

    2015-07-15

    Mast cells play critical roles in allergic responses. Calcium signaling controls the function of these cells, and a role for actin in regulating calcium influx into cells has been suggested. We have previously identified the actin reorganizing protein Drebrin as a target of the immunosuppressant 3,5-bistrifluoromethyl pyrazole, which inhibits calcium influx into cells. In this study, we show that Drebrin(-/-) mice exhibit reduced IgE-mediated histamine release and passive systemic anaphylaxis, and Drebrin(-/-) mast cells also exhibit defects in FcεRI-mediated degranulation. Drebrin(-/-) mast cells exhibit defects in actin cytoskeleton organization and calcium responses downstream of the FcεRI, and agents that relieve actin reorganization rescue mast cell FcεRI-induced degranulation. Our results indicate that Drebrin regulates the actin cytoskeleton and calcium responses in mast cells, thus regulating mast cell function in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

    PubMed

    García-Ortiz, Almudena; Martín-Cofreces, Noa B; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco; Serrador, Juan M

    2017-04-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.

  3. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1

    PubMed Central

    García-Ortiz, Almudena; Martín-Cofreces, Noa B.; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M.; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco

    2017-01-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. PMID:28394935

  4. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    PubMed

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  5. Nervous Wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth

    PubMed Central

    Rodal, Avital A.; Motola-Barnes, Rebecca N.; Littleton, J. Troy

    2008-01-01

    Regulation of synaptic morphology depends on endocytosis of activated growth signal receptors, but the mechanisms regulating this membrane trafficking event are unclear. Actin polymerization mediated by WASp (Wiskott-Aldrich Syndrome Protein) and the Arp2/3 (Actin related protein 2/3) complex generates forces at multiple stages of endocytosis. F-BAR/SH3 domain proteins play key roles in this process by coordinating membrane deformation with WASp-dependent actin polymerization. However, it is not known how other WASp ligands, such as the small GTPase Cdc42, coordinate with F-BAR/SH3 proteins to regulate actin polymerization at membranes. Nervous Wreck (Nwk) is a conserved neuronal F-BAR/SH3 protein that localizes to periactive zones at the Drosophila larval neuromuscular junction (NMJ) and is required for regulation of synaptic growth via BMP signaling. Here we show that Nwk interacts with the endocytic proteins dynamin and Dap160 and functions together with Cdc42 to promote WASp-mediated actin polymerization in vitro and to regulate synaptic growth in vivo. Cdc42 function is associated with Rab11-dependent recycling endosomes, and we show that Rab11 co-localizes with Nwk at the NMJ. Taken together, our results suggest that synaptic growth activated by growth factor signaling is controlled at an endosomal compartment via coordinated Nwk and Cdc42-dependent actin assembly. PMID:18701694

  6. Thymosin beta4: actin regulation and more.

    PubMed

    Yarmola, Elena G; Klimenko, Evguenia S; Fujita, Go; Bubb, Michael R

    2007-09-01

    The intracellular function of thymosin beta(4) is not limited to simple sequestration of globular actin. Our recent studies revealed that thymosin beta(4) affects actin critical concentration and forms a ternary complex with actin and profilin. The consequences of this complex formation can be very significant. Our new data demonstrate that it is likely that profilin affects binding of thymosin beta(4) to actin in the ternary complex through allosteric changes in actin rather than through competition for the binding site. The N- and C-terminal thymosin beta(4) helices are known to be unstructured in aqueous solution and to adopt helical conformation in organic solvents or upon binding to actin. Osmolytes stabilize protein structure, and TMAO (trimethylamine N-oxide) specifically stabilizes hydrogen bonds. This increases affinity of intact thymosin beta(4) to actin significantly, but the increase is much less for thymosin beta(4) sulfoxide. Our data show that oxidation does not alter binding of profilin to form a ternary complex, and therefore it is very likely that there is no direct steric interference by methionine 6 of thymosin beta(4). Rather, since TMAO has little effect on thymosin beta(4) sulfoxide, this observation is consistent with the hypothesis that methionine oxidation prevents helix transition. The experiment with truncated versions of thymosin beta(4) also supports this hypothesis. Oxidation and formation of the helices are important for both intra- and extracellular properties of thymosin beta(4). We found that actin and, in lesser extent, profilin-actin complex protect thymosin beta(4) from oxidation.

  7. EphA Signaling Promotes Actin-based Dendritic Spine Remodeling through Slingshot Phosphatase*

    PubMed Central

    Zhou, Lei; Jones, Emma V.; Murai, Keith K.

    2012-01-01

    Actin cytoskeletal remodeling plays a critical role in transforming the morphology of subcellular structures across various cell types. In the brain, restructuring of dendritic spines through actin cytoskeleletal reorganization is implicated in the regulation of synaptic efficacy and the storage of information in neural circuits. However, the upstream pathways that provoke actin-based spine changes remain only partly understood. Here we show that EphA receptor signaling remodels spines by triggering a sequence of events involving actin filament rearrangement and synapse/spine reorganization. Rapid EphA signaling over minutes activates the actin filament depolymerizing/severing factor cofilin, alters F-actin distribution in spines, and causes transient spine elongation through the phosphatases slingshot 1 (SSH1) and calcineurin/protein phosphatase 2B (PP2B). This early phase of spine extension is followed by synaptic reorganization events that take place over minutes to hours and involve the relocation of pre/postsynaptic components and ultimately spine retraction. Thus, EphA receptors utilize discrete cellular and molecular pathways to promote actin-based structural plasticity of excitatory synapses. PMID:22282498

  8. The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization.

    PubMed

    Bonacci, Gustavo; Fletcher, Jason; Devani, Madhav; Dwivedi, Harsh; Keller, Ray; Chang, Chenbei

    2012-04-01

    Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation. © 2012 Elsevier Inc. All rights reserved.

  9. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity.

    PubMed

    Xu, Hongjie; Wu, Feng; Zhang, Hongyu; Yang, Chao; Li, Kai; Wang, Hailong; Yang, Honghui; Liu, Yue; Ding, Bai; Tan, Yingjun; Yuan, Ming; Li, Yinghui; Dai, Zhongquan

    2017-07-01

    Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG. Copyright © 2017. Published by Elsevier B.V.

  10. The Nck family of adapter proteins: regulators of actin cytoskeleton.

    PubMed

    Buday, László; Wunderlich, Livius; Tamás, Peter

    2002-09-01

    SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.

  11. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling.

    PubMed

    Mattila, Pieta K; Batista, Facundo D; Treanor, Bebhinn

    2016-02-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.

  12. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    PubMed Central

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  13. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  14. EPLIN: a fundamental actin regulator in cancer metastasis?

    PubMed

    Collins, Ross J; Jiang, Wen G; Hargest, Rachel; Mason, Malcolm D; Sanders, Andrew J

    2015-12-01

    Treatment of malignant disease is of paramount importance in modern medicine. In 2012, it was estimated that 162,000 people died from cancer in the UK which illustrates a fundamental problem. Traditional treatments for cancer have various drawbacks, and this creates a considerable need for specific, molecular targets to overcome cancer spread. Epithelial protein lost in neoplasm (EPLIN) is an actin-associated molecule which has been implicated in the development and progression of various cancers including breast, prostate, oesophageal and lung where EPLIN expression is frequently lost as the cancer progresses. EPLIN is important in the regulation of actin dynamics and has multiple associations at epithelial cells junctions. Thus, EPLIN loss in cancer may have significant effects on cancer cell migration and invasion, increasing metastatic potential. Overexpression of EPLIN has proved to be an effective tool for manipulating cancerous traits such as reducing cell growth and cell motility and rendering cells less invasive illustrating the therapeutic potential of EPLIN. Here, we review the current state of knowledge of EPLIN, highlighting EPLIN involvement in regulating cytoskeletal dynamics, signalling pathways and implications in cancer and metastasis.

  15. Disease causing mutations of troponin alter regulated actin state distributions.

    PubMed

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  16. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  17. Actin-mediated feedback loops in B-cell receptor signaling

    PubMed Central

    Song, Wenxia; Liu, Chaohong; Seeley-Fallen, Margaret K.; Miller, Heather; Ketchum, Christina; Upadhyaya, Arpita

    2013-01-01

    Summary Upon recognizing cognate antigen, B cells mobilize multiple cellular apparatuses to propagate an optimal response. Antigen binding is transduced into cytoplasmic signaling events through B-cell antigen receptor (BCR)-based signalosomes at the B-cell surface. BCR signalosomes are dynamic and transient and are subsequently endocytosed for antigen processing. The function of BCR signalosomes is one of the determining factors for the fate of B cells: clonal expansion, anergy, or apoptosis. Accumulating evidence underscores the importance of the actin cytoskeleton in B-cell activation. We have begun to appreciate the role of actin dynamics in regulating BCR-mediated tonic signaling and the formation of BCR signalosomes. Our recent studies reveal an additional function of the actin cytoskeleton in the downregulation of BCR signaling, consequently contributing to the generation and maintenance of B-cell self-tolerance. In this review, we discuss how actin remodels its organization and dynamics in close coordination with BCR signaling and how actin remodeling in turn amplifies the activation and subsequent downregulation process of BCR signaling, providing vital feedback for optimal BCR activation. PMID:24117821

  18. ER transport on actin filaments in squid giant axon: implications for signal transduction at synapse.

    PubMed

    Langford, G M

    1999-12-01

    The smooth endoplasmic reticulum (S-ER) is transported on actin filaments in the giant axon of the squid. The identity of the myosin motors that transport S-ER in the squid giant axon has been determined. Our recent studies have shown that the motor for movement of S-ER vesicles on actin filaments is Myosin-V (1). These findings grew out of a series of studies that began with the initial observation that vesicles in the giant axon of the squid move on both microtubules and actin filaments (2). These initial studies documented the ability of individual vesicles to move from microtubules to actin filaments and led to the development of the dual filament model of vesicle transport (3, 4). The model proposes that long-range movement of vesicles occurs on microtubules and short-range movement on actin filaments. S-ER vesicles were identified as the major population of vesicles in the axon that use myosin-V for movement on actin filaments. The S-ER is the primary site of calcium storage, and it regulates the local cytosolic calcium concentration. Calcium release from the S-ER in neurons couples electrical excitation to signal transduction cascades. The signaling cascades triggered by the release of calcium from S-ER in dendritic spines are postulated to initiate the cellular mechanisms that lead to learning and memory.

  19. Antibody against the actin-binding protein depactin attenuates Ca2+ signaling in starfish eggs.

    PubMed

    Chun, Jong T; Vasilev, Filip; Santella, Luigia

    2013-11-15

    Being present in starfish oocytes, the cofilin/ADF (actin-depolymerizing factor) family protein depactin severs actin filaments. Previously, we reported that exogenous cofilin microinjected into starfish eggs significantly augmented the Ca(2+) release in response to inositol 1,4,5-trisphosphate (InsP3) or fertilizing sperm, raising the possibility that intracellular Ca(2+) signaling could be modulated by the actin cytoskeleton. In this communication, we have targeted the endogenous depactin by use of the specific antibody that was raised against its actin-binding domain. The anti-depactin antibody microinjected into the starfish oocytes and eggs effectively altered the structure of the actin cytoskeleton, and significantly delayed the meiotic progression induced by 1-methyladenine. When microinjected into the mature eggs, the anti-depactin antibody markedly reduced the amplitude of the Ca(2+) response in a dose-dependent manner, corroborating the results of our previous study with cofilin. In addition, the eggs microinjected with the anti-depactin antibody displayed reduced rate of successful elevation of the fertilization envelope and an elevated tendency of polyspermic interaction. Taken together, our data suggest that the actin cytoskeleton is implicated not only in meiotic maturation and intracellular Ca(2+) signaling, but also in the fine regulation of gametes interaction and cortical granules exocytosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  1. Fascin links Btl/FGFR signalling to the actin cytoskeleton during Drosophila tracheal morphogenesis.

    PubMed

    Okenve-Ramos, Pilar; Llimargas, Marta

    2014-02-01

    A key challenge in normal development and in disease is to elucidate the mechanisms of cell migration. Here we approach this question using the tracheal system of Drosophila as a model. Tracheal cell migration requires the Breathless/FGFR pathway; however, how the pathway induces migration remains poorly understood. We find that the Breathless pathway upregulates singed at the tip of tracheal branches, and that this regulation is functionally relevant. singed encodes Drosophila Fascin, which belongs to a conserved family of actin-bundling proteins involved in cancer progression and metastasis upon misregulation. We show that singed is required for filopodia stiffness and proper morphology of tracheal tip cells, defects that correlate with an abnormal actin organisation. We propose that singed-regulated filopodia and cell fronts are required for timely and guided branch migration and for terminal branching and branch fusion. We find that singed requirements rely on its actin-bundling activity controlled by phosphorylation, and that active Singed can promote tip cell features. Furthermore, we find that singed acts in concert with forked, another actin cross-linker. The absence of both cross-linkers further stresses the relevance of tip cell morphology and filopodia for tracheal development. In summary, our results on the one hand reveal a previously undescribed role for forked in the organisation of transient actin structures such as filopodia, and on the other hand identify singed as a new target of Breathless signal, establishing a link between guidance cues, the actin cytoskeleton and tracheal morphogenesis.

  2. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes.

    PubMed

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A; Macías-Silva, Marina

    2015-02-13

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.

  3. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  4. UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph Polarize F-Actin during Embryonic Morphogenesis by Regulating the WAVE/SCAR Actin Nucleation Complex

    PubMed Central

    Bernadskaya, Yelena Y.; Wallace, Andre; Nguyen, Jillian; Mohler, William A.; Soto, Martha C.

    2012-01-01

    Many cells in a developing embryo, including neurons and their axons and growth cones, must integrate multiple guidance cues to undergo directed growth and migration. The UNC-6/netrin, SLT-1/slit, and VAB-2/Ephrin guidance cues, and their receptors, UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph, are known to be major regulators of cellular growth and migration. One important area of research is identifying the molecules that interpret this guidance information downstream of the guidance receptors to reorganize the actin cytoskeleton. However, how guidance cues regulate the actin cytoskeleton is not well understood. We report here that UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph differentially regulate the abundance and subcellular localization of the WAVE/SCAR actin nucleation complex and its activator, Rac1/CED-10, in the Caenorhabditis elegans embryonic epidermis. Loss of any of these three pathways results in embryos that fail embryonic morphogenesis. Similar defects in epidermal enclosure have been observed when CED-10/Rac1 or the WAVE/SCAR actin nucleation complex are missing during embryonic development in C. elegans. Genetic and molecular experiments demonstrate that in fact, these three axonal guidance proteins differentially regulate the levels and membrane enrichment of the WAVE/SCAR complex and its activator, Rac1/CED-10, in the epidermis. Live imaging of filamentous actin (F-actin) in embryos developing in the absence of individual guidance receptors shows that high levels of F-actin are not essential for polarized cell migrations, but that properly polarized distribution of F-actin is essential. These results suggest that proper membrane recruitment and activation of CED-10/Rac1 and of WAVE/SCAR by signals at the plasma membrane result in polarized F-actin that permits directed movements and suggest how multiple guidance cues can result in distinct changes in actin nucleation during morphogenesis. PMID:22876199

  5. Actin-binding Protein Drebrin Regulates HIV-1-triggered Actin Polymerization and Viral Infection*

    PubMed Central

    Gordón-Alonso, Mónica; Rocha-Perugini, Vera; Álvarez, Susana; Ursa, Ángeles; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Muñoz-Fernández, María A.; Sánchez-Madrid, Francisco

    2013-01-01

    HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1. PMID:23926103

  6. Cortical actin regulation modulates vascular contractility and compliance in veins

    PubMed Central

    Saphirstein, Robert J; Gao, Yuan Z; Lin, Qian Qian; Morgan, Kathleen G

    2015-01-01

    Abstract The literature on arterial mechanics is extensive, but far less is known about mechanisms controlling mechanical properties of veins. We use here a multi-scale approach to identify subcellular sources of venous stiffness. Portal vein tissue displays a severalfold decrease in passive stiffness compared to aortic tissues. The α-adrenergic agonist phenylephrine (PE) increased tissue stress and stiffness, both attenuated by cytochalasin D (CytoD) and PP2, inhibitors of actin polymerization and Src activity, respectively. We quantify, for the first time, cortical cellular stiffness in freshly isolated contractile vascular smooth muscle cells using magnetic microneedle technology. Cortical stiffness is significantly increased by PE and CytoD inhibits this increase but, surprisingly, PP2 does not. No detectable change in focal adhesion size, measured by immunofluorescence of FAK and zyxin, accompanies the PE-induced changes in cortical stiffness. Probing with phospho-specific antibodies confirmed activation of FAK/Src and ERK pathways and caldesmon phosphorylation. Thus, venous tissue stiffness is regulated both at the level of the smooth muscle cell cortex, via cortical actin polymerization, and by downstream smooth muscle effectors of Src/ERK signalling pathways. These findings identify novel potential molecular targets for the modulation of venous capacitance and venous return in health and disease. Key points Most cardiovascular research focuses on arterial mechanisms of disease, largely ignoring venous mechanisms. Here we examine ex vivo venous stiffness, spanning tissue to molecular levels, using biomechanics and magnetic microneedle technology, and show for the first time that venous stiffness is regulated by a molecular actin switch within the vascular smooth muscle cell in the wall of the vein. This switch connects the contractile apparatus within the cell to adhesion structures and facilitates stiffening of the vessel wall, regulating blood flow return

  7. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing

    PubMed Central

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla

    2015-01-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing. PMID:26216900

  8. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    PubMed Central

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  9. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium.

    PubMed

    Furukawa, Ruth; Maselli, Andrew; Thomson, Susanne A M; Lim, Rita W L; Stokes, John V; Fechheimer, Marcus

    2003-01-01

    The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.

  10. Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins.

    PubMed Central

    Leinweber, B D; Leavis, P C; Grabarek, Z; Wang, C L; Morgan, K G

    1999-01-01

    An interaction between extracellular regulated kinase 1 (ERK1) and calponin has previously been reported (Menice, Hulvershorn, Adam, Wang and Morgan (1997) J. Biol. Chem. 272 (40), 25157-25161) and has been suggested to reflect a function of calponin as a signalling molecule. We report in this study that calponin binds to both ERK1 and ERK2 under native conditions as well as in an overlay assay. Using chymotryptic fragments of calponin, the binding site of ERK on calponin was identified as the calponin homology (CH) domain, an N-terminal region of calponin found in other actin-binding proteins. ERK also bound, in a gel overlay assay, alpha-actinin, a protein with two tandem CH domains, as well as a 27 kDa thermolysin product of alpha-actinin containing the CH domains of alpha-actinin. The CH domain of calponin could compete with intact calponin or alpha-actinin for ERK binding. Titration of acrylodan-labelled calponin with ERK gave a K(a) of 6x10(6) M(-1) and titration of acrylodan-labelled calponin with a peptide from the alphaL16 helix of ERK gave a K(a) of 1x10(6) M(-1). Recombinant ERK was found to co-sediment with purified actin and induced a fluorescence change in pyrene-labelled F-actin (K(a)=5x10(6) M(-1)). The interaction of ERK with CH domains points to a new potential function for CH domains. The interaction of ERK with actin raises the possibility that actin may provide a scaffold for ERK signalling complexes in both muscle and non-muscle cells. PMID:10548541

  11. Polycomb group protein ezh2 controls actin polymerization and cell signaling.

    PubMed

    Su, I-hsin; Dobenecker, Marc-Werner; Dickinson, Ephraim; Oser, Matthew; Basavaraj, Ashwin; Marqueron, Raphael; Viale, Agnes; Reinberg, Danny; Wülfing, Christoph; Tarakhovsky, Alexander

    2005-05-06

    Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.

  12. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton.

    PubMed

    Faul, Christian; Asanuma, Katsuhiko; Yanagida-Asanuma, Etsuko; Kim, Kwanghee; Mundel, Peter

    2007-09-01

    Podocytes of the renal glomerulus are unique cells with a complex cellular organization consisting of a cell body, major processes and foot processes. Podocyte foot processes form a characteristic interdigitating pattern with foot processes of neighboring podocytes, leaving in between the filtration slits that are bridged by the glomerular slit diaphragm. The highly dynamic foot processes contain an actin-based contractile apparatus comparable to that of smooth muscle cells or pericytes. Mutations affecting several podocyte proteins lead to rearrangement of the actin cytoskeleton, disruption of the filtration barrier and subsequent renal disease. The fact that the dynamic regulation of the podocyte cytoskeleton is vital to kidney function has led to podocytes emerging as an excellent model system for studying actin cytoskeleton dynamics in a physiological context.

  13. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis.

    PubMed

    Schnoor, Michael; García Ponce, Alexander; Vadillo, Eduardo; Pelayo, Rosana; Rossaint, Jan; Zarbock, Alexander

    2017-02-02

    Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.

  14. Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration

    PubMed Central

    Cai, Huaqing; Sun, Yaohui; Huang, Chuan-Hsiang; Freyre, Mariel; Zhao, Min; Devreotes, Peter N.; Weiner, Orion D.

    2016-01-01

    For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. PMID:26890004

  15. Multiple roles for the actin cytoskeleton during regulated exocytosis

    PubMed Central

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507

  16. Modest Interference with Actin Dynamics in Primary T Cell Activation by Antigen Presenting Cells Preferentially Affects Lamellal Signaling

    PubMed Central

    Roybal, Kole T.; Mace, Emily M.; Clark, Danielle J.; Leard, Alan D.; Herman, Andrew; Verkade, Paul; Orange, Jordan S.; Wülfing, Christoph

    2015-01-01

    Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC) signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation. PMID:26237588

  17. KIF17 regulates RhoA-dependent actin remodeling at epithelial cell–cell adhesions

    PubMed Central

    Acharya, Bipul R.; Espenel, Cedric; Libanje, Fotine; Raingeaud, Joel; Morgan, Jessica; Jaulin, Fanny; Kreitzer, Geri

    2016-01-01

    ABSTRACT The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell–cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP–actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell–cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilinS3A inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA–GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells. PMID:26759174

  18. Laminin-111 and the Level of Nuclear Actin Regulate Epithelial Quiescence via Exportin-6.

    PubMed

    Fiore, Ana Paula Zen Petisco; Spencer, Virginia A; Mori, Hidetoshi; Carvalho, Hernandes F; Bissell, Mina J; Bruni-Cardoso, Alexandre

    2017-06-06

    Nuclear actin (N-actin) is known to participate in the regulation of gene expression. We showed previously that N-actin levels mediate the growth and quiescence of mouse epithelial cells in response to laminin-111 (LN1), a component of the mammary basement membrane (BM). We know that BM is defective in malignant cells, and we show here that it is the LN1/N-actin pathway that is aberrant in human breast cancer cells, leading to continuous growth. Photobleaching assays revealed that N-actin exit in nonmalignant cells begins as early as 30 min after LN1 treatment. LN1 attenuates the PI3K pathway leading to upregulation of exportin-6 (XPO6) activity and shuttles actin out of the nucleus. Silencing XPO6 prevents quiescence. Malignant cells are impervious to LN1 signaling. These results shed light on the crucial role of LN1 in quiescence and differentiation and how defects in the LN1/PI3K/XPO6/N-actin axis explain the loss of tissue homeostasis and growth control that contributes to malignant progression. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 Severs Actin Filaments and Regulates Actin Cable Turnover to Promote Normal Pollen Tube Growth[W

    PubMed Central

    Zheng, Yiyan; Xie, Yurong; Jiang, Yuxiang; Qu, Xiaolu; Huang, Shanjin

    2013-01-01

    Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana ACTIN-DEPOLYMERIZING FACTOR7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7–enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes. PMID:24058157

  20. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton

    PubMed Central

    Rougerie, Pablo; Miskolci, Veronika; Cox, Dianne

    2013-01-01

    Summary Macrophages are best known for their protective search and destroy functions against invading micro-organisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures. PMID:24117824

  1. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability.

    PubMed

    Densham, Ruth M; O'Neill, Eric; Munro, June; König, Ireen; Anderson, Kurt; Kolch, Walter; Olson, Michael F

    2009-12-01

    As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21(Waf1/Cip1) (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.

  2. Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly.

    PubMed

    Freeman, N L; Field, J

    2000-02-01

    Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.

  3. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis

    PubMed Central

    Jia, Honglei; Hu, Yanfeng; Fan, Tingting; Li, Jisheng

    2015-01-01

    Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis. PMID:25652660

  4. CRMP-5 interacts with actin to regulate neurite outgrowth

    PubMed Central

    GONG, XIAOBING; TAN, MINGHUI; GAO, YUAN; CHEN, KEEN; GUO, GUOQING

    2016-01-01

    CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP-5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP-5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact that CRMP-5 interacted with the actin and tubulin cytoskeleton networks in the growth cones of developing hippocampal neurons. CRMP-5 exhibited increased affinity towards actin when compared with microtubules. Immunocytochemistry was used to identify the fact that CRMP-5 colocalized with actin predominantly in the C-domain and T-zone in growth cones. In addition, genetic inhibition of CRMP-5 by siRNA suppressed the expression of actin, growth cone development and neurite outgrowth. Overexpression of CRMP-5 promoted the interaction with actin, growth cone development and hippocampal neurite outgrowth. Taken together, these data suggest that CRMP-5 is able to interact with the actin cytoskeleton network in the growth cone and affect growth cone development and neurite outgrowth via this interaction in developing hippocampal neurons. PMID:26677106

  5. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis

    PubMed Central

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris KC; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis. PMID:26413414

  6. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    PubMed

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  7. Linking cellular actin status with cAMP signaling in Candida albicans.

