Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Digital signal processing methods for biosequence comparison.
Benson, D C
1990-01-01
A method is discussed for DNA or protein sequence comparison using a finite field fast Fourier transform, a digital signal processing technique; and statistical methods are discussed for analyzing the output of this algorithm. This method compares two sequences of length N in computing time proportional to N log N compared to N2 for methods currently used. This method makes it feasible to compare very long sequences. An example is given to show that the method correctly identifies sites of known homology. PMID:2349096
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
Parenchymal signal intensity in 3-T body MRI of dogs with hematopoietic neoplasia.
Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F
2013-04-01
We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well.
Parenchymal Signal Intensity in 3-T Body MRI of Dogs with Hematopoietic Neoplasia
Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F
2013-01-01
We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well. PMID:23582424
Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar
2015-01-01
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. Copyright © 2014 Elsevier Inc. All rights reserved.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Hobbs, A A; Rosen, J M
1982-01-01
The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707
A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems
Luo, Zhongqiang; Zhu, Lidong
2015-01-01
In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209
A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.
Luo, Zhongqiang; Zhu, Lidong
2015-08-14
In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low.
Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.
2017-01-01
Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543
Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell W; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay A A
2014-10-01
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
Brunak, S; Engelbrecht, J
1996-06-01
A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.
Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase.
Newsome, A L; McLean, J W; Lively, M O
1992-01-01
Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common. Images Fig. 1. PMID:1546959
Comparison of different signal peptides for secretion of heterologous proteins in fission yeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjaerulff, Soren; Jensen, Martin Roland
2005-10-28
In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal didmore » not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.« less
Probabilistic Evaluation of Competing Climate Models
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Chatterjee, S.; Heyman, M.; Cressie, N.
2017-12-01
A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. Here, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data, over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. We compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set, as an illustration.
Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C
1985-01-01
Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512
Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures
Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval
2013-01-01
Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein–chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/. PMID:23873955
Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures.
Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval
2013-09-01
Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein-chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/.
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
Burger, Lukas; van Nimwegen, Erik
2008-01-01
Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381
Qiu, Lingling; Jiang, Bo; Fang, Jia; Shen, Yike; Fang, Zhongxiang; Rm, Saravana Kumar; Yi, Keke; Shen, Chenjia; Yan, Daoliang; Zheng, Bingsong
2016-11-17
Hickory (Carya cathayensis), a woody plant with high nutritional and economic value, is widely planted in China. Due to its long juvenile phase, grafting is a useful technique for large-scale cultivation of hickory. To reveal the molecular mechanism during the graft process, we sequenced the transcriptomes of graft union in hickory. In our study, six RNA-seq libraries yielded a total of 83,676,860 clean short reads comprising 4.19 Gb of sequence data. A large number of differentially expressed genes (DEGs) at three time points during the graft process were identified. In detail, 777 DEGs in the 7 d vs 0 d (day after grafting) comparison were classified into 11 enriched Gene Ontology (GO) categories, and 262 DEGs in the 14 d vs 0 d comparison were classified into 15 enriched GO categories. Furthermore, an overview of the PPI network was constructed by these DEGs. In addition, 20 genes related to the auxin-and cytokinin-signaling pathways were identified, and some were validated by qRT-PCR analysis. Our comprehensive analysis provides basic information on the candidate genes and hormone signaling pathways involved in the graft process in hickory and other woody plants.
Siewert, C; Hosten, N; Felix, R
1994-07-01
T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.
Hemichordates and the Origin of Chordates
NASA Technical Reports Server (NTRS)
Gerhart, John; Kirschner, Marc; Lowe, Chris
2002-01-01
At the start of the period of the NASA grant three years ago, we had no information on the organization and development of the body axis of the hemichordate, Saccoglossus kowalevskii. Now we have substantial findings about the anteroposterior axis and dorsoventral axis, and based on this information, we have new insights about the origin of chordates from ancestral deuterostomes. We found ways to obtain and preserve large numbers of embryos and hatched juveniles. We can now collect about 40,000 embryos in the month of September, the time of S. kowalevskii spawning at Woods Hole. Excellent cDNA libraries were prepared from three developmental stages. From these libraries, we directly isolated about 30 gene ortholog sequences by screening and pcr techniques, all of these sequences of interest in the inquiry about the animal's organization and development. We also performed a mid-sized EST project (60,000 randomly picked clones, many of these arrayed). About half of these have been analyzed so far by blastx and are suitable for direct use of clones. We have obtained about 50 interesting sequences from this set. The rest still await analysis. Thus, at this time we have isolated orthologs of 80 genes that are known to be expressed in chordates in conserved domains and known to have interesting roles in chordate organization and development. The orthology of the S. kowalevskii sequences has been verified by neighbor joining and parsimony methods, with bootstrap estimates of validity. The S. kowalevskii sequences cluster with other deuterostome sequences, namely, other hemichordates, echinoderms, ascidians, amphioxus, or vertebrates, depending on what sequences are available in the database for comparison. We have used these sequences to do high quality in situ hybridization on S. kowalevskii embryos, and the results can be divided into three sections-those concerning the anteroposterior axis of S. kowalevskii in comparison to the same axis of chordates, those concerning the dorsoventral axis of S. kowalevskii in comparison to the same axis of chordates, and those concerning the signals and transcription factors found in the endoderm, of S. kowalevskii compared to the signals and transcription factors in the endo-mesodermal cells of Spemann's organizer of chordates.
SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments
Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic
2001-01-01
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202
Structural determinants of nuclear export signal orientation in binding to exportin CRM1
Fung, Ho Yee Joyce; Fu, Szu -Chin; Brautigam, Chad A.; ...
2015-09-08
The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). A comparison of minus and plus NESs identified structural and sequencemore » determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.« less
Obara, Makoto; Kuroda, Kagayaki; Wang, Jinnan; Honda, Masatoshi; Yoneyama, Masami; Imai, Yutaka; Van Cauteren, Marc
2014-10-01
To investigate the image quality impact of a new implementation of the improved motion-sensitized driven-equilibrium (iMSDE) pulse scheme in the human brain at 3.0 Tesla. Two iMSDE preparation schemes were compared; (a) iMSDE-1: two refocusing pulses and two pairs of bipolar gradients and (b) iMSDE-2: adding extra bipolar gradients in front of the iMSDE-1 preparation. Computer simulation was used to evaluate the difference of eddy currents effect between these two approaches. Five healthy volunteers were then scanned with both sequences in the intracranial region and signal changes associated with iMSDE-1 and iMSDE-2 were assessed and compared quantitatively and qualitatively. Simulation results demonstrated that eddy currents are better compensated in iMSDE-2 than in the iMSDE-1 design. In vivo comparison showed that the iMSDE-2 sequence significantly reduced the tissue signal loss at all locations compared with iMSDE-1 (5.0% versus 23% in average, P < 0.0002 at paired t-test). The signal in iMSDE-1 showed greater spatial inhomogeneity than that of iMSDE-2. Our results show that iMSDE-2 demonstrated smaller loss in signal and less spatial variation compared with iMSDE-1, we conjecture due to the improved eddy current compensation. © 2013 Wiley Periodicals, Inc.
A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes
NASA Astrophysics Data System (ADS)
Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan
This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.
In Vitro Comparison of Adipokine Export Signals.
Sharafi, Parisa; Kocaefe, Y Çetin
2016-01-01
Mammalian cells are widely used for recombinant protein production in research and biotechnology. Utilization of export signals significantly facilitates production and purification processes. 35 years after the discovery of the mammalian export machinery, there still are obscurities regarding the efficiency of the export signals. The aim of this study was the comparative evaluation of the efficiency of selected export signals using adipocytes as a cell model. Adipocytes have a large capacity for protein secretion including several enzymes, adipokines, and other signaling molecules, providing a valid system for a quantitative evaluation. Constructs that expressed N-terminal fusion export signals were generated to express Enhanced Green Fluorescence Protein (EGFP) as a reporter for quantitative and qualitative evaluation. Furthermore, fluorescent microscopy was used to trace the intracellular traffic of the reporter. The export efficiency of six selected proteins secreted from adipocytes was evaluated. Quantitative comparison of intracellular and exported fractions of the recombinant constructs demonstrated a similar efficiency among the studied sequences with minor variations. The export signal of Retinol Binding Protein (RBP4) exhibited the highest efficiency. This study presents the first quantitative data showing variations among export signals, in adipocytes which will help optimization of recombinant protein distribution.
Freeman, R M; Plutzky, J; Neel, B G
1992-01-01
src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823
NASA Astrophysics Data System (ADS)
Spaleta, J.; Bristow, W. A.
2013-12-01
SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.
Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L
1992-01-01
cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046
Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride
Matroudi, S.; Zamani, M.R.; Motallebi, M.
2008-01-01
In this study Trichoderma atroviride was selected as over producer of chitinase enzyme among 30 different isolates of Trichoderma sp. on the basis of chitinase specific activity. From this isolate the genomic and cDNA clones encoding chit33 have been isolated and sequenced. Comparison of genomic and cDNA sequences for defining gene structure indicates that this gene contains three short introns and also an open reading frame coding for a protein of 321 amino acids. The deduced amino acid sequence includes a 19 aa putative signal peptide. Homology between this sequence and other reported Trichoderma Chit33 proteins are discussed. The coding sequence of chit33 gene was cloned in pEt26b(+) expression vector and expressed in E. coli. PMID:24031242
Dental MRI using a dedicated RF-coil at 3 Tesla.
Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara
2015-12-01
To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Hall, L; Laird, J E; Craig, R K
1984-01-01
Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375
2015-04-23
12 Figure 4. Pulse- compressed baseband signals for sequence 40 from TREX13 …… 13 Figure 5. SAS image for sequence 40 from TREX13...12 meshes with data …………… 28 Figure 14. FE simulations for aluminum and steel replicas of an 100-mm UXO …… 28 Figure 15. FE meshes for two targets...PCB Pulse- compressed and baseband PC SWAT Personal Computer Shallow Water Acoustic Toolset PondEx09 Pond Experiment 2009 PondEx10 Pond Experiment
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan
2015-04-01
The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Subcellular localization of transiently expressed fluorescent fusion proteins.
Collings, David A
2013-01-01
The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.
[Imaging characteristics of PROPELLER T2-weighted imaging].
Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni
2004-11-01
As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.
Discriminative prediction of mammalian enhancers from DNA sequence
Lee, Dongwon; Karchin, Rachel; Beer, Michael A.
2011-01-01
Accurately predicting regulatory sequences and enhancers in entire genomes is an important but difficult problem, especially in large vertebrate genomes. With the advent of ChIP-seq technology, experimental detection of genome-wide EP300/CREBBP bound regions provides a powerful platform to develop predictive tools for regulatory sequences and to study their sequence properties. Here, we develop a support vector machine (SVM) framework which can accurately identify EP300-bound enhancers using only genomic sequence and an unbiased set of general sequence features. Moreover, we find that the predictive sequence features identified by the SVM classifier reveal biologically relevant sequence elements enriched in the enhancers, but we also identify other features that are significantly depleted in enhancers. The predictive sequence features are evolutionarily conserved and spatially clustered, providing further support of their functional significance. Although our SVM is trained on experimental data, we also predict novel enhancers and show that these putative enhancers are significantly enriched in both ChIP-seq signal and DNase I hypersensitivity signal in the mouse brain and are located near relevant genes. Finally, we present results of comparisons between other EP300/CREBBP data sets using our SVM and uncover sequence elements enriched and/or depleted in the different classes of enhancers. Many of these sequence features play a role in specifying tissue-specific or developmental-stage-specific enhancer activity, but our results indicate that some features operate in a general or tissue-independent manner. In addition to providing a high confidence list of enhancer targets for subsequent experimental investigation, these results contribute to our understanding of the general sequence structure of vertebrate enhancers. PMID:21875935
de Bellocq, J Goüy; Leirs, H
2009-09-01
Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.
King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach
2014-01-01
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.
Kyriazi, Stavroula; Blackledge, Matthew; Collins, David J; Desouza, Nandita M
2010-10-01
To compare geometric distortion, signal-to-noise ratio (SNR), apparent diffusion coefficient (ADC), efficacy of fat suppression and presence of artefact between monopolar (Stejskal and Tanner) and bipolar (twice-refocused, eddy-current-compensating) diffusion-weighted imaging (DWI) sequences in the abdomen and pelvis. A semiquantitative distortion index (DI) was derived from the subtraction images with b = 0 and 1,000 s/mm(2) in a phantom and compared between the two sequences. Seven subjects were imaged with both sequences using four b values (0, 600, 900 and 1,050 s/mm(2)) and SNR, ADC for different organs and fat-to-muscle signal ratio (FMR) were compared. Image quality was evaluated by two radiologists on a 5-point scale. DI was improved in the bipolar sequence, indicating less geometric distortion. SNR was significantly lower for all tissues and b values in the bipolar images compared with the monopolar (p < 0.05), whereas FMR was not statistically different. ADC in liver, kidney and sacrum was higher in the bipolar scheme compared to the monopolar (p < 0.03), whereas in muscle it was lower (p = 0.018). Image quality scores were higher for the bipolar sequence (p ≤ 0.025). Artefact reduction makes the bipolar DWI sequence preferable in abdominopelvic applications, although the trade-off in SNR may compromise ADC measurements in muscle.
Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.
Chen, S; Samingan, A K; Hanzo, L
2001-01-01
The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.
Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.
Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi
2016-01-16
Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any obliquity to follow the components of ulnar side wrist structures including triangular fibrocartilage complex. Additionally, isotropic imaging provides thinner slice thickness with less partial volume averaging allowing for identification of subtle injuries.
Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution
NASA Astrophysics Data System (ADS)
Wymeersch, Henk; Moeneclaey, Marc
2005-12-01
As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.
Brain MR imaging at ultra-low radiofrequency power.
Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B
2011-05-01
To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011
Vandenbol, M; Jauniaux, J C; Grenson, M
1989-11-15
The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.
Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.
Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C
2014-08-01
To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.
An Exploration into Diffusion Tensor Imaging in the Bovine Ocular Lens
Vaghefi, Ehsan; Donaldson, Paul J.