    PubMed

    Wang, Yue; Zou, Hao; Fang, Hao-Ming; Zhu, Yong

    2010-01-01

    The fungal pathogen Candida albicans has a remarkable ability to switch growth forms. Particularly, the yeast-to-hyphae switch is closely linked with its virulence. A range of chemicals and conditions can promote hyphal growth including serum, peptidoglycan, CO2, neutral pH, and elevated temperature. All these signals act essentially through the adenylyl cyclase Cyr1 that synthesizes cAMP. Cells lacking Cyr1 are completely defective in hyphal growth. Recently, cellular actin status is found to influence cAMP synthesis. However, how Cyr1 senses and processes multiple external and internal signals to produce a contextually proper level of cAMP remains unclear. We hypothesized that Cyr1 itself possesses multiple sensors for different signals and achieves signal integration through a combined allosteric effect on the catalytic center. To test this hypothesis, we affinity-purified a Cyr1-containing complex and found that it could enhance cAMP synthesis upon treatment with serum, peptidoglycan or CO2 in vitro. The data indicate that the complex is an essentially intact sensor/effector apparatus for cAMP synthesis. The complex contains two more subunits, the cyclase-associated protein Cap1 and G-actin. We discovered that G-actin plays a regulatory role, rendering cAMP synthesis responsive to actin dynamics. These findings shed new lights on the mechanisms that regulate cAMP-mediated responses in fungi.

  8. From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity.

    PubMed

    Porter, Katie; Day, Brad

    2016-04-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.

    PubMed

    Ono, Shoichiro

    2013-08-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.

  10. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development

    PubMed Central

    Nowotarski, Stephanie H.; McKeon, Natalie; Moser, Rachel J.; Peifer, Mark

    2014-01-01

    Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence. PMID:25143400

  11. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation

    PubMed Central

    Phee, Hyewon; Au-Yeung, Byron B; Pryshchep, Olga; O'Hagan, Kyle Leonard; Fairbairn, Stephanie Grace; Radu, Maria; Kosoff, Rachelle; Mollenauer, Marianne; Cheng, Debra; Chernoff, Jonathan; Weiss, Arthur

    2014-01-01

    The molecular mechanisms that govern thymocyte development and maturation are incompletely understood. The P21-activated kinase 2 (Pak2) is an effector for the Rho family GTPases Rac and Cdc42 that regulate actin cytoskeletal remodeling, but its role in the immune system remains poorly understood. In this study, we show that T-cell specific deletion of Pak2 gene in mice resulted in severe T cell lymphopenia accompanied by marked defects in development, maturation, and egress of thymocytes. Pak2 was required for pre-TCR β-selection and positive selection. Surprisingly, Pak2 deficiency in CD4 single positive thymocytes prevented functional maturation and reduced expression of S1P1 and KLF2. Mechanistically, Pak2 is required for actin cytoskeletal remodeling triggered by TCR. Failure to induce proper actin cytoskeletal remodeling impaired PLCγ1 and Erk1/2 signaling in the absence of Pak2, uncovering the critical function of Pak2 as an essential regulator that governs the actin cytoskeleton-dependent signaling to ensure normal thymocyte development and maturation. DOI: http://dx.doi.org/10.7554/eLife.02270.001 PMID:24843022

  12. Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization*

    PubMed Central

    Sobierajska, Katarzyna; Skurzynski, Szymon; Stasiak, Marta; Kryczka, Jakub; Cierniewski, Czeslaw S.; Swiatkowska, Maria

    2014-01-01

    Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa. Specific interaction of both proteins was demonstrated by a solid phase binding assay, surface plasmon resonance analysis, and immunoprecipitation experiments. Second, using confocal microscopy, we found that both proteins colocalized when spreading MEG-01 cells on fibronectin. Colocalization of PDI and β-actin could be abolished by the membrane-permeable sulfhydryl blocker, N-ethylmaleimide, by the RGD peptide, and by anti-αIIbβ3 antibodies. Consequently, down-regulation of PDI expression by antisense oligonucleotides impaired the spreading of cells and initiated reorganization of the cytoskeleton. Third, because of transfection experiments followed by immunoprecipitation and confocal analysis, we provided evidence that PDI binds to the β-actin Cys374 thiol. Formation of the β-actin-PDI complex was mediated by integrin-dependent signaling in response to the adhesion of cells to the extracellular matrix. Our data suggest that PDI is released from subcellular compartments to the cytosol and translocated toward the periphery of the cell, where it forms a disulfide bond with β-actin when MEG-01 cells adhere via the αIIbβ3 integrin to fibronectin. Thus, PDI appears to regulate cytoskeletal reorganization by the thiol-disulfide exchange in β-actin via a redox-dependent mechanism. PMID:24415753

  13. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain.

    PubMed

    González-Jamett, Arlek M; Guerra, María J; Olivares, María J; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca(2+) signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca(2+)-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca(2+)-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.

  14. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain

    PubMed Central

    González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963

  15. Reactive Oxygen Species Regulate Protrusion Efficiency by Controlling Actin Dynamics

    PubMed Central

    Taulet, Nicolas; Delorme-Walker, Violaine D.; DerMardirossian, Céline

    2012-01-01

    Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency. PMID:22876286

  16. Regulation of the actin cytoskeleton by Rho kinase controls antigen presentation by CD1d1

    PubMed Central

    Gallo, Richard M.; Khan, Masood A.; Shi, Jianjian; Kapur, Reuben; Wei, Lei; Bailey, Jennifer C.; Liu, Jianyun; Brutkiewicz, Randy R.

    2012-01-01

    CD1d molecules are major histocompatibility complex (MHC) class I-like molecules that present lipid antigens to Natural Killer T (NKT) cells. Although we have previously shown that several different cell signaling molecules can play a role in the control of antigen presentation by CD1d, a defined mechanism by which a cell signaling pathway regulates CD1d function has been unclear. In the current study, we have found that the Rho kinases, ROCK1 and ROCK2, negatively regulate both human and mouse CD1d-mediated antigen presentation. Inhibition of ROCK pharmacologically, through specific ROCK1 and ROCK2 shRNA, or by using dendritic cells generated from ROCK1-deficient mice all resulted in enhanced CD1d-mediated antigen presentation compared to controls. ROCK regulates the actin cytoskeleton by phosphorylating LIM kinase which, in turn, phosphorylates cofilin, prohibiting actin fiber depolymerization. Treatment of antigen presenting cells with the actin filament depolymerizing agent, cytochalasin D, as well as knockdown of LIM kinase by shRNA, resulted in enhanced antigen presentation to NKT cells by CD1d, consistent with our ROCK inhibition data. Therefore, our overall results reveal a model whereby CD1d-mediated antigen presentation is negatively regulated by ROCK via its effects on the actin cytoskeleton. PMID:22798677

  17. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation

    PubMed Central

    Deng, Su; Bothe, Ingo; Baylies, Mary K.

    2015-01-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease. PMID:26295716

  18. F-actin rearrangement is regulated by mTORC2/Akt/Girdin in mouse fertilized eggs.

    PubMed

    Wu, Didi; Yu, Dahai; Wang, Xiuxia; Yu, Bingzhi

    2016-12-01

    In mouse fertilized eggs, correct assembly and distribution of the actin cytoskeleton are intimately related to cleavage in early-stage embryos. However, in mouse fertilized eggs, mechanisms and involved factors responsible for regulating the actin cytoskeleton are poorly defined. In this study, mTORC2, PKB/Akt and Girdin were found to modulate division of mouse fertilized eggs by regulating distribution of the actin cytoskeleton. RNA interference (RNAi)-mediated depletion of mTORC2, Akt1 or Girdin disrupted F-actin rearrangement and strongly inhibited egg development. PKB/Akt has been proven to be a downstream target of the mTORC2 signalling pathway. Girdin, a newly found actin cross-linker, has been proven to be a downstream target of the Akt signalling pathway. Furthermore, phosphorylation of both Akt1 and girdin was affected by knockdown of mTORC2. Akt1 positively regulated development of the mouse fertilized eggs by girdin-mediated F-actin rearrangement. Thus it seems that girdin could be a downstream target of the Akt1-mediated signalling pathway. Collectively, this study aimed to prove participation of mTORC2/Akt in F-actin assembly in early-stage cleavage of mouse fertilized eggs via the function of girdin.

  19. Regulation of the actin cytoskeleton by PIP2 in cytokinesis.

    PubMed

    Logan, Michael R; Mandato, Craig A

    2006-06-01

    Cytokinesis is a sequential process that occurs in three phases: assembly of the cytokinetic apparatus, furrow progression and fission (abscission) of the newly formed daughter cells. The ingression of the cleavage furrow is dependent on the constriction of an equatorial actomyosin ring in many cell types. Recent studies have demonstrated that this structure is highly dynamic and undergoes active polymerization and depolymerization throughout the furrowing process. Despite much progress in the identification of contractile ring components, little is known regarding the mechanism of its assembly and structural rearrangements. PIP2 (phosphatidylinositol 4,5-bisphosphate) is a critical regulator of actin dynamics and plays an essential role in cell motility and adhesion. Recent studies have indicated that an elevation of PIP2 at the cleavage furrow is a critical event for furrow stability. In this review we discuss the role of PIP2-mediated signalling in the structural maintenance of the contractile ring and furrow progression. In addition, we address the role of other phosphoinositides, PI(4)P (phosphatidylinositol 4-phosphate) and PIP3 (phosphatidylinositol 3,4,5-triphosphate) in these processes.

  20. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-08

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. © 2015 Llano et al.

  1. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  2. Regulation of the actin cycle in vivo by actin filament severing

    PubMed Central

    McGrath, James L.; Osborn, Eric A.; Tardy, Yanik S.; Dewey, C. Forbes; Hartwig, John H.

    2000-01-01

    Cycling of actin subunits between monomeric and filamentous phases is essential for cell crawling behavior. We investigated actin filament turnover rates, length, number, barbed end exposure, and binding of cofilin in bovine arterial endothelial cells moving at different speeds depending on their position in a confluent monolayer. Fast-translocating cells near the wound edge have short filament lifetimes compared with turnover values that proportionately increase in slower moving cells situated at increasing distances from the wound border. Contrasted with slow cells exhibiting slow actin filament turnover speeds, fast cells have less polymerized actin, shorter actin filaments, more free barbed ends, and less actin-associated cofilin. Cultured primary fibroblasts manifest identical relationships between speed and actin turnover as the endothelial cells, and fast fibroblasts expressing gelsolin have higher actin turnover rates than slow fibroblasts that lack this actin-severing protein. These results implicate actin filament severing as an important control mechanism for actin cycling in cells. PMID:10823888

  3. Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule.

    PubMed

    Dalle-Donne, I; Giustarini, D; Rossi, R; Colombo, R; Milzani, A

    2003-01-01

    S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.

  4. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics

    PubMed Central

    Bonello, Teresa T.; Janco, Miro; Hook, Jeff; Byun, Alex; Appaduray, Mark; Dedova, Irina; Hitchcock-DeGregori, Sarah; Hardeman, Edna C.; Stehn, Justine R.; Böcking, Till; Gunning, Peter W.

    2016-01-01

    The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development. PMID:26804624

  5. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.

    PubMed

    Schenk, Laura K; Möller-Kerutt, Annika; Klosowski, Rafael; Wolters, Dirk; Schaffner-Reckinger, Elisabeth; Weide, Thomas; Pavenstädt, Hermann; Vollenbröker, Beate

    2017-08-02

    Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes. © FASEB.

  6. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  7. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function.

    PubMed

    Gray, Kevin T; Kostyukova, Alla S; Fath, Thomas

    2017-04-19

    Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development. Copyright © 2017. Published by Elsevier Inc.

  8. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion.

    PubMed

    Zhang, Haitao; Ghai, Pooja; Wu, Huhehasi; Wang, Changhui; Field, Jeffrey; Zhou, Guo-Lei

    2013-07-19

    CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.

  9. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes.

    PubMed

    Wang, Huei-Jing; Wan, Ai-Ru; Jauh, Guang-Yuh

    2008-08-01

    Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.

  10. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor

    PubMed Central

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-01-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA. Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  11. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    PubMed

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  12. Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton.

    PubMed

    Sanchez, Angel Matias; Flamini, Marina Ines; Fu, Xiao-Dong; Mannella, Paolo; Giretti, Maria Silvia; Goglia, Lorenzo; Genazzani, Andrea Riccardo; Simoncini, Tommaso

    2009-08-01

    Estrogens are important regulators of neuronal cell morphology, and this is thought to be critical for gender-specific differences in brain function and dysfunction. Dendritic spine formation is dependent on actin remodeling by the WASP-family verprolin homologous (WAVE1) protein, which controls actin polymerization through the actin-related protein (Arp)-2/3 complex. Emerging evidence indicates that estrogens are effective regulators of the actin cytoskeleton in various cell types via rapid, extranuclear signaling mechanisms. We here show that 17beta-estradiol (E2) administration to rat cortical neurons leads to phosphorylation of WAVE1 on the serine residues 310, 397, and 441 and to WAVE1 redistribution toward the cell membrane at sites of dendritic spine formation. WAVE1 phosphorylation is found to be triggered by a Galpha(i)/Gbeta protein-dependent, rapid extranuclear signaling of estrogen receptor alpha to c-Src and to the small GTPase Rac1. Rac1 recruits the cyclin-dependent kinase (Cdk5) that directly phosphorylates WAVE1 on the three serine residues. After WAVE1 phosphorylation by E2, the Arp-2/3 complex concentrates at sites of spine formation, where it triggers the local reorganization of actin fibers. In parallel, E2 recruits a Galpha(13)-dependent pathway to RhoA and ROCK-2, leading to activation of actin remodeling via the actin-binding protein, moesin. Silencing of WAVE1 or of moesin abrogates the increase in dendritic spines induced by E2 in cortical neurons. In conclusion, our findings indicate that the control of actin polymerization and branching via moesin or WAVE1 is a key function of estrogen receptor alpha in neurons, which may be particularly relevant for the regulation of dendritic spines.

  13. Roles of actin cytoskeleton for regulation of chloroplast anchoring.

    PubMed

    Sakai, Yuuki; Takagi, Shingo

    2017-08-22

    Chloroplasts are known to maintain specific intracellular distribution patterns under specific environmental conditions, enabling the optimal performance of photosynthesis. To this end, chloroplasts are anchored in the cortical cytoplasm. In leaf epidermal cells of aquatic monocot Vallisneria, we recently demonstrated that the anchored chloroplasts are rapidly de-anchored upon irradiation with high-intensity blue light and that the process is probably mediated by the blue-light receptor phototropins. Chloroplast de-anchoring is a necessary step rendering the previously anchored chloroplasts mobile to allow their migration. In this article, based on the results obtained in Vallisneria together with those in other plant species, we briefly discussed possible modes of regulation of chloroplast anchoring and de-anchoring by actin cytoskeleton. The topics include roles of photoreceptor systems, actin-filament-dependent and -independent chloroplast anchoring, and independence of chloroplast de-anchoring from actomyosin and microtubule systems.

  14. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  15. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  16. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    PubMed

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-04-12

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  17. Refilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics.

    PubMed

    Gay, Olivia; Gilquin, Benoît; Assard, Nicole; Stuelsatz, Pascal; Delphin, Christian; Lachuer, Joël; Gidrol, Xavier; Baudier, Jacques

    2016-10-15

    Refilins (RefilinA and RefilinB) are members of a novel family of Filamin binding proteins that function as molecular switches to conformationally alter the Actin filament network into bundles. We show here that Refilins are extremely labile proteins. An N-terminal PEST/DSG(X)2-4S motif mediates ubiquitin-independent rapid degradation. A second degradation signal is localized within the C-terminus. Only RefilinB is protected from rapid degradation by an auto-inhibitory domain that masks the PEST/DSG(X)2-4S motif. Dual regulation of RefilinA and RefilinB stability was confirmed in rat brain NG2 precursor cells (polydendrocyte). Using loss- and gain-of-function approaches we show that in these cells, and in U373MG cells, Refilins contribute to the dynamics of lamellipodium protrusion by catalysing Actin bundle formation within the lamella Actin network. These studies extend the Actin bundling function of the Refilin-Filamin complex to dynamic regulation of cell membrane remodelling.

  18. Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion.

    PubMed

    Ohishi, Tomokazu; Yoshida, Haruka; Katori, Masamichi; Migita, Toshiro; Muramatsu, Yukiko; Miyake, Mao; Ishikawa, Yuichi; Saiura, Akio; Iemura, Shun-Ichiro; Natsume, Tohru; Seimiya, Hiroyuki

    2017-02-15

    Tankyrase, a poly(ADP-ribose) polymerase (PARP) that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion. In TNKS1BP1-depleted cells, actin filament dynamics, focal adhesion, and lamellipodia ruffling were increased with activation of the ROCK-LIMK-cofilin pathway. TNKS1BP1 bound the actin capping protein CapZA2. TNKS1BP1 depletion dissociated CapZA2 from the cytoskeleton, leading to cofilin phosphorylation and enhanced cell invasion. Tankyrase overexpression increased cofilin phosphorylation, dissociated CapZA2 from cytoskeleton, and enhanced cell invasion in a PARP activity-dependent manner. In clinical samples of pancreatic cancer, TNKS1BP1 expression was reduced in invasive regions. We propose that the tankyrase-TNKS1BP1 axis constitutes a post-translational modulator of cell invasion whose aberration promotes cancer malignancy.

  19. Refilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Assard, Nicole; Stuelsatz, Pascal; Delphin, Christian; Lachuer, Joël; Gidrol, Xavier; Baudier, Jacques

    2016-01-01

    ABSTRACT Refilins (RefilinA and RefilinB) are members of a novel family of Filamin binding proteins that function as molecular switches to conformationally alter the Actin filament network into bundles. We show here that Refilins are extremely labile proteins. An N-terminal PEST/DSG(X)2-4S motif mediates ubiquitin-independent rapid degradation. A second degradation signal is localized within the C-terminus. Only RefilinB is protected from rapid degradation by an auto-inhibitory domain that masks the PEST/DSG(X)2-4S motif. Dual regulation of RefilinA and RefilinB stability was confirmed in rat brain NG2 precursor cells (polydendrocyte). Using loss- and gain-of-function approaches we show that in these cells, and in U373MG cells, Refilins contribute to the dynamics of lamellipodium protrusion by catalysing Actin bundle formation within the lamella Actin network. These studies extend the Actin bundling function of the Refilin-Filamin complex to dynamic regulation of cell membrane remodelling. PMID:27744291

  20. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus

    PubMed Central

    Nie, Shuyi; Kee, Yun; Bronner-Fraser, Marianne

    2011-01-01

    Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca2+-calmodulin–binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration. PMID:21795398

  1. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  2. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  3. Organization and regulation of the actin cytoskeleton in the pollen tube

    PubMed Central

    Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Liu, Xiaonan; Zhang, Ruihui; Huang, Shanjin

    2015-01-01

    Proper organization of the actin cytoskeleton is crucial for pollen tube growth. However, the precise mechanisms by which the actin cytoskeleton regulates pollen tube growth remain to be further elucidated. The functions of the actin cytoskeleton are dictated by its spatial organization and dynamics. However, early observations of the distribution of actin filaments at the pollen tube apex were quite perplexing, resulting in decades of controversial debate. Fortunately, due to improvements in fixation regimens for staining actin filaments in fixed pollen tubes, as well as the adoption of appropriate markers for visualizing actin filaments in living pollen tubes, this issue has been resolved and has given rise to the consensus view of the spatial distribution of actin filaments throughout the entire pollen tube. Importantly, recent descriptions of the dynamics of individual actin filaments in the apical region have expanded our understanding of the function of actin in regulation of pollen tube growth. Furthermore, careful documentation of the function and mode of action of several actin-binding proteins expressed in pollen have provided novel insights into the regulation of actin spatial distribution and dynamics. In the current review, we summarize our understanding of the organization, dynamics, and regulation of the actin cytoskeleton in the pollen tube. PMID:25620974

  4. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks.

    PubMed

    Moore, Andrew S; Wong, Yvette C; Simpson, Cory L; Holzbaur, Erika L F

    2016-09-30

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis.

  5. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  6. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes

    PubMed Central

    Sharili, Amir S.; Kenny, Fiona N.; Vartiainen, Maria K.; Connelly, John T.

    2016-01-01

    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type β-actin or β-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration. PMID:27650314

  7. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth.

    PubMed

    Liu, Xiaonan; Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Zhang, Ruihui; Wu, Youjun; Fu, Ying; Huang, Shanjin

    2015-12-07

    Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.

  8. Actin interaction and regulation of cyclin-dependent kinase 5/p35 complex activity.

    PubMed

    Xu, Jiqing; Tsutsumi, Koji; Tokuraku, Kiyotaka; Estes, Katherine A; Hisanaga, Shin-ichi; Ikezu, Tsuneya

    2011-01-01

    Cyclin-dependent kinase 5 (Cdk5) plays a critical role during neurodevelopment, synaptic plasticity, and neurodegeneration. Cdk5 activity depends on association with neuronal proteins p35 and p25, a proteolytic product of p35. Cdk5 regulates the actin cytoskeletal dynamics that are essential for neuronal migration, neuritic growth, and synaptogenesis. However, little is known about the interaction of actin and Cdk5 and its effect on neuronal Cdk5 activity. In a previous study, we observed that Cdk5/p35 activity is negatively correlated with co-immunoprecipitated F-actin (filamentous actin) amounts in the mouse brain, and suggested that F-actin inhibits the formation of the Cdk5/p35 complex [Journal of Neuroscience (2008) vol. 28, p. 14511]. The experiments reported here were undertaken to elucidate the relationship between actin and the formation of the Cdk5/p35 complex and its activity. Instead of an F-actin-mediated inhibition, we propose that G-actin (globular actin) in the F-actin preparations is responsible for inhibiting Cdk5/p35 and Cdk5/p25 kinase activity. We found that F-actin binds to p35 but not p25 or Cdk5. We have shown that G-actin binds directly to Cdk5 without disrupting the formation of the Cdk5/p35 or Cdk5/p25 complexes. G-actin potently suppressed Cdk5/p35 and Cdk5/p25 activity when either histone H1 or purified human tau protein were used as substrates, indicating a substrate-independent inhibitory effect of G-actin on Cdk5 activity. Finally, G-actin suppressed the activity of Cdk5 immunoprecipitated from wild type and p35-deficient mouse brain, suggesting that G-actin suppresses endogenous Cdk5 activity in a p35-independent manner. Together, these results suggest a novel mechanism of actin cytoskeletal regulation of Cdk5/p35 activity.

  9. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    PubMed Central

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  10. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    PubMed

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  11. ARHGAP22 Localizes at Endosomes and Regulates Actin Cytoskeleton

    PubMed Central

    Mori, Mamiko; Saito, Koji; Ohta, Yasutaka

    2014-01-01

    Rho small GTPases control cell morphology and motility through the rearrangement of actin cytoskeleton. We have previously shown that FilGAP, a Rac-specific GAP, binds to the actin-cross-linking protein Filamin A (FLNa) and suppresses Rac-dependent lamellae formation and cell spreading. ARHGAP22 is a member of FilGAP family, and implicated in the regulation of tumor cell motility. However, little is known concerning the cellular localization and mechanism of regulation at the molecular level. Whereas FilGAP binds to FLNa and localizes to lamellae, we found that ARHGAP22 did not bind to FLNa. Forced expression of ARHGAP22 induced enlarged vesicular structures containing the endocytic markers EEA1, Rab5, and Rab11. Moreover, endogenous ARHGAP22 is co-localized with EEA1- and Rab11-positive endosomes but not with trans-Golgi marker TNG46. When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 is co-localized with Rac Q61L at membrane ruffles, suggesting that ARHGAP22 is translocated from endosomes to membrane ruffles to inactivate Rac. Forced expression of ARHGAP22 suppressed lamellae formation and cell spreading. Conversely, knockdown of endogenous ARHGAP22 stimulated cell spreading. Thus, our findings suggest that ARHGAP22 controls cell morphology by inactivating Rac but its localization is not mediated by its interaction with FLNa. PMID:24933155

  12. Gem GTPase acts upstream Gmip/RhoA to regulate cortical actin remodeling and spindle positioning during early mitosis.

    PubMed

    Andrieu, Guillaume; Quaranta, Muriel; Leprince, Corinne; Cuvillier, Olivier; Hatzoglou, Anastassia

    2014-11-01

    Gem is a small guanosine triphosphate (GTP)-binding protein within the Ras superfamily, involved in the regulation of voltage-gated calcium channel activity and cytoskeleton reorganization. Gem overexpression leads to stress fiber disruption, actin and cell shape remodeling and neurite elongation in interphase cells. In this study, we show that Gem plays a crucial role in the regulation of cortical actin cytoskeleton that undergoes active remodeling during mitosis. Ectopic expression of Gem leads to cortical actin disruption and spindle mispositioning during metaphase. The regulation of spindle positioning by Gem involves its downstream effector Gmip. Knockdown of Gmip rescued Gem-induced spindle phenotype, although both Gem and Gmip accumulated at the cell cortex. In addition, we implicated RhoA GTPase as an important effector of Gem/Gmip signaling. Inactivation of RhoA by overexpressing dominant-negative mutant prevented normal spindle positioning. Introduction of active RhoA rescued the actin and spindle positioning defects caused by Gem or Gmip overexpression. These findings demonstrate a new role of Gem/Gmip/RhoA signaling in cortical actin regulation during early mitotic stages. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells.

    PubMed

    Yu, Qin; Ren, Jing-Jing; Kong, Lan-Jing; Wang, Xiu-Ling

    2017-08-13

    During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.

  14. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction

  15. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    PubMed

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane

  16. Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast.