2013-01-01
We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting) and TE (determines the amount of magnetic resonance imaging-obtained signal) were used to estimate apparent diffusion coefficients (ADC) and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens. PMID:23459990
A new modem for microwave time synchronisation via geosynchronous telecommunication satellites
NASA Astrophysics Data System (ADS)
Dienert, Michael
1992-06-01
A study illustrating the two way time transfer technique and describing the use of this technique with the MITREX (Microwave Time and Range Experiment) SATRE (Satellite Time and Range Experiment) modems is presented. The two way time transfer technique via geosynchronous telecom satellites is one of the most accurate methods for synchronization and comparison of remote clocks. Most of the unknown propagation delays can be eliminated by the two way principle. The use of a coherent spread spectrum technique with a truncated pseudonoise code offers a resolution better than 30 ps of the measured time interval. The receiver is built around a Delay Locked Loop (DLL), which correlates the received signal with the known PN sequence to derive the control signal of the loop. In the locked state both PN sequences are synchronous and tracking errors of less than 30 ps are possible. Results showing the accuracy of the modem depending on signal to noise ratio and variation of total input power levels are presented and show that the expected improvement of the jitter of the internal delay by an increase of the chip rate is possible.
Livingston, B T; Shaw, R; Bailey, A; Wilt, F
1991-12-01
In order to investigate the role of proteins in the formation of mineralized tissues during development, we have isolated a cDNA that encodes a protein that is a component of the organic matrix of the skeletal spicule of the sea urchin, Lytechinus pictus. The expression of the RNA encoding this protein is regulated over development and is localized to the descendents of the micromere lineage. Comparison of the sequence of this cDNA to homologous cDNAs from other species of urchin reveal that the protein is basic and contains three conserved structural motifs: a signal peptide, a proline-rich region, and an unusual region composed of a series of direct repeats. Studies on the protein encoded by this cDNA confirm the predicted reading frame deduced from the nucleotide sequence and show that the protein is secreted and not glycosylated. Comparison of the amino acid sequence to databases reveal that the repeat domain is similar to proteins that form a unique beta-spiral supersecondary structure.
Cheng, Yali; Avis, Tyler J; Bolduc, Sébastien; Zhao, Yingyi; Anguenot, Raphaël; Neveu, Bertrand; Labbé, Caroline; Belzile, François; Bélanger, Richard R
2008-12-01
Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.
NASA Astrophysics Data System (ADS)
Schepkin, Victor D.; Neubauer, Andreas; Nagel, Armin M.; Budinger, Thomas F.
2017-04-01
Potassium and sodium specific binding in vivo were explored at 21.1 T by triple quantum (TQ) magnetic resonance (MR) signals without filtration to achieve high sensitivities and precise quantifications. The pulse sequence used time proportional phase increments (TPPI). During simultaneous phase-time increments, it provided total single quantum (SQ) and TQ MR signals in the second dimension at single and triple quantum frequencies, respectively. The detection of both TQ and SQ signals was performed at identical experimental conditions and the resulting TQ signal equals 60 ± 3% of the SQ signal when all ions experience sufficient time for binding. In a rat head in vivo the TQ percentage relative to SQ for potassium is 41.5 ± 3% and for sodium is 16.1 ± 1%. These percentages were compared to the matching values in an agarose tissue model with MR relaxation times similar to those of mammalian brain tissue. The sodium TQ signal in agarose samples decreased in the presence of potassium, suggesting a competitive binding of potassium relative to sodium ions for the same binding sites. The TQTPPI signals correspond to almost two times more effective binding of potassium than sodium. In vivo, up to ∼69% of total potassium and ∼27% of total sodium can be regarded as bound or experiencing an association time in the range of several milliseconds. Experimental data analyses show that more than half of the in vivo total sodium TQ signal could be from extracellular space, which is an important factor for quantification of intracellular MR signals.
Pathak, Shalu Kumari; Kumar, Amit; Bhuwana, G; Sah, Vaishali; Upmanyu, Vikramadiya; Tiwari, A K; Sahoo, A P; Sahoo, A R; Wani, Sajjad A; Panigrahi, Manjit; Sahoo, N R; Kumar, Ravi
2017-09-01
In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.
Comparison of Silent and Conventional MR Imaging for the Evaluation of Myelination in Children
Matsuo-Hagiyama, Chisato; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Arisawa, Atsuko; Yoshioka, Eri; Nabatame, Shin; Nakano, Sayaka; Tomiyama, Noriyuki
2017-01-01
Purpose: Silent magnetic resonance imaging (MRI) scans produce reduced acoustic noise and are considered more gentle for sedated children. The aim of this study was to compare the validity of T1- (T1W) and T2-weighted (T2W) silent sequences for myelination assessment in children with conventional spin-echo sequences. Materials and Methods: A total of 30 children (21 boys, 9 girls; age range: 1–83 months, mean age: 35.5 months, median age: 28.5 months) were examined using both silent and spin-echo sequences. Acoustic noise levels were analyzed and compared. The degree of myelination was qualitatively assessed via consensus, and T1W and T2W signal intensities were quantitatively measured by percent contrast. Results: Acoustic noise levels were significantly lower during silent sequences than during conventional sequences (P < 0.0001 for both T1W and T2W). Inter-method comparison indicated overall good to excellent agreement (T1W and T2W images, κ = 0.76 and 0.80, respectively); however, agreement was poor for cerebellar myelination on T1W images (κ = 0.14). The percent contrast of silent and conventional MRI sequences had a strong correlation (T1W, correlation coefficient [CC] = 0.76; T1W excluding the middle cerebellar peduncle, CC = 0.82; T2W, CC = 0.91). Conclusions: For brain MRI, silent sequences significantly reduced acoustic noise and provided diagnostic image quality for myelination evaluations; however, the two methods differed with respect to cerebellar delineation on T1W sequences. PMID:27795484
Guo, Y C; Wang, H; Wu, H P; Zhang, M Q
2015-12-21
Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.
Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.
Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E
2013-11-01
To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.
Retrospective data-driven respiratory gating for PET/CT
NASA Astrophysics Data System (ADS)
Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.
2009-04-01
Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.
2011-01-01
Purpose To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. Materials and Methods The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2,600 s/mm2. For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β and μ values and the goodness-of-fit in three specific regions of interest (ROI) in white matter, gray matter, and cerebrospinal fluid were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. Results The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. Conclusion The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. PMID:21509877
Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe
2011-05-01
To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoefler, G.; Forstner, M.; Hulla, W.
1994-01-01
Enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme is one of the four enzymes of the peroxisomal, [beta]-oxidation pathway. Here, the authors report the full-length human cDNA sequence and the localization of the corresponding gene on chromosome 3q26.3-3q28. The cDNA sequence spans 3779 nucleotides with an open reading frame of 2169 nucleotides. The tripeptide SKL at the carboxy terminus, known to serve as a peroxisomal targeting signal, is present. DNA sequence comparison of the coding region showed an 80% homology between human and rat bifunctional enzyme cDNA. The 3[prime] noncoding sequence contains 117 nucleotides homologous to an Alu repeat. Based on sequence comparison,more » they propose that these nucleotides are a free left Alu arm with 86% homology to the Alu-J family. RNA analysis shows one band with highest intensity in liver and kidney. This cDNA will allow in-depth studies of molecular defects in patients with defective peroxisomal bifunctional enzyme. Moreover, it will also provide a means for studying the regulation of peroxisomal [beta]-oxidation in humans. 33 refs., 5 figs.« less
Iso-seco-tanapartholides: Isolation, Synthesis and Biological Evaluation
Makiyi, Edward F; Frade, Raquel F M; Lebl, Tomas; Jaffray, Ellis G; Cobb, Susan E; Harvey, Alan L; Slawin, Alexandra M Z; Hay, Ronald T; Westwood, Nicholas J
2009-01-01
The isolation, identification and total synthesis of two plant-derived inhibitors of the NF-κB signaling pathway from the iso-seco-tanapartholide family of natural products is described. A key step in the efficient reaction sequence is a late-stage oxidative cleavage reaction that was carried out in the absence of protecting groups to give the natural products directly. A detailed comparison of the synthetic material with samples of the natural products proved informative. Biological studies on synthetic material confirmed that these compounds act late in the NF-κB signaling pathway. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:23606807
de Carvalho, João Carlos Monteiro; Mayfield, Stephen Patrick
2018-01-01
Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP) for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications. PMID:29408937
Dröge, Melloney J; Boersma, Ykelien L; Braun, Peter G; Buining, Robbert Jan; Julsing, Mattijs K; Selles, Karin G A; van Dijl, Jan Maarten; Quax, Wim J
2006-07-01
Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.
Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.
Gras, V; Vignaud, A; Mauconduit, F; Luong, M; Amadon, A; Le Bihan, D; Boulant, N
2016-11-01
Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the k T -points parametrization. The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto
2018-05-01
Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P < 0.05) were observed 60 seconds after the injection of 17 O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1373-1379. © 2017 International Society for Magnetic Resonance in Medicine.
Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F
1990-06-12
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.
Cloud-based adaptive exon prediction for DNA analysis.
Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen
2018-02-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.
Subbiah, Madhuri; Xiao, Sa; Collins, Peter L.; Samal, Siba K
2009-01-01
The complete RNA genome sequence of avian paramyxovirus (APMV) serotype 2, strain Yucaipa isolated from chicken has been determined. With genome size of 14,904 nucleotides (nt), strain Yucaipa is consistent with the “rule of six” and is the smallest virus reported to date among the members of subfamily Paramyxovirinae. The genome contains six non-overlapping genes in the order 3′-N-P/V-M-F-HN-L-5′. The genes are flanked on either side by highly-conserved transcription start and stop signals and have intergenic sequences varying in length from 3 to 23 nt. The genome contains a 55 nt leader sequence at 3′ end and a 154 nt trailer sequence at 5′ end. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Yucaipa proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-2 strain Yucaipa is more closely related to APMV-6 than APMV-1. PMID:18603323
Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David
2016-07-01
The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.
Bulau, Patrick; Okuno, Atsuro; Thome, Elke; Schmitz, Tina; Peter-Katalinic, Jasna; Keller, Rainer
2005-11-01
The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.
GeNets: a unified web platform for network-based genomic analyses.
Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper
2018-06-18
Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.
Puthoff, D P; Neelam, A; Ehrenfried, M L; Scheffler, B E; Ballard, L; Song, Q; Campbell, K B; Cooper, B; Tucker, M L
2008-10-01
Hyphae, 2 to 8 days postinoculation (dpi), and haustoria, 5 dpi, were isolated from Uromyces appendiculatus infected bean leaves (Phaseolus vulgaris cv. Pinto 111) and a separate cDNA library prepared for each fungal preparation. Approximately 10,000 hyphae and 2,700 haustoria clones were sequenced from both the 5' and 3' ends. Assembly of all of the fungal sequences yielded 3,359 contigs and 927 singletons. The U. appendiculatus sequences were compared with sequence data for other rust fungi, Phakopsora pachyrhizi, Uromyces fabae, and Puccinia graminis. The U. appendiculatus haustoria library included a large number of genes with unknown cellular function; however, summation of sequences of known cellular function suggested that haustoria at 5 dpi had fewer transcripts linked to protein synthesis in favor of energy metabolism and nutrient uptake. In addition, open reading frames in the U. appendiculatus data set with an N-terminal signal peptide were identified and compared with other proteins putatively secreted from rust fungi. In this regard, a small family of putatively secreted RTP1-like proteins was identified in U. appendiculatus and P. graminis.
Nakayama, Tomohiro; Nishie, Akihiro; Yoshiura, Takashi; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Obara, Makoto; Honda, Hiroshi
2015-12-01
To show the feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography and to determine the optimal velocity encoding (VENC) value. Sixteen healthy volunteers underwent MRI study using a 1.5-T clinical unit and a 32-channel body array coil. For each volunteer, images were obtained using the following seven respiratory-triggered sequences: (1) balanced magnetic resonance cholangiopancreatography without motion-sensitized driven-equilibrium, and (2)-(7) balanced magnetic resonance cholangiopancreatography with motion-sensitized driven-equilibrium, with VENC=1, 3, 5, 7, 9 and ∞cm/s for the x-, y-, and z-directions, respectively. Quantitative evaluation was obtained by measuring the maximum signal intensity of the common hepatic duct, portal vein, liver tissue including visible peripheral vessels, and liver tissue excluding visible peripheral vessels that were evaluated. We compared the contrast ratios of portal vein/common hepatic duct, liver tissue including visible peripheral vessels/common hepatic duct and liver tissue excluding visible peripheral vessels/common hepatic duct among the five finite sequences (VENC=1, 3, 5, 7, and 9cm/s). Statistical comparisons were performed using the t-test for paired data with the Bonferroni correction. Suppression of blood vessel signals was achieved with motion-sensitized driven-equilibrium sequences. We found the optimal VENC values to be either 3 or 5cm/s with the best suppression of relative vessel signals to bile ducts. At a lower VENC value (1cm/s), the bile duct signal was reduced, presumably due to minimal biliary flow. The feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography was suggested. The optimal VENC value was considered to be either 3 or 5cm/s. The clinical usefulness of this new magnetic resonance cholangiopancreatography sequence needs to be verified by further studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis
2015-01-01
Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases. PMID:26226014
Alcivar-Warren, Acacia; Meehan-Meola, Dawn; Wang, Yongping; Guo, Ximing; Zhou, Linghua; Xiang, Jianhai; Moss, Shaun; Arce, Steve; Warren, William; Xu, Zhenkang; Bell, Kireina
2006-01-01
To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)n repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective 1 showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA)n, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1>P2>P3>P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.
2013-01-01
Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. Conclusions FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes. PMID:23441864
Rodríguez, Javier M; Moreno, Leticia Tais; Alejo, Alí; Lacasta, Anna; Rodríguez, Fernando; Salas, María L
2015-01-01
The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network.
'2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.
Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D
2016-08-01
We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting. © 2016 The Authors. Traffic published by John Wiley & Sons Ltd.
Bang, Kyeongrin; Hwang, Sejung; Lee, Jiae; Cho, Saeyoull
2015-01-01
To identify immune-related genes in the larvae of white-spotted flower chafers, next-generation sequencing was conducted with an Illumina HiSeq2000, resulting in 100 million cDNA reads with sequence information from over 10 billion base pairs (bp) and >50× transcriptome coverage. A subset of 77,336 contigs was created, and ∼35,532 sequences matched entries against the NCBI nonredundant database (cutoff, e < 10(-5)). Statistical analysis was performed on the 35,532 contigs. For profiling of the immune response, samples were analyzed by aligning 42 base sequence tags to the de novo reference assembly, comparing levels in immunized larvae to control levels of expression. Of the differentially expressed genes, 3,440 transcripts were upregulated and 3,590 transcripts were downregulated. Many of these genes were confirmed as immune-related genes such as pattern recognition proteins, immune-related signal transduction proteins, antimicrobial peptides, and cellular response proteins, by comparison to published data. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Isolation and characterization of the chicken trypsinogen gene family.
Wang, K; Gan, L; Lee, I; Hood, L
1995-01-01
Based on genomic Southern hybridizations and cDNA sequence analyses, the chicken trypsinogen gene family can be divided into two multi-member subfamilies, a six-member trypsinogen I subfamily which encodes the cationic trypsin isoenzymes and a three-member trypsinogen II subfamily which encodes the anionic trypsin isoenzymes. The chicken cDNA and genomic clones containing these two subfamilies were isolated and characterized by DNA sequence analysis. The results indicated that the chicken trypsinogen genes encoded a signal peptide of 15 to 16 amino acid residues, an activation peptide of 9 to 10 residues and a trypsin of 223 amino acid residues. The chicken trypsinogens contain all the common catalytic and structural features for trypsins, including the catalytic triad His, Asp and Ser and the six disulphide bonds. The trypsinogen I and II subfamilies share approximately 70% sequence identity at the nucleotide and amino acid level. The sequence comparison among chicken trypsinogen subfamily members and trypsin sequences from other species suggested that the chicken trypsinogen genes may have evolved in coincidental or concerted fashion. Images Figure 6 Figure 7 PMID:7733885
Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin
2014-07-01
The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DeWitt, D L; Smith, W L
1988-01-01
Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548
Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju
2015-01-01
To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.
Initial genome sequencing and analysis of multiple myeloma
Chapman, Michael A.; Lawrence, Michael S.; Keats, Jonathan J.; Cibulskis, Kristian; Sougnez, Carrie; Schinzel, Anna C.; Harview, Christina L.; Brunet, Jean-Philippe; Ahmann, Gregory J.; Adli, Mazhar; Anderson, Kenneth C.; Ardlie, Kristin G.; Auclair, Daniel; Baker, Angela; Bergsagel, P. Leif; Bernstein, Bradley E.; Drier, Yotam; Fonseca, Rafael; Gabriel, Stacey B.; Hofmeister, Craig C.; Jagannath, Sundar; Jakubowiak, Andrzej J.; Krishnan, Amrita; Levy, Joan; Liefeld, Ted; Lonial, Sagar; Mahan, Scott; Mfuko, Bunmi; Monti, Stefano; Perkins, Louise M.; Onofrio, Robb; Pugh, Trevor J.; Vincent Rajkumar, S.; Ramos, Alex H.; Siegel, David S.; Sivachenko, Andrey; Trudel, Suzanne; Vij, Ravi; Voet, Douglas; Winckler, Wendy; Zimmerman, Todd; Carpten, John; Trent, Jeff; Hahn, William C.; Garraway, Levi A.; Meyerson, Matthew; Lander, Eric S.; Getz, Gad; Golub, Todd R.
2013-01-01
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumor genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the dataset. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signaling was suggested by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge. PMID:21430775
Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation
Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.
2016-01-01
Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075
The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion
Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.
2014-01-01
Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881
Zhu, X; Naz, R K
1999-03-01
The deduced ZP3 amino acid (aa) sequences of 13 vertebrate species namely mouse, hamster, rabbit, pig, porcine, cow, dog, cat, human, bonnet, marmoset, carp, and frog were compared using the PILEUP and PRETTY alignment programs (GCG, Wisconsin, USA). The published aa sequences obtained from 13 vertebrate species indicated the overall evolutionarily conservation in the N-terminus, central region, and C-terminus of the ZP3 polypeptide. More variations of ZP3 polypeptide sequences were seen in the alignments of carp and frog from the 11 mammalian species making the leader sequence more prominent. The canonical furin proteolytic processing signal at the C-terminus was found in all the ZP3 polypeptide sequences except of carp and frog. In the central region, the ZP3 deduced aa sequences of all the 13 vertebrate species aligned well, and six relatively conserved sequences were found. There are 11 conserved cysteine residues in the central region across all species including carp and frog, indicating that these residues have longer evolutionary history. The ZP3 aa sequence similarities were examined using the GAP program (GCG). The highest aa similarities are observed between the members of the same order within the class mammalia, and also (95.4%) between pig (ungulata) and rabbit (lagomorpha). The deduced ZP3 aa sequences per se may not be enough to build a phylogenetic tree.
Genomic signal processing methods for computation of alignment-free distances from DNA sequences.
Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro
2014-01-01
Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.
Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences
Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro
2014-01-01
Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409
CCFpams: Atmospheric stellar parameters from cross-correlation functions
NASA Astrophysics Data System (ADS)
Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane
2017-07-01
CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.
The sequence measurement system of the IR camera
NASA Astrophysics Data System (ADS)
Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo
2011-08-01
Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
Cloud-based adaptive exon prediction for DNA analysis
Putluri, Srinivasareddy; Fathima, Shaik Yasmeen
2018-01-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813
Gönner, Lorenz; Vitay, Julien; Hamker, Fred H.
2017-01-01
Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions. PMID:29075187
Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography.
Zhang, Shu; Huang, Weijian; Zeng, Yu; Shi, Wenxiu; Diao, Xianfen; Wei, Xiguang; Ling, Shan
2018-01-01
Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.
Novel Immune Modulating Cellular Vaccine for Prostate Cancer
2014-10-01
restriction sites. Murine PSMA : The cDNA encoding mPSMA was purchased from Sino Biologicals and was cloned into the HindIII and BamHI sites of pSP73-Sph/A64...sequence) and reverse primer 5’-TATATAGAGCTCTCAGATGTTCCGATACACATCTC-3’ Murine PSMA no signal sequence (mPSMA-SS): Murine PSMA minus the signal sequence...contains a HindIII site for cloning and utilizes an ATG that lies downstream of the signal sequence as the start codon in PSMA -SS ( PSMA without signal
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun
2011-11-15
We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.
Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue.
Kaye, Elena A; Josan, Sonal; Lu, Aiming; Rosenberg, Jarrett; Daniel, Bruce L; Pauly, Kim Butts
2010-03-01
To investigate tissue dependence of the MRI-based thermometry in frozen tissue by quantification and comparison of signal intensity and T2* of ex vivo frozen tissue of three different types: heart muscle, kidney, and liver. Tissue samples were frozen and imaged on a 0.5 Tesla MRI scanner with ultrashort echo time (UTE) sequence. Signal intensity and T2* were determined as the temperature of the tissue samples was decreased from room temperature to approximately -40 degrees C. Statistical analysis was performed for (-20 degrees C, -5 degrees C) temperature interval. The findings of this study demonstrate that signal intensity and T2* are consistent across three types of tissue for (-20 degrees C, -5 degrees C) temperature interval. Both parameters can be used to calculate a single temperature calibration curve for all three types of tissue and potentially in the future serve as a foundation for tissue-independent MRI-based thermometry.
Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone
Scully, Christopher G.; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M.; Granquist-Fraser, Domhnull; Mendelson, Yitzhak
2012-01-01
We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676
Vibration-Rotation Bands of HF and DF
1977-09-23
98 IZa. Comparison of Observed and Calculated Line Positions of HF, Av = I Sequence ........................... 99 f2b. Comparison of Observed and...Calculated Line Positions of HF, Av = 2 Sequence ........................... 102 12c. Comparison of Observed and Calculated Line Positions of HF, Av = 3...Sequence ........................... 107 i2d. Comparison of Observed and Calculated Line Positions ofHF, Av = 4 Sequence ........................... fi
Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB
Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias
2012-01-01
The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB. PMID:23250441
Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB.
Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias
2012-01-01
The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
South, T.L.; Blake, P.R.; Hare, D.R.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhausermore » effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.« less
Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat
2010-03-01
The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.
Wnt signaling potentiates nevogenesis
Pawlikowski, Jeff S.; McBryan, Tony; van Tuyn, John; Drotar, Mark E.; Hewitt, Rachael N.; Maier, Andrea B.; King, Ayala; Blyth, Karen; Wu, Hong; Adams, Peter D.
2013-01-01
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy. PMID:24043806
Wnt signaling potentiates nevogenesis.
Pawlikowski, Jeff S; McBryan, Tony; van Tuyn, John; Drotar, Mark E; Hewitt, Rachael N; Maier, Andrea B; King, Ayala; Blyth, Karen; Wu, Hong; Adams, Peter D
2013-10-01
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.
Yarimizu, Tohru; Nakamura, Mikiko; Hoshida, Hisashi; Akada, Rinji
2015-02-14
Targeting of cellular proteins to the extracellular environment is directed by a secretory signal sequence located at the N-terminus of a secretory protein. These signal sequences usually contain an N-terminal basic amino acid followed by a stretch containing hydrophobic residues, although no consensus signal sequence has been identified. In this study, simple modeling of signal sequences was attempted using Gaussia princeps secretory luciferase (GLuc) in the yeast Kluyveromyces marxianus, which allowed comprehensive recombinant gene construction to substitute synthetic signal sequences. Mutational analysis of the GLuc signal sequence revealed that the GLuc hydrophobic peptide length was lower limit for effective secretion and that the N-terminal basic residue was indispensable. Deletion of the 16th Glu caused enhanced levels of secreted protein, suggesting that this hydrophilic residue defined the boundary of a hydrophobic peptide stretch. Consequently, we redesigned this domain as a repeat of a single hydrophobic amino acid between the N-terminal Lys and C-terminal Glu. Stretches consisting of Phe, Leu, Ile, or Met were effective for secretion but the number of residues affected secretory activity. A stretch containing sixteen consecutive methionine residues (M16) showed the highest activity; the M16 sequence was therefore utilized for the secretory production of human leukemia inhibitory factor protein in yeast, resulting in enhanced secreted protein yield. We present a new concept for the provision of secretory signal sequence ability in the yeast K. marxianus, determined by the number of residues of a single hydrophobic residue located between N-terminal basic and C-terminal acidic amino acid boundaries.
Real-time flutter boundary prediction based on time series models
NASA Astrophysics Data System (ADS)
Gu, Wenjing; Zhou, Li
2018-03-01
For the purpose of predicting the flutter boundary in real time during flutter flight tests, two time series models accompanied with corresponding stability criterion are adopted in this paper. The first method simplifies a long nonstationary response signal as many contiguous intervals and each is considered to be stationary. The traditional AR model is then established to represent each interval of signal sequence. While the second employs a time-varying AR model to characterize actual measured signals in flutter test with progression variable speed (FTPVS). To predict the flutter boundary, stability parameters are formulated by the identified AR coefficients combined with Jury's stability criterion. The behavior of the parameters is examined using both simulated and wind-tunnel experiment data. The results demonstrate that both methods show significant effectiveness in predicting the flutter boundary at lower speed level. A comparison between the two methods is also given in this paper.
Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J
2016-01-01
The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far proved refractory to expression in HEK293 cells, to be produced in sufficient quantities to answer important biological questions.
König, Caroline; Alquézar, René; Vellido, Alfredo; Giraldo, Jesús
2018-03-01
G-protein-coupled receptors (GPCRs) are a large and diverse super-family of eukaryotic cell membrane proteins that play an important physiological role as transmitters of extracellular signal. In this paper, we investigate Class C, a member of this super-family that has attracted much attention in pharmacology. The limited knowledge about the complete 3D crystal structure of Class C receptors makes necessary the use of their primary amino acid sequences for analytical purposes. Here, we provide a systematic analysis of distinct receptor sequence segments with regard to their ability to differentiate between seven class C GPCR subtypes according to their topological location in the extracellular, transmembrane, or intracellular domains. We build on the results from the previous research that provided preliminary evidence of the potential use of separated domains of complete class C GPCR sequences as the basis for subtype classification. The use of the extracellular N-terminus domain alone was shown to result in a minor decrease in subtype discrimination in comparison with the complete sequence, despite discarding much of the sequence information. In this paper, we describe the use of Support Vector Machine-based classification models to evaluate the subtype-discriminating capacity of the specific topological sequence segments.
The origin and evolution of Basigin(BSG) gene: A comparative genomic and phylogenetic analysis.
Zhu, Xinyan; Wang, Shenglan; Shao, Mingjie; Yan, Jie; Liu, Fei
2017-07-01
Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), plays various fundamental roles in the intercellular recognition involved in immunologic phenomena, differentiation, and development. In this study, we aimed to compare the similarities and differences of BSG among organisms and explore possible evolutionary relationships based on the comparison result. We used the extensive BLAST tool to search the metazoan genomes, N-glycosylation sites, the transmembrane region and other functional sites. We then identified BSG homologs from genomic sequences and analyzed their phylogenetic relationships. We identified that BSG genes exist not only in the vertebrate metazoans but also in the invertebrate metazoans such as Amphioxus B. floridae, D. melanogaster, A. mellifera, S. japonicum, C. gigas, and T. patagoniensis. After sequence analysis, we confirmed that only vertebrate metazoans and Cephalochordate (amphioxus B. floridae) have the classic structure (a signal peptide, two Ig-like domains (IgC2 and IgI), a transmembrane region, and an intracellular domain). The invertebrate metazoans (excluding amphioxus B. floridae) lack the N-terminal signal peptides and IgC2 domain. We then generated a phylogenetic tree, genome organization comparison, and chromosomal disposition analysis based on the biological information obtained from the NCBI and Ensembl databases. Finally, we established the possible evolutionary scenario of the BSG gene, which showed the restricted exon rearrangement that has occurred during evolution, forming the present-day BSG gene. Copyright © 2017 Elsevier Ltd. All rights reserved.
Time-of-flight radio location system
McEwan, T.E.
1996-04-23
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. 7 figs.
Time-of-flight radio location system
McEwan, Thomas E.
1996-01-01
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence.
Eisenberg, S P; Brewer, M T; Verderber, E; Heimdal, P; Brandhuber, B J; Thompson, R C
1991-01-01
Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities. Images PMID:1828896
Time-of-flight radio location system
McEwan, T.E.