    PubMed

    Leadsham, Jane E; Miller, Katherine; Ayscough, Kathryn R; Colombo, Sonia; Martegani, Enzo; Sudbery, Pete; Gourlay, Campbell W

    2009-03-01

    Elucidating the mechanisms by which eukaryotic cells coordinate environmental signals with intracellular ;fate' decisions, such as apoptosis, remains one of the important challenges facing cell biologists. It has recently emerged that the dynamic nature of the actin cytoskeleton is an important factor in the linkage of sensation of extracellular stimuli to signalling mechanisms that regulate programmed cell death. In yeast, actin has been shown to play a role in the regulation of apoptosis as cells prepare themselves for quiescence in the face of nutritional exhaustion, by facilitating the shutdown of Ras-cAMP-PKA pathway activity. Here, we demonstrate that the loss of Whi2p function, a protein known to influence cell cycle exit under conditions of nutritional stress, leads to cell death in yeast that displays the hallmarks of actin-mediated apoptosis. We show that actin-mediated apoptosis occurs as a result of inappropriate Ras-cAMP-PKA activity in Deltawhi2 cells. Cells lacking Whi2p function exhibit an aberrant accumulation of activated Ras2 at the mitochondria in response to nutritional depletion. This study provides evidence that the shutdown of cAMP-PKA signalling activity in wild-type cells involves Whi2p-dependent targeting of Ras2p to the vacuole for proteolysis. We also demonstrate for the first time that Whi2p-dependent regulation of cAMP-PKA signalling plays a physiological role in the differentiation of yeast colonies by facilitating elaboration of distinct zones of cell death.

  17. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa.

  18. Cell-cycle regulation of formin-mediated actin cable assembly

    PubMed Central

    Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.

    2013-01-01

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141

  19. Cell-cycle regulation of formin-mediated actin cable assembly.

    PubMed

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  20. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube

    PubMed Central

    Zhang, Meng; Zhang, Ruihui; Qu, Xiaolu; Huang, Shanjin

    2016-01-01

    The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth. PMID:27117336

  1. Regulation of the Pollen-Specific Actin-Depolymerizing Factor LlADF1

    PubMed Central

    Allwood, Ellen G.; Anthony, Richard G.; Smertenko, Andrei P.; Reichelt, Stefanie; Drobak, Bjorn K.; Doonan, John H.; Weeds, Alan G.; Hussey, Patrick J.

    2002-01-01

    Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by ∼60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy. PMID:12417710

  2. Microarray phenotyping places cyclase associated protein CAP at the crossroad of signaling pathways reorganizing the actin cytoskeleton in Dictyostelium.

    PubMed

    Sultana, Hameeda; Neelakanta, Girish; Eichinger, Ludwig; Rivero, Francisco; Noegel, Angelika A

    2009-01-15

    Large-scale gene expression analysis has been applied recently to uncover groups of genes that are co-regulated in particular processes. Here we undertake such an analysis on CAP, a protein that participates in the regulation of the actin cytoskeleton and in cAMP signaling in Dictyostelium. microarray analysis revealed that loss of CAP altered the expression of many cytoskeletal components. One of these, the Rho GDP-dissociation inhibitor RhoGDI1, was analyzed further. RhoGDI1 null cells expressed lower amounts of CAP, which failed to accumulate predominantly at the cell cortex. To further position CAP in the corresponding signal transduction pathways we studied CAP localization and cellular functioning in mutants that have defects in several signaling components. CAP showed correct localization and dynamics in all analyzed strains except in mutants with deficient cAMP dependent protein kinase A activity, where CAP preferentially accumulated in crown shaped structures. Ectopic expression of CAP improved the efficiency of phagocytosis in Gbeta-deficient cells and restored the pinocytosis, morphology and actin distribution defects in a PI3 kinase double mutant (pi3k1/2 null). Our results show that CAP acts at multiple crossroads and links signaling pathways to the actin cytoskeleton either by physical interaction with cytoskeletal components or through regulation of their gene expression.

  3. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    PubMed Central

    Schreiber, Joerg; Végh, Marlene J.; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T.; De Zeeuw, Chris I.; Kneussel, Matthias; Meredith, Rhiannon M.; Smit, August B.

    2015-01-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  4. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    PubMed

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  5. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  6. MYOSIN IIB REGULATES ACTIN DYNAMICS DURING SYNAPTIC PLASTICITY AND MEMORY FORMATION

    PubMed Central

    Rex, Christopher S.; Gavin, Cristin F.; Rubio, Maria D.; Kramar, Eniko A.; Chen, Lulu Y.; Jia, Yousheng; Huganir, Richard L.; Muzyczka, Nicholas; Gall, Christine M.; Miller, Courtney A.; Lynch, Gary; Rumbaugh, Gavin

    2010-01-01

    Reorganization of the actin cytoskeleton is essential for synaptic plasticity and memory formation. Presently, the mechanisms that trigger actin dynamics during these brain processes are poorly understood. In this study, we show that myosin II motor activity is downstream of LTP induction and is necessary for the emergence of specialized actin structures that stabilize an early phase of LTP. We also demonstrate that myosin II activity contributes importantly to an actin-dependent process that underlies memory consolidation. Pharmacological treatments that promote actin polymerization reversed the effects of a myosin II inhibitor on LTP and memory. We conclude that myosin II motors regulate plasticity by imparting mechanical forces onto the spine actin cytoskeleton in response to synaptic stimulation. These cytoskeletal forces trigger the emergence of actin structures that stabilize synaptic plasticity. Our studies provide a novel mechanical framework for understanding cytoskeletal dynamics associated with synaptic plasticity and memory formation. PMID:20797537

  7. A Novel Alpha Kinase EhAK1 Phosphorylates Actin and Regulates Phagocytosis in Entamoeba histolytica

    PubMed Central

    Mansuri, M. Shahid; Bhattacharya, Sudha; Bhattacharya, Alok

    2014-01-01

    Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics. PMID:25299184

  8. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica.

    PubMed

    Mansuri, M Shahid; Bhattacharya, Sudha; Bhattacharya, Alok

    2014-10-01

    Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.

  9. IQGAP1 regulates actin cytoskeleton organization in podocytes through interaction with nephrin.

    PubMed

    Liu, Yipeng; Liang, Wei; Yang, Yingjie; Pan, Yangbin; Yang, Qian; Chen, Xinghua; Singhal, Pravin C; Ding, Guohua

    2015-04-01

    Increasing data has shown that the cytoskeletal reorganization of podocytes is involved in the onset of proteinuria and the progression of glomerular disease. Nephrin behaves as a signal sensor of the slit diaphragm to transmit cytoskeletal signals to maintain the unique structure of podocytes. However, the nephrin signaling cascade deserves further study. IQGAP1 is a scaffolding protein with the ability to regulate cytoskeletal organization. It is hypothesized that IQGAP1 contributes to actin reorganization in podocytes through interaction with nephrin. IQGAP1 expression and IQGAP1-nephrin colocalization in glomeruli were progressively decreased and then gradually recovered in line with the development of foot process fusion and proteinuria in puromycin aminonucleoside-injected rats. In cultured human podocytes, puromycin aminonucleoside-induced disruption of F-actin and disorders of migration and spreading were aggravated by IQGAP1 siRNA, and these effects were partially restored by a wild-type IQGAP1 plasmid. Furthermore, the cytoskeletal disorganization stimulated by cytochalasin D in COS7 cells was recovered by cotransfection with wild-type IQGAP1 and nephrin plasmids but was not recovered either by single transfection of the wild-type IQGAP1 plasmid or by cotransfection of mutant IQGAP1 [△1443(S→A)] and wild-type nephrin plasmids. Co-immunoprecipitation analysis using lysates of COS7 cells overexpressing nephrin and each derivative-domain molecule of IQGAP1 demonstrated that the poly-proline binding domain and RasGAP domain in the carboxyl terminus of IQGAP1 are the target modules that interact with nephrin. Collectively, these findings showed that activated IQGAP1, as an intracellular partner of nephrin, is involved in actin cytoskeleton organization and functional regulation of podocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics.

    PubMed

    Roybal, Kole T; Buck, Taráz E; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J; Ambler, Rachel; Tunbridge, Helen M; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F

    2016-04-19

    Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems. Copyright © 2016, American Association for the Advancement of Science.

  11. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  12. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth

    PubMed Central

    Zhou, Zhenzhen; Shi, Haifan; Chen, Binqing; Zhang, Ruihui; Huang, Shanjin; Fu, Ying

    2015-01-01

    Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca2+ in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth. PMID:25804540

  13. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.

    PubMed

    Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William

    2005-01-01

    Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.

  14. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.

  15. Regulation of myosin II activity by actin architecture

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Stam, Samantha; McCall, Patrick; Munro, Edwin; Gardel, Margaret

    2015-03-01

    Networks of actin filaments containing myosin II motors generate forces and motions that promote biological processes such as cell division, motility, and cargo transport. In cells, actin filaments are arranged in various structures from disordered meshworks to tight bundles. Clusters of myosin II motors, known as myosin filaments, crosslink and generate force on neighboring actin filaments. We hypothesized that the local actin architecture controls the magnitude and duration of force generated by myosin II motors. We used fluorescence imaging to directly measure the mobility of myosin II filaments on actin networks and bundles with varying actin filament polarity, orientation, spacing, and length. On unipolar bundles, myosin exhibits fast, unidirectional motion consistent with their unloaded gliding speed. On mixed polarity bundles, myosin speed is reduced by one order of magnitude and marked by direction switching and trapping. Increasing filament spacing and bundle flexibility reduces the duration of trapping and enhances the mobility of motors. Simulations indicate that stable trapping is a signature of large generated forces while increased mobility indicates force release. Our data underscore that the efficiency of force generation by myosin motors in an actin network depends sensitively on its architecture and suggests actin crosslinking proteins are tuned to optimize actomyosin contractility.

  16. The Role of the Actin Cytoskeleton in Regulating Drosophila Behavior

    PubMed Central

    Ojelade, Shamsideen A.; Acevedo, Summer F.; Rothenfluh, Adrian

    2014-01-01

    Over the past decade, the function of the cytoskeleton has been extensively studied in developing and in mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules (CAMs), members of the Rho family of GTPases, and actin binding proteins (ABPs) are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction. PMID:24077615

  17. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  18. Btk Regulates B Cell Receptor-Mediated Antigen Processing and Presentation by Controlling Actin Cytoskeleton Dynamics in B Cells

    PubMed Central

    Sharma, Shruti; Orlowski, Gregory; Song, Wenxia

    2010-01-01

    The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation. PMID:19109164

  19. Ca2+ regulation of gelsolin activity: binding and severing of F-actin.

    PubMed Central

    Kinosian, H J; Newman, J; Lincoln, B; Selden, L A; Gershman, L C; Estes, J E

    1998-01-01

    Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow. PMID:9826630

  20. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement.

    PubMed

    Wang, Xiu-Ling; Gao, Xin-Qi; Wang, Xue-Chen

    2011-08-01

    Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.

  1. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility.

    PubMed

    Pang, Te-Ling; Chen, Fung-Chi; Weng, Yi-Lan; Liao, Hsien-Ching; Yi, Yung-Hsiang; Ho, Chia-Lin; Lin, Chi-Hung; Chen, Mei-Yu

    2010-11-01

    Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.

  2. STK16 regulates actin dynamics to control Golgi organization and cell cycle

    PubMed Central

    Liu, Juanjuan; Yang, Xingxing; Li, Binhua; Wang, Junjun; Wang, Wenchao; Liu, Jing; Liu, Qingsong; Zhang, Xin

    2017-01-01

    STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression. PMID:28294156

  3. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis

    PubMed Central

    Junemann, Alexander; Filić, Vedrana; Winterhoff, Moritz; Nordholz, Benjamin; Litschko, Christof; Schwellenbach, Helena; Stephan, Till; Weber, Igor; Faix, Jan

    2016-01-01

    Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas. PMID:27821733

  4. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    PubMed

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  5. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  6. Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin.

    PubMed

    Matsubara, Takuma; Kinbara, Masayuki; Maeda, Toshihiro; Yoshizawa, Mitsuhiro; Kokabu, Shoichiro; Takano Yamamoto, Teruko

    2017-08-05

    Osteoclasts are cells that resorb the bone matrix and maintain bone and calcium homeostasis. An actin ring is a characteristic actin structure that is essential for bone resorption by osteoclasts. Tyrosine kinase Src deficient osteoclasts do not form actin rings; thus, Src is a key molecule for actin ring formation in osteoclasts. However, how Src regulates actin ring formation is not fully understood. We identified the cytolinker protein plectin as a Src-binding protein by immunoprecipitation and liquid chromatography tandem mass spectrometry. Plectin is a huge protein (>500 kDa) and regulates the cytoskeleton by binding to actin and tubulin. We assessed the expression and role of plectin in osteoclasts. Plectin was expressed and co-localized with Src close to the actin ring in osteoclasts. Moreover, plectin was tyrosine-phosphorylated by Src. Differentiation and actin ring formation were inhibited by downregulation of plectin. These results suggest an important role for plectin in osteoclast differentiation and actin ring formation through Src binding. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  8. Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction.

    PubMed

    Dalghi, Marianela G; Fernández, Marisa M; Ferreira-Gomes, Mariela; Mangialavori, Irene C; Malchiodi, Emilio L; Strehler, Emanuel E; Rossi, Juan Pablo F C

    2013-08-09

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.

  9. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction*

    PubMed Central

    Dalghi, Marianela G.; Fernández, Marisa M.; Ferreira-Gomes, Mariela; Mangialavori, Irene C.; Malchiodi, Emilio L.; Strehler, Emanuel E.; Rossi, Juan Pablo F. C.

    2013-01-01

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. PMID:23803603

  10. Compartmentalisation of cAMP-dependent signalling in blood platelets: The role of lipid rafts and actin polymerisation.

    PubMed

    Raslan, Zaher; Naseem, Khalid M

    2015-01-01

    Prostacyclin (PGI2) inhibits blood platelets through the activation of membrane adenylyl cyclases (ACs) and cyclic adenosine 3',5'-monophosphate (cAMP)-mediated signalling. However, the molecular mechanism controlling cAMP signalling in blood platelet remains unclear, and in particular how individual isoforms of AC and protein kinase A (PKA) are coordinated to target distinct substrates in order to modulate platelet activation. In this study, we demonstrate that lipid rafts and the actin cytoskeleton may play a key role in regulating platelet responses to cAMP downstream of PGI2. Disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) increased platelet sensitivity to PGI2 and forskolin, a direct AC cyclase activator, resulting in greater inhibition of collagen-stimulated platelet aggregation. In contrast, platelet inhibition by the direct activator of PKA, 8-CPT-6-Phe-cAMP was unaffected by MβCD treatment. Consistent with the functional data, lipid raft disruption increased PGI2-stimulated cAMP formation and proximal PKA-mediated signalling events. Platelet inhibition, cAMP formation and phosphorylation of PKA substrates in response to PGI2 were also increased in the presence of cytochalasin D, indicating a role for actin cytoskeleton in signalling in response to PGI2. A potential role for lipid rafts in cAMP signalling is strengthened by our finding that a pool of ACV/VI and PKA was partitioned into lipid rafts. Our data demonstrate partial compartmentalisation of cAMP signalling machinery in platelets, where lipid rafts and the actin cytoskeleton regulate the inhibitory effects induced by PGI2. The increased platelet sensitivity to cAMP-elevating agents signalling upon raft and cytoskeleton disruption suggests that these compartments act to restrain basal cAMP signalling.

  11. Growing actin networks regulated by obstacle size and shape

    NASA Astrophysics Data System (ADS)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  12. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses.

    PubMed

    Sakuma, Chisako; Saito, Yoshie; Umehara, Tomoki; Kamimura, Keisuke; Maeda, Nobuaki; Mosca, Timothy J; Miura, Masayuki; Chihara, Takahiro

    2016-08-30

    Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo) pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Jak3 Enables Chemokine-Dependent Actin Cytoskeleton Reorganization by Regulating Cofilin and Rac/Rhoa GTPases Activation

    PubMed Central

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines. PMID:24498424

  14. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation.

    PubMed

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3⁻/⁻ lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3⁻/⁻ lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.

  15. The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize

    PubMed Central

    Peng, Xiongbo; Yan, Tingting; Sun, Mengxiang

    2017-01-01

    Sperm nuclear migration during fertilization in Arabidopsis and rice has recently been found to be actin-dependent, but the driving force behind this actin cytoskeleton-dependent motion is unclear. Here, we confirmed that the actin-dependent sperm nuclei migration during fertilization is a conserved mechanism in plants. Using in vitro fertilization systems, we showed that a functional actin is also essential in maize and tobacco for sperm nuclei migration after gamete membrane fusion. Cytoskeleton depolymerization inhibitor treatments supported the view that sperm nuclei migration is actin-dependent but microtubule-independent in both egg cell and central cell during double fertilization. We further revealed that the actin-based motor myosin is not the driving force for sperm nuclear migration in maize and tobacco. The WASP-Arp2/3 complex signal cascade is shown here to be involved in the regulation of sperm nuclear migration in maize and tobacco. It is interesting that sperm nuclei migration within somatic cell also need WASP-Arp2/3 complex signal cascade and actin, suggesting that the mechanism of sperm nuclear migration is not gamete specific. PMID:28225074

  16. Actin-crosslinking protein regulation of filament movement in motility assays: a theoretical model.

    PubMed Central

    Janson, L W; Taylor, D L

    1994-01-01

    The interaction of single actin filaments on a myosin-coated coverslip has been modeled by several authors. One model adds a component of "frictional drag" by myosin heads that oppose movement of the actin filaments. We have extended this concept by including the resistive drag from actin crosslinking proteins to understand better the relationship among crosslinking number, actin-myosin force generation, and motility. The validity of this model is supported by agreement with the experimental results from a previous study in which crosslinking proteins were added with myosin molecules under otherwise standard motility assay conditions. The theoretical relationship provides a means to determine many physical parameters that characterize the interaction between a single actin filament and a single actin-crosslinking molecule (various types). In particular, the force constant of a single filamin molecule is calculated as 1.105 pN, approximately 3 times less than a driving myosin head (3.4 pN). Knowledge of this parameter and others derived from this model allows a better understanding of the interaction between myosin and the actin/actin-binding protein cytoskeleton and the role of actin-binding proteins in the regulation and modulation of motility. PMID:7811954

  17. Formin-like2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer.

    PubMed

    Zeng, Yuanfeng; Xie, Huijun; Qiao, Yudan; Wang, Jianmei; Zhu, Xiling; He, Guoyang; Li, Yuling; Ren, Xiaoli; Wang, Feifei; Liang, Li; Ding, Yanqing

    2015-10-01

    Formin-like2 (FMNL2) is a member of the diaphanous-related formins family, which act as effectors and upstream modulators of Rho GTPases signaling and control the actin-dependent processes, such as cell motility or invasion. FMNL2 has been identified as promoting the motility and metastasis in colorectal carcinoma (CRC). However, whether FMNL2 regulates Rho signaling to promote cancer cell invasion remains unclear. In this study, we demonstrated an essential role for FMNL2 in the activations of Rho/ROCK pathway, SRF transcription or actin assembly, and subsequent CRC cell invasion. FMNL2 could activate Rho/ROCK pathway, and required ROCK to promote CRC cell invasion. Moreover, FMNL2 promoted the formation of filopodia and stress fiber, and activated the SRF transcription in a Rho-dependent manner. We also demonstrated that FMNL2 was necessary for LPA-induced invasion, RhoA/ROCK activation, actin assembly and SRF activation. FMNL2 was an essential component of LPA signal transduction toward RhoA by directly interacting with LARG. LARG silence inhibited RhoA/ROCK pathway and CRC cell invasion. Collectively, these data indicate that FMNL2, acting as upstream of RhoA by interacting with LARG, can promote actin assembly and CRC cell invasion through a Rho/ROCK-dependent mechanism.

  18. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  19. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  20. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability.

    PubMed

    Sun, Licui; Zheng, Junfang; Wang, Qiqi; Song, Ran; Liu, Hua; Meng, Ran; Tao, Tao; Si, Yang; Jiang, Wenguo; He, Junqi

    2016-02-01

    The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1. © FASEB.

  1. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration

    PubMed Central

    Hong, Ji-Ho; Kwak, Yongdo; Woo, Youngsik; Park, Cana; Lee, Seol-Ae; Lee, Haeryun; Park, Sung Jin; Suh, Yeongjun; Suh, Bo Kyoung; Goo, Bon Seong; Mun, Dong Jin; Sanada, Kamon; Nguyen, Minh Dang; Park, Sang Ki

    2016-01-01

    Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement. PMID:27546710

  2. The Actin Depolymerizing Factor (ADF)/Cofilin Signaling Pathway and DNA Damage Responses in Cancer

    PubMed Central

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-01-01

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy. PMID:25689427

  3. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer.

    PubMed

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-02-13

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.

  4. Protein Kinase D1 regulates Cofilin mediated F-actin reorganization and cell motility via Slingshot

    PubMed Central

    Eiseler, Tim; Döppler, Heike; Yan, Irene K.; Kitatani, Kanae; Mizuno, Kensaku; Storz, Peter

    2009-01-01

    Dynamic actin remodelling processes at the leading edge of migrating tumour cells are concerted events controlled by a fine-tuned temporal and spatial interplay of kinases and phosphatases. Actin severing is regulated by ADF/Cofilin which regulates stimulus-induced lamellipodia protrusion and directed cell motility. Cofilin is activated by dephosphorylation via phosphatases of the slingshot (SSH) family. SSH activity is strongly increased by its binding to filamentous actin (F-actin), however, other upstream regulators remain unknown. We show that in response to RhoA activation, Protein Kinase D1 (PKD1) phosphorylates the SSH enzyme SSH1L at a serine residue located in its actin binding motif. This generates a 14-3-3 binding motif, blocks the localization of SSH1L to F-actin-rich structures in the lamellipodium by sequestering it in the cytoplasm. Consequently, expression of constitutively-active PKD1 in invasive tumour cells enhanced phosphorylation of cofilin and effectively blocked the formation of free actin filament barbed ends and directed cell migration. PMID:19329994

  5. αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion

    PubMed Central

    Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana

    2010-01-01

    αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114

  6. Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin

    PubMed Central

    Xu, Na; Bagumian, Gaiana; Galiano, Michael; Myat, Monn Monn

    2011-01-01

    Generation and maintenance of proper lumen size is important for tubular organ function. We report on a novel role for the Drosophila Rho1 GTPase in control of salivary gland lumen size through regulation of cell rearrangement, apical domain elongation and cell shape change. We show that Rho1 controls cell rearrangement and apical domain elongation by promoting actin polymerization and regulating F-actin distribution at the apical and basolateral membranes through Rho kinase. Loss of Rho1 resulted in reduction of F-actin at the basolateral membrane and enrichment of apical F-actin, the latter accompanied by enrichment of apical phosphorylated Moesin. Reducing cofilin levels in Rho1 mutant salivary gland cells restored proper distribution of F-actin and phosphorylated Moesin and rescued the cell rearrangement and apical domain elongation defects of Rho1 mutant glands. In support of a role for Rho1-dependent actin polymerization in regulation of gland lumen size, loss of profilin phenocopied the Rho1 lumen size defects to a large extent. We also show that Ribbon, a BTB domain-containing transcription factor functions with Rho1 in limiting apical phosphorylated Moesin for apical domain elongation. Our studies reveal a novel mechanism for controlling salivary gland lumen size, namely through Rho1-dependent actin polymerization and distribution and downregulation of apical phosphorylated Moesin. PMID:22071107

  7. A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing.

    PubMed

    Aoki, Kana; Maeda, Fumiyo; Nagasako, Tomoya; Mochizuki, Yuki; Uchida, Seiichi; Ikenouchi, Junichi

    2016-03-29

    The actin cytoskeleton usually lies beneath the plasma membrane. When the membrane-associated actin cytoskeleton is transiently disrupted or the intracellular pressure is increased, the plasma membrane detaches from the cortex and protrudes. Such protruded membrane regions are called blebs. However, the molecular mechanisms underlying membrane blebbing are poorly understood. This study revealed that epidermal growth factor receptor kinase substrate 8 (Eps8) and ezrin are important regulators of rapid actin reassembly for the initiation and retraction of protruded blebs. Live-cell imaging of membrane blebbing revealed that local reassembly of actin filaments occurred at Eps8- and activated ezrin-positive foci of membrane blebs. Furthermore, we found that a RhoA-ROCK-Rnd3 feedback loop determined the local reassembly sites of the actin cortex during membrane blebbing.

  8. Calcium channel and glutamate receptor activities regulate actin organization in salamander retinal neurons

    PubMed Central

    Cristofanilli, Massimiliano; Akopian, Abram

    2006-01-01

    Intracellular Ca2+ regulates a variety of neuronal functions, including neurotransmitter release, protein phosphorylation, gene expression and synaptic plasticity. In a variety of cell types, including neurons, Ca2+ is involved in actin reorganization, resulting in either actin polymerization or depolymerization. Very little, however, is known about the relationship between Ca2+ and the actin cytoskeleton organization in retinal neurons. We studied the effect of high-K+-induced depolarization on F-actin organization in salamander retina and found that Ca2+ influx through voltage-gated L-type channels causes F-actin disruption, as assessed by 53 ± 5% (n = 23, P < 0.001) reduction in the intensity of staining with Alexa-Fluor488-phalloidin, a compound that permits visualization and quantification of polymerized actin. Calcium-induced F-actin depolymerization was attenuated in the presence of protein kinase C antagonists, chelerythrine or bis-indolylmaleimide hydrochloride (GF 109203X). In addition, phorbol 12-myristate 13-acetate (PMA), but not 4α-PMA, mimicked the effect of Ca2+ influx on F-actin. Activation of ionotropic AMPA and NMDA glutamate receptors also caused a reduction in F-actin. No effect on F-actin was exerted by caffeine or thapsigargin, agents that stimulate Ca2+ release from internal stores. In whole-cell recording from a slice preparation, light-evoked ‘off’ but not ‘on’ EPSCs in ‘on–off’ ganglion cells were reduced by 60 ± 8% (n = 8, P < 0.01) by cytochalasin D. These data suggest that elevation of intracellular Ca2+ during excitatory synaptic activity initiates a cascade for activity-dependent actin remodelling, which in turn may serve as a feedback mechanism to attenuate excitotoxic Ca2+ accumulation induced by synaptic depolarization. PMID:16777935

  9. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir.