1997-08-26
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation. 8 figs.
Time-of-flight radio location system
McEwan, Thomas E.
1997-01-01
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation.
Gültas, Mehmet; Düzgün, Güncel; Herzog, Sebastian; Jäger, Sven Joachim; Meckbach, Cornelia; Wingender, Edgar; Waack, Stephan
2014-04-03
The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.
Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging
Cervantes, Barbara; Kooijman, Hendrik; Karampinos, Dimitrios C.
2017-01-01
Background To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. Methods Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. Results Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. Conclusions A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed. PMID:28516049
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-01-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-02-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.
Herlache, T C; Hotchkiss, A T; Burr, T J; Collmer, A
1997-01-01
DNA sequencing of the Agrobacterium vitis pehA gene revealed a predicted protein with an M(r) of 58,000 and significant similarity to the polygalacturonases of two other plant pathogens, Erwinia carotovora and Ralstonia (= Pseudomonas or Burkholderia) solanacearum. Sequencing of the N terminus of the PehA protein demonstrated cleavage of a 34-amino-acid signal peptide from pre-PehA. Mature PehA accumulated primarily in the periplasm of A. vitis and pehA+ Escherichia coli cells during exponential growth. A. vitis PehA released dimers, trimers, and monomers from polygalacturonic acid and caused less electrolyte leakage from potato tuber tissue than did the E. carotovora and R. solanacearum polygalacturonases. PMID:8979363
The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nylund, Stian; Karlsen, Marius; Nylund, Are
2008-03-30
The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses,more » which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.« less
Rodríguez, Javier M.; Moreno, Leticia Tais; Alejo, Alí; Lacasta, Anna; Rodríguez, Fernando; Salas, María L.
2015-01-01
The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network. PMID:26618713
Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya
2011-01-01
To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533
Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.
2015-01-01
Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197
Evolution of the vertebrate insulin receptor substrate (Irs) gene family.
Al-Salam, Ahmad; Irwin, David M
2017-06-23
Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
Zbilut, Joseph P.; Colosimo, Alfredo; Conti, Filippo; Colafranceschi, Mauro; Manetti, Cesare; Valerio, MariaCristina; Webber, Charles L.; Giuliani, Alessandro
2003-01-01
The problem of protein folding vs. aggregation was investigated in acylphosphatase and the amyloid protein Aβ(1–40) by means of nonlinear signal analysis of their chain hydrophobicity. Numerical descriptors of recurrence patterns provided the basis for statistical evaluation of folding/aggregation distinctive features. Static and dynamic approaches were used to elucidate conditions coincident with folding vs. aggregation using comparisons with known protein secondary structure classifications, site-directed mutagenesis studies of acylphosphatase, and molecular dynamics simulations of amyloid protein, Aβ(1–40). The results suggest that a feature derived from principal component space characterized by the smoothness of singular, deterministic hydrophobicity patches plays a significant role in the conditions governing protein aggregation. PMID:14645049
Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence
Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris
2015-01-01
We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772
Floral gene resources from basal angiosperms for comparative genomics research
Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H
2005-01-01
Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777
Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.
2008-01-01
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.
Human somatostatin I: sequence of the cDNA.
Shen, L P; Pictet, R L; Rutter, W J
1982-01-01
RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875
A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes
Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche
2014-01-01
The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082
Reranking candidate gene models with cross-species comparison for improved gene prediction
Liu, Qian; Crammer, Koby; Pereira, Fernando CN; Roos, David S
2008-01-01
Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc). Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models. PMID:18854050
Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang
2007-02-01
To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.
Feng, Ze-Qing; Cheng, Yang; Yang, Hui-Ling; Zhu, Qing; Yu, Dandan; Liu, Yi-Ping
2015-04-25
TRIM25, a member of the tripartite motif-containing (TRIM) family of proteins, plays an important role in cell proliferation, protein modification, and the RIG-I-mediated antiviral signaling pathway. However, relatively few studies have investigated the molecular characterization, tissue distribution, and potential function of TRIM25 in chickens. In this study, we cloned the full-length cDNA of chicken TRIM25 that is composed of 2706 bp. Sequence analyses revealed that TRIM25 contains a 1902-bp open-reading frame that probably encodes a 633-amino acid protein. Multiple comparisons with deduced amino acid sequences revealed that the RING finger and B30.2 domains of chicken TRIM25 share a high sequence similarity with human and murine TRIM25, indicating that these domains are critical for the function of chicken TRIM25. qPCR assays revealed that TRIM25 is highly expressed in the spleen, thymus and lungs in chickens. Furthermore, we observed that TRIM25 expression was significantly upregulated both in vitro and in vivo following infection with Newcastle disease virus. TRIM25 expression was also significantly upregulated in chicken embryo fibroblasts upon stimulation with poly(I:C) or poly(dA:dT). Taken together, these findings suggest that TRIM25 plays an important role in antiviral signaling pathways in chickens. Copyright © 2015 Elsevier B.V. All rights reserved.
Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.
2007-01-01
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511
Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A
2005-03-01
To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.
Saito, Shigeyoshi; Tanaka, Keiko; Tarewaki, Hiroyuki; Koyama, Yoshihiro; Hashido, Takashi
2016-01-01
We compared the uniformity of fat-suppression and image quality using three-dimensional fat-suppressed T 1 -weighted gradient-echo sequences that are liver acquisition with volume acceleration (LAVA) and Turbo-LAVA at 3.0T-MRI. The subjects were seven patients with liver disease (mean age, 66.7±8.2 years). The axial slices of two LAVA sequences were used for the comparison of the uniformity of fat-suppression and image quality at a region-of-interest (ROI) of the liver dome, the porta, and the renal hilum. To yield a quantitative measurement of the uniformity of fat suppression, the percentage standard deviation (%SD) was calculated by comparing two sequences. For image signal to noise ratio (SNR), the contrast between the liver and fat (C liver-fat ), and the liver and muscle (C liver-muscle ), the other ROIs were placed in the superficial fat, liver, spleen, pancreas, and muscle. The %SD in Turbo-LAVA (28.1±16.8%) was lower than that in LAVA (41.5±13.4%). The SNRs in Turbo-LAVA (17.8±4.1 [liver], 12.5±3.0 [pancreas], 14.7±1.6 [spleen], 8.2±3.5 [fat]) were lower than those in LAVA (20.9±6.1 [liver], 16.8±4.1 [pancreas], 17.4±2.4 [spleen], 12.0±4.5 [fat]). While, the C liver-fat in the Turbo-LAVA (0.72±0.06) was significantly higher than that in LAVA (0.59±0.07). Turbo-LAVA sequence offers superior and more homogenous fat-suppression in comparison to LAVA sequence.
Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony
2017-12-01
State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng
2009-11-01
The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.
Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef
2014-01-01
Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.
Erdem, Arzum; Congur, Gulsah
2014-01-01
The multi-channel screen-printed array of electrodes (MUX-SPE16) was used in our study for the first time for electrochemical monitoring of nucleic acid hybridization related to different miRNA sequences (miRNA-16, miRNA-15a and miRNA-660, i.e, the biomarkers for Alzheimer disease). The MUX-SPE16 was also used for the first time herein for the label-free electrochemical detection of nucleic acid hybridization combined magnetic beads (MB) assay in comparison to the disposable pencil graphite electrode (PGE). Under the principle of the magnetic beads assay, the biotinylated inosine substituted DNA probe was firstly immobilized onto streptavidin coated MB, and then, the hybridization process between probe and its complementary miRNA sequence was performed at MB surface. The voltammetric transduction was performed using differential pulse voltammetry (DPV) technique in combination with the single-use graphite sensor technologies; PGE and MUX-SPE16 for miRNA detection by measuring the guanine oxidation signal without using any external indicator. The features of single-use sensor technologies, PGE and MUX-SPE16, were discussed concerning to their reproducibility, detection limit, and selectivity compared to the results in the earlier studies presenting the electrochemical miRNA detection related to different miRNA sequences. © 2013 Elsevier B.V. All rights reserved.
Herbst, Elizabeth B; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L; Hossack, John A; Mauldin, Frank William
2017-02-01
The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and "contrast pulse sequences" (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false-positive detection and potential misdiagnosis. In this study, a novel acoustic radiation force (ARF)-based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with interframe signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, P < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, P < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio when compared with corresponding CPS or PI images (n = 9, P < 0.001). Contrast-to-tissue ratio improved with ADW-PI by approximately 3 dB compared with PI images and 2 dB compared with CPS images. Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with PI, measurements of the resulting microbubble signal decorrelation can be used to reconstruct images that exhibit superior suppression of highly echogenic tissue interfaces when compared with PI or CPS alone.
NASA Astrophysics Data System (ADS)
Boss, Andreas; Martirosian, Petros; Artunc, Ferruh; Risler, Teut; Claussen, Claus D.; Schlemmer, Heinz-Peter; Schick, Fritz
2007-03-01
Purpose: As the MR contrast-medium gadobutrol is completely eliminated via glomerular filtration, the glomerular filtration rate (GFR) can be quantified after bolus-injection of gadobutrol and complete mixing in the extracellular fluid volume (ECFV) by measuring the signal decrease within the liver parenchyma. Two different navigator-gated single-shot saturation-recovery sequences have been tested for suitability of GFR quantification: a TurboFLASH and a TrueFISP readout technique. Materials and Methods: Ten healthy volunteers (mean age 26.1+/-3.6) were equally devided in two subgroups. After bolus-injection of 0.05 mmol/kg gadobutrol, coronal single-slice images of the liver were recorded every 4-5 seconds during free breathing using either the TurboFLASH or the TrueFISP technique. Time-intensity curves were determined from manually drawn regions-of-interest over the liver parenchyma. Both sequences were subsequently evaluated regarding signal to noise ratio (SNR) and the behaviour of signal intensity curves. The calculated GFR values were compared to an iopromide clearance gold standard. Results: The TrueFISP sequence exhibited a 3.4-fold higher SNR as compared to the TurboFLASH sequence and markedly lower variability of the recorded time-intensity curves. The calculated mean GFR values were 107.0+/-16.1 ml/min/1.73m2 (iopromide: 92.1+/-14.5 ml/min/1.73m2) for the TrueFISP technique and 125.6+/-24.1 ml/min/1.73m2 (iopromide: 97.7+/-6.3 ml/min/1.73m2) for the TurboFLASH approach. The mean paired differences with TrueFISP was lower (15.0 ml/min/1.73m2) than in the TurboFLASH method (27.9 ml/min/1.73m2). Conclusion: The global GFR can be quantified via measurement of gadobutrol clearance from the ECFV. A saturation-recovery TrueFISP sequence allows for more reliable GFR quantification as a saturation recovery TurboFLASH technique.
Host Cell Virus Entry Mediated by Australian Bat Lyssavirus Envelope G glycoprotein
2013-10-24
39 Figure 7. Comparison of the amino acid sequences of Saccolaimus and Pteropus ABLV G mature protein... sequence analysis revealed that the PCR products were identical. Sequence comparisons of the ABLV N and other lyssavirus N proteins showed that ABLV...Saccolaimus flaviventris) (129). Nucleoprotein sequence comparisons revealed that the Saccolaimus N protein shared 96% amino acid homology with the Pteropus
Gilabert, Aude; Curran, David M; Harvey, Simon C; Wasmuth, James D
2016-06-27
Signalling pathways underlie development, behaviour and pathology. To understand patterns in the evolution of signalling pathways, we undertook a comprehensive investigation of the pathways that control the switch between growth and developmentally quiescent dauer in 24 species of nematodes spanning the phylum. Our analysis of 47 genes across these species indicates that the pathways and their interactions are not conserved throughout the Nematoda. For example, the TGF-β pathway was co-opted into dauer control relatively late in a lineage that led to the model species Caenorhabditis elegans. We show molecular adaptations described in C. elegans that are restricted to its genus or even just to the species. Similarly, our analyses both identify species where particular genes have been lost and situations where apparently incorrect orthologues have been identified. Our analysis also highlights the difficulties of working with genome sequences from non-model species as reliance on the published gene models would have significantly restricted our understanding of how signalling pathways evolve. Our approach therefore offers a robust standard operating procedure for genomic comparisons.
Interplay of heritage and habitat in the distribution of bacterial signal transduction systems.
Galperin, Michael Y; Higdon, Roger; Kolker, Eugene
2010-04-01
Comparative analysis of the complete genome sequences from a variety of poorly studied organisms aims at predicting ecological and behavioral properties of these organisms and helping in characterizing their habitats. This task requires finding appropriate descriptors that could be correlated with the core traits of each system and would allow meaningful comparisons. Using the relatively simple bacterial models, first attempts have been made to introduce suitable metrics to describe the complexity of organism's signaling machinery, which included introducing the "bacterial IQ" score. Here, we use an updated census of prokaryotic signal transduction systems to improve this parameter and evaluate its consistency within selected bacterial phyla. We also introduce a more elaborate descriptor, a set of profiles of relative abundance of members of each family of signal transduction proteins encoded in each genome. We show that these family profiles are well conserved within each genus and are often consistent within families of bacteria. Thus, they reflect evolutionary relationships between organisms as well as individual adaptations of each organism to its specific ecological niche.