    PubMed

    Figard, Lauren; Wang, Mengyu; Zheng, Liuliu; Golding, Ido; Sokac, Anna Marie

    2016-05-09

    Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression.

  10. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility.

    PubMed

    Whippo, Craig W; Khurana, Parul; Davis, Phillip A; DeBlasio, Stacy L; DeSloover, Daniel; Staiger, Christopher J; Hangarter, Roger P

    2011-01-11

    Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.

  11. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    PubMed

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  12. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling.

    PubMed

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-06-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. We propose the following cascade following noise trauma leading to alteration of the F-actin arrangement in the outer hair cell cytoskeleton: Noise exposure reduces the levels of GTP-RhoA and subsequently diminishes levels of RhoA effector ROCK2 (Rho-associated kinase 2). Phosphorylation of ezrin-radixin-moesin (ERM) by ROCK2 normally allows ERM to cross-link actin filaments with the plasma membrane. Noise-decreased levels of ROCK results in reduction of phosphorylation of ERM that leads to depolymerization of actin filaments. Lysophosphatidic acid (LPA), an agonist of RhoA, binds to the G-protein-coupled receptor

  13. Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination

    PubMed Central

    Hao, Yi-Heng; Doyle, Jennifer M.; Ramanathan, Saumya; Gomez, Timothy S.; Jia, Da; Xu, Ming; Chen, Zhijian J.; Billadeau, Daniel D.; Rosen, Michael K.; Potts, Patrick Ryan

    2013-01-01

    SUMMARY Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a novel role for ubiquitination in this process. We find that the novel E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the Retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired Retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of Retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and Retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 and reveal novel aspects of retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex. PMID:23452853

  14. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability

    PubMed Central

    Schiller, Rachel; Kawamura, Akane; Gilbert, Nick; Wills, Jimi; von Kriegsheim, Alex

    2017-01-01

    Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive “actin gate” that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics. PMID:28246120

  15. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability.

    PubMed

    Yeyati, Patricia L; Schiller, Rachel; Mali, Girish; Kasioulis, Ioannis; Kawamura, Akane; Adams, Ian R; Playfoot, Christopher; Gilbert, Nick; van Heyningen, Veronica; Wills, Jimi; von Kriegsheim, Alex; Finch, Andrew; Sakai, Juro; Schofield, Christopher J; Jackson, Ian J; Mill, Pleasantine

    2017-02-28

    Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.

  16. Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions.

    PubMed

    Klein, R Matthew; Aplin, Andrew E

    2009-03-15

    The depth of cell invasion into the dermis is a clinical determinant for poor prognosis in cutaneous melanoma. The signaling events that promote the switch from a noninvasive to invasive tumor phenotype remain obscure. Activating mutations in the serine/threonine kinase B-RAF are prevalent in melanoma. Mutant B-RAF is required for melanoma cell invasion. The expression of Rnd3, a Rho family GTPase, is regulated by mutant B-RAF, although its role in melanoma progression is unknown. In this study, we determined the functional contribution of Rnd3 to invasive melanoma. Endogenous Rnd3 was targeted for knockdown using a doxycycline-inducible short hairpin RNA system in invasive human melanoma cells. Depletion of Rnd3 promoted prominent actin stress fibers and enlarged focal adhesions. Mechanistically, stress fiber formation induced by Rnd3 knockdown required the specific involvement of RhoA and ROCK1/2 activity but not RhoB or RhoC. Rnd3 expression in human melanoma cell lines was strongly associated with elevated extracellular signal-regulated kinase phosphorylation and invasive behavior in a three-dimensional dermal-like environment. A functional role for Rnd3 was shown in the invasive outgrowth of melanoma tumor spheroids. Knockdown of Rnd3 reduced the invasive outgrowth of spheroids embedded in collagen gels. Additionally, Rnd3 depletion inhibited collective and border cell movement out from spheroids in a ROCK1/2-dependent manner. Collectively, these findings implicate Rnd3 as a major suppressor of RhoA-mediated actin cytoskeletal organization and in the acquisition of an invasive melanoma phenotype.

  17. BDNF attenuates IL-1β-induced F-actin remodeling by inhibiting NF-κB signaling in hippocampal neurons.

    PubMed

    Cai, Zhongxiang; Zhang, Xueping; Wang, Gaohua; Wang, Huiling; Liu, Zhongchun; Guo, Xin; Yang, Can; Wang, Xiaoping; Wang, Hesheng; Shu, Chang; Xiao, Ling

    2014-01-01

    To examine the effect of BDNF on F-actin during the stimulation of IL-1β in hippocampal neurons. We cultured hippocampal neurons from rat embryos. Cell stimulation was induced by IL-1β. Cell culture success was evaluated by an activity analysis of CCK-8, staining of gliocyte by immunohistochemistry. Changes in F-actin, BDNF and NF-ĸB were examined using molecular analyses. Our results demonstrate that a high concentration of IL-1β exaggerates the stimulation-induced degradation of F-actin by BDNF, whereas a low concentration of IL-1β protects F-actin against this degradation. These beneficial effects might be associated with the inhibition or exaggeration of the NF-ĸB signaling cascade. Taken together, our findings indicate that BDNF acts as an F-actin-protective regulator during stimulation by IL-1β and that this function largely occurs via the regulation of NF- ĸB signaling. These results suggest that interventions targeting the BDNF signaling system may be of therapeutic value against major depressive disorder (MDD).

  18. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines.

    PubMed

    Kerdivel, Gwenneg; Boudot, Antoine; Habauzit, Denis; Percevault, Frederic; Demay, Florence; Pakdel, Farzad; Flouriot, Gilles

    2014-06-05

    Estrogen receptor alpha (ERα) is generally considered to be a good prognostic marker because almost 70% of ERα-positive tumors respond to anti-hormone therapies. Unfortunately, during cancer progression, mammary tumors can escape from estrogen control, resulting in resistance to treatment. In this study, we demonstrate that activation of the actin/megakaryoblastic leukemia 1 (MKL1) signaling pathway promotes the hormonal escape of estrogen-sensitive breast cancer cell lines. The actin/MKL1 signaling pathway is silenced in differentiated ERα-positive breast cancer MCF-7 and T47D cell lines and active in ERα-negative HMT-3522 T4-2 and MDA-MB-231 breast cancer cells, which have undergone epithelial-mesenchymal transition. We showed that MKL1 activation in MCF-7 cells, either by modulating actin dynamics or using MKL1 mutants, down-regulates ERα expression and abolishes E2-dependent cell growth. Interestingly, the constitutively active form of MKL1 represses PR and HER2 expression in these cells and increases the expression of HB-EGF, TGFβ, and amphiregulin growth factors in an E2-independent manner. The resulting expression profile (ER-, PR-, HER2-) typically corresponds to the triple-negative breast cancer expression profile.

  19. An Actin-Binding Protein, LlLIM1, Mediates Calcium and Hydrogen Regulation of Actin Dynamics in Pollen Tubes1[C][W][OA

    PubMed Central

    Wang, Huei-Jing; Wan, Ai-Ru; Jauh, Guang-Yuh

    2008-01-01

    Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca2+: LlLIM1 showed a preference for F-actin binding under low pH and low Ca2+ concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed. PMID:18480376

  20. Single-filament kinetic studies provide novel insights into regulation of actin-based motility

    PubMed Central

    Shekhar, Shashank; Carlier, Marie-France

    2016-01-01

    Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility. PMID:26715420

  1. NudC regulates actin dynamics and ciliogenesis by stabilizing cofilin 1

    PubMed Central

    Zhang, Cheng; Zhang, Wen; Lu, Yi; Yan, Xiaoyi; Yan, Xiumin; Zhu, Xueliang; Liu, Wei; Yang, Yuehong; Zhou, Tianhua

    2016-01-01

    Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1. PMID:26704451

  2. Arabidopsis CAP1 - a key regulator of actin organisation and development.

    PubMed

    Deeks, Michael J; Rodrigues, Cecília; Dimmock, Simon; Ketelaar, Tijs; Maciver, Sutherland K; Malhó, Rui; Hussey, Patrick J

    2007-08-01

    Maintenance of F-actin turnover is essential for plant cell morphogenesis. Actin-binding protein mutants reveal that plants place emphasis on particular aspects of actin biochemistry distinct from animals and fungi. Here we show that mutants in CAP1, an A. thaliana member of the cyclase-associated protein family, display a phenotype that establishes CAP1 as a fundamental facilitator of actin dynamics over a wide range of plant tissues. Plants homozygous for cap1 alleles show a reduction in stature and morphogenetic disruption of multiple cell types. Pollen grains exhibit reduced germination efficiency, and cap1 pollen tubes and root hairs grow at a decreased rate and to a reduced length. Live cell imaging of growing root hairs reveals actin filament disruption and cytoplasmic disorganisation in the tip growth zone. Mutant cap1 alleles also show synthetic phenotypes when combined with mutants of the Arp2/3 complex pathway, which further suggests a contribution of CAP1 to in planta actin dynamics. In yeast, CAP interacts with adenylate cyclase in a Ras signalling cascade; but plants do not have Ras. Surprisingly, cap1 plants show disruption in plant signalling pathways required for co-ordinated organ expansion suggesting that plant CAP has evolved to attain plant-specific signalling functions.

  3. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Wong, Chris K. C.; Han, Daishu; Lee, Will M.

    2015-01-01

    During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics. PMID:25901598

  4. Cell cycle regulation of Rho signaling pathways.

    PubMed

    David, Muriel; Petit, Dominique; Bertoglio, Jacques

    2012-08-15

    The dynamics of the actin cytoskeleton and its regulation by Rho GTPases are essential to maintain cell shape, to allow cell motility and are also critical during cell cycle progression and mitosis. Rho GTPases and their effectors are involved in cell rounding at mitosis onset, in chromosomes alignment and are required for contraction of the actomyosin ring that separates daughter cells at the end of mitosis. Recent studies have revealed how a number of nucleotide exchange factors and GTPase-activating proteins regulate the activity of Rho GTPases during these processes. This review will focus on how the cell cycle machinery, in turn, regulates expression of proteins in the Rho signaling pathways through transcriptional activation, ubiquitylation and proteasomal degradation and modulates their activity through phosphorylation by mitotic kinases.

  5. Actin cytoskeleton: putting a CAP on actin polymerization.

    PubMed

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  6. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling

    PubMed Central

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-01-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. PMID:25683353

  7. Signaling Networks that Regulate Cell Migration

    PubMed Central

    Devreotes, Peter; Horwitz, Alan Rick

    2015-01-01

    SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration. PMID:26238352

  8. RefilinB (FAM101B) targets FilaminA to organize perinuclear actin networks and regulates nuclear shape

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Nakamura, Fumihiko; Jenkins, Zandra A.; McCartney, Rosannah; Krakow, Deborah; Deshiere, Alexandre; Assard, Nicole; Hartwig, John H.; Robertson, Stephen P.; Baudier, Jacques

    2011-01-01

    The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial–mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations. PMID:21709252

  9. Collapsin Response Mediator Protein-1 Regulates Arp2/3-dependent Actin Assembly*

    PubMed Central

    Yu-Kemp, Hui-Chia; Brieher, William M.

    2016-01-01

    Listeria monocytogenes is a bacterial parasite that uses host proteins to assemble an Arp2/3-dependent actin comet tail to power its movement through the host cell. Initiation of comet tail assembly is more efficient in cytosol than it is under defined conditions, indicating that unknown factors contribute to the reaction. We therefore fractionated cytosol and identified CRMP-1 as a factor that facilitates Arp2/3-dependent Listeria actin cloud formation in the presence of Arp2/3 and actin alone. It also scored as an important factor for Listeria actin comet tail formation in brain cytosol. CRMP-1 does not nucleate actin assembly on its own, nor does it directly activate the Arp2/3 complex. Rather, CRMP-1 scored as an auxiliary factor that promoted the ability of Listeria ActA protein to activate the Arp2/3 complex to trigger actin assembly. CRMP-1 is one member of a family of five related proteins that modulate cell motility in response to extracellular signals. Our results demonstrate an important role for CRMP-1 in Listeria actin comet tail formation and open the possibility that CRMP-1 controls cell motility by modulating Arp2/3 activation. PMID:26598519

  10. Regulation of actin filament length in erythrocytes and striated muscle.

    PubMed

    Fowler, V M

    1996-02-01

    Actin filaments polymerize in vitro to lengths which display an exponential distribution, yet in many highly differentiated cells they can be precisely maintained at uniform lengths in elaborate supramolecular structures. Recent results obtained using two classic model systems, the erythrocyte membrane cytoskeleton and the striated muscle sarcomere, reveal surprising similarities and instructive differences in the molecules and mechanisms responsible for determining and maintaining actin filament lengths in these two systems. Tropomodulin caps the slow-growing, pointed filament ends in muscle and in erythrocytes. CapZ caps the fast-growing, barbed filament ends in striated muscle, whereas a newly discovered barbed end capping protein, adducin, may cap the barbed filament ends in erythrocytes. The mechanisms responsible for specifying the characteristic filament lengths in these systems are more elusive and may include strict control of the relative amounts of actin filament capping proteins and side-binding proteins, molecular templates (e.g. tropomyosin and nebulin) and/or verniers (e.g. tropomyosin).

  11. Signaling and Dynamic Actin Responses of B Cells on Topographical Substrates

    NASA Astrophysics Data System (ADS)

    Ketchum, Christina; Sun, Xiaoyu; Fourkas, John; Song, Wenxia; Upadhyaya, Arpita

    B cells become activated upon physical contact with antigen on the surface of antigen presenting cells, such as dendritic cells. Binding of the B cell receptor with antigen initiates actin-mediated spreading of B cells, signaling cascades and eventually infection fighting antibodies. Lymphocytes, including B cells and T cells, have been shown to be responsive to the physical parameters of the contact surface, such as antigen mobility and substrate stiffness. However the roll of surface topography on lymphocyte function is unknown. Here we investigate the degree to which substrate topography controls actin-mediated spreading and B cell activation using nano-fabricated surfaces and live cell imaging. The model topographical system consists of 600 nanometer tall ridges with spacing varying between 800 nanometers and 5 micrometers. Using TIRF imaging we observe actin dynamics, B cell receptor motion and calcium signaling of B cells as they spread on the ridged substrates. We show that the spacing between ridges had a strong effect on the dynamics of actin and calcium influx on B cells. Our results indicate that B cells are highly sensitive to surface topography during cell spreading and signaling activation.

  12. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

  13. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  14. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging

    PubMed Central

    Jorques, María; Rada, Patricia; Ramirez, Lorena; Valverde, Ángela M.; Nebreda, Ángel R.; Sastre, Juan

    2017-01-01

    Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes. PMID:28166285

  15. A Balance of Capping Protein and Profilin Functions Is Required to Regulate Actin Polymerization in Drosophila Bristle

    PubMed Central

    Hopmann, Roberta; Miller, Kathryn G.

    2003-01-01

    Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function phenotype. The interaction between cpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell. PMID:12529431

  16. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.

    PubMed

    Lanza, Mónica; Garcia-Ponce, Berenice; Castrillo, Gabriel; Catarecha, Pablo; Sauer, Michael; Rodriguez-Serrano, María; Páez-García, Ana; Sánchez-Bermejo, Eduardo; T C, Mohan; Leo del Puerto, Yolanda; Sandalio, Luisa María; Paz-Ares, Javier; Leyva, Antonio

    2012-06-12

    In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization

    PubMed Central

    Grosheva, Inna; Haka, Abigail S.; Qin, Chunbo; Pierini, Lynda M.; Maxfield, Frederick R.

    2009-01-01

    Objective Interaction of macrophages with aggregated matrix-anchored lipoprotein deposits is an important initial step in atherogenesis. Aggregated lipoproteins require different cellular uptake processes than those used for endocytosis of monomeric lipoproteins. In this study, we tested the hypothesis that engagement of aggregated LDL (agLDL) by macrophages could lead to local increases in free cholesterol levels and that these increases in free cholesterol regulate signals that control cellular actin. Methods and Results AgLDL resides for prolonged periods in surface-connected compartments. While agLDL is still extracellular, we demonstrate that an increase in free cholesterol occurs at sites of contact between agLDL and cells due to hydrolysis of agLDL-derived cholesteryl ester. This increase in free cholesterol causes enhanced actin polymerization around the agLDL. Inhibition of cholesteryl ester hydrolysis results in decreased actin polymerization. Conclusions We describe a novel process that occurs during agLDL-macrophage interactions in which local release of free cholesterol causes local actin polymerization, promoting a pathologic positive feedback loop for increased catabolism of agLDL and eventual foam cell formation. PMID:19556523

  18. Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization.

    PubMed

    Grosheva, Inna; Haka, Abigail S; Qin, Chunbo; Pierini, Lynda M; Maxfield, Frederick R

    2009-10-01

    Interaction of macrophages with aggregated matrix-anchored lipoprotein deposits is an important initial step in atherogenesis. Aggregated lipoproteins require different cellular uptake processes than those used for endocytosis of monomeric lipoproteins. In this study, we tested the hypothesis that engagement of aggregated LDL (agLDL) by macrophages could lead to local increases in free cholesterol levels and that these increases in free cholesterol regulate signals that control cellular actin. AgLDL resides for prolonged periods in surface-connected compartments. Although agLDL is still extracellular, we demonstrate that an increase in free cholesterol occurs at sites of contact between agLDL and cells because of hydrolysis of agLDL-derived cholesteryl ester. This increase in free cholesterol causes enhanced actin polymerization around the agLDL. Inhibition of cholesteryl ester hydrolysis results in decreased actin polymerization. We describe a novel process that occurs during agLDL-macrophage interactions in which local release of free cholesterol causes local actin polymerization, promoting a pathological positive feedback loop for increased catabolism of agLDL and eventual foam cell formation.

  19. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  20. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex.

    PubMed Central

    Millard, Thomas H; Sharp, Stewart J; Machesky, Laura M

    2004-01-01

    The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility. PMID:15040784

  1. Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways*

    PubMed Central

    Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N. Rao; Aebersold, Ruedi; Helliwell, Stephen B.; Loewith, Robbie

    2015-01-01

    Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841

  2. The Calcium-Dependent Switch Helix of L-Plastin Regulates Actin Bundling

    PubMed Central

    Ishida, Hiroaki; Jensen, Katharine V.; Woodman, Andrew G.; Hyndman, M. Eric; Vogel, Hans J.

    2017-01-01

    L-plastin is a calcium-regulated actin-bundling protein that is expressed in cells of hematopoietic origin and in most metastatic cancer cells. These cell types are mobile and require the constant remodeling of their actin cytoskeleton, where L-plastin bundles filamentous actin. The calcium-dependent regulation of the actin-bundling activity of L-plastin is not well understood. We have used NMR spectroscopy to determine the solution structure of the EF-hand calcium-sensor headpiece domain. Unexpectedly, this domain does not bind directly to the four CH-domains of L-plastin. A novel switch helix is present immediately after the calcium-binding region and it binds tightly to the EF-hand motifs in the presence of calcium. We demonstrate that this switch helix plays a major role during actin-bundling. Moreover a peptide that competitively inhibits the association between the EF-hand motifs and the switch helix was shown to deregulate the actin-bundling activity of L-plastin. Overall, these findings may help to develop new drugs that target the L-plastin headpiece and interfere in the metastatic activity of cancer cells. PMID:28145401

  3. Characterization and regulation of an additional actin-filament-binding site in large isoforms of the stereocilia actin-bundling protein espin.

    PubMed

    Zheng, Lili; Beeler, Dina M; Bartles, James R

    2014-03-15

    The espin actin-bundling proteins, which are produced as isoforms of different sizes from a single gene, are required for the growth of hair cell stereocilia. We have characterized an additional actin-filament-binding site present in the extended amino-termini of large espin isoforms. Constitutively active in espin 2, the site increased the size of actin bundles formed in vitro and inhibited actin fluorescence recovery in microvilli. In espin 1, which has an N-terminal ankyrin repeat domain, the site was autoinhibited by binding between the ankyrin repeat domain and a peptide near the actin-binding site. Deletion of this peptide from espin 1 activated its actin-binding site. The peptide resembled tail homology domain I of myosin III, a ligand of the ankyrin repeat domain localized with espin 1 at the tip of stereocilia. A myosin III tail homology domain I peptide, but not scrambled control peptides, inhibited internal binding of the ankyrin repeat domain and released the espin 1 actin-binding site from autoinhibition. Thus, this regulation could result in local activation of the additional actin-binding site of espin 1 by myosin III in stereocilia.

  4. The pathogen-actin connection: A platform for defense signaling in plants

    SciTech Connect

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  5. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    PubMed

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  6. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    PubMed Central

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T.; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q. P.; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q. P.

    2016-01-01

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells. PMID:27762277

  7. The role of actin in capacitation-related signaling: an in silico and in vitro study

    PubMed Central

    2011-01-01

    Background The signalling cascades involved in many biological processes require the coordination of different subcellular districts. It is the case of the pathways involved in spermatozoa acquisition of fertilizing ability (the so called "capacitation"). In the present work the coordination of subcellular signalling, during the boar sperm capacitation, was studied by a computational and experimental approach. As first the biological network representing all the molecular interactions involved in capacitation was build and analyzed, then, an experimental set up was carried out to confirm the computational model-based prediction. Results The analysis of computational model pointed out that the "actin polymerization" node had some important and unique features: - it is one of the most connected nodes, - it links in a specific manner all the intracellular compartments, - its removal from the network did not affect the global network topology but caused the loss of five important nodes (and among them the "plasma membrane" and "outer acrosome membrane" fusion). Thus, it was suggested that actin polymerization could be involved in the signaling coordination of different subcellular districts, and that its functional ablation could compromise spermatozoa ability to complete the capacitation (while the main signaling pathway remained unaffected). The experiments, carried out inhibiting the actin polymerization in capacitating boar spermatozoa by the administration of cytocalasin D (CD), demonstrated that the CD treatment inhibited spermatozoa ability to reach the full fertilizing ability, while, the examined signaling pathways (membrane acquisition of chlortetracicline pattern C, protein tyrosine phosphorylation, phospholipase C-γ1 relocalization, intracellular calcium response to zonae pellucidae) remained effective, thus, confirming the model-based hypothesis. Conclusions The model based-hypothesis was confirmed by the reported data obtained with the in vitro

  8. Phosphatidylinositol 4-phosphate 5-kinase α and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions.

    PubMed

    Muscolini, Michela; Camperio, Cristina; Porciello, Nicla; Caristi, Silvana; Capuano, Cristina; Viola, Antonella; Galandrini, Ricciarda; Tuosto, Loretta

    2015-02-01

    Phosphatidylinositol 4,5-biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4(+) T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Calcium inhibition as an intracellular signal for actin-myosin interaction.

    PubMed

    Kohama, Kazuhiro

    2016-01-01

    Intracellular signaling pathways include both the activation and the inhibition of biological processes. The activation of Ca(2+) regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote. This review describes the investigation of the inhibitory mode since 1980. The inhibitory effect of Ca(2+) on myosin was detected chemically by ATPase assays and mechanically by in vitro motility assays. The Ca(2+)-binding ability of Physarum myosin is as high as that of scallop myosin. Ca(2+) inhibits Physarum myosin, whereas it activates scallop myosin. We cloned cDNA of the myosin heavy chain and light chains to express a hybrid of Physarum and scallop myosin, and found that the Ca-binding light chain (CaLc), which belongs to an alkali light chain class, plays a major role in Ca inhibition. The role of CaLc was confirmed by mutating its EF-hand, Ca-binding structure and expressing Physarum myosin as a recombinant protein. Thus, the data obtained by classical protein purification were confirmed by the results obtained with the modern recombinant techniques. However, there are some discrepancies that remain to be solved as described in Section XII.

  10. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.

    PubMed

    Zaoui, Kossay; Honoré, Stéphane; Isnardon, Daniel; Braguer, Diane; Badache, Ali

    2008-11-03

    Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as alpha-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo-RhoA-mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.

  11. Quantifying and localizing actin-free barbed ends in neutrophils.

    PubMed

    Glogauer, Michael

    2007-01-01

    We describe here a permeablization method that retains coupling between N-formylmethionyl-leucyl-phenylalanine (fMLP) receptor stimulation and barbed-end actin nucleation in neutrophils. Using fluorescently-tagged actin monomers, we are able to quantify and localize actin-free barbed ends generated downstream of chemoattractant receptors. Partial permeabilization of the neutrophils with the mild detergent n-octyl-beta-glucopyranoside maintains signaling from membrane receptor to the actin cytoskeleton while allowing for the introduction of inhibitors and activators of signal transduction pathways implicated in regulating actin cytoskeleton dynamics. This is a useful assay for studying signal transduction to the actin cytoskeleton in neutrophils.

  12. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity.

    PubMed

    Bu, Yunfei; Wang, Ning; Wang, Shaoli; Sheng, Tao; Tian, Tian; Chen, Linlin; Pan, Weiwei; Zhu, Minsheng; Luo, Jianhong; Lu, Wei

    2015-10-16

    N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.

  13. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos

    PubMed Central

    Field, Christine M.; Wühr, Martin; Anderson, Graham A.; Kueh, Hao Yuan; Strickland, Devin; Mitchison, Timothy J.