MacLeod, Dave; Charlebois, Robert L; Doolittle, Ford; Bapteste, Eric
2005-01-01
Background When organismal phylogenies based on sequences of single marker genes are poorly resolved, a logical approach is to add more markers, on the assumption that weak but congruent phylogenetic signal will be reinforced in such multigene trees. Such approaches are valid only when the several markers indeed have identical phylogenies, an issue which many multigene methods (such as the use of concatenated gene sequences or the assembly of supertrees) do not directly address. Indeed, even when the true history is a mixture of vertical descent for some genes and lateral gene transfer (LGT) for others, such methods produce unique topologies. Results We have developed software that aims to extract evidence for vertical and lateral inheritance from a set of gene trees compared against an arbitrary reference tree. This evidence is then displayed as a synthesis showing support over the tree for vertical inheritance, overlaid with explicit lateral gene transfer (LGT) events inferred to have occurred over the history of the tree. Like splits-tree methods, one can thus identify nodes at which conflict occurs. Additionally one can make reasonable inferences about vertical and lateral signal, assigning putative donors and recipients. Conclusion A tool such as ours can serve to explore the reticulated dimensionality of molecular evolution, by dissecting vertical and lateral inheritance at high resolution. By this, we mean that individual nodes can be examined not only for congruence, but also for coherence in light of LGT. We assert that our tools will facilitate the comparison of phylogenetic trees, and the interpretation of conflicting data. PMID:15819979
Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation
Hori, Koichi; Maruyama, Fumito; Fujisawa, Takatomo; Togashi, Tomoaki; Yamamoto, Nozomi; Seo, Mitsunori; Sato, Syusei; Yamada, Takuji; Mori, Hiroshi; Tajima, Naoyuki; Moriyama, Takashi; Ikeuchi, Masahiko; Watanabe, Mai; Wada, Hajime; Kobayashi, Koichi; Saito, Masakazu; Masuda, Tatsuru; Sasaki-Sekimoto, Yuko; Mashiguchi, Kiyoshi; Awai, Koichiro; Shimojima, Mie; Masuda, Shinji; Iwai, Masako; Nobusawa, Takashi; Narise, Takafumi; Kondo, Satoshi; Saito, Hikaru; Sato, Ryoichi; Murakawa, Masato; Ihara, Yuta; Oshima-Yamada, Yui; Ohtaka, Kinuka; Satoh, Masanori; Sonobe, Kohei; Ishii, Midori; Ohtani, Ryosuke; Kanamori-Sato, Miyu; Honoki, Rina; Miyazaki, Daichi; Mochizuki, Hitoshi; Umetsu, Jumpei; Higashi, Kouichi; Shibata, Daisuke; Kamiya, Yuji; Sato, Naoki; Nakamura, Yasukazu; Tabata, Satoshi; Ida, Shigeru; Kurokawa, Ken; Ohta, Hiroyuki
2014-01-01
The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments. PMID:24865297
Henninger, B; Zoller, H; Rauch, S; Schocke, M; Kannengiesser, S; Zhong, X; Reiter, G; Jaschke, W; Kremser, C
2015-05-01
To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm ("screening" sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. • MRI plays a major role in the clarification of diffuse liver disease. • The screening sequence was introduced for the assessment of diffuse liver disease. • It is a fast and automated algorithm for the evaluation of hepatic iron and fat. • It is capable of estimating the amount of hepatic fat and iron.
Alignment-free genome tree inference by learning group-specific distance metrics.
Patil, Kaustubh R; McHardy, Alice C
2013-01-01
Understanding the evolutionary relationships between organisms is vital for their in-depth study. Gene-based methods are often used to infer such relationships, which are not without drawbacks. One can now attempt to use genome-scale information, because of the ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or ecological properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance metrics could be learned for most of the 18 groups of organisms tested here. Once a group-specific metric is available, it can be used to estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison between 10 methods--9 alignment-free and 1 alignment-based.
Ahn, Jin-Ho; Hwang, Mi-Yeon; Lee, Kyung-Ho; Choi, Cha-Yong; Kim, Dong-Myung
2007-01-01
This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours. PMID:17185295
Chen, Xia; Zhang, Min; Tan, Jie; Huang, Shuping; Wang, Chunli; Zhang, Hongyuan; Tan, Taiming
2017-01-01
Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for further investigation of key genes involved in the parthenocarpic fruit development and genomics-assisted breeding.
Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Capolongo, Arcangela; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe
2014-07-01
Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions. 90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤1.44×10(-3)mm(2)/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated. In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of >1.44 and 37 (70%) with ADC≤1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively. DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement. Copyright © 2014 Elsevier Inc. All rights reserved.
Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo
2010-01-01
The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.
A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.
Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad
2017-01-05
During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
DLocalMotif: a discriminative approach for discovering local motifs in protein sequences.
Mehdi, Ahmed M; Sehgal, Muhammad Shoaib B; Kobe, Bostjan; Bailey, Timothy L; Bodén, Mikael
2013-01-01
Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. http://bioinf.scmb.uq.edu.au/dlocalmotif/
The MB2 gene family of Plasmodium species has a unique combination of S1 and GTP-binding domains
Romero, Lisa C; Nguyen, Thanh V; Deville, Benoit; Ogunjumo, Oluwasanmi; James, Anthony A
2004-01-01
Background Identification and characterization of novel Plasmodium gene families is necessary for developing new anti-malarial therapeutics. The products of the Plasmodium falciparum gene, MB2, were shown previously to have a stage-specific pattern of subcellular localization and proteolytic processing. Results Genes homologous to MB2 were identified in five additional parasite species, P. knowlesi, P. gallinaceum, P. berghei, P. yoelii, and P. chabaudi. Sequence comparisons among the MB2 gene products reveal amino acid conservation of structural features, including putative S1 and GTP-binding domains, and putative signal peptides and nuclear localization signals. Conclusions The combination of domains is unique to this gene family and indicates that MB2 genes comprise a novel family and therefore may be a good target for drug development. PMID:15222903
Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina
2016-10-01
To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.
Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun
2015-05-18
Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei'ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress.
Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun
2015-01-01
Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei’ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress. PMID:25993302
Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1
van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.
1999-01-01
Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218
QRS complex detection based on continuous density hidden Markov models using univariate observations
NASA Astrophysics Data System (ADS)
Sotelo, S.; Arenas, W.; Altuve, M.
2018-04-01
In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.
Gioia, Jason; Qin, Xiang; Jiang, Huaiyang; Clinkenbeard, Kenneth; Lo, Reggie; Liu, Yamei; Fox, George E.; Yerrapragada, Shailaja; McLeod, Michael P.; McNeill, Thomas Z.; Hemphill, Lisa; Sodergren, Erica; Wang, Qiaoyan; Muzny, Donna M.; Homsi, Farah J.; Weinstock, George M.; Highlander, Sarah K.
2006-01-01
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes. PMID:17015664
de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio
2017-08-01
The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.
Herber, S; Kalden, P; Kreitner, K F; Riedel, C; Rompe, J D; Thelen, M
2001-05-01
Evaluation of the diagnostic value and confidence of contrast-enhanced MR imaging in patients with lateral epicondylitis in comparison to clinical diagnosis. 42 consecutive patients with clinically proven chronic lateral epicondylitis and 10 elbow joints of healthy controls have been examined on a 1.0 T MR-unit. Criteria for inclusion in the prospective study were: persistent pain and a failed conservative therapy. The MR protocol included STIR sequence, a native, T2-weighted, fat-suppressed TSE sequence, and a Flash-2-D sequence. Also, fat-suppressed, T1-weighted SE sequences before and after administration of Gd-DTPA contrast media have been recorded. In 39/42 patients the STIR sequence showed an increased SI of the common extensor tendon. Increased MR signal of the lateral collateral ligament combined with a thickening and a partial rupture or a full thickness tear have been observed in 15/42 cases. A bone marrow edema at the lateral epicondilus was noticed in 6 of the studied patients and a joint effusion in 18/42 patients. After administration of contrast media we noticed an average increase of SI by about 150%. However, enhanced MR imaging did not provide additional information. In MR imaging of chronic epicondylitis administration of gadolinium-DTPA does not provide additional information.
Next-generation genotype imputation service and methods.
Das, Sayantan; Forer, Lukas; Schönherr, Sebastian; Sidore, Carlo; Locke, Adam E; Kwong, Alan; Vrieze, Scott I; Chew, Emily Y; Levy, Shawn; McGue, Matt; Schlessinger, David; Stambolian, Dwight; Loh, Po-Ru; Iacono, William G; Swaroop, Anand; Scott, Laura J; Cucca, Francesco; Kronenberg, Florian; Boehnke, Michael; Abecasis, Gonçalo R; Fuchsberger, Christian
2016-10-01
Genotype imputation is a key component of genetic association studies, where it increases power, facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is computationally demanding and, with current tools, typically requires access to a high-performance computing cluster and to a reference panel of sequenced genomes. Here we describe improvements to imputation machinery that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also describe a new web-based service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity.
Molecular cloning and characterization of a gene encoding glutaminase from Aspergillus oryzae.
Koibuchi, K; Nagasaki, H; Yuasa, A; Kataoka, J; Kitamoto, K
2000-07-01
A glutaminase from Aspergillus oryzae was purified and its molecular weight was determined to be 82,091 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified glutaminase catalysed the hydrolysis not only of L-glutamine but also of D-glutamine. Both the molecular weight and the substrate specificity of this glutaminase were different from those reported previously [Yano et al. (1998) J Ferment Technol 66: 137-143]. On the basis of its internal amino acid sequences, we have isolated and characterized the glutaminase gene (gtaA) from A. oryzae. The gtaA gene had an open reading frame coding for 690 amino acid residues, including a signal peptide of 20 amino acid residues and a mature protein of 670 amino acid residues. In the 5'-flanking region of the gene, there were three putative CreAp binding sequences and one putative AreAp binding sequence. The gtaA structural gene was introduced into A. oryzae NS4 and a marked increase in activity was detected in comparison with the control strain. The gtaA gene was also isolated from Aspergillus nidulans on the basis of the determined nucleotide sequence of the gtaA gene from A. oryzae.
Law, Yee-Song; Gudimella, Ranganath; Song, Beng-Kah; Ratnam, Wickneswari; Harikrishna, Jennifer Ann
2012-01-01
Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression. PMID:22942769
Increased fMRI Sensitivity at Equal Data Burden Using Averaged Shifted Echo Acquisition
Witt, Suzanne T.; Warntjes, Marcel; Engström, Maria
2016-01-01
There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics. PMID:27932947
Spreading Sequence System for Full Connectivity Relay Network
NASA Technical Reports Server (NTRS)
Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.
Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M
2018-05-01
Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.
Steady-state MR imaging sequences: physics, classification, and clinical applications.
Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M
2008-01-01
Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.
Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC.
Macarini, Luca; Perrone, Alessandra; Murrone, Mario; Marini, Stefania; Stefanelli, Michele
2004-09-01
To compare two different MR sequences to tissue signal suppression in the study of patellar cartilage abnormalities. We examined 26 patients with magnetic resonance (MR) imaging: sequences included spectral presaturation with inversion recovery (SPIR), with fat suppression and T2-weighted images, magnetization transfer contrast (MTC) sequences, T1-weighted and T2-weighted spin-echo sequences. All patients underwent conventional knee arthroscopy and in all patients a hyaline cartilage lesion was assessed in three articular zones: the patellar medial facet, the lateral facet and the patellar crista. Was assessed 78 articular facets. The lesions were classified using a standard arthroscopic grading system adapted to MR imaging: normal cartilage that corresponds to the grade 0 according to the Noyes grading system, low grade lesions that correspond to the grade I e IIa and high grade lesions that correspond to grades IIb and III. The arthroscopic results were compared with MR images. We assessed the MR diagnostic accuracy, sensitivity, specificity and MR positive predictive value and negative predictive value of the two sequences taking into consideration total lesions, and high-grade and low grade lesions separately. Twenty-four low grade lesions (16 grade I e 8 grade IIa) and 18 high grade lesions (10 grade IIb e 8 grade III) were diagnosed by arthroscopy. Regarding low grade and high-grade lesions together, the accuracy was 77% for MTC sequences and 90% for SPIR sequences. In identifying low-grade lesions, the sensitivity was 88% for SPIR sequence and 42% for MTC sequences. Specificity for the detection of all lesions was 89% for the SPIR sequences and 94% for the MTC sequences. The SPIR sequence visualised water content abnormalities in degenerating cartilage, which are representative of low-grade lesions. The sensitivity of the sequence enabled us to obtain improved contrast for detecting cartilage surface irregularities. The MTC sequences allowed us to grade high-grade lesions susceptible to surgery and small cartilage defects in the presence of joint fluid. The MTC sequences were insufficient in the diagnosis of early stages of chondromalacia because the suppression of the signal of bonded water reduced the contrast among areas of articular cartilage with different water content. For this reason cartilage oedema and early superficial fibrillation were not identified. In our experience the SPIR sequence proved superior to the MTC sequence in the identification of low grade lesions of the patellar cartilage. The overall value of such sequences in the study of articular pathology also needs to be assessed in the others sites where the articular cartilage is thinner and surfaces more curvilinear.
Robakis, Thalia; Bak, Beata; Lin, Shu-huei; Bernard, Daniel J.; Scheiffele, Peter
2008-01-01
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. PMID:18981173
McEwan, Thomas E.
1998-01-01
A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.
McEwan, T.E.
1998-06-16
A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.
Giraffe genome sequence reveals clues to its unique morphology and physiology
Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.
2016-01-01
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213
cWINNOWER algorithm for finding fuzzy dna motifs
NASA Technical Reports Server (NTRS)
Liang, S.; Samanta, M. P.; Biegel, B. A.
2004-01-01
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.
cWINNOWER Algorithm for Finding Fuzzy DNA Motifs
NASA Technical Reports Server (NTRS)
Liang, Shoudan
2003-01-01
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).
Nanowire-nanopore transistor sensor for DNA detection during translocation
NASA Astrophysics Data System (ADS)
Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles
2011-03-01
Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.
High-Frame-Rate Doppler Ultrasound Using a Repeated Transmit Sequence
Podkowa, Anthony S.; Oelze, Michael L.; Ketterling, Jeffrey A.
2018-01-01
The maximum detectable velocity of high-frame-rate color flow Doppler ultrasound is limited by the imaging frame rate when using coherent compounding techniques. Traditionally, high quality ultrasonic images are produced at a high frame rate via coherent compounding of steered plane wave reconstructions. However, this compounding operation results in an effective downsampling of the slow-time signal, thereby artificially reducing the frame rate. To alleviate this effect, a new transmit sequence is introduced where each transmit angle is repeated in succession. This transmit sequence allows for direct comparison between low resolution, pre-compounded frames at a short time interval in ways that are resistent to sidelobe motion. Use of this transmit sequence increases the maximum detectable velocity by a scale factor of the transmit sequence length. The performance of this new transmit sequence was evaluated using a rotating cylindrical phantom and compared with traditional methods using a 15-MHz linear array transducer. Axial velocity estimates were recorded for a range of ±300 mm/s and compared to the known ground truth. Using these new techniques, the root mean square error was reduced from over 400 mm/s to below 50 mm/s in the high-velocity regime compared to traditional techniques. The standard deviation of the velocity estimate in the same velocity range was reduced from 250 mm/s to 30 mm/s. This result demonstrates the viability of the repeated transmit sequence methods in detecting and quantifying high-velocity flow. PMID:29910966
Bi-directional power control system for voltage converter
Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward
1999-01-01
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.
Bi-directional power control system for voltage converter
Garrigan, N.R.; King, R.D.; Schwartz, J.E.
1999-05-11
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.
Solution structure of the chick TGFbeta type II receptor ligand-binding domain.
Marlow, Michael S; Brown, Christopher B; Barnett, Joey V; Krezel, Andrzej M
2003-02-28
The transforming growth factor beta (TGFbeta) signaling pathway influences cell proliferation, immune responses, and extracellular matrix reorganization throughout the vertebrate life cycle. The signaling cascade is initiated by ligand-binding to its cognate type II receptor. Here, we present the structure of the chick type II TGFbeta receptor determined by solution NMR methods. Distance and angular constraints were derived from 15N and 13C edited NMR experiments. Torsion angle dynamics was used throughout the structure calculations and refinement. The 20 final structures were energy minimized using the generalized Born solvent model. For these 20 structures, the average backbone root-mean-square distance from the average structure is below 0.6A. The overall fold of this 109-residue domain is conserved within the superfamily of these receptors. Chick receptors fully recognize and respond to human TGFbeta ligands despite only 60% identity at the sequence level. Comparison with the human TGFbeta receptor determined by X-ray crystallography reveals different conformations in several regions. Sequence divergence and crystal packing interactions under low pH conditions are likely causes. This solution structure identifies regions were structural changes, however subtle, may occur upon ligand-binding. We also identified two very well conserved molecular surfaces. One was found to bind ligand in the crystallized human TGFbeta3:TGFbeta type II receptor complex. The other, newly identified area can be the interaction site with type I and/or type III receptors of the TGFbeta signaling complex.
Sommer, J M; Nguyen, T T; Wang, C C
1994-08-15
Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.
Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum.
Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Durán, David; Nadendla, Suvarna; Albareda, Marta; Rubio-Sanz, Laura; Lanza, Mónica; González-Guerrero, Manuel; Prieto, Rosa Isabel; Brito, Belén; Giglio, Michelle G; Rey, Luis; Ruiz-Argüeso, Tomás; Palacios, José M; Imperial, Juan
2018-01-24
Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae , 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.
SNMR pulse sequence phase cycling
Walsh, David O; Grunewald, Elliot D
2013-11-12
Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.
Bruce, A. Gregory; Thouless, Margaret E.; Haines, Anthony S.; Pallen, Mark J.; Grundhoff, Adam
2015-01-01
ABSTRACT Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology. PMID:25609822
Bayer, Thomas; Adler, Werner; Janka, Rolf; Uder, Michael; Roemer, Frank
2017-12-01
To study the feasibility of magnetic resonance cinematography of the fingers (MRCF) with comparison of image quality of different protocols for depicting the finger anatomy during motion. MRCF was performed during a full flexion and extension movement in 14 healthy volunteers using a finger-gating device. Three real-time sequences (frame rates 17-59 images/min) and one proton density (PD) sequence (3 images/min) were acquired during incremental and continuous motion. Analyses were performed independently by three readers. Qualitative image analysis included Likert-scale grading from 0 (useless) to 5 (excellent) and specific visual analog scale (VAS) grading from 0 (insufficient) to 100 (excellent). Signal-to-noise calculation was performed. Overall percentage agreement and mean absolute disagreement were calculated. Within the real-time sequences a high frame-rate true fast imaging with steady-state free precession (TRUFI) yielded the best image quality with Likert and overall VAS scores of 3.0 ± 0.2 and 60.4 ± 25.3, respectively. The best sequence regarding image quality was an incremental PD with mean values of 4.8 ± 0.2 and 91.2 ± 9.4, respectively. Overall percentage agreement and mean absolute disagreement were 47.9 and 0.7, respectively. No statistically significant SNR differences were found between continuous and incremental motion for the real-time protocols. MRCF is feasible with appropriate image quality during continuous motion using a finger-gating device. Almost perfect image quality is achievable with incremental PD imaging, which represents a compromise for MRCF with the drawback of prolonged scanning time.
Variation in opsin genes correlates with signaling ecology in North American fireflies
Sander, Sarah E.; Hall, David W.
2015-01-01
Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize detection of conspecific signal colors emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species, and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal color, and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on LW opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors, and signaling environments. PMID:26289828
Lassiter, S J; Stryjewski, W; Legendre, B L; Erdmann, R; Wahl, M; Wurm, J; Peterson, R; Middendorf, L; Soper, S A
2000-11-01
A compact time-resolved near-IR fluorescence imager was constructed to obtain lifetime and intensity images of DNA sequencing slab gels. The scanner consisted of a microscope body with f/1.2 relay optics onto which was mounted a pulsed diode laser (repetition rate 80 MHz, lasing wavelength 680 nm, average power 5 mW), filtering optics, and a large photoactive area (diameter 500 microns) single-photon avalanche diode that was actively quenched to provide a large dynamic operating range. The time-resolved data were processed using electronics configured in a conventional time-correlated single-photon-counting format with all of the counting hardware situated on a PC card resident on the computer bus. The microscope head produced a timing response of 450 ps (fwhm) in a scanning mode, allowing the measurement of subnano-second lifetimes. The time-resolved microscope head was placed in an automated DNA sequencer and translated across a 21-cm-wide gel plate in approximately 6 s (scan rate 3.5 cm/s) with an accumulation time per pixel of 10 ms. The sampling frequency was 0.17 Hz (duty cycle 0.0017), sufficient to prevent signal aliasing during the electrophoresis separation. Software (written in Visual Basic) allowed acquisition of both the intensity image and lifetime analysis of DNA bands migrating through the gel in real time. Using a dual-labeling (IRD700 and Cy5.5 labeling dyes)/two-lane sequencing strategy, we successfully read 670 bases of a control M13mp18 ssDNA template using lifetime identification. Comparison of the reconstructed sequence with the known sequence of the phage indicated the number of miscalls was only 2, producing an error rate of approximately 0.3% (identification accuracy 99.7%). The lifetimes were calculated using maximum likelihood estimators and allowed on-line determinations with high precision, even when short integration times were used to construct the decay profiles. Comparison of the lifetime base calling to a single-dye/four-lane sequencing strategy indicated similar results in terms of miscalls, but reduced insertion and deletion errors using lifetime identification methods, improving the overall read accuracy.
Brylinski, Michal; Konieczny, Leszek; Kononowicz, Andrzej; Roterman, Irena
2008-03-21
The well-known procedure implemented in ClustalW oriented on the sequence comparison was applied to structure comparison. The consensus sequence as well as consensus structure has been defined for proteins belonging to serpine family. The structure of early stage intermediate was the object for similarity search. The high values of W(sequence) appeared to be accordant with high values of W(structure) making possible structure comparison using common criteria for sequence and structure comparison. Since the early stage structural form has been created according to limited conformational sub-space which does not include the beta-structure (this structure is mediated by C7eq structural form), is particularly important to see, that the C7eq structural form may be treated as the seed for beta-structure present in the final native structure of protein. The applicability of ClustalW procedure to structure comparison makes these two comparisons unified.
Epstein, F H; Mugler, J P; Brookeman, J R
1994-02-01
A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.
Giugni, Elisabetta; Sabatini, Umberto; Hagberg, Gisela E; Formisano, Rita; Castriota-Scanderbeg, Alessandro
2005-05-01
Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury (TBI), and is frequently accompanied by tissue tear hemorrhage. T2-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of hemorrhage. The purpose of this study is to compare turbo Proton Echo Planar Spectroscopic Imaging (t-PEPSI), an extremely fast sequence, with GRE sequence in the detection of DAI. Twenty-one patients (mean age 26.8 years) with severe TBI occurred at least 3 months earlier, underwent a brain MR Imaging study on a 1.5-T scanner. A qualitative evaluation of the t-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and t-PEPSI images, and divided according to their anatomic location as lobar and/or deep brain. There was no significant difference between GRE and t-PEPSI sequences in the detection of the total number of DAI lesions (291 vs. 230, respectively). GRE sequence delineated a higher number of DAI in the temporal lobe compared to the t-PEPSI sequence (74 vs. 37, P < .004), while no differences were found for the other regions. The SI CR was significantly lower with the t-PEPSI than the GRE sequence (P < .00001). Owing to its very short scan time and high sensitivity to the hemorrhage foci, the t-PEPSI sequence may be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.
Furtner, J; Schöpf, V; Preusser, M; Asenbaum, U; Woitek, R; Wöhrer, A; Hainfellner, J A; Wolfsberger, S; Prayer, D
2014-05-01
Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n=22) and PCNSL (n=8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p=0.011) and ITSS (p=0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NMR-based diffusion pore imaging by double wave vector measurements.
Kuder, Tristan Anselm; Laun, Frederik Bernd
2013-09-01
One main interest of nuclear magnetic resonance (NMR) diffusion experiments is the investigation of boundaries such as cell membranes hindering the diffusion process. NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if, in principle, the exact shape of closed pores can be determined by NMR diffusion measurements. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without relying on a priori knowledge. In comparison to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long-time limit and allows for a more flexible NMR sequence design, because, e.g., stimulated echoes can be used. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cheng, Ryan; Morcos, Faruck; Levine, Herbert; Onuchic, Jose
2014-03-01
An important challenge in biology is to distinguish the subset of residues that allow bacterial two-component signaling (TCS) proteins to preferentially interact with their correct TCS partner such that they can bind and transfer signal. Detailed knowledge of this information would allow one to search sequence-space for mutations that can systematically tune the signal transmission between TCS partners as well as re-encode a TCS protein to preferentially transfer signals to a non-partner. Motivated by the notion that this detailed information is found in sequence data, we explore the mutual sequence co-evolution between signaling partners to infer how mutations can positively or negatively alter their interaction. Using Direct Coupling Analysis (DCA) for determining evolutionarily conserved interprotein interactions, we apply a DCA-based metric to quantify mutational changes in the interaction between TCS proteins and demonstrate that it accurately correlates with experimental mutagenesis studies probing the mutational change in the in vitro phosphotransfer. Our methodology serves as a potential framework for the rational design of TCS systems as well as a framework for the system-level study of protein-protein interactions in sequence-rich systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1308264).
Trotta, Edoardo
2016-05-17
The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.
Proteolytic processing of the vitellogenin precursor in the boll weevil, Anthonomus grandis.
Heilmann, L J; Trewitt, P M; Kumaran, A K
1993-01-01
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with M(r)s of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M(r) vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 M(r) honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 M(r) boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10-15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein.
Primary and secondary structural analyses of glutathione S-transferase pi from human placenta.
Ahmad, H; Wilson, D E; Fritz, R R; Singh, S V; Medh, R D; Nagle, G T; Awasthi, Y C; Kurosky, A
1990-05-01
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei
2016-06-15
An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia
2011-01-01
LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Cliften, Paul; Sudarsanam, Priya; Desikan, Ashwin; Fulton, Lucinda; Fulton, Bob; Majors, John; Waterston, Robert; Cohen, Barak A; Johnston, Mark
2003-07-04
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
Uniform, optimal signal processing of mapped deep-sequencing data.
Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2013-07-01
Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.
Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf
2015-01-01
The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945
Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei
2015-01-01
Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274
NASA Astrophysics Data System (ADS)
Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang
2016-09-01
For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.
Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol
2009-01-01
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.
Recognition of Yeast Species from Gene Sequence Comparisons
USDA-ARS?s Scientific Manuscript database
This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...
Mulkern, Robert; Haker, Steven; Mamata, Hatsuho; Lee, Edward; Mitsouras, Dimitrios; Oshio, Koichi; Balasubramanian, Mukund; Hatabu, Hiroto
2014-03-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T 2 * values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T 2 * values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice.
MULKERN, ROBERT; HAKER, STEVEN; MAMATA, HATSUHO; LEE, EDWARD; MITSOURAS, DIMITRIOS; OSHIO, KOICHI; BALASUBRAMANIAN, MUKUND; HATABU, HIROTO
2014-01-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice. PMID:25228852
The limits of protein sequence comparison?
Pearson, William R; Sierk, Michael L
2010-01-01
Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized. PMID:15919194
Santos, Patricia; Plaszczyca, Marian; Pawlowski, Katharina
2013-01-01
Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before. PMID:24009681
RNA processing in Neurospora crassa mitochondria: use of transfer RNA sequences as signals.
Breitenberger, C A; Browning, K S; Alzner-DeWeerd, B; RajBhandary, U L
1985-01-01
We have used RNA gel transfer hybridization, S1 nuclease mapping and primer extension to analyze transcripts derived from several genes in Neurospora crassa mitochondria. The transcripts studied include those for cytochrome oxidase subunit III, 17S rRNA and an unidentified open reading frame. In all three cases, initial transcripts are long, include tRNA sequences, and are subsequently processed to generate the mature RNAs. We find that endpoints of the most abundant transcripts generally coincide with those of tRNA sequences. We therefore conclude that tRNA sequences in long transcripts act as primary signals for RNA processing in N. crassa mitochondria. The situation is somewhat analogous to that observed in mammalian mitochondrial systems. The difference, however, is that in mammalian mitochondria, noncoding spacers between tRNA, rRNA and protein genes are very short and in many cases non-existent, allowing no room for intergenic RNA processing signals whereas, in N. crassa mtDNA, intergenic non-coding sequences are usually several hundred nucleotides long and contain highly conserved GC-rich palindromic sequences. Since these GC-rich palindromic sequences are retained in the processed mature RNAs, we conclude that they do not serve as signals for RNA processing. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2990893
The Effects of Probe Similarity on Retrieval and Comparison Processes in Associative Recognition.
Zhang, Qiong; Walsh, Matthew M; Anderson, John R
2017-02-01
In this study, we investigated the information processing stages underlying associative recognition. We recorded EEG data while participants performed a task that involved deciding whether a probe word triple matched any previously studied triple. We varied the similarity between probes and studied triples. According to a model of associative recognition developed in the Adaptive Control of Thought-Rational cognitive architecture, probe similarity affects the duration of the retrieval stage: Retrieval is fastest when the probe is similar to a studied triple. This effect may be obscured, however, by the duration of the comparison stage, which is fastest when the probe is not similar to the retrieved triple. Owing to the opposing effects of probe similarity on retrieval and comparison, overall RTs provide little information about each stage's duration. As such, we evaluated the model using a novel approach that decomposes the EEG signal into a sequence of latent states and provides information about the durations of the underlying information processing stages. The approach uses a hidden semi-Markov model to identify brief sinusoidal peaks (called bumps) that mark the onsets of distinct cognitive stages. The analysis confirmed that probe type has opposite effects on retrieval and comparison stages.