    2011-01-01

    The mechanical properties of cells change as they proceed through the cell cycle, primarily owing to regulation of actin and myosin II. Most models for cell mechanics focus on actomyosin in the cortex and ignore possible roles in bulk cytoplasm. We explored cell cycle regulation of bulk cytoplasmic actomyosin in Xenopus egg extracts, which is almost undiluted cytoplasm from unfertilized eggs. We observed dramatic gelation-contraction of actomyosin in mitotic (M phase) extract where Cdk1 activity is high, but not in interphase (I-phase) extract. In spread droplets, M-phase extract exhibited regular, periodic pulses of gelation-contraction a few minutes apart that continued for many minutes. Comparing actin nucleation, disassembly and myosin II activity between M-phase and I-phase extracts, we conclude that regulation of nucleation is likely to be the most important for cell cycle regulation. We then imaged F-actin in early zebrafish blastomeres using a GFP–Utrophin probe. Polymerization in bulk cytoplasm around vesicles increased dramatically during mitosis, consistent with enhanced nucleation. We conclude that F-actin polymerization in bulk cytoplasm is cell cycle regulated in early vertebrate embryos and discuss possible biological functions of this regulation. PMID:21610091

  14. Clathrin regulates lymphocyte migration by driving actin accumulation at the cellular leading edge.

    PubMed

    Ramírez-Santiago, Guillermo; Robles-Valero, Javier; Morlino, Giulia; Cruz-Adalia, Aranzazu; Pérez-Martínez, Manuel; Zaldivar, Airen; Torres-Torresano, Mónica; Chichón, Francisco Javier; Sorrentino, Andrea; Pereiro, Eva; Carrascosa, José L; Megías, Diego; Sorzano, Carlos Oscar S; Sánchez-Madrid, Francisco; Veiga, Esteban

    2016-10-01

    Lymphocyte migration, which is essential for effective immune responses, belongs to the so-called amoeboid migration. The lymphocyte migration is up to 100 times faster than between mesenchymal and epithelial cell types. Migrating lymphocytes are highly polarized in three well-defined structural and functional zones: uropod, medial zone, and leading edge (LE). The actiomyosin-dependent driving force moves forward the uropod, whereas massive actin rearrangements protruding the cell membrane are observed at the LE. These actin rearrangements resemble those observed at the immunological synapse driven by clathrin, a protein normally involved in endocytic processes. Here, we used cell lines as well as primary lymphocytes to demonstrate that clathrin and clathrin adaptors colocalize with actin at the LE of migrating lymphocytes, but not in other cellular zones that accumulate both clathrin and actin. Moreover, clathrin and clathrin adaptors, including Hrs, the clathrin adaptor for multivesicular bodies, drive local actin accumulation at the LE. Clathrin recruitment at the LE resulted necessary for a complete cell polarization and further lymphocyte migration in both 2D and 3D migration models. Therefore, clathrin, including the clathrin population associated to internal vesicles, controls lymphocyte migration by regulating actin rearrangements occurring at the LE.

  15. A WASp-VASP complex regulates actin polymerization at the plasma membrane.

    PubMed

    Castellano, F; Le Clainche, C; Patin, D; Carlier, M F; Chavrier, P

    2001-10-15

    Proteins of the Wiskott-Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of approximately 10(6) M(-1). In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge.

  16. Spatio-Temporal Regulation of Rac1 Mobility by Actin Islands.

    PubMed

    Lakhani, Vinal V; Hinde, Elizabeth; Gratton, Enrico; Elston, Timothy C

    2015-01-01

    Rho GTPases play important roles in many aspects of cell migration, including polarity establishment and organizing actin cytoskeleton. In particular, the Rho GTPase Rac1 has been associated with the generation of protrusions at leading edge of migrating cells. Previously we showed the mobility of Rac1 molecules is not uniform throughout a migrating cell (Hinde E et. al. PNAS 2013). Specifically, the closer a Rac1 molecule is to the leading edge, the slower the molecule diffuses. Because actin-bound Rac1 diffuses slower than unbound Rac1, we hypothesized that regions of high actin concentration, called "actin islands", act as diffusive traps and are responsible for the non-uniform diffusion observed in vivo. Here, in silico model simulations demonstrate that equally spaced actin islands can regulate the time scale for Rac1 diffusion in a manner consistent with data from live-cell imaging experiments. Additionally, we find this mechanism is robust; different patterns of Rac1 mobility can be achieved by changing the actin islands' positions or their affinity for Rac1.

  17. Spatio-Temporal Regulation of Rac1 Mobility by Actin Islands

    PubMed Central

    Lakhani, Vinal V.; Hinde, Elizabeth; Gratton, Enrico; Elston, Timothy C.

    2015-01-01

    Rho GTPases play important roles in many aspects of cell migration, including polarity establishment and organizing actin cytoskeleton. In particular, the Rho GTPase Rac1 has been associated with the generation of protrusions at leading edge of migrating cells. Previously we showed the mobility of Rac1 molecules is not uniform throughout a migrating cell (Hinde E et. al. PNAS 2013). Specifically, the closer a Rac1 molecule is to the leading edge, the slower the molecule diffuses. Because actin-bound Rac1 diffuses slower than unbound Rac1, we hypothesized that regions of high actin concentration, called “actin islands”, act as diffusive traps and are responsible for the non-uniform diffusion observed in vivo. Here, in silico model simulations demonstrate that equally spaced actin islands can regulate the time scale for Rac1 diffusion in a manner consistent with data from live-cell imaging experiments. Additionally, we find this mechanism is robust; different patterns of Rac1 mobility can be achieved by changing the actin islands’ positions or their affinity for Rac1. PMID:26606145

  18. Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1.

    PubMed

    Schneider, Philipp; Bayo-Fina, Juan Miguel; Singh, Rajeev; Kumar Dhanyamraju, Pavan; Holz, Philipp; Baier, Aninja; Fendrich, Volker; Ramaswamy, Annette; Baumeister, Stefan; Martinez, Elisabeth D; Lauth, Matthias

    2015-08-27

    The Down syndrome-associated DYRK1A kinase has been reported as a stimulator of the developmentally important Hedgehog (Hh) pathway, but cells from Down syndrome patients paradoxically display reduced Hh signalling activity. Here we find that DYRK1A stimulates GLI transcription factor activity through phosphorylation of general nuclear localization clusters. In contrast, in vivo and in vitro experiments reveal that DYRK1A kinase can also function as an inhibitor of endogenous Hh signalling by negatively regulating ABLIM proteins, the actin cytoskeleton and the transcriptional co-activator MKL1 (MAL). As a final effector of the DYRK1A-ABLIM-actin-MKL1 sequence, we identify the MKL1 interactor Jumonji domain demethylase 1A (JMJD1A) as a novel Hh pathway component stabilizing the GLI1 protein in a demethylase-independent manner. Furthermore, a Jumonji-specific small-molecule antagonist represents a novel and powerful inhibitor of Hh signal transduction by inducing GLI1 protein degradation in vitro and in vivo.

  19. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.

    PubMed

    Blunk, Aline D; Akbergenova, Yulia; Cho, Richard W; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J Troy

    2014-07-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.

  20. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction

    PubMed Central

    Blunk, Aline D.; Akbergenova, Yulia; Cho, Richard W.; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J. Troy

    2014-01-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, actE84K, harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous actE84K mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. actE84K mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Disc-Large are all mislocalized in actE84K mutants. Genetic interactions between actE84K and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization. PMID:25066865

  1. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  2. Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Meiler, Eugenia; Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-03-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.

  3. Microtubule Actin Cross-Linking Factor 1 Regulates Cardiomyocyte Microtubule Distribution and Adaptation to Hemodynamic Overload

    PubMed Central

    Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J.; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r2 = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload. PMID:24086300

  4. Ras GTPase-Activating Protein Regulation of Actin Cytoskeleton and Hyphal Polarity in Aspergillus nidulans▿ †

    PubMed Central

    Harispe, Laura; Portela, Cecilia; Scazzocchio, Claudio; Peñalva, Miguel A.; Gorfinkiel, Lisette

    2008-01-01

    Aspergillus nidulans gapA1, a mutation leading to compact, fluffy colonies and delayed polarity establishment, maps to a gene encoding a Ras GTPase-activating protein. Domain organization and phylogenetic analyses strongly indicate that GapA regulates one or more “true” Ras proteins. A gapAΔ strain is viable. gapA colonies are more compact than gapA1 colonies and show reduced conidiation. gapAΔ strains have abnormal conidiophores, characterized by the absence of one of the two layers of sterigmata seen in the wild type. gapA transcript levels are very low in conidia but increase during germination and reach their maximum at a time coincident with germ tube emergence. Elevated levels persist in hyphae. In germinating conidiospores, gapAΔ disrupts the normal coupling of isotropic growth, polarity establishment, and mitosis, resulting in a highly heterogeneous cell population, including malformed germlings and a class of giant cells with no germ tubes and a multitude of nuclei. Unlike wild-type conidia, gapAΔ conidia germinate without a carbon source. Giant multinucleated spores and carbon source-independent germination have been reported in strains carrying a rasA dominant active allele, indicating that GapA downregulates RasA. gapAΔ cells show a polarity maintenance defect characterized by apical swelling and subapical branching. The strongly polarized wild-type F-actin distribution is lost in gapAΔ cells. As GapA-green fluorescent protein shows cortical localization with strong predominance at the hyphal tips, we propose that GapA-mediated downregulation of Ras signaling at the plasma membrane of these tips is involved in the polarization of the actin cytoskeleton that is required for hyphal growth and, possibly, for asexual morphogenesis. PMID:18039943

  5. Rnd3 Regulation of the Actin Cytoskeleton Promotes Melanoma Migration and Invasive Outgrowth in 3-D

    PubMed Central

    Klein, R. Matthew; Aplin, Andrew E.

    2009-01-01

    Depth of cell invasion into the dermis is a clinical determinant for poor prognosis in cutaneous melanoma. The signaling events that promote the switch from a non-invasive to invasive tumor phenotype remain obscure. Activating mutations in the serine/threonine kinase B-RAF are prevalent in melanoma. Mutant B-RAF is required for melanoma cell invasion. The expression of Rnd3, a Rho family GTPase, is regulated by mutant B-RAF, although its role in melanoma progression is unknown. In this study, we determined the functional contribution of Rnd3 to invasive melanoma. Endogenous Rnd3 was targeted for knockdown using a doxycyclineinducible shRNA system in invasive human melanoma cells. Depletion of Rnd3 promoted prominent actin stress fibers and enlarged focal adhesions. Mechanistically, stress fiber formation induced by Rnd3 knockdown required the specific involvement of RhoA and ROCK1/2 activity but not RhoB or RhoC. Rnd3 expression in human melanoma cell lines was strongly associated with elevated ERK phosphorylation and invasive behavior in a 3-D dermal-like environment. A functional role for Rnd3 was demonstrated in the invasive outgrowth of melanoma tumor spheroids. Knockdown of Rnd3 reduced invasive outgrowth of spheroids embedded in collagen gels. Additionally, Rnd3 depletion inhibited collective and border cell movement out from spheroids in a ROCK1/2-dependent manner. Collectively, these findings implicate Rnd3 as a major suppressor of RhoA mediated actin cytoskeletal organization and in the acquisition of an invasive melanoma phenotype. PMID:19244113

  6. Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload.

    PubMed

    Fassett, John T; Xu, Xin; Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.

  7. MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes.

    PubMed

    Parreno, Justin; Raju, Sneha; Wu, Po-Han; Kandel, Rita A

    2016-10-14

    Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.

  8. E93K charge reversal on actin perturbs steric regulation of thin filaments.

    PubMed

    Cammarato, Anthony; Craig, Roger; Sparrow, John C; Lehman, William

    2005-04-15

    Contraction in striated muscles is regulated by Ca2+-dependent movement of tropomyosin-troponin on thin filaments. Interactions of charged amino acid residues between the surfaces of tropomyosin and actin are believed to play an integral role in this steric mechanism by influencing the position of tropomyosin on the filaments. To investigate this possibility further, thin filaments were isolated from troponin-regulated, indirect flight muscles of Drosophila mutants that express actin with an amino acid charge reversal at residue 93 located at the interface between actin subdomains 1 and 2, in which a lysine residue is substituted for a glutamic acid. Electron microscopy and 3D helical reconstruction were employed to evaluate the structural effects of the mutation. In the absence of Ca2+, tropomyosin was in a position that blocked the myosin-binding sites on actin, as previously found with wild-type filaments. However, in the presence of Ca2+, tropomyosin position in the mutant filaments was much more variable than in the wild-type ones. In most cases (approximately 60%), tropomyosin remained in the blocking position despite the presence of Ca2+, failing to undergo a normal Ca2+-induced change in position. Thus, switching of a negative to a positive charge at position 93 on actin may stabilize negatively charged tropomyosin in the Ca2+-free state regardless of Ca2+ levels, an alteration that, in turn, is likely to interfere with steric regulation and consequently muscle activation. These results highlight the importance of actin's surface charges in determining the distribution of tropomyosin positions on thin filaments derived from troponin-regulated striated muscles.

  9. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins

    PubMed Central

    Alonso, Annabel; Greenlee, Matt; Matts, Jessica; Kline, Jake; Davis, Kayla J.

    2015-01-01

    Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule‐associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin‐regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non‐covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO‐targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26033929

  10. RhoA Proteolysis Regulates the Actin Cytoskeleton in Response to Oxidative Stress

    PubMed Central

    Girouard, Marie-Pier; Pool, Madeline; Alchini, Ricardo; Rambaldi, Isabel

    2016-01-01

    The small GTPase RhoA regulates the actin cytoskeleton to affect multiple cellular processes including endocytosis, migration and adhesion. RhoA activity is tightly regulated through several mechanisms including GDP/GTP cycling, phosphorylation, glycosylation and prenylation. Previous reports have also reported that cleavage of the carboxy-terminus inactivates RhoA. Here, we describe a novel mechanism of RhoA proteolysis that generates a stable amino-terminal RhoA fragment (RhoA-NTF). RhoA-NTF is detectable in healthy cells and tissues and is upregulated following cell stress. Overexpression of either RhoA-NTF or the carboxy-terminal RhoA cleavage fragment (RhoA-CTF) induces the formation of disorganized actin stress fibres. RhoA-CTF also promotes the formation of disorganized actin stress fibres and nuclear actin rods. Both fragments disrupt the organization of actin stress fibres formed by endogenous RhoA. Together, our findings describe a novel RhoA regulatory mechanism. PMID:27992599

  11. Regulation of the Actin Cytoskeleton by an Interaction of IQGAP Related Protein GAPA with Filamin and Cortexillin I

    PubMed Central

    Rieger, Daniela; Müller, Rolf; Rivero, Francisco; Faix, Jan; Schleicher, Michael; Noegel, Angelika A.

    2010-01-01

    Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin. PMID:21085675

  12. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ.

    PubMed

    Lin, Ying-Hsi; Warren, Chad M; Li, Jieli; McKinsey, Timothy A; Russell, Brenda

    2016-08-01

    The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZβ1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZβ1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZβ1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZβ1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZβ1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZβ1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZβ1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZβ1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy. Copyright © 2016. Published by Elsevier Inc.

  13. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein.

    PubMed

    Johnson, Jennifer L; Monfregola, Jlenia; Napolitano, Gennaro; Kiosses, William B; Catz, Sergio D

    2012-05-01

    Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.

  14. Interactions with Actin Monomers, Actin Filaments, and Arp2/3 Complex Define the Roles of WASP Family Proteins and Cortactin in Coordinately Regulating Branched Actin Networks*

    PubMed Central

    Helgeson, Luke A.; Prendergast, Julianna G.; Wagner, Andrew R.; Rodnick-Smith, Max; Nolen, Brad J.

    2014-01-01

    Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks. PMID:25160634

  15. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors

    PubMed Central

    Hansen, Scott D.; Kwiatkowski, Adam V.; Ouyang, Chung-Yueh; Liu, HongJun; Pokutta, Sabine; Watkins, Simon C.; Volkmann, Niels; Hanein, Dorit; Weis, William I.; Mullins, R. Dyche; Nelson, W. James

    2013-01-01

    The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays. PMID:24068324

  16. Expression of type I collagen and tenascin C is regulated by actin polymerization through MRTF in dedifferentiated chondrocytes.

    PubMed

    Parreno, Justin; Raju, Sneha; Niaki, Mortah Nabavi; Andrejevic, Katarina; Jiang, Amy; Delve, Elizabeth; Kandel, Rita

    2014-10-16

    This study examined actin regulation of fibroblast matrix genes in dedifferentiated chondrocytes. We demonstrated that dedifferentiated chondrocytes exhibit increased actin polymerization, nuclear localization of myocardin related transcription factor (MRTF), increased type I collagen (col1) and tenascin C (Tnc) gene expression, and decreased Sox9 gene expression. Induction of actin depolymerization by latrunculin treatment or cell rounding, reduced MRTF nuclear localization, repressed col1 and Tnc expression, and increased Sox9 gene expression in dedifferentiated chondrocytes. Treatment of passaged chondrocytes with MRTF inhibitor repressed col1 and Tnc expression, but did not affect Sox9 expression. Our results show that actin polymerization regulates fibroblast matrix gene expression through MRTF in passaged chondrocytes.

  17. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity.

    PubMed

    Weins, Astrid; Schlondorff, Johannes S; Nakamura, Fumihiko; Denker, Bradley M; Hartwig, John H; Stossel, Thomas P; Pollak, Martin R

    2007-10-09

    Alpha-actinin-4 is a widely expressed protein that employs an actin-binding site with two calponin homology domains to crosslink actin filaments (F-actin) in a Ca(2+)-sensitive manner in vitro. An inherited, late-onset form of kidney failure is caused by point mutations in the alpha-actinin-4 actin-binding domain. Here we show that alpha-actinin-4/F-actin aggregates, observed in vivo in podocytes of humans and mice with disease, likely form as a direct result of the increased actin-binding affinity of the protein. We document that exposure of a buried actin-binding site 1 in mutant alpha-actinin-4 causes an increase in its actin-binding affinity, abolishes its Ca(2+) regulation in vitro, and diverts its normal localization from actin stress fibers and focal adhesions in vivo. Inactivation of this buried actin-binding site returns the affinity of the mutant to that of the WT protein and abolishes aggregate formation in cells. In vitro, actin filaments crosslinked by the mutant alpha-actinin-4 exhibit profound changes of structural and biomechanical properties compared with WT alpha-actinin-4. On a molecular level, our findings elucidate the physiological importance of a dynamic interaction of alpha-actinin with F-actin in podocytes in vivo. We propose that a conformational change with full exposure of actin-binding site 1 could function as a switch mechanism to regulate the actin-binding affinity of alpha-actinin and possibly other calponin homology domain proteins under physiological conditions.

  18. RNase L interacts with Filamin A to regulate actin dynamics and barrier function for viral entry.

    PubMed

    Malathi, Krishnamurthy; Siddiqui, Mohammad Adnan; Dayal, Shubham; Naji, Merna; Ezelle, Heather J; Zeng, Chun; Zhou, Aimin; Hassel, Bret A

    2014-10-28

    The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. Cells constantly face and sample pathogens on their outer surface. The actin cytoskeleton and interacting proteins associate with the cell membrane and constitute a barrier to infection. Disruption of the actin cytoskeleton allows viruses to enter the cell and induces innate immune responses to clear

  19. ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin.

    PubMed

    Nomura, Kazumi; Ono, Shoichiro

    2013-07-15

    CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.

  20. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.

    PubMed

    Leonard, T R; Herzog, W

    2010-07-01

    For the past half century, the sliding filament-based cross-bridge theory has been the cornerstone of our understanding of how muscles contract. According to this theory, active force can only occur if there is overlap between the contractile filaments, actin and myosin. Otherwise, forces are thought to be caused by passive structural elements and are assumed to vary solely because of the length of the muscle. We observed increases in muscle force by a factor of 3 to 4 above the purely passive forces for activated and stretched myofibrils in the absence of actin-myosin overlap. We show that this dramatic increase in force is crucially dependent on the presence of the structural protein titin, cannot be explained with calcium activation, and is regulated by actin-myosin-based cross-bridge forces before stretching. We conclude from these observations that titin is a strong regulator of muscle force and propose that this regulation is based on cross-bridge force-dependent titin-actin interactions. These results suggest a mechanism for stability of sarcomeres on the "inherently unstable" descending limb of the force-length relationship, and they further provide an explanation for the protection of muscles against stretch-induced muscle injuries.

  1. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor

    PubMed Central

    LIU, Chaohong; FALLEN, Margaret K.; MILLER, Heather; UPADHYAYA, Arpita; SONG, Wenxia

    2014-01-01

    The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR-mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling. PMID:24999354

  2. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading.

    PubMed

    von Holleben, Max; Gohla, Antje; Janssen, Klaus-Peter; Iritani, Brian M; Beer-Hammer, Sandra

    2011-04-15

    Appropriate B cell activation is essential for adaptive immunity. In contrast to the molecular mechanisms that regulate positive signaling in immune responses, the counterbalancing negative regulatory pathways remain insufficiently understood. The Src homology domain 3 (SH3)-containing adapter protein SH3 lymphocyte protein 2 (SLy2, also known as hematopoietic adapter-containing SH3 and sterile α-motif (SAM) domains 1; HACS1) is strongly up-regulated upon B cell activation and functions as an endogenous immunoinhibitor in vivo, but the underlying molecular mechanisms of SLy2 function have been elusive. We have generated transgenic mice overexpressing SLy2 in B and T cells and have studied the biological effects of elevated SLy2 levels in Jurkat and HeLa cells. Our results demonstrate that SLy2 induces Rac1-dependent membrane ruffle formation and regulates cell spreading and polarization and that the SLy2 SH3 domain is essential for these effects. Using immunoprecipitation and confocal microscopy, we provide evidence that the actin nucleation-promoting factor cortactin is an SH3 domain-directed interaction partner of SLy2. Consistent with an important role of SLy2 for actin cytoskeletal reorganization, we further show that SLy2-transgenic B cells are severely defective in cell spreading. Together, our findings extend our mechanistic understanding of the immunoinhibitory roles of SLy2 in vivo and suggest that the physiological up-regulation of SLy2 observed upon B cell activation functions to counteract excessive B cell spreading.

  3. Signaling in Regulation of Podocyte Phenotypes

    PubMed Central

    Chuang, Peter Y.; He, John C.

    2010-01-01

    The kidney podocyte is a terminally differentiated and highly specialized cell. The function of the glomerular filtration barrier depends on the integrity of the podocyte. Podocyte injury and loss have been observed in human and experimental models of glomerular diseases. Three major podocyte phenotypes have been described in glomerular diseases: effacement, apoptosis, and proliferation. Here, we highlight the signaling cascades that are responsible for the manifestation of these pathologic phenotypes. The integrity of the podocyte foot process is determined by the interaction of nephrin with proteins in the slit diaphragm complex, the regulation of actin dynamics by the Rho family of GTPases, and the transduction of extracellular signals through focal adhesion complexes. Activation of the p38 mitogen-activated protein kinase and transforming growth factor-β 1 causes podocyte apoptosis. Phosphoinositide 3-kinase and its downstream target AKT protect podocytes from apoptosis. In human immunodeficiency virus-associated nephropathy, Src-dependent activation of Stat3, mitogen- activated protein kinase 1,2, and hypoxia-inducible factor 2α is an important driver of podocyte proliferation. At the level of intracellular signaling, it appears that different extracellular signals can converge onto a few pathways to induce changes in the phenotype of podocytes. PMID:19142027

  4. The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2016-12-01

    Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.

  5. Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation.

    PubMed

    Schmid, Evi; Gu, Shuchen; Yang, Wenting; Münzer, Patrick; Schaller, Martin; Lang, Florian; Stournaras, Christos; Shumilina, Ekaterina

    2013-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) on mast cells (MCs) causes MC degranulation, a process that involves cortical F-actin disassembly. Actin depolymerization may be triggered by increase of cytosolic Ca(2+). Entry of Ca(2+) through the Ca(2+) release-activated Ca(2+) (CRAC) channels is under powerful regulation by the serum- and glucocorticoid-inducible kinase SGK1. Moreover, FcεRI-dependent degranulation is decreased in SGK1-deficient (sgk1(-/-)) MCs. The present study addressed whether SGK1 is required for actin cytoskeleton rearrangement in MCs and whether modulation of actin architecture could underlie decreased degranulation of sgk1(-/-) MCs. Confirming previous results, release of β-hexosaminidase reflecting FcεRI-dependent degranulation was impaired in sgk1(-/-) MCs compared with sgk1(+/+) MCs. When CRAC channels were inhibited by 2-aminoethoxydiphenyl borate (2-APB; 50 μM), MC degranulation was strongly decreased in both sgk1(+/+) and sgk1(-/-) MCs and the difference between genotypes was abolished. Moreover, degranulation was impaired by actin-stabilizing (phallacidin) and enhanced by actin-disrupting (cytochalasin B) agents to a similar extent in sgk1(+/+) MCs and sgk1(-/-) MCs, implying a regulatory role of actin reorganization in this event. In line with this, measurements of monomeric (G) and filamentous (F) actin content by FACS analysis and Western blotting of detergent-soluble and -insoluble cell fractions indicated an increase of the G/F-actin ratio in sgk1(+/+) MCs but not in sgk1(-/-) MCs upon FcεRI ligation, an observation reflecting actin depolymerization. In sgk1(+/+) MCs, FcεRI-induced actin depolymerization was abolished by 2-APB. The observed actin reorganization was confirmed by confocal laser microscopic analysis. Our observations uncover SGK1-dependent Ca(2+) entry in mast cells as a novel mechanism regulating actin cytoskeleton.

  6. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs.

    PubMed

    Unachukwu, Uchenna; Trischler, Jordis; Goldklang, Monica; Xiao, Rui; D'Armiento, Jeanine

    2017-06-01

    The present study tested the hypothesis that maternal smoke exposure results in fetal lung growth retardation due to dysregulation in various signaling pathways, including the Wnt (wingless-related integration site)/β-catenin pathway. Pregnant female C57BL/6J mice were exposed to cigarette smoke (100-150 mg/m(3)) or room air, and offspring were humanely killed on 12.5, 14.5, 16.5, and 18.5 d post coitum (dpc). We assessed lung stereology with Cavalieri estimation; apoptosis with proliferating cell nuclear antigen, TUNEL, and caspase assays; and gene expression with quantitative PCR (qPCR) and RNA sequencing on lung epithelium and mesenchyme retrieved by laser capture microdissection. Results demonstrated a significant decrease in body weight and lung volume of smoke-exposed embryos. At 16.5 dpc, the reduction in lung volume was due to loss of lung mesenchymal tissue correlating with a decrease in cell proliferation (n = 10; air: 61.65% vs. smoke: 44.21%, P < 0.05). RNA sequence analysis demonstrated an alteration in the Wnt pathway, and qPCR confirmed an increased expression of secreted frizzled-related protein 1 (sFRP-1) [n = 12; relative quantification (RQ) 1 vs. 2.33, P < 0.05] and down-regulation of Cyclin D1 (n = 7; RQ 1 vs. 0.61, P < 0.05) in mesenchymal tissue. Furthermore, genome expression studies revealed a smoke-induced up-regulation of Rho-GTPase-dependent actin cytoskeletal signaling that can lead to loss of tissue integrity.-Unachukwu, U., Trischler, J., Goldklang, M., Xiao, R., D'Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. © FASEB.

  7. Chloroplast signaling: retrograde regulation revelations.

    PubMed

    Beale, Samuel I

    2011-05-24

    Developing chloroplasts are able to communicate their status to the nucleus and regulate expression of genes whose products are needed for photosynthesis. Heme is revealed to be a signaling molecule for this retrograde communication.

  8. A Novel Actin mRNA Splice Variant Regulates ACTG1 Expression

    PubMed Central

    Drummond, Meghan C.; Friderici, Karen H.

    2013-01-01

    Cytoplasmic actins are abundant, ubiquitous proteins in nucleated cells. However, actin expression is regulated in a tissue- and development-specific manner. We identified a novel cytoplasmic-γ-actin (Actg1) transcript that includes a previously unidentified exon (3a). Inclusion of this exon introduces an in-frame termination codon. We hypothesized this alternatively-spliced transcript down-regulates γ-actin production by targeting these transcripts for nonsense-mediated decay (NMD). To address this, we investigated conservation between mammals, tissue-specificity in mice, and developmental regulation using C2C12 cell culture. Exon 3a is 80% similar among mammals and varies in length from 41 nucleotides in humans to 45 in mice. Though the predicted amino acid sequences are not similar between all species, inclusion of exon 3a consistently results in the in the introduction of a premature termination codon within the alternative Actg1 transcript. Of twelve tissues examined, exon 3a is predominantly expressed in skeletal muscle, cardiac muscle, and diaphragm. Splicing to include exon 3a is concomitant with previously described down-regulation of Actg1 in differentiating C2C12 cells. Treatment of differentiated C2C12 cells with an inhibitor of NMD results in a 7-fold increase in exon 3a-containing transcripts. Therefore, splicing to generate exon 3a-containing transcripts may be one component of Actg1 regulation. We propose that this post-transcriptional regulation occurs via NMD, in a process previously described as “regulated unproductive splicing and translation” (RUST). PMID:24098136

  9. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling

    PubMed Central

    Shelby, Sarah A.; Veatch, Sarah L.; Holowka, David A.; Baird, Barbara A.

    2016-01-01

    The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids. PMID:27682583

  10. Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis

    PubMed Central

    Gungor-Ordueri, N Ece; Celik-Ozenci, Ciler; Cheng, C Yan

    2015-01-01

    Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis. PMID:25652626

  11. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2002-01-01

    An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.

  12. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom

    PubMed Central

    1975-01-01

    The control systems regulating muscle contraction in approximately 100 organisms have been categorized. Both myosin control and actin control operate simultaneously in the majority of invertebrates tested. These include insects, chelicerates, most crustaceans, annelids, priapulids, nematodes, and some sipunculids. Single myosin control is present in the muscles of molluscs, brachiopods, echinoderms, echiuroids, and nemertine worms. Single actin control was found in the fast muscles of decapods, in mysidacea, in a single sipunculid species, and in vertebrate striated muscles. Classification is based on functional tests that include measurements of the calcium dependence of the actomyosin ATPase activity in the presence and the absence of purified rabbit actin and myosin. In addition, isolated thin filaments and myosins were also analyzed. Molluscs lack actin control since troponin is not present in sufficient quantities. Even though the functional tests indicate the complete lack of myosin control in vertebrate striated muscle, it is difficult to exclude unambiguously the in vivo existence of this regulation. Both control systems have been found in animals from phyla which evolved early. We cannot ascribe any simple correlation between ATPase activity, muscle structure, and regulatory mechanisms. PMID:125778

  13. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    PubMed

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  14. Novel phosphorylation target in the serum response factor MADS box regulates alpha-actin transcription.

    PubMed

    Iyer, Dinakar; Belaguli, Narasimhaswamy; Flück, Martin; Rowan, Brian G; Wei, Lei; Weigel, Nancy L; Booth, Frank W; Epstein, Henry F; Schwartz, Robert J; Balasubramanyam, Ashok

    2003-06-24

    Serum response factor (SRF) is a phosphoprotein that regulates skeletal and cardiac alpha-actin gene transcription. Myotonic dystrophy protein kinase (DMPK), a muscle- and neuron-restricted kinase, enhanced SRF-mediated promoter activity of the skeletal and cardiac alpha-actin genes in C2C12 myoblasts as well as in nonmyogenic cells. DMPK phosphorylated SRF in vitro in the alphaI coil of the DNA-binding domain in the MADS box, a highly conserved region required for DNA binding, dimerization, and co-activator interaction in COS and CV1 cells. Threonine 159 in the MADS box alphaI coil was a specific phosphorylation target in vitro as well as in vivo of both DMPK and protein kinase C-alpha. Substitution of threonine 159 with the nonphosphorylatable residue alanine markedly diminished activation of the cardiac alpha-actin promoter in the presence of kinase, while its substitution with aspartic acid, to introduce a negative charge and mimic phosphorylation, restored activation completely. Phosphorylation of the MADS box may constitute a novel mechanism for regulation of SRF-dependent actin gene transcription.

  15. CD23 can negatively regulate B-cell receptor signaling

    PubMed Central

    Liu, Chaohong; Richard, Katharina; Wiggins, Melvin; Zhu, Xiaoping; Conrad, Daniel H.; Song, Wenxia

    2016-01-01

    CD23 has been implicated as a negative regulator of IgE and IgG antibody responses. However, whether CD23 has any role in B-cell activation remains unclear. We examined the expression of CD23 in different subsets of peripheral B cells and the impact of CD23 expression on the early events of B-cell receptor (BCR) activation using CD23 knockout (KO) mice. We found that in addition to marginal zone B cells, mature follicular B cells significantly down regulate the surface expression level of CD23 after undergoing isotype switch and memory B-cell differentiation. Upon stimulation with membrane-associated antigen, CD23 KO causes significant increases in the area of B cells contacting the antigen-presenting membrane and the magnitude of BCR clustering. This enhanced cell spreading and BCR clustering is concurrent with increases in the levels of phosphorylation of tyrosine and Btk, as well as the levels of F-actin and phosphorylated Wiskott Aldrich syndrome protein, an actin nucleation promoting factor, in the contract zone of CD23 KO B cells. These results reveal a role of CD23 in the negative regulation of BCR signaling in the absence of IgE immune complex and suggest that CD23 down-regulates BCR signaling by influencing actin-mediated BCR clustering and B-cell morphological changes. PMID:27181049

  16. Regulated proteolysis in light signaling.

    PubMed

    Hoecker, Ute

    2005-10-01

    Photoreceptors regulate many aspects of development throughout the life cycle of a plant. Recent advances have demonstrated the importance of ubiquitin-mediated proteolysis in the control of development by light. Both some of the photoreceptors themselves and, in particular, transcription factors that are involved in transducing the light signal are subject to regulated ubiquitination and subsequent degradation by the 26S proteasome.

  17. Actin Recruitment to the Chlamydia Inclusion Is Spatiotemporally Regulated by a Mechanism That Requires Host and Bacterial Factors

    PubMed Central

    Chin, Elizabeth; Kirker, Kelly; Zuck, Meghan; James, Garth; Hybiske, Kevin

    2012-01-01

    The ability to exit host cells at the end of their developmental growth is a critical step for the intracellular bacterium Chlamydia. One exit strategy, extrusion, is mediated by host signaling pathways involved with actin polymerization. Here, we show that actin is recruited to the chlamydial inclusion as a late event, occurring after 20 hours post-infection (hpi) and only within a subpopulation of cells. This event increases significantly in prevalence and extent from 20 to 68 hpi, and actin coats strongly correlated with extrusions. In contrast to what has been reported for other intracellular pathogens, actin nucleation on Chlamydia inclusions did not ‘flash’, but rather exhibited moderate depolymerization dynamics. By using small molecule agents to selectively disrupt host signaling pathways involved with actin nucleation, modulate actin polymerization dynamics and also to disable the synthesis and secretion of chlamydial proteins, we further show that host and bacterial proteins are required for actin coat formation. Transient disruption of either host or bacterial signaling pathways resulted in rapid loss of coats in all infected cells and a reduction in extrusion formation. Inhibition of Chlamydia type III secretion also resulted in rapid loss of actin association on inclusions, thus implicating chlamydial effector proteins(s) as being central factors for engaging with host actin nucleating factors, such as formins. In conclusion, our data illuminate the host and bacterial driven process by which a dense actin matrix is dynamically nucleated and maintained on the Chlamydia inclusion. This late stage event is not ubiquitous for all infected cells in a population, and escalates in prevalence and extent throughout the developmental cycle of Chlamydia, culminating with their exit from the host cell by extrusion. The initiation of actin recruitment by Chlamydia appears to be novel, and may serve as an upstream determinant of the extrusion mechanism. PMID

  18. CAPZA1 modulates EMT by regulating actin cytoskeleton remodelling in hepatocellular carcinoma.

    PubMed

    Huang, Deng; Cao, Li; Zheng, Shuguo

    2017-01-16

    Epithelial-mesenchymal transition (EMT) elicits dramatic changes, including cytoskeleton remodelling as well as changes in gene expression and cellular phenotypes. During this process, actin filament assembly plays an important role in maintaining the morphology and movement of tumour cells. Capping protein, a protein complex referred to as CapZ, is an actin-binding complex that can regulate actin cytoskeleton remodelling. CAPZA1 is the α1 subunit of this complex, and we hypothesized that CAPZA1 regulates EMT through the regulation of actin filaments assembly, thus reducing the metastatic ability of hepatocellular carcinoma (HCC) cells. Immunohistochemistry was used to detect CAPZA1 expression in 129 HCC tissues. Western blotting and qPCR were used to detect CAPZA1, EMT markers and EMT transcription factors in HCC cells. Transwell migration and invasion assays were performed to observe the migration and invasion of HCC cells. Cell Counting Kit-8 (CCK-8) was used to detect the proliferation of HCC cells. Immunoprecipitation was used to detect the interaction between CAPZA1 and actin filaments. Finally, a small animal magnetic resonance imager (MRI) was used to observe metastases in HCC cell xenografts in the liver. CAPZA1 expression levels were negatively correlated with the biological characteristics of primary HCC and patient prognosis. CAPZA1 expression was negatively correlated with the migration and invasion of HCC cells. CAPZA1 down regulation promoted the migration and invasion of HCC cells. Conversely, CAPZA1 overexpression significantly inhibited the migration and invasion of HCC cells. Moreover, CAPZA1 expression levels were correlated with the expression of the EMT markers E-cadherin, N-cadherin and Vimentin. Furthermore, the expression of Snail1 and ZEB1 were negatively correlated with CAPZA1 expression levels. Similarly, CAPZA1 significantly inhibited intrahepatic metastases of HCC cells in an orthotopic transplantation tumour model. CAPZA1 inhibits

  19. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  20. Arginyltransferase regulates alpha cardiac actin, myofibril formation and contractility during heart development

    PubMed Central

    Rai, Reena; Wong, Catherine C. L.; Xu, Tao; Leu, N. Adrian; Dong, Dawei W.; Guo, Caiying; McLaughlin, K. John; Yates, John R.; Kashina, Anna

    2008-01-01

    Summary Posttranslational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects the myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of actin cytoskeleton and the events of cell motility. Here we investigate the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analysis shows that alpha cardiac actin undergoes arginylation on multiple sites during development. Ultrastructural analysis of the myofibrils in wild type and Ate1 knockout mouse hearts shows that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild type and Ate1 knockout mouse embryos show that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of actin cytoskeleton in cardiac myocytes. PMID:18948421

  1. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  2. Regulation of blood-testis barrier by actin binding proteins and protein kinases

    PubMed Central

    Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan

    2016-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  3. Regulation of blood-testis barrier by actin binding proteins and protein kinases.

    PubMed

    Li, Nan; Tang, Elizabeth I; Cheng, C Yan

    2016-03-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.

  4. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation

    PubMed Central

    Kesavan, Gokul; Lieven, Oliver; Mamidi, Anant; Öhlin, Zarah Löf; Johansson, Jenny Kristina; Li, Wan-Chun; Lommel, Silvia; Greiner, Thomas Uwe; Semb, Henrik

    2014-01-01

    Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in β cells expressing constitutively active Cdc42 partially restores both delamination and β cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis. PMID:24449844

  5. Chloroplast retrograde signal regulates flowering

    PubMed Central

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-01-01

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  6. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis.

    PubMed

    Conte, Ianina L; Hellen, Nicola; Bierings, Ruben; Mashanov, Gregory I; Manneville, Jean-Baptiste; Kiskin, Nikolai I; Hannah, Matthew J; Molloy, Justin E; Carter, Tom

    2016-02-01

    Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.

  7. Interaction between MyRIP and the actin cytoskeleton regulates Weibel–Palade body trafficking and exocytosis

    PubMed Central

    Conte, Ianina L.; Hellen, Nicola; Bierings, Ruben; Mashanov, Gregory I.; Manneville, Jean-Baptiste; Kiskin, Nikolai I.; Hannah, Matthew J.; Molloy, Justin E.; Carter, Tom

    2016-01-01

    ABSTRACT Weibel–Palade body (WPB)–actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A–MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP–actin interactions can also occur. To evaluate the specific contribution of MyRIP–actin and MyRIP–MyoVa binding in WPB trafficking and Ca2+-driven exocytosis, we used EGFP–MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca2+-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa. PMID:26675235

  8. Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used.

    PubMed Central

    Apgar, J R

    1994-01-01

    Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein. PMID:8049523

  9. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  10. Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton

    SciTech Connect

    Gray, Darren S.; Liu, Wendy F.; Shen, Colette J.; Bhadriraju, Kiran; Nelson, Celeste M.; Chen, Christopher S.

    2008-09-10

    Endothelial cell-cell contact via VE-cadherin plays an important role in regulating numerous cell functions, including proliferation. However, using different experimental approaches to manipulate cell-cell contact, investigators have observed both inhibition and stimulation of proliferation depending on the adhesive context. In this study, we used micropatterned wells combined with active positioning of cells by dielectrophoresis in order to investigate whether the number of contacting neighbors affected the proliferative response. Varying cell-cell contact resulted in a biphasic effect on proliferation; one contacting neighbor increased proliferation, while two or more neighboring cells partially inhibited this increase. We also observed that cell-cell contact increased the formation of actin stress fibers, and that expression of dominant negative RhoA (RhoN19) blocked the contact-mediated increase in stress fibers and proliferation. Furthermore, examination of heterotypic pairs of untreated cells in contact with RhoN19-expressing cells revealed that intracellular, but not intercellular, tension is required for the contact-mediated stimulation of proliferation. Moreover, engagement of VE-cadherin with cadherin-coated beads was sufficient to stimulate proliferation in the absence of actual cell-cell contact. In all, these results demonstrate that cell-cell contact signals through VE-cadherin, RhoA, and intracellular tension in the actin cytoskeleton to regulate proliferation.

  11. Loss of a Rho-regulated actin nucleator, mDia2, impairs cytokinesis during mouse fetal erythropoiesis.

    PubMed

    Watanabe, Sadanori; De Zan, Tihana; Ishizaki, Toshimasa; Yasuda, Shingo; Kamijo, Hiroshi; Yamada, Daisuke; Aoki, Tomohiro; Kiyonari, Hiroshi; Kaneko, Hiroshi; Shimizu, Ritsuko; Yamamoto, Masayuki; Goshima, Gohta; Narumiya, Shuh

    2013-11-27

    The small GTPase Rho and mDia2, a Rho-regulated actin nucleator, function as critical regulators of cytokinesis in cultured cells. However, their involvement in cytokinesis during mammalian development remains unknown. Here, we generated mice deficient in mDia2 and examined the role of Rho signaling in cytokinesis during development. mDia2-deficient mice survive until embryonic day 11.5 (E11.5), exhibit severe anemia with multinucleate erythroblasts, and die in utero by E12.5. mDia2-deficient erythroid cells differentiate normally, though in a delayed manner, but exhibit cytokinesis failure with decreased accumulation of F-actin in the cleavage furrow during late differentiation from proerythroblasts. On the other hand, inactivation of Rho induces cytokinesis failure from the earlier progenitor stage. mDia2-deficient erythroblasts, however, are able to enucleate their nuclei. Our findings have thus revealed that mDia2 functions critically in cytokinesis in vivo during erythropoiesis and further suggest that the cytokinesis mechanism in development diverges downstream of Rho. They also demonstrate that cytokinesis and enucleation utilize different mechanisms. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    PubMed

    Chan, Maia M; Wooden, Jason M; Tsang, Mark; Gilligan, Diana M; Hirenallur-S, Dinesh K; Finney, Greg L; Rynes, Eric; Maccoss, Michael; Ramirez, Julita A; Park, Heon; Iritani, Brian M

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  13. Hematopoietic Protein-1 Regulates the Actin Membrane Skeleton and Membrane Stability in Murine Erythrocytes

    PubMed Central

    Chan, Maia M.; Wooden, Jason M.; Tsang, Mark; Gilligan, Diana M.; Hirenallur-S, Dinesh K.; Finney, Greg L.; Rynes, Eric; MacCoss, Michael; Ramirez, Julita A.; Park, Heon; Iritani, Brian M.

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1−/− erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1−/− erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes. PMID:23424621

  14. The mtDNA NARP mutation activates the actin-Nrf2 signaling of antioxidant defenses

    SciTech Connect

    Dassa, Emmanuel Philippe; Paupe, Vincent; Goncalves, Sergio; Rustin, Pierre

    2008-04-11

    An efficient handling of superoxides by antioxidant defenses is a crucial issue for cells with respiratory chain deficient mitochondria. We used human cultured skin fibroblasts to delineate the mechanism controlling the expression of antioxidant defenses in the case of a severe ATPase deficiency resulting from an 8993T>G mutation in the mitochondrial ATPase6 gene. We observed the nuclear translocation of the transcription factor Nrf2 associated with thinning of the actin stress fibers. The mobilization of the Nrf2 signaling pathway could be mimicked by a chemical blockade of the ATPase with a specific inhibitor, oligomycin. Interestingly enough, Nrf2 nuclear translocation was not observed in the case of a severe cytochrome oxidase deficiency, indicating that studying the status of this signaling pathway could throw some light on the importance of the oxidative insult associated with different respiratory chain defects.

  15. Spatially Defined EGF Receptor Activation Reveals an F-Actin-Dependent Phospho-Erk Signaling Complex

    PubMed Central

    Singhai, Amit; Wakefield, Devin L.; Bryant, Kirsten L.; Hammes, Stephen R.; Holowka, David; Baird, Barbara

    2014-01-01

    We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors. PMID:25468343

  16. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics.

    PubMed

    Renault, Louis; Deville, Célia; van Heijenoort, Carine

    2013-11-01

    Many actin-binding proteins (ABPs) use complex multidomain architectures to integrate and coordinate multiple signals and interactions with the dynamic remodeling of actin cytoskeleton. In these proteins, small segments that are intrinsically disordered in their unbound native state can be functionally as important as identifiable folded units. These functional intrinsically disordered regions (IDRs) are however difficult to identify and characterize in vitro. Here, we try to summarize the state of the art in understanding the structural features and interfacial properties of IDRs involved in actin self-assembly dynamics. Recent structural and functional insights into the regulation of widespread, multifunctional WH2/β-thymosin domains, and of other IDRs such as those associated with WASP/WAVE, formin or capping proteins are examined. Understanding the functional versatility of IDRs in actin assembly requires apprehending by multiple structural and functional approaches their large conformational plasticity and dynamics in their interactions. In many modular ABPs, IDRs relay labile interactions with multiple partners and act as interaction hubs in interdomain and protein-protein interfaces. They thus control multiple conformational transitions between the inactive and active states or between various active states of multidomain ABPs, and play an important role to coordinate the high turnover of interactions in actin self-assembly dynamics.

  17. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats.

    PubMed

    Chen, Haiqi; Mruk, Dolores D; Lee, Will M; Cheng, C Yan

    2016-05-01

    Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.

  18. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats

    PubMed Central

    Chen, Haiqi; Mruk, Dolores D.; Lee, Will M.

    2016-01-01

    Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis. PMID:26990065

  19. act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc.

    PubMed

    Benlali, A; Draskovic, I; Hazelett, D J; Treisman, J E

    2000-04-28

    Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.

  20. RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry

    PubMed Central

    Siddiqui, Mohammad Adnan; Dayal, Shubham; Naji, Merna; Ezelle, Heather J.; Zeng, Chun; Zhou, Aimin; Hassel, Bret A.

    2014-01-01

    ABSTRACT The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. PMID:25352621

  1. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    PubMed

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  2. RhoA-mediated MLC2 regulates actin dynamics for cytokinesis in meiosis.

    PubMed

    Duan, Xing; Liu, Jun; Zhu, Cheng-Cheng; Wang, Qiao-Chu; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2016-01-01

    During oocyte meiosis, the bipolar spindle forms in the central cytoplasm and then migrates to the cortex. Subsequently, the oocyte extrudes the polar body through two successive asymmetric divisions, which are regulated primarily by actin filaments. Myosin light chain2 (MLC2) phosphorylation plays pivotal roles in smooth muscle contraction, stress fiber formation, cell motility and cytokinesis. However, whether MLC2 phosphorylation participates in the oocyte polarization and asymmetric division has not been clarified. The present study investigated the expression and functions of MLC2 during mouse oocyte meiosis. Our result showed that p-MLC2 was localized in the oocyte cortex, with a thickened cap above the chromosomes. Meanwhile, p-MLC2 was also localized in the poles of spindle. Disruption of MLC2 activity by MLC2 knock down (KD) caused the failure of polar body extrusion. Immunofluorescent staining showed that a large proportion of oocytes arrested in telophase stage and failed to undergo cytokinesis after culturing for 12 hours. In the meantime, actin filament staining at oocyte membrane and cytoplasm were reduced in MLC2 KD oocytes. Finally, we found that the phosphorylation of MLC2 protein levels was decreased after disruption of RhoA activity. Above all, our data indicated that the RhoA-mediated MLC2 regulates the actin organization for cytokinesis during mouse oocyte maturation.

  3. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission.

    PubMed

    De Vos, Kurt J; Allan, Victoria J; Grierson, Andrew J; Sheetz, Michael P

    2005-04-12

    Mitochondria display a variety of shapes, ranging from small and spherical or the classical tubular shape to extended networks. Shape transitions occur frequently and include fusion, fission, and branching. It was reported that some mitochondrial shape transitions are developmentally regulated, whereas others were linked to disease or apoptosis. However, if and how mitochondrial function controls mitochondrial shape through regulation of mitochondrial fission and fusion is unclear. Here, we show that inhibitors of electron transport, ATP synthase, or the permeability transition pore (mtPTP) induced reversible mitochondrial fission. Mitochondrial fission depended on dynamin-related protein 1 (DRP1) and F-actin: Disruption of F-actin attenuated fission and recruitment of DRP1 to mitochondria. In contrast, uncoupling of electron transport and oxidative phosphorylation caused mitochondria to adopt a distinct disk shape. This shape change was independent of the cytoskeleton and DRP1 and was most likely caused by swelling. Thus, disruption of mitochondrial function rapidly and reversibly altered mitochondrial shape either by activation of DRP1-dependent fission or by swelling, indicating a close relationship between mitochondrial fission, shape, and function. Furthermore, our results suggest that the actin cytoskeleton is involved in mitochondrial fission by facilitating mitochondrial recruitment of DRP1.

  4. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  5. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP.

    PubMed

    Hussain, N K; Jenna, S; Glogauer, M; Quinn, C C; Wasiak, S; Guipponi, M; Antonarakis, S E; Kay, B K; Stossel, T P; Lamarche-Vane, N; McPherson, P S

    2001-10-01

    Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.

  6. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration.