Gog, Julia R; Lever, Andrew M L; Skittrall, Jordan P
2018-01-01
We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus.
Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer
2004-01-01
Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-01-01
The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-05-01
The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.
Agouti sequence polymorphisms in coyotes, wolves and dogs suggest hybridization.
Schmutz, Sheila M; Berryere, Thomas G; Barta, Jodi L; Reddick, Kimberley D; Schmutz, Josef K
2007-01-01
Domestic dogs have been shown to have multiple alleles of the Agouti Signal Peptide (ASIP) in exon 4 and we wished to determine the level of polymorphism in the common wild canids of Canada, wolves and coyotes, in comparison. All Canadian coyotes and most wolves have banded hairs. The ASIP coding sequence of the wolf did not vary from the domestic dog but one variant was detected in exon 4 of coyotes that did not alter the arginine at this position. Two other differences were found in the sequence flanking exon 4 of coyotes compared with the 45 dogs and 1 wolf. The coyotes also demonstrated a relatively common polymorphism in the 3' UTR sequence that could be used for population studies. One of the ASIP alleles (R96C) in domestic dogs causes a solid black coat color in homozygotes. Although some wolves are melanistic, this phenotype does not appear to be caused by this same mutation. However, one wolf, potentially a dog-wolf hybrid or descendant thereof, was heterozygous for this allele. Likewise 2 coyotes, potentially dog-coyote or wolf-coyote hybrid descendants, were heterozygous for the several polymorphisms in and flanking exon 4. We could conclude that these were coyote-dog hybrids because both were heterozygous for 2 mutations causing fawn coat color in dogs.
Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C
1986-01-01
The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730
Wallis, Michael
2008-01-15
Mammalian growth hormone (GH) sequences have been shown previously to display episodic evolution: the sequence is generally strongly conserved but on at least two occasions during mammalian evolution (on lineages leading to higher primates and ruminants) bursts of rapid evolution occurred. However, the number of mammalian orders studied previously has been relatively limited, and the availability of sequence data via mammalian genome projects provides the potential for extending the range of GH gene sequences examined. Complete or nearly complete GH gene sequences for six mammalian species for which no data were previously available have been extracted from the genome databases-Dasypus novemcinctus (nine-banded armadillo), Erinaceus europaeus (western European hedgehog), Myotis lucifugus (little brown bat), Procavia capensis (cape rock hyrax), Sorex araneus (European shrew), Spermophilus tridecemlineatus (13-lined ground squirrel). In addition incomplete data for several other species have been extended. Examination of the data in detail and comparison with previously available sequences has allowed assessment of the reliability of deduced sequences. Several of the new sequences differ substantially from the consensus sequence previously determined for eutherian GHs, indicating greater variability than previously recognised, and confirming the episodic pattern of evolution. The episodic pattern is not seen for signal sequences, 5' upstream sequence or synonymous substitutions-it is specific to the mature protein sequence, suggesting that it relates to the hormonal function. The substitutions accumulated during the course of GH evolution have occurred mainly on the side of the hormone facing away from the receptor, in a non-random fashion, and it is suggested that this may reflect interaction of the receptor-bound hormone with other proteins or small ligands.
Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo
2017-08-01
Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pappas, E. P.; Dellios, D.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Karaiskos, P.
2017-11-01
In Stereotactic Radiosurgery (SRS), MR-images are widely used for target localization and delineation in order to take advantage of the superior soft tissue contrast they exhibit. However, spatial dose delivery accuracy may be deteriorated due to geometric distortions which are partly attributed to static magnetic field inhomogeneity and patient/object-induced chemical shift and susceptibility related artifacts, known as sequence-dependent distortions. Several post-imaging sequence-dependent distortion correction schemes have been proposed which mainly employ the reversal of read gradient polarity. The scope of this work is to review, evaluate and compare the efficacy of two proposed correction approaches. A specially designed phantom which incorporates 947 control points (CPs) for distortion detection was utilized. The phantom was MR scanned at 1.5T using the head coil and the clinically employed pulse sequence for SRS treatment planning. An additional scan was performed with identical imaging parameters except for reversal of read gradient polarity. In-house MATLAB routines were developed for implementation of the signal integration and average-image distortion correction techniques. The mean CP locations of the two MR scans were regarded as the reference CP distribution. Residual distortion was assessed by comparing the corrected CP locations with corresponding reference positions. Mean absolute distortion on frequency encoding direction was reduced from 0.34mm (original images) to 0.15mm and 0.14mm following application of signal integration and average-image methods, respectively. However, a maximum residual distortion of 0.7mm was still observed for both techniques. The signal integration method relies on the accuracy of edge detection and requires 3-4 hours of post-imaging computational time. The average-image technique is a more efficient (processing time of the order of seconds) and easier to implement method to improve geometric accuracy in such applications.
ERIC Educational Resources Information Center
Noell, George H.; Gresham, Frank M.
2001-01-01
Describes design logic and potential uses of a variant of the multiple-baseline design. The multiple-baseline multiple-sequence (MBL-MS) consists of multiple-baseline designs that are interlaced with one another and include all possible sequences of treatments. The MBL-MS design appears to be primarily useful for comparison of treatments taking…
NASA Astrophysics Data System (ADS)
Purba, H.; Musu, J. T.; Diria, S. A.; Permono, W.; Sadjati, O.; Sopandi, I.; Ruzi, F.
2018-03-01
Well logging data provide many geological information and its trends resemble nonlinear or non-stationary signals. As long well log data recorded, there will be external factors can interfere or influence its signal resolution. A sensitive signal analysis is required to improve the accuracy of logging interpretation which it becomes an important thing to determine sequence stratigraphy. Complete Ensemble Empirical Mode Decomposition (CEEMD) is one of nonlinear and non-stationary signal analysis method which decomposes complex signal into a series of intrinsic mode function (IMF). Gamma Ray and Spontaneous Potential well log parameters decomposed into IMF-1 up to IMF-10 and each of its combination and correlation makes physical meaning identification. It identifies the stratigraphy and cycle sequence and provides an effective signal treatment method for sequence interface. This method was applied to BRK- 30 and BRK-13 well logging data. The result shows that the combination of IMF-5, IMF-6, and IMF-7 pattern represent short-term and middle-term while IMF-9 and IMF-10 represent the long-term sedimentation which describe distal front and delta front facies, and inter-distributary mouth bar facies, respectively. Thus, CEEMD clearly can determine the different sedimentary layer interface and better identification of the cycle of stratigraphic base level.
Nielsen, Flemming K; Egund, Niels; Jørgensen, Anette; Peters, David A; Jurik, Anne Grethe
2016-11-16
Bone marrow lesions (BMLs) in knee osteoarthritis (OA) can be assessed using fluid sensitive and contrast enhanced sequences. The association between BMLs and symptoms has been investigated in several studies but only using fluid sensitive sequences. Our aims were to assess BMLs by contrast enhanced MRI sequences in comparison with a fluid sensitive STIR sequence using two different segmentation methods and to analyze the association between the MR findings and disability and pain. Twenty-two patients (mean age 61 years, range 41-79 years) with medial femoro-tibial knee OA obtained MRI and filled out a WOMAC questionnaire at baseline and follow-up (median interval of 334 days). STIR, dynamic contrast enhanced-MRI (DCE-MRI) and fat saturated T1 post-contrast (T1 CE FS) MRI sequences were obtained. All STIR and T1 CE FS sequences were assessed independently by two readers for STIR-BMLs and contrast enhancing areas of BMLs (CEA-BMLs) using manual segmentation and computer assisted segmentation, and the measurements were compared. DCE-MRIs were assessed for the relative distribution of voxels with an inflammatory enhancement pattern, N voxel , in the bone marrow. All findings were compared to WOMAC scores, including pain and overall symptoms, and changes from baseline to follow-up were analyzed. The average volume of CEA-BML was smaller than the STIR-BML volume by manual segmentation. The opposite was found for computer assisted segmentation where the average CEA-BML volume was larger than the STIR-BML volume. The contradictory finding by computer assisted segmentation was partly caused by a number of outliers with an apparent generally increased signal intensity in the anterior parts of the femoral condyle and tibial plateau causing an overestimation of the CEA-BML volume. Both CEA-BML, STIR-BML and N voxel were significantly correlated with symptoms and to a similar degree. A significant reduction in total WOMAC score was seen at follow-up, but no significant changes were observed for either CEA-BML, STIR-BML or N voxel . Neither the degree nor the volume of contrast enhancement in BMLs seems to add any clinical information compared to BMLs visualized by fluid sensitive sequences. Manual segmentation may be needed to obtain valid CEA-BML measurements.
Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike
2006-10-01
Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.
UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.
Meinicke, Peter
2009-09-02
Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.
A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment
Freschi, Valerio; Bogliolo, Alessandro
2012-01-01
In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
Ryali, S; Glover, GH; Chang, C; Menon, V
2009-01-01
EEG data acquired in an MRI scanner are heavily contaminated by gradient artifacts that can significantly compromise signal quality. We developed two new methods based on Independent Component Analysis (ICA) for reducing gradient artifacts from spiral in-out and echo-planar pulse sequences at 3T, and compared our algorithms with four other commonly used methods: average artifact subtraction (Allen et al. 2000), principal component analysis (Niazy et al. 2005), Taylor series (Wan et al. 2006) and a conventional temporal ICA algorithm. Models of gradient artifacts were derived from simulations as well as a water phantom and performance of each method was evaluated on datasets constructed using visual event-related potentials (ERPs) as well as resting EEG. Our new methods recovered ERPs and resting EEG below the beta band (< 12.5 Hz) with high signal-to-noise ratio (SNR > 4). Our algorithms outperformed all of these methods on resting EEG in the theta- and alpha-bands (SNR > 4); however, for all methods, signal recovery was modest (SNR ~ 1) in the beta-band and poor (SNR < 0.3) in the gamma-band and above. We found that the conventional ICA algorithm performed poorly with uniformly low SNR (< 0.1). Taken together, our new ICA-based methods offer a more robust technique for gradient artifact reduction when scanning at 3T using spiral in-out and echo-planar pulse sequences. We provide new insights into the strengths and weaknesses of each method using a unified subspace framework. PMID:19580873
Al Faraj, Achraf; Gazeau, Florence; Wilhelm, Claire; Devue, Cécile; Guérin, Coralie L; Péchoux, Christine; Paradis, Valérie; Clément, Olivier; Boulanger, Chantal M; Rautou, Pierre-Emmanuel
2012-04-01
To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases. © RSNA, 2012.
Multiple alignment-free sequence comparison
Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine
2013-01-01
Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418
Nordmeyer-Massner, Jurek A; Wyss, Michael; Andreisek, Gustav; Pruessmann, Klaas P; Hodler, Juerg
2011-03-01
To evaluate in vivo MR imaging of the wrist at 3.0 Tesla (T) and 7.0T quantitatively and qualitatively. To enable unbiased signal-to-noise ratio (SNR) comparisons, geometrically identical eight-channel receiver arrays were used at both field strengths. First, in vitro images of a phantom bottle were acquired at 3.0T and 7.0T to obtain an estimate of the maximum SNR gain that can be expected. MR images of the dominant wrist of 10 healthy volunteers were acquired at both field strengths. All measurements were done using the same sequence parameters. Quantitative SNR maps were calculated on a pixel-by-pixel basis and analyzed in several regions-of-interest. Furthermore, the images were qualitatively evaluated by two independent radiologists. The quantitative analysis showed SNR increases of up to 100% at 7.0T compared with 3.0T, with considerable variation between different anatomical structures. The qualitative analysis revealed no significant difference in the visualization of anatomical structures comparing 3.0T and 7.0T MR images (P>0.05). The presented results establish the SNR benefits of the transition from 3.0T to 7.0T for wrist imaging without bias by different array designs and based on exact, algebraic SNR quantification. The observed SNR increase nearly reaches expected values but varies greatly between different tissues. It does not necessarily improve the visibility of anatomic structures but adds valuable latitude for sequence optimization. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick
2016-12-01
Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.
Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis
2012-10-01
The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.
A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration
NASA Astrophysics Data System (ADS)
Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves
2011-07-01
An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.
A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase.
Marciano, David C; Karkouti, Omid Y; Palzkill, Timothy
2007-08-01
The bla(TEM-1) beta-lactamase gene has become widespread due to the selective pressure of beta-lactam use and its stable maintenance on transferable DNA elements. In contrast, bla(SME-1) is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of bla(SME-1) via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, bla(SME-1) was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 beta-lactamase. Taken together, these results suggest that fitness costs associated with some beta-lactamases may limit their dissemination.
A Fitness Cost Associated With the Antibiotic Resistance Enzyme SME-1 β-Lactamase
Marciano, David C.; Karkouti, Omid Y.; Palzkill, Timothy
2007-01-01
The blaTEM-1 β-lactamase gene has become widespread due to the selective pressure of β-lactam use and its stable maintenance on transferable DNA elements. In contrast, blaSME-1 is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of blaSME-1 via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, blaSME-1 was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 β-lactamase. Taken together, these results suggest that fitness costs associated with some β-lactamases may limit their dissemination. PMID:17565956
Gatenby, J. Christopher; Gore, John C.; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646
Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.
Hohm, Julian; Döllinger, Michael; Bohr, Christopher; Kniesburges, Stefan; Ziethe, Anke
2015-07-01
Within the functional assessment of voice disorders, an objective analysis of measured parameters from audio, electroglottographic (EGG), or visual signals is desired. In a typical clinical situation, reliable objective analysis is not always possible due to missing standardization and unknown stability of the clinical parameters. The aim of this study was to investigate the robustness/stability of measured clinical parameters of the audio and EGG signals in a typical clinical setting to ensure a reliable objective analysis. In particular, the influence of F0 and of the sequence length on several definitions of jitter and shimmer will be analyzed. Seventy-four young healthy women produced a sustained vowel /a/ and an upward triad with abrupt changeovers. Different sequence lengths (100, 150, 500, and 1000 ms) of sustained phonation and triads (100 and 150 ms) were extracted from the audio and EGG signals. In total, six variations of jitter and four variations of shimmer parameters were analyzed. Jitter%, Jitter11p, and JitterPPQ of the audio signal as well as Jittermean, Shimmer, and Shimmer11p of the EGG signal are unaffected by both sequence length and F0. Influence of F0 and sequence length on several perturbation measures of the audio and EGG signals was identified. For an objective clinical voice assessment, unaffected definitions of jitter and shimmer should be preferred and applied to enable comparability between different recordings, examinations, and studies. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
2008-12-23
glycoprotein precursor (GPC) signal peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain... peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain was deleted, the...terminal signal peptide (SP), which directs the precursor to the endoplasmic retic- ulum (ER) for further processing [11]. The SP, which has been
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Comparison of the quality of different magnetic resonance image sequences of multiple myeloma.
Sun, Zhao-yong; Zhang, Hai-bo; Li, Shuo; Wang, Yun; Xue, Hua-dan; Jin, Zheng-yu
2015-02-01
To compare the image quality of T1WI fat phase,T1WI water phase, short time inversion recovery (STIR) sequence, and diffusion weighted imaging (DWI) sequence in the evaluation of multiple myeloma (MM). Totally 20MM patients were enrolled in this study. All patients underwent scanning at coronal T1WI fat phase, coronal T1WI water phase, coronal STIR sequence, and axial DWI sequence. The image quality of the four different sequences was evaluated. The image was divided into seven sections(head and neck, chest, abdomen, pelvis, thigh, leg, and foot), and the signal-to-noise ratio (SNR) of each section was measured at 7 segments (skull, spine, pelvis, humerus, femur, tibia and fibula and ribs) were measured. In addition, 20 active MM lesions were selected, and the contrast-to-noise ratio (CNR) of each scan sequence was calculated. The average image quality scores of T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence were 4.19 ± 0.70,4.16 ± 0.73,3.89 ± 0.70, and 3.76 ± 0.68, respectively. The image quality at T1-fat phase and T1-water phase were significantly higher than those at STIR (P=0.000 and P=0.001) and DWI sequence (both P=0.000); however, there was no significant difference between T1-fat and T1-water phase (P=0.723)and between STIR and DWI sequence (P=0.167). The SNR of T1WI fat phase was significantly higher than those of the other three sequences (all P=0.000), and there was no significant difference among the other three sequences (all P>0.05). Although the CNR of DWI sequences was slightly higher than those of the other three sequences,there was no significant difference among all of them (all P>0.05). Imaging at T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence has certain advantages,and they should be combined in the diagnosis of MM.
Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch
Vistein, Rachel; Puthenveedu, Manojkumar A.
2013-01-01
The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling. PMID:24003153
Object detection and tracking system
Ma, Tian J.
2017-05-30
Methods and apparatuses for analyzing a sequence of images for an object are disclosed herein. In a general embodiment, the method identifies a region of interest in the sequence of images. The object is likely to move within the region of interest. The method divides the region of interest in the sequence of images into sections and calculates signal-to-noise ratios for a section in the sections. A signal-to-noise ratio for the section is calculated using the section in the image, a prior section in a prior image to the image, and a subsequent section in a subsequent image to the image. The signal-to-noise ratios are for potential velocities of the object in the section. The method also selects a velocity from the potential velocities for the object in the section using a potential velocity in the potential velocities having a highest signal-to-noise ratio in the signal-to-noise ratios.
Three-dimensional ghost imaging using acoustic transducer
NASA Astrophysics Data System (ADS)
Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli
2016-06-01
We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.
VarDetect: a nucleotide sequence variation exploratory tool
Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades
2008-01-01
Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032
Antony, Dinu; Nampoory, Narayanan; Bacchelli, Chiara; Melhem, Motasem; Wu, Kaman; James, Chela T; Beales, Philip L; Hubank, Mike; Thomas, Daisy; Mashankar, Anant; Behbehani, Kazem; Schmidts, Miriam; Alsmadi, Osama
2017-12-01
Exome sequencing is becoming widely popular and affordable, making it one of the most desirable methods for the identification of rare genetic variants for clinical diagnosis. Here, we report the clinical application of whole exome sequencing for the ultimate diagnosis of a ciliary chondrodysplasia case presented with an initial clinical diagnosis of Asphyxiating Thoracic Dystrophy (ATD, Jeune Syndrome). We have identified a novel homozygous missense mutation in WDR35 (c.206G > A), a gene previously associated with Sensenbrenner Syndrome, Ellis-van Creveld syndrome and Short-rib polydactyly syndrome type V. The genetic findings in this family led to the re-evaluation of the initial diagnosis and a differential diagnosis of Sensenbrenner Syndrome was made after cautious re-examination of the patient. Cell culture studies revealed normal subcellular localization of the mutant WDR35 protein in comparison to wildtype protein, pointing towards impaired protein-protein interaction and/or altered cell signaling pathways as a consequence of the mutated allele. This research study highlights the importance of including pathogenic variant identification in the diagnosis pipeline of ciliary chondrodysplasias, especially for clinically not fully defined phenotypes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Detection of Spoofed MAC Addresses in 802.11 Wireless Networks
NASA Astrophysics Data System (ADS)
Tao, Kai; Li, Jing; Sampalli, Srinivas
Medium Access Control (MAC) address spoofing is considered as an important first step in a hacker's attempt to launch a variety of attacks on 802.11 wireless networks. Unfortunately, MAC address spoofing is hard to detect. Most current spoofing detection systems mainly use the sequence number (SN) tracking technique, which has drawbacks. Firstly, it may lead to an increase in the number of false positives. Secondly, such techniques cannot be used in systems with wireless cards that do not follow standard 802.11 sequence number patterns. Thirdly, attackers can forge sequence numbers, thereby causing the attacks to go undetected. We present a new architecture called WISE GUARD (Wireless Security Guard) for detection of MAC address spoofing on 802.11 wireless LANs. It integrates three detection techniques - SN tracking, Operating System (OS) fingerprinting & tracking and Received Signal Strength (RSS) fingerprinting & tracking. It also includes the fingerprinting of Access Point (AP) parameters as an extension to the OS fingerprinting for detection of AP address spoofing. We have implemented WISE GUARD on a test bed using off-the-shelf wireless devices and open source drivers. Experimental results show that the new design enhances the detection effectiveness and reduces the number of false positives in comparison with current approaches.
Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
Boffelli, Dario; McAuliffe, Jon; Ovcharenko, Dmitriy; Lewis, Keith D; Ovcharenko, Ivan; Pachter, Lior; Rubin, Edward M
2003-02-28
Nonhuman primates represent the most relevant model organisms to understand the biology of Homo sapiens. The recent divergence and associated overall sequence conservation between individual members of this taxon have nonetheless largely precluded the use of primates in comparative sequence studies. We used sequence comparisons of an extensive set of Old World and New World monkeys and hominoids to identify functional regions in the human genome. Analysis of these data enabled the discovery of primate-specific gene regulatory elements and the demarcation of the exons of multiple genes. Much of the information content of the comprehensive primate sequence comparisons could be captured with a small subset of phylogenetically close primates. These results demonstrate the utility of intraprimate sequence comparisons to discover common mammalian as well as primate-specific functional elements in the human genome, which are unattainable through the evaluation of more evolutionarily distant species.
Jahng, Geon-Ho; Jin, Wook; Yang, Dal Mo; Ryu, Kyung Nam
2011-05-01
We wanted to optimize a double inversion recovery (DIR) sequence to image joint effusion regions of the knee, especially intracapsular or intrasynovial imaging in the suprapatellar bursa and patellofemoral joint space. Computer simulations were performed to determine the optimum inversion times (TI) for suppressing both fat and water signals, and a DIR sequence was optimized based on the simulations for distinguishing synovitis from fluid. In vivo studies were also performed on individuals who showed joint effusion on routine knee MR images to demonstrate the feasibility of using the DIR sequence with a 3T whole-body MR scanner. To compare intracapsular or intrasynovial signals on the DIR images, intermediate density-weighted images and/or post-enhanced T1-weighted images were acquired. The timings to enhance the synovial contrast from the fluid components were TI1 = 2830 ms and TI2 = 254 ms for suppressing the water and fat signals, respectively. Improved contrast for the intrasynovial area in the knees was observed with the DIR turbo spin-echo pulse sequence compared to the intermediate density-weighted sequence. Imaging contrast obtained noninvasively with the DIR sequence was similar to that of the post-enhanced T1-weighted sequence. The DIR sequence may be useful for delineating synovium without using contrast materials.
Skeletal development in Pan paniscus with comparisons to Pan troglodytes.
Bolter, Debra R; Zihlman, Adrienne L
2012-04-01
Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown-aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct-age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins. Copyright © 2012 Wiley Periodicals, Inc.
A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs.
Mai, Guoqin; Ge, Ruiquan; Sun, Guoquan; Meng, Qinghan; Zhou, Fengfeng
2016-01-01
Motivation. Clustered regularly interspaced short palindromic repeat (CRISPR) is a genetic element with active regulation roles for foreign invasive genes in the prokaryotic genomes and has been engineered to work with the CRISPR-associated sequence (Cas) gene Cas9 as one of the modern genome editing technologies. Due to inconsistent definitions, the existing CRISPR detection programs seem to have missed some weak CRISPR signals. Results. This study manually curates all the currently annotated CRISPR elements in the prokaryotic genomes and proposes 95 updates to the annotations. A new definition is proposed to cover all the CRISPRs. The comprehensive comparison of CRISPR numbers on the taxonomic levels of both domains and genus shows high variations for closely related species even in the same genus. The detailed investigation of how CRISPRs are evolutionarily manipulated in the 8 completely sequenced species in the genus Thermoanaerobacter demonstrates that transposons act as a frequent tool for splitting long CRISPRs into shorter ones along a long evolutionary history.
Mulkern, Robert V; Balasubramanian, Mukund; Orbach, Darren B; Mitsouras, Dimitrios; Haker, Steven J
2013-04-01
Among the multiple sequences available for functional magnetic resonance imaging (fMRI), the Steady State Free Precession (SSFP) sequence offers the highest signal-to-noise ratio (SNR) per unit time as well as distortion free images not feasible with the more commonly employed single-shot echo planar imaging (EPI) approaches. Signal changes occurring with activation in SSFP sequences reflect underlying changes in both irreversible and reversible transverse relaxation processes. The latter are characterized by changes in the central frequencies and widths of the inherent frequency distribution present within a voxel. In this work, the well-known frequency response of the SSFP signal intensity is generalized to include the widths and central frequencies of some common frequency distributions on SSFP signal intensities. The approach, using a previously unnoted series expansion, allows for a separation of reversible from irreversible transverse relaxation effects on SSFP signal intensity changes. The formalism described here should prove useful for identifying and modeling mechanisms associated with SSFP signal changes accompanying neural activation. Copyright © 2013 Elsevier Inc. All rights reserved.
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
2011-01-01
Background Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. Results BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. Conclusions There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/. PMID:21824423
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.
Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A
2011-08-08
Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.
Woo, Jiwon; Yu, Kyung Lee; Lee, Sun Hee; You, Ji Chang
2015-02-06
Although cis-acting packaging signal RNA sequences for the influenza virus NP encoding vRNA have been identified recently though genetic studies, little is known about the interaction between NP and the vRNA packaging signals either in vivo or in vitro. Here, we provide evidence that NP is able to interact specifically with the vRNA packaging sequence RNA within living cells and that the specific RNA binding activity of NP in vivo requires both the N-terminal and central region of the protein. This assay established would be a valuable tool for further detailed studies of the NP-packaging signal RNA interaction in living cells. Copyright © 2014 Elsevier Inc. All rights reserved.
NMR-based automated protein structure determination.
Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter
2017-08-15
NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.
Jain, Aastha; Chugh, Archana
2016-09-01
Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics. © 2016 Federation of European Biochemical Societies.
The TGA codons are present in the open reading frame of selenoprotein P cDNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.E.; Lloyd, R.S.; Read, R.
1991-03-11
The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelledmore » with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.« less
Lindeberg, M; Collmer, A
1992-01-01
Many extracellular proteins produced by Erwinia chrysanthemi require the out gene products for transport across the outer membrane. In a previous report (S. Y. He, M. Lindeberg, A. K. Chatterjee, and A. Collmer, Proc. Natl. Acad. Sci. USA 88:1079-1083, 1991) cosmid pCPP2006, sufficient for secretion of Erwinia chrysanthemi extracellular proteins by Escherichia coli, was partially sequenced, revealing four out genes sharing high homology with pulH through pulK from Klebsiella oxytoca. The nucleotide sequence of eight additional out genes reveals homology with pulC through pulG, pulL, pulM, pulO, and other genes involved in secretion by various gram-negative bacteria. Although signal sequences and hydrophobic regions are generally conserved between Pul and Out proteins, four out genes contain unique inserts, a pulN homolog is not present, and outO appears to be transcribed separately from outC through outM. The sequenced region was subcloned, and an additional 7.6-kb region upstream was identified as being required for secretion in E. coli. out gene homologs were found on Erwinia carotovora cosmid clone pAKC651 but were not detected in E. coli. The outC-through-outM operon is weakly induced by polygalacturonic acid and strongly expressed in the early stationary phase. The out and pul genes are highly similar in sequence, hydropathic properties, and overall arrangement but differ in both transcriptional organization and the nature of their induction. Images PMID:1429461
Bayesian Inference for Signal-Based Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.
2015-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http
Jimenez, Karim L; Zavaleta, Amparo I; Izaguirre, Victor; Yarleque, Armando; Inga, Rosio R
2010-01-01
Isolate and characterize in silico gene phospholipase A(2) (PLA(2)) isolated from Lachesis muta venom of the Peruvian Amazon. Technique RT-PCR from total RNA was using specific primers, the amplified DNA product was inserted into the pGEM vector for subsequent sequencing. By bioinformatic analysis identified an open reading frame of 414 nucleotides that encoded 138 amino acids including a signal peptide of 16 aminoacids, molecular weight and pI were 13,976 kDa and 5.66 respectively