    PubMed

    Gupton, Stephanie L; Eisenmann, Kathryn; Alberts, Arthur S; Waterman-Storer, Clare M

    2007-10-01

    Cell migration requires spatial and temporal regulation of filamentous actin (F-actin) dynamics. This regulation is achieved by distinct actin-associated proteins, which mediate polymerization, depolymerization, severing, contraction, bundling or engagement to the membrane. Mammalian Diaphanous-related (mDia) formins, which nucleate, processively elongate, and in some cases bundle actin filaments, have been extensively studied in vitro, but their function in the cell has been less well characterized. Here we study the role of mDia2 activity in the dynamic organization of F-actin in migrating epithelial cells. We find that mDia2 localizes in the lamella of migrating epithelial cells, where it is involved in the formation of a stable pool of cortical actin and in maintenance of polymerization-competent free filament barbed ends at focal adhesions. Specific inhibition of mDia2 alters focal adhesion turnover and reduces migration velocity. We suggest that the regulation of filament assembly dynamics at focal adhesions may be necessary for the formation of a stable pool of cortical lamella actin and the proper assembly and disassembly dynamics of focal adhesions, making mDia2 an important factor in epithelial cell migration.

  7. miR-8 controls synapse structure by repression of the actin regulator enabled.

    PubMed

    Loya, Carlos M; McNeill, Elizabeth M; Bao, Hong; Zhang, Bing; Van Vactor, David

    2014-05-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play important roles in nervous system development and physiology. However, our understanding of the strategies by which miRNAs control synapse development is limited. We find that the highly conserved miRNA miR-8 regulates the morphology of presynaptic arbors at the Drosophila neuromuscular junction (NMJ) through a postsynaptic mechanism. Developmental analysis shows that miR-8 is required for presynaptic expansion that occurs in response to larval growth of the postsynaptic muscle targets. With an in vivo sensor, we confirm our hypothesis that the founding member of the conserved Ena/VASP (Enabled/Vasodilator Activated Protein) family is regulated by miR-8 through a conserved site in the Ena 3' untranslated region (UTR). Synaptic marker analysis and localization studies suggest that Ena functions within the subsynaptic reticulum (SSR) surrounding presynaptic terminals. Transgenic lines that express forms of a conserved mammalian Ena ortholog further suggest that this localization and function of postsynaptic Ena/VASP family protein is dependent on conserved C-terminal domains known to mediate actin binding and assembly while antagonizing actin-capping proteins. Ultrastructural analysis demonstrates that miR-8 is required for SSR morphogenesis. As predicted by our model, we find that Ena is both sufficient and necessary to account for miR-8-mediated regulation of SSR architecture, consistent with its localization in this compartment. Finally, electrophysiological analysis shows that miR-8 is important for spontaneous neurotransmitter release frequency and quantal content. However, unlike the structural phenotypes, increased expression of Ena fails to mimic the functional defects observed in miR-8-null animals. Together, these findings suggest that miR-8 limits the expansion of presynaptic terminals during larval synapse development through regulation of postsynaptic actin assembly that

  8. Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans.

    PubMed

    Delbrück, S; Ernst, J F

    1993-11-01

    The transcript level of the Candida albicans ACT1 gene (encoding actin) is strongly regulated during induction of hyphal morphogenesis. ACT1 mRNA declines rapidly during starvation pretreatment and quickly recovers in media inducing morphogenesis. The C. albicans URA3 and LEU2 mRNAs, as well as an ACT1 promoter/LAC4 fusion, are regulated similarly. The regulation of ACT1/LAC4 and unaltered mRNA stabilities suggest transcriptional regulation during morphogenesis. However, by individually testing morphogenesis induction parameters, it is shown that starvation and growth phase, but not hyphal formation, are responsible for ACT1 transcript regulation; this conclusion is confirmed by analyses of morphological mutants and by inhibition of hyphal development. Thus, the specific morphogenesis-induction conditions, but not morphogenesis per se, affect transcript levels in C. albicans.

  9. Differential functions of WAVE regulatory complex subunits in the regulation of actin-driven processes.

    PubMed

    Litschko, Christof; Linkner, Joern; Brühmann, Stefan; Stradal, Theresia E B; Reinl, Tobias; Jänsch, Lothar; Rottner, Klemens; Faix, Jan

    2017-09-04

    The WAVE regulatory complex (WRC) links upstream Rho-family GTPase signaling to the activation of the ARP2/3 complex in different organisms. WRC-induced and ARP2/3 complex-mediated actin nucleation beneath the plasma membrane is critical for actin assembly in the leading edge to drive efficient cell migration. The WRC is a stable heteropentamer composed of SCAR/WAVE, Abi, Nap, Pir and the small polypeptide Brk1/Hspc300. Functional interference with individual subunits of the complex frequently results in diminished amounts of the remaining polypeptides of the WRC complex, implying the complex to act as molecular entity. However, Abi was also found to associate with mammalian N-WASP, formins, Eps8/SOS1 or VASP, indicating additional functions of individual WRC subunits in eukaryotic cells. To address this issue systematically, we inactivated all WRC subunits, either alone or in combination with VASP in Dictyostelium cells and quantified the protein content of the remaining subunits in respective WRC knockouts. The individual mutants displayed highly differential phenotypes concerning various parameters, including cell morphology, motility, cytokinesis or multicellular development, corroborating the view of additional roles for individual subunits, beyond their established function in WRC-mediated Arp2/3 complex activation. Finally, our data uncover the interaction of the actin polymerase VASP with WRC-embedded Abi to mediate VASP accumulation in cell protrusions, driving efficient cell migration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts.

    PubMed

    Malone, Amanda M D; Batra, Nikhil N; Shivaram, Giri; Kwon, Ron Y; You, Lidan; Kim, Chi Hyun; Rodriguez, Joshua; Jair, Kai; Jacobs, Christopher R

    2007-05-01

    Fluid flow due to loading in bone is a potent mechanical signal that may play an important role in bone adaptation to its mechanical environment. Previous in vitro studies of osteoblastic cells revealed that the upregulation of cyclooxygenase-2 (COX-2) and c-fos induced by steady fluid flow depends on a change in actin polymerization dynamics and the formation of actin stress fibers. Exposing cells to dynamic oscillatory fluid flow, the temporal flow pattern that results from normal physical activity, is also known to result in increased COX-2 expression and PGE(2) release. The purpose of this study was to determine whether dynamic fluid flow results in changes in actin dynamics similar to steady flow and to determine whether alterations in actin dynamics are required for PGE(2) release. We found that exposure to oscillatory fluid flow did not result in the development of F-actin stress fibers in MC3T3-E1 osteoblastic cells and that inhibition of actin polymerization with cytochalasin D did not inhibit intracellular calcium mobilization or PGE(2) release. In fact, PGE(2) release was increased threefold in the polymerization inhibited cells and this PGE(2) release was dependent on calcium release from the endoplasmic reticulum. This was in contrast to the PGE(2) release that occurs in normal cells, which is independent of calcium flux from endoplasmic reticulum stores. We suggest that this increased PGE(2) release involves a different molecular mechanism perhaps involving increased deformation due to the compromised cytoskeleton.

  11. Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules

    PubMed Central

    Han, Xiaofan; Li, Pin; Yang, Zhenghao; Huang, Xiaoshuai; Wei, Guoqin; Sun, Yujie; Kang, Xuya; Hu, Xueting; Deng, Qiuping; Chen, Liangyi; He, Aibin; Huo, Yingqing; Li, Dong; Betzig, Eric; Luo, Jincai

    2017-01-01

    Endothelial exocytosis of Weibel–Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis. PMID:28256511

  12. Androgens Regulate T47D Cells Motility and Invasion through Actin Cytoskeleton Remodeling

    PubMed Central

    Montt-Guevara, Maria Magdalena; Shortrede, Jorge Eduardo; Giretti, Maria Silvia; Giannini, Andrea; Mannella, Paolo; Russo, Eleonora; Genazzani, Alessandro David; Simoncini, Tommaso

    2016-01-01

    The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin–radixin–moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen – DHT – only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment. PMID:27746764

  13. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  14. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice

    PubMed Central

    Miller, Kaylie P.; Krcmery, Jennifer; Simon, Hans-Georg

    2016-01-01

    Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis. PMID:27792740

  15. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.

    PubMed

    Marsick, Bonnie M; Letourneau, Paul C

    2011-03-17

    The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration

  16. h2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton.

    PubMed

    Hossain, M Moazzem; Crish, James F; Eckert, Richard L; Lin, Jim J-C; Jin, Jian-Ping

    2005-12-23

    Calponin is an extensively studied actin-binding protein, but its function is not well understood. Among three isoforms of calponin, h2-calponin is found in both smooth muscle and non-muscle cells. The present study demonstrates that epidermal keratinocytes and fibroblast cells express significant amounts of h2-calponin. The expression of h2-calponin is cell anchorage-dependent. The levels of h2-calponin decrease when cells are rounded up and remain low when cells are prevented from adherence to a culture dish. h2-calponin expression resumes after the floating cells are allowed to form a monolayer in plastic dish. Cell cultures on polyacrylamide gels of different stiffness demonstrated that h2-calponin expression is affected by the mechanical properties of the culture matrix. When cells are cultured on soft gel that applies less traction force to the cell and, therefore, lower mechanical tension in the cytoskeleton, the level of h2-calponin is significantly lower than that in cells cultured on hard gel or rigid plastic dish. Force-expression of h2-calponin enhanced the resistance of the actin filaments to cytochalasin B treatment. Keratinocyte differentiation is accompanied by a mechanical tension-related up-regulation of h2-calponin. Lowering the tension of actin cytoskeleton by inhibiting non-muscle myosin II ATPase decreased h2-calponin expression. In contrast to the mechanical tension regulation of endogenous h2-calponin, the expression of h2-calponin using a cytomegalovirus promotor was independent of the stiffness of culture matrix. The results suggest that h2-calponin represents a novel manifestation of mechanical tension responsive gene regulation that may modify cytoskeleton function.

  17. Regulation of neuronal PKA signaling through AKAP targeting dynamics.

    PubMed

    Dell'Acqua, Mark L; Smith, Karen E; Gorski, Jessica A; Horne, Eric A; Gibson, Emily S; Gomez, Lisa L

    2006-07-01

    Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic

  18. Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization.

    PubMed

    Alajbegovic, Azra; Turczyńska, Karolina M; Hien, Tran Thi; Cidad, Pilar; Swärd, Karl; Hellstrand, Per; Della Corte, Alessandro; Forte, Amalia; Albinsson, Sebastian

    2017-06-01

    The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA. In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed using cardiovascular disease-focused miRNA arrays in both mouse and human cells. The potential clinical importance of actin polymerization in aortic aneurysm was evaluated using biopsies from mildly dilated human thoracic aorta in patients with stenotic tricuspid or bicuspid aortic valve. By integrating information from multiple qPCR based miRNA arrays we identified a group of five miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpression in both mouse and human vascular smooth muscle. With the exception of miR-22, these miRNAs were also relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease in actin/MRTF-regulated miRNAs. In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight into the mechanisms underlying

  19. Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics

    PubMed Central

    Man Tsang, Siu; Brown, Louise; Gadmor, Hanan; Gammon, Luke; Fortune, Farida; Wheeler, Ann; Wan, Hong

    2012-01-01

    Desmoglein 3 (Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in desmosomes. Our previous study showed that overexpression of human Dsg3 in several epithelial lines induces formation of membrane protrusions, a phenotype suggestive of Rho GTPase activation. Here we examined the interaction between Dsg3 and actin in detail and showed that endogenous Dsg3 colocalises and interacts with actin, particularly the junctional actin in a Rac1-dependent manner. Ablation of Rac1 activity by dominant negative Rac1 mutant (N17Rac1) or the Rac1 specific inhibitor (NSC23766) directly disrupts the interaction between Dsg3 and actin. Assembly of the junctional actin at the cell borders is accompanied with enhanced levels of Dsg3, while inhibition of Dsg3 by RNAi results in profound changes in the organisation of actin cytoskeleton. In accordance, overexpression of Dsg3 results in a remarkable increase of Rac1 and Cdc42 activities and to a lesser extent, RhoA. The enhancements in Rho GTPases are accompanied by the pronounced actin-based membrane structures such as lamellipodia and filopodia, enhanced rate of actin turnover and cell polarisation. Together, our results reveal an important novel function for Dsg3 in promoting actin dynamics through regulating Rac1 and Cdc42 activation in epithelial cells. PMID:22796473

  20. Regulation of actin dynamics and protein trafficking during spermatogenesis – insights into a complex process*

    PubMed Central

    Su, Wenhui; Mruk, Dolores; Cheng, C Yan

    2013-01-01

    In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis, and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes regulate spermatogenesis. We also provide a working model based on the latest findings in the field to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years. PMID:23339542

  1. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

    PubMed Central

    Feygin, Alex; Ivanov, Andrei I.

    2015-01-01

    Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton. PMID:25809162

  2. The Biphasic Increase of PIP2 in the Fertilized Eggs of Starfish: New Roles in Actin Polymerization and Ca2+ Signaling

    PubMed Central

    Chun, Jong T.; Puppo, Agostina; Vasilev, Filip; Gragnaniello, Giovanni; Garante, Ezio; Santella, Luigia

    2010-01-01

    Background Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP3) and also regulates actin-binding proteins, PIP2 might be involved in these two processes. Methodology/Principal Findings In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE). These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization. Conclusions/Significance Our results suggest that PIP2 plays comprehensive roles in shaping Ca2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule exocytosis. PMID:21124897

  3. Intracellular Theileria annulata Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. PMID:24626571

  4. A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis.

    PubMed

    Yan, Jianshe; Mihaylov, Vassil; Xu, Xuehua; Brzostowski, Joseph A; Li, Hongyan; Liu, Lunhua; Veenstra, Timothy D; Parent, Carole A; Jin, Tian

    2012-01-17

    Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.

  5. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton

    PubMed Central

    He, Yuan; Li, Dong; Cook, Sara L.; Yoon, Mee-Sup; Kapoor, Ashish; Rao, Christopher V.; Kenis, Paul J. A.; Chen, Jie; Wang, Fei

    2013-01-01

    Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase–independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis. PMID:24006489

  6. Paradoxical signaling regulates structural plasticity in dendritic spines

    PubMed Central

    Rangamani, Padmini; Levy, Michael G.; Khan, Shahid; Oster, George

    2016-01-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  7. Paradoxical Signaling Regulates Structural Plasticity in Dendritic Spines

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Levy, Michael; Khan, Shahid; Oster, George

    2016-02-01

    Transient spine enlargement (3-5 min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium-influx due to NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks and their role is to control both the activation and inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion including CaMKII, RhoA, and Cdc42 and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics.

  8. Dynamin-2 Regulates Fusion Pore Expansion and Quantal Release through a Mechanism that Involves Actin Dynamics in Neuroendocrine Chromaffin Cells

    PubMed Central

    González-Jamett, Arlek M.; Momboisse, Fanny; Guerra, María José; Ory, Stéphane; Báez-Matus, Ximena; Barraza, Natalia; Calco, Valerie; Houy, Sébastien; Couve, Eduardo; Neely, Alan; Martínez, Agustín D.; Gasman, Stéphane; Cárdenas, Ana M.

    2013-01-01

    Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands. PMID:23940613

  9. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization.

    PubMed

    Zhu, Lei; Zhang, Yan; Kang, Erfang; Xu, Qiangyi; Wang, Miaoying; Rui, Yue; Liu, Baoquan; Yuan, Ming; Fu, Ying

    2013-03-01

    For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.

  10. The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock

    PubMed Central

    Doshi, Bindi M.; Hightower, Lawrence E.

    2009-01-01

    Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility. Electronic supplementary material The online version of this article (doi:10.1007/s12192-008-0098-1) contains supplementary material, which is available to authorized users. PMID:19224398

  11. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

    PubMed Central

    Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian

    2015-01-01

    Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344

  12. Heregulin regulates the actin cytoskeleton and promotes invasiveproperties in breast cancer cell lines

    SciTech Connect

    Hijazi, Mai M.; Thompson, Erik W.; Tang, Careen; Coopman, Peter; Torri, Jeffrey A.; Yang, Dajun; Mueller, Susette C.; Lupu, Ruth

    1999-10-01

    The metastatic process requires changes in tumor celladhesion proerties, cell motility and remodeling of the extracellularmatrix. The erbB2 protooncogene is overexpressed in approximately 30percent of breast cancers and is a major prognostic parameter whenpresent in invasive disease. However, it is expressed more often innon-invasive tumors, where it has no prognostic significance, thus itsrole in promoting metastatic tumor progression is not clear. A ligand forthe erbB2 receptor has not yet been identified but it can be activated byheterodimerization with heregulin (HRG)-stimulated erbB3 and erbB4receptors. The HRGs are a family of polypeptide growth factors that havebeen shown to play a role in embryogenesis, tumor formation and growthand differentiation of breast cancer cells. The erbB3 and erbB4 receptorsare involved in transregulation of erbB2 signaling, however theirrespective contributions to the progression of breast cancer have not yetbeen determined. The work presented here suggests additional biologicalroles for HRG including regulation of the actin cytoskeleton andinduction of motility and invasion in breast cancer cells. HRG-expressingbreast cancer cell lines are characterized by low erbB receptor levelsand a high invasive and metastatic index, while those which overexpresserbB2 demonstrate minimal invasive potential in vitro and arenon-tumorigenic in vivo. Treatment of the highly tumorigenic andmetastatic HRG-expressing breast cancer cell line MDA-MB-231 with anHRG-neutralizing antibody significantly inhibited proliferation inculture and motility in the Boyden chamber assay. Addition of exogenousHRG ligand to non-invasive erbB2 overexpressing cells (SKBr-3) at lowconcentrations (0.2ng/ml) induced formation of pseudopodia, enhancedphagocytic activity and increased chemomigration and invasion in theBoyden chamber assay. The specificity of the chemomigration response toHRG is demonstrated by inhibition with the anti-HRG neutralizingantibody. These

  13. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network.

    PubMed

    Almeida, Claudia G; Yamada, Ayako; Tenza, Danièle; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2011-06-12

    The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.

  14. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction

    PubMed Central

    Breitbart, Haim; Etkovitz, Nir

    2011-01-01

    To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acrosome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca2+ concentration leading to F-actin breakdown and allows the AR to take place. Under in vivo conditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or lysophosphatidic acid, as well as ouabain and EGF are physiological components present in the female reproductive tract. PMID:21200378

  15. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    PubMed

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  16. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  17. Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin.

    PubMed

    Tasaka, Gen-Ichi; Negishi, Manabu; Oinuma, Izumi

    2012-06-13

    Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.

  18. Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes.

    PubMed

    Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna

    2014-06-01

    Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans

    PubMed Central

    Ono, Shoichiro

    2014-01-01

    The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessary proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function. PMID:25125169

  20. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation

    PubMed Central

    Bencsik, Norbert; Szíber, Zsófia; Liliom, Hanna; Tárnok, Krisztián; Borbély, Sándor; Gulyás, Márton; Rátkai, Anikó; Szűcs, Attila; Hazai-Novák, Diána; Ellwanger, Kornelia; Rácz, Bence; Pfizenmaier, Klaus; Hausser, Angelika

    2015-01-01

    Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines. PMID:26304723

  1. Regulation of CXCR4 Signaling

    PubMed Central

    Busillo, John M.; Benovic, Jeffrey L.

    2007-01-01

    The chemokine receptor CXCR4 belongs to the large superfamily of G protein-coupled receptors, and is directly involved in a number of biological processes including organogenesis, hematopoeisis, and immune response. Recent evidence has highlighted the role of CXCR4 in a variety of diseases including HIV, cancer, and WHIM syndrome. Importantly, the involvement of CXCR4 in cancer metastasis and WHIM syndrome appears to be due to dysregulation of the receptor leading to enhanced signaling. Herein we review what is currently known regarding the regulation of CXCR4 and how dysregulation contributes to disease progression. PMID:17169327

  2. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization

    PubMed Central

    Liu, An; Zhou, Zikai; Dang, Rui; Zhu, Yuehua; Qi, Junxia; He, Guiqin; Leung, Celeste; Pak, Daniel

    2016-01-01

    Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase–activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin–mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function. PMID:26880202

  3. Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain.

    PubMed

    Mijailovich, Srboljub M; Kayser-Herold, Oliver; Li, Xiaochuan; Griffiths, Hugh; Geeves, Michael A

    2012-12-01

    The regulation of striated muscle contraction involves cooperative interactions between actin filaments, myosin-S1 (S1), tropomyosin (Tm), troponin (Tn), and calcium. These interactions are modeled by treating overlapping tropomyosins as a continuous flexible chain (CFC), weakly confined by electrostatic interactions with actin. The CFC is displaced locally in opposite directions on the actin surface by the binding of either S1 or Troponin I (TnI) to actin. The apparent rate constants for myosin and TnI binding to and detachment from actin are then intrinsically coupled via the CFC model to the presence of neighboring bound S1s and TnIs. Monte Carlo simulations at prescribed values of the CFC stiffness, the CFC's degree of azimuthal confinement, and the angular displacements caused by the bound proteins were able to predict the stopped-flow transients of S1 binding to regulated F-actin. The transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k(-I). The resulting equilibrium constant K(B) ≡ 1/K(I) varied sigmoidally with the free calcium, increasing from 0.12 at low calcium (pCa >7) to 12 at high calcium (pCa <5.5) with a Hill coefficient of ~2.15. The similarity of the curves for excess-actin and excess-myosin data confirms their allosteric relationship. The spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations. Moreover, inclusion of negative cooperativity between myosin units predicted the observed slowing of myosin binding at excess-myosin concentrations.

  4. Regulation of cell survival by the HIP-55 signaling network.

    PubMed

    Yang, Chengzhi; Li, Zenggang; Shi, Zhi; He, Kangmin; Tian, Aiju; Wu, Jimin; Zhang, Youyi; Li, Zijian

    2014-06-01

    HIP-55 (hematopoietic progenitor kinase 1 [HPK1]-interacting protein of 55 kDa) is the mammalian homologue of the yeast Abp1p. It contains a C-terminal Src homology 3 domain and an N-terminal actin depolymerization factor (ADF-H/C) domain. HIP-55 appears to be critical for organ development and immune response and is important for the regulation of the actin cytoskeleton through its interactions with F-actin and various cytoskeletal and cell signaling proteins. However, the function of HIP-55 in tumors remains unknown. Here, we found that HIP-55 is up-regulated or down-regulated in several types of tumor tissues in patients. Of these, lung cancer tissues had the highest expression of HIP-55. To gain full insight into the function of HIP-55 in lung cancer, microarray assay was performed using Affymetrix U133 Plus 2.0 expression arrays in both HIP-55 knockdown and scramble control A549 cells. The ingenuity pathway analysis tool was utilized to construct biological networks and analyze functions that might be associated with HIP-55. Functional analysis strongly suggested that HIP-55 may be involved in cancer cell survival and cell death, which was then confirmed by further experimentation. Experimental results showed that downregulation of HIP-55 decreased the viability and increased the apoptosis of A549 cells treated with the anticancer agent etoposide. Our data suggested that HIP-55 may be a newly discovered regulatory node in the growth signaling network and a new target for therapeutic interventions in proliferative disorders.

  5. ROCK/actin/MRTF signaling promotes the fibrogenic phenotype of fibroblast-like synoviocytes derived from the temporomandibular joint

    PubMed Central

    Yokota, Seiji; Chosa, Naoyuki; Kyakumoto, Seiko; Kimura, Hitomichi; Ibi, Miho; Kamo, Masaharu; Satoh, Kazuro; Ishisaki, Akira

    2017-01-01

    Malocclusion caused by abnormal jaw development or muscle overuse during mastication results in abnormal mechanical stress to the tissues surrounding the temporomandibular joint (TMJ). Excessive mechanical stress against soft and hard tissues around the TMJ is involved in the pathogenesis of inflammatory diseases, including osteoarthritis (OA). OA-related fibrosis is a possible cause of joint stiffness in OA. However, cellular and molecular mechanisms underlying fibrosis around the TMJ remain to be clarified. Here, we established a cell line of fibroblast-like synoviocytes (FLSs) derived from the mouse TMJ. Then, we examined whether the Rho-associated coiled-coil forming kinase (ROCK)/actin/myocardin-related transcription factor (MRTF) gene regulatory axis positively regulates the myofibroblast (MF) differentiation status of FLSs. We found that i) FLSs extensively expressed the MF markers α-smooth muscle actin (α-SMA) and type I collagen; and ii) an inhibitor against the actin-polymerizing agent ROCK, Y-27632; iii) an actin-depolymerizing agent cytochalasin B; iv) an inhibitor of the MRTF/serum response factor-regulated transcription, CCG-100602, clearly suppressed the mRNA levels of α-SMA and type I collagen in FLSs; and v) an MF differentiation attenuator fibroblast growth factor-1 suppressed filamentous actin formation and clearly suppressed the mRNA levels of α-SMA and type I collagen in FLSs. These results strongly suggest that the ROCK/actin/MRTF axis promotes the fibrogenic activity of synoviocytes around the TMJ. Our findings partially clarify the molecular mechanisms underlying the emergence of TMJ-OA and may aid in identifying drug targets for treating this condition at the molecular level. PMID:28259960

  6. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus.

    PubMed

    Jans, Jop; elMoussaoui, Hicham; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben

    2016-03-22

    Respiratory syncytial virus (RSV) can cause recurrent and severe respiratory tract infections. Cytoskeletal proteins are often involved during viral infections, either for cell entry or the initiation of the immune response. The importance of actin and clathrin dynamics for cell entry and the initiation of the cellular immune response against RSV in human immune cells is not known yet. The aim of this study was to investigate the role of actin and clathrin on cell entry of RSV and the subsequent effect on T cell activation and interferon gamma release in human immune cells. Peripheral blood mononuclear cells and purified monocytes were isolated from healthy adults and stimulated in vitro with RSV. Actin and clathrin dynamics were inhibited with respectively cytochalasin D and chlorpromazine. T cell receptor signaling was inhibited with cyclosporin A. Flow cytometry was used to determine the role of actin and clathrin on cell entry and T cell activation by RSV. Enzyme-linked immunosorbent assays were used to investigate the contribution of actin and clathrin on the release of interferon gamma. Cell entry, virus gene transcription and interferon gamma release are actin-dependent. Post-endocytic processes like the increased expression of major histocompatibility complex II on monocytes , T cell activation and the release of interferon gamma are clathrin-dependent. Finally, T cell receptor signaling affects T cell activation, whereas soluble interleukin 18 is dispensable. Analysis of cell entry and interferon gamma release after infection with RSV reveals the importance of actin- and clathrin-dependent signaling in human immune cells. Insights into the cellular biology of the human immune response against respiratory syncytial virus will provide a better understanding of disease pathogenesis and may prove useful in the development of preventive strategies.

  7. WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets

    PubMed Central

    Suzuki, Akiko; Pelikan, Richard C.

    2015-01-01

    Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules. PMID:25755281

  8. WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets.

    PubMed

    Suzuki, Akiko; Pelikan, Richard C; Iwata, Junichi

    2015-05-01

    Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.

  9. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-12-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

  10. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells.

    PubMed

    McMurray, R J; Wann, A K T; Thompson, C L; Connelly, J T; Knight, M M

    2013-12-18

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

  11. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    PubMed Central

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  12. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor.

    PubMed

    Freeman, Spencer A; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E; Wong, Harikesh S; Abraham, Libin; Graves, Marcia L; Coombs, Daniel; Roskelley, Calvin D; Das, Raibatak; Grinstein, Sergio; Gold, Michael R

    2015-02-03

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.

  13. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  14. Identification of two nuclear factor-binding domains on the chicken cardiac actin promoter: implications for regulation of the gene.

    PubMed Central

    Quitschke, W W; DePonti-Zilli, L; Lin, Z Y; Paterson, B M

    1989-01-01

    The cis-acting regions that appear to be involved in negative regulation of the chicken alpha-cardiac actin promoter both in vivo and in vitro have been identified. A nuclear factor(s) binding to the proximal region mapped over the TATA element between nucleotides -50 and -25. In the distal region, binding spanned nucleotides -136 to -112, a region that included a second CArG box (CArG2) 5' to the more familiar CCAAT-box (CArG1) consensus sequence. Nuclear factors binding to these different domains were found in both muscle and nonmuscle preparations but were detectable at considerably lower levels in tissues expressing the alpha-cardiac actin gene. In contrast, concentrations of the beta-actin CCAAT-box binding activity were similar in all extracts tested. The role of these factor-binding domains on the activity of the cardiac actin promoter in vivo and in vitro and the prevalence of the binding factors in nonmuscle extracts are consistent with the idea that these binding domains and their associated factors are involved in the tissue-restricted expression of cardiac actin through both positive and negative regulatory mechanisms. In the absence of negative regulatory factors, these same binding domains act synergistically, via other factors, to activate the cardiac actin promoter during myogenesis. Images PMID:2552286

  15. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1.

    PubMed Central

    Lub, M; van Kooyk, Y; van Vliet, S J; Figdor, C G

    1997-01-01

    Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion. Images PMID:9190212

  16. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions.

    PubMed

    Raval, Manmeet H; Quintero, Omar A; Weck, Meredith L; Unrath, William C; Gallagher, James W; Cui, Runjia; Kachar, Bechara; Tyska, Matthew J; Yengo, Christopher M

    2016-10-21

    Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.

  17. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.

    PubMed

    Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2012-04-01

    This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.

  18. Balancing spatially regulated β-actin translation and dynamin mediated endocytosis is required to assemble functional epithelial monolayers

    PubMed Central

    Cruz, Lissette A.; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J.

    2015-01-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3′UTR) in MDCK cells to perturb actin filament remodeling and anchoring and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  19. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers.

    PubMed

    Cruz, Lissette A; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J

    2015-12-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  20. Conserved hydrophobic residues in the CARP/β-sheet domain of cyclase-associated protein are involved in actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2017-09-01

    Cyclase-associated protein (CAP) is a multidomain protein that promotes actin filament dynamics. The C-terminal region of CAP contains a CAP and X-linked retinitis pigmentosa 2 protein (CARP) domain (or a β-sheet domain), which binds to actin monomer and is essential for enhancing exchange of actin-bound nucleotides. However, how the CARP domain binds to actin is not clearly understood. Here, we report that conserved hydrophobic residues in the CARP domain play important roles in the function of CAP to regulate actin dynamics. Single mutations of three conserved surface-exposed hydrophobic residues in the CARP domain of CAS-2, a Caenorhabditis elegans CAP, significantly reduce its binding to actin monomers and suppress its nucleotide exchange activity on actin. As a result, these mutants are weaker than wild-type to compete with ADF/cofilin to promote recycling of actin monomers for polymerization. A double mutation (V367A/I373A) eliminates these actin-regulatory functions of CAS-2. These hydrophobic residues and previously identified functional residues are scattered on a concave β-sheet of the CARP domain, suggesting that a wide area of the β-sheet is involved in binding to actin. These observations suggest that the CARP domain of CAP binds to actin in a distinct manner from other known actin-binding proteins. © 2017 Wiley Periodicals, Inc.

  1. Inducible T cell tyrosine kinase regulates actin-dependent cytoskeletal events induced by the T cell antigen receptor.

    PubMed

    Grasis, Juris A; Browne, Cecille D; Tsoukas, Constantine D

    2003-04-15

    The tec family kinase, inducible T cell tyrosine kinase (Itk), is critical for both development and activation of T lymphocytes. We have found that Itk regulates TCR/CD3-induced actin-dependent cytoskeletal events. Expression of Src homology (SH) 2 domain mutant Itk transgenes into Jurkat T cells inhibits these events. Furthermore, Itk(-/-) murine T cells display significant defects in TCR/CD3-induced actin polymerization. In addition, Jurkat cells deficient in linker for activation of T cells expression, an adaptor critical for Itk activation, display impaired cytoskeletal events and expression of SH3 mutant Itk transgenes reconstitutes this impairment. Interestingly, expression of an Itk kinase-dead mutant transgene into Jurkat cells has no effect on cytoskeletal events. Collectively, these data suggest that Itk regulates TCR/CD3-induced actin-dependent cytoskeletal events, possibly in a kinase-independent fashion.

  2. Muscle coding sequences and their regulation during myogenesis: cloning of muscle actin cDNA probes.

    PubMed

    Minty, A; Caravatti, M; Robert, B; Cohen, A; Daubas, P; Weydert, A; Gros, F; Buckingham, M

    1981-01-01

    For a number of years our group has been mainly interested in the regulation of muscle gene expression during myogenesis. Using primary cultures and cell lines we have tried to find out whether the coding sequences for muscle proteins are already present in an unexpressed form or if there is a transcriptional switch at the onset of differentiation. Metabolic studies on pulse-labelled RNA, together with translation and molecular hybridization experiments have given a certain number of indications. More recently the development of genetic engineering techniques has made it possible to answer these questions directly with probes which are complementary to specific muscle coding sequences. We have identified a plasmid which contains a coding sequence for muscle actin. Other recombinant plasmids are being characterized. Such plasmids, used as probes, will permit us to study the organization and expression of the genes coding for the contractile proteins in muscle cells.

  3. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  4. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC.

    PubMed

    Ren, L; Hong, S H; Cassavaugh, J; Osborne, T; Chou, A J; Kim, S Y; Gorlick, R; Hewitt, S M; Khanna, C

    2009-02-12

    Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.

  5. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster

    PubMed Central

    Srinivasan, Naren; Gordon, Oliver; Ahrens, Susan; Franz, Anna; Deddouche, Safia; Chakravarty, Probir; Phillips, David; Yunus, Ali A; Rosen, Michael K; Valente, Rita S; Teixeira, Luis; Thompson, Barry; Dionne, Marc S; Wood, Will; Reis e Sousa, Caetano

    2016-01-01

    Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity. DOI: http://dx.doi.org/10.7554/eLife.19662.001 PMID:27871362

  6. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  7. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  8. Nuclear membrane protein emerin: roles in gene regulation, actin dynamics and human disease.

    PubMed

    Wilson, Katherine L; Holaska, James M; Montes de Oca, Rocio; Tifft, Kathryn; Zastrow, Michael; Segura-Totten, Miriam; Mansharamani, Malini; Bengtsson, Luiza

    2005-01-01

    Loss of emerin, a nuclear membrane protein, causes Emery-Dreifuss muscular dystrophy (EDMD), characterized by muscle weakening, contractures of major tendons and potentially lethal cardiac conduction system defects. Emerin has a LEM-domain and therefore binds barrier-to-autointegration factor (BAF), a conserved chromatin protein essential for cell division. BAF recruits emerin to chromatin and regulates higher-order chromatin structure during nuclear assembly. Emerin also binds filaments formed by A-type lamins, mutations in which also cause EDMD. Other partners for emerin include nesprin-1alpha and transcriptional regulators such as germ cell-less (GCL). The binding affinities of these partners range from 4nM (nesprin-1alpha) to 200 nM (BAF), and are physiologically significant. Biochemical studies therefore provide a valid means to predict the properties of emerin-lamin complexes in vivo. Emerin and lamin A together form stable complexes with either BAF or GCL in vitro. BAF, however, competes with GCL for binding to emerin in vitro. These and additional partners, notably actin and nuclear myosin II, suggest disease-relevant roles for emerin in gene regulation and the mechanical interity of the nucleus.

  9. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells.

    PubMed

    Sun, Tiantian; Li, Shanwei; Ren, Haiyun

    2013-12-19

    Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  10. Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein.

    PubMed

    Lin, Jinxiu; Liu, Jiali; Wang, Ying; Zhu, Jianwei; Zhou, Kang; Smith, Nicole; Zhan, Xi

    2005-03-17

    Missing in metastasis (MIM) gene encodes an actin binding protein that is expressed at low levels in a subset of malignant cell lines. MIM protein tagged by green fluorescent protein (GFP) colocalizes with cortactin, an Arp2/3 complex activator, and interacts directly with the SH3 domain of cortactin. Recombinant full-length MIM promotes markedly cortactin and Arp2/3 complex-mediated actin polymerization in an SH3 dependent manner. In contrast, MIM-CT, a short splicing variant of MIM, binds poorly to cortactin in vitro and is unable to enhance actin polymerization. Full-length MIM binds to G-actin with a similar affinity as N-WASP-VCA, a constitutively active form of N-WASP, and inhibits N-WASP-VCA-mediated actin polymerization as analysed in vitro. The significance of the association of MIM with cortactin and G-actin was evaluated in NIH3T3 cells expressing several MIM constructs. Overexpression of full-length wild-type MIM-GFP inhibited markedly the motility of NIH3T3 cells induced by PDGF and that of human vein umbilical endothelial cells induced by sphingosine 1 phosphate. However, an MIM mutant with deletion of the WH2 domain, which is responsible for G-actin binding, enhanced cell motility. The motility inhibition imposed by MIM was compromised in the cells overexpressing N-WASP. In contrast, deletion of an MIM proline-rich domain, which is required for an optimal binding to cortactin, substantiated the MIM-mediated inhibition of cell motility. These data imply that MIM regulates cell motility by modulating different Arp2/3 activators in a distinguished manner.

  11. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

    PubMed

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L

    2012-03-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.

  12. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  13. Structural Basis for pH-mediated Regulation of F-actin Severing by Gelsolin Domain 1

    PubMed Central

    Fan, Jing-song; Goh, Honzhen; Ding, Ke; Xue, Bo; Robinson, Robert C.; Yang, Daiwen

    2017-01-01

    Six-domain gelsolin regulates actin structural dynamics through its abilities to sever, cap and uncap F-actin. These activities are modulated by various cellular parameters like Ca2+ and pH. Until now, only the molecular activation mechanism of gelsolin by Ca2+ has been understood relatively well. The fragment comprising the first domain and six residues from the linker region into the second domain has been shown to be similar to the full-length protein in F-actin severing activity in the absence of Ca2+ at pH 5. To understand how this gelsolin fragment is activated for F-actin severing by lowering pH, we solved its NMR structures at both pH 7.3 and 5 in the absence of Ca2+ and measured the pKa values of acidic amino acid residues and histidine residues. The overall structure and dynamics of the fragment are not affected significantly by pH. Nevertheless, local structural changes caused by protonation of His29 and Asp109 result in the activation on lowering the pH, and protonation of His151 directly effects filament binding since it resides in the gelsolin/actin interface. Mutagenesis studies support that His29, Asp109 and His151 play important roles in the pH-dependent severing activity of the gelsolin fragment. PMID:28349924

  14. Modulation of the interaction between G-actin and thymosin beta 4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics.

    PubMed Central

    Carlier, M F; Jean, C; Rieger, K J; Lenfant, M; Pantaloni, D

    1993-01-01

    The interaction of G-actin with thymosin beta 4 (T beta 4), the major G-actin-sequestering protein in motile and proliferating cells, has been analyzed in vitro. T beta 4 is found to have a 50-fold higher affinity for MgATP-actin than for MgADP-actin. These results imply that in resting platelets and neutrophils, actin is sequestered by T beta 4 as MgATP-G-actin. Kinetic experiments and theoretical calculations demonstrate that this ATP/ADP dependence of T beta 4 affinity for G-actin can generate a mechanism of desequestration of G-actin by ADP, in the presence of physiological concentrations of T beta 4 (approximately 0.1 mM). The desequestration of G-actin by ADP is kinetically enhanced by profilin, which accelerates the dissociation of ATP from G-actin. Whether a local drop in the ATP/ADP ratio can allow local, transient desequestration and polymerization of actin either close to the plasma membrane, following platelet or neutrophil stimulation, or behind the Listeria bacterium in the host cell, while the surrounding cytoplasm contains sequestered ATP-G-actin, is an open issue raised by the present work. PMID:8506348

  15. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation.

    PubMed Central

    Rosenshine, I; Ruschkowski, S; Stein, M; Reinscheid, D J; Mills, S D; Finlay, B B

    1996-01-01

    Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce actin accumulation beneath adherent bacteria. We found that EPEC adherence to epithelial cells mediates the formation of fingerlike pseudopods (up to 10 microm) beneath bacteria. These actin-rich structures also contain tyrosine phosphorylated host proteins concentrated at the pseudopod tip beneath adherent EPEC. Intimate bacterial adherence (and pseudopod formation) occurred only after prior bacterial induction of tyrosine phosphorylation of an epithelial membrane protein, Hp90, which then associates directly with an EPEC adhesin, intimin. These interactions lead to cytoskeletal nucleation and pseudopod formation. This is the first example of a bacterial pathogen that triggers signals in epithelial cells which activates receptor binding activity to a specific bacterial ligand and subsequent cytoskeletal rearrangement. Images PMID:8654358

  16. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation.

    PubMed

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP 2 ) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP 2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP 2 to the cells. Reduction of PIP 2 synthesis inhibits actin polymerization and motility, while increasing PIP 2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP 2 and F-actin. During capacitation there was an increase in PIP 2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP 2 . Stimulation of phospholipase C, by Ca 2 + -ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP 2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility.

  17. Regulation of sperm capacitation and the acrosome reaction by PIP2 and actin modulation

    PubMed Central

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP2) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP2 to the cells. Reduction of PIP2 synthesis inhibits actin polymerization and motility, while increasing PIP2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP2 and F-actin. During capacitation there was an increase in PIP2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP2. Stimulation of phospholipase C, by Ca2+-ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility. PMID:25966627

  18. Polycystin-2 (TRPP2) Regulation by Ca2+ Is Effected and Diversified by Actin-Binding Proteins

    PubMed Central

    Cantero, María del Rocío; Cantiello, Horacio F.

    2015-01-01

    Calcium regulation of Ca2+-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca2+ permeability. The molecular mechanisms associated with PC2 regulation by Ca2+ remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2iv), functionally responds to changes in intracellular (cis) Ca2+. In this study we determined the regulatory effect(s) of Ca2+-sensitive and -insensitive actin-binding proteins (ABPs) on PC2iv channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2iv channel function in the presence of cis Ca2+, although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2iv channel function in the presence, but no effect in the absence of cis Ca2+. Gelsolin stimulated PC2iv channel function in the presence, but not the absence of cis Ca2+. In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2iv channel function both in the presence and absence of Ca2+. The distinct effect(s) of the ABPs on PC2iv channel function demonstrate that Ca2+ regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca2+-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation. PMID:25954877

  19. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    PubMed

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway.

    PubMed

    Shao, Zhaohui; Lee, Xinhua; Huang, Guanrong; Sheng, Guoqing; Henderson, Christopher E; Louvard, Daniel; Sohn, Jiho; Pepinsky, Blake; Mi, Sha

    2017-03-22

    Differentiation and maturation of oligodendrocyte progenitor cells (OPCs) involve the assembly and disassembly of actin microfilaments. However, how actin dynamics are regulated during this process remains poorly understood. Leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of OPC differentiation. We discovered that anti-LINGO-1 antibody-promoted OPC differentiation was accompanied by upregulation of cytoplasmic gelsolin (cGSN), an abundant actin-severing protein involved in the depolymerization of actin filaments. Treating rat OPCs with cGSN siRNA reduced OPC differentiation, whereas overexpression of cGSN promoted OPC differentiation in vitro and remyelination in vivo Furthermore, coexpression of cGSN and LINGO-1 blocked the inhibitory effect of LINGO-1. Our study demonstrates that cGSN works downstream of LINGO-1 signaling pathway, which enhances actin dynamics and is essential for OPC morphogenesis and differentiation. This finding may lead to novel therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis (MS).SIGNIFICANCE STATEMENT Myelin loss and subsequent axon degeneration contributes to a variety of neurological diseases, such as multiple sclerosis (MS). Understanding the regulation of myelination by oligodendrocytes is therefore critical for developing therapies for the treatment of MS. We previously demonstrated that leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of oligodendrocyte differentiation and that anti-LINGO-1 promotes remyelination in preclinical animal models for MS and in a phase II acute optic neuritis clinical trial (RENEW). The mechanism by which LINGO-1 regulates oligodendrocyte differentiation is unknown. Here, we demonstrate that LINGO-1 regulates oligodendrocyte differentiation and maturation through the cytoplasmic gelsolin signaling pathway, providing new

  1. Regulation of levels of actin threonine phosphorylation during life cycle of Physarum polycephalum.

    PubMed

    Shirai, Yuki; Sasaki, Narie; Kishi, Yoshiro; Izumi, Akiko; Itoh, Kie; Sameshima, Masazumi; Kobayashi, Tetsuyuki; Murakami-Murofushi, Kimiko

    2006-02-01

    Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin. Copyright (c) 2005 Wiley-Liss, Inc.

  2. Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞

    PubMed Central

    Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.

    2003-01-01

    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042

  3. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  4. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  5. Retrograde BMP Signaling Modulates Rapid Activity-Dependent Synaptic Growth via Presynaptic LIM Kinase Regulation of Cofilin

    PubMed Central

    Piccioli, Zachary D.

    2014-01-01

    The Drosophila neuromuscular junction (NMJ) is capable of rapidly budding new presynaptic varicosities over the course of minutes in response to elevated neuronal activity. Using live imaging of synaptic growth, we characterized this dynamic process and demonstrated that rapid bouton budding requires retrograde bone morphogenic protein (BMP) signaling and local alteration in the presynaptic actin cytoskeleton. BMP acts during development to provide competence for rapid synaptic growth by regulating the levels of the Rho-type guanine nucleotide exchange factor Trio, a transcriptional output of BMP–Smad signaling. In a parallel pathway, we find that the BMP type II receptor Wit signals through the effector protein LIM domain kinase 1 (Limk) to regulate bouton budding. Limk interfaces with structural plasticity by controlling the activity of the actin depolymerizing protein Cofilin. Expression of constitutively active or inactive Cofilin in motor neurons demonstrates that increased Cofilin activity promotes rapid bouton formation in response to elevated synaptic activity. Correspondingly, the overexpression of Limk, which inhibits Cofilin, inhibits bouton budding. Live imaging of the presynaptic F-actin cytoskeleton reveals that activity-dependent bouton addition is accompanied by the formation of new F-actin puncta at sites of synaptic growth. Pharmacological disruption of actin turnover inhibits bouton budding, indicating that local changes in the actin cytoskeleton at pre-existing boutons precede new budding events. We propose that developmental BMP signaling potentiates NMJs for rapid activity-dependent structural plasticity that is achieved by muscle release of retrograde signals that regulate local presynaptic actin cytoskeletal dynamics. PMID:24647957

  6. NFATc3 Mediates Chronic Hypoxia-induced Pulmonary Arterial Remodeling with α-Actin Up-regulation

    PubMed Central

    de Frutos, S.; Spangler, R.; Alò, D.; González Bosc, L. V.

    2009-01-01

    Physiological responses to chronic hypoxia include polycythemia, pulmonary arterial remodeling and vasoconstriction. Chronic hypoxia causes pulmonary arterial hypertension leading to right ventricular hypertrophy and heart failure. During pulmonary hypertension, pulmonary arteries exhibit increased expression of smooth muscle-α-actin and -myosin heavy chain. NFATc3 (nuclear factor of activated T cells isoform c3), which is a Ca2+-dependent transcription factor, has been recently linked to smooth muscle phenotypic maintenance through the regulation of the expression of α-actin. The aim of this study was to determine if: a) NFATc3 is expressed in murine pulmonary arteries, b) hypoxia induces NFAT activation, c) NFATc3 mediates the up-regulation of α-actin during chronic hypoxia, and d) NFATc3 is involved in chronic hypoxia-induced pulmonary vascular remodeling. NFATc3 transcript and protein were found in pulmonary arteries. NFAT-luciferase reporter mice were exposed to normoxia (630 torr) or hypoxia (380 torr) for 2, 7 or 21 days. Exposure to hypoxia elicited a significant increase in luciferase activity and pulmonary arterial smooth muscle nuclear NFATc3 localization, demonstrating NFAT activation. Hypoxia induced up-regulation of α-actin and was prevented by the calcineurin/NFAT inhibitor, cyclosporin A (25 mg/Kg/day s.c.). In addition, NFATc3 knockout mice did not showed increased α-actin levels and arterial wall thickness after hypoxia. These results strongly suggest that NFATc3 plays a role in the chronic hypoxia-induced vascular changes that underlie pulmonary hypertension. PMID:17403661

  7. Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton.

    PubMed

    Mayanagi, Taira; Morita, Tsuyoshi; Hayashi, Ken'ichiro; Fukumoto, Kentaro; Sobue, Kenji

    2008-11-07

    Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.

  8. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells

    PubMed Central

    Loo, Chin-San; Chen, Cheng-Wei; Wang, Po-Jen; Chen, Pei-Yu; Lin, Shu-Yu; Khoo, Kay-Hooi; Fenton, Robert A.; Knepper, Mark A.; Yu, Ming-Jiun

    2013-01-01

    In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase. PMID:24085853

  9. Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury

    PubMed Central

    Damarla, Mahendra; Hasan, Emile; Boueiz, Adel; Le, Anne; Pae, Hyun Hae; Montouchet, Calypso; Kolb, Todd; Simms, Tiffany; Myers, Allen; Kayyali, Usamah S.; Gaestel, Matthias; Peng, Xinqi; Reddy, Sekhar P.; Damico, Rachel; Hassoun, Paul M.

    2009-01-01

    Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling. PMID:19240800

  10. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells

    PubMed Central

    Pattabiraman, Padmanabhan Paranji; Rao, Ponugoti Vasantha

    2015-01-01

    Purpose To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. Methods Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. Results Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. Conclusions Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes. PMID:26313302

  11. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling.

    PubMed Central

    Cossart, P; Lecuit, M

    1998-01-01

    Although <50 kb of its 3.3 megabase genome is known, Listeria monocytogenes has received much attention and an impressive amount of data has contributed in raising this bacterium among the best understood intracellular pathogens. The mechanisms that Listeria uses to enter cells, escape from the phagocytic vacuole and spread from one cell to another using an actin-based motility process have been analysed in detail. Several bacterial proteins contributing to these events have been identified, including the invasion proteins internalin A (InlA) and B (InlB), the secreted pore-forming toxin listeriolysin O (LLO) which promotes the escape from the phagocytic vacuole, and the surface protein ActA which is required for actin polymerization and bacterial movement. While LLO and ActA are critical for the infectious process and are not redundant with other listerial proteins, the precise role of InlA and InlB in vivo remains unclear. How InlA, InlB, LLO or ActA interact with the mammalian cells is beginning to be deciphered. The picture that emerges is that this bacterium uses general strategies also used by other invasive bacteria but has evolved a panel of specific tools and tricks to exploit mammalian cell functions. Their study may lead to a better understanding of important questions in cell biology such as ligand receptor signalling and dynamics of actin polymerization in mammalian cells. PMID:9669997

  12. Proper regulation of Cdc42 activity is required for tight actin concentration at the equator during cytokinesis in adherent mammalian cells.

    PubMed

    Zhu, Xiaodong; Wang, Junxia; Moriguchi, Kazuki; Liow, Lu Ting; Ahmed, Sohail; Kaverina, Irina; Murata-Hori, Maki

    2011-10-01

    Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells.

  13. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  14. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  15. Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics.

    PubMed

    Jansen, Silvia; Collins, Agnieszka; Golden, Leslie; Sokolova, Olga; Goode, Bruce L

    2014-10-31

    Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding β-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.

  16. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    PubMed

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  17. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration

    PubMed Central

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-01-01

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large ‘leader bleb.’ Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. DOI: http://dx.doi.org/10.7554/eLife.08314.001 PMID:26163656

  18. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration.

    PubMed

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-07-11

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large 'leader bleb.' Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement.

  19. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling

    PubMed Central

    Chen, Chun-Hao; Liao, Chien-Po

    2017-01-01

    Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity. PMID:28384160

  20. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    PubMed

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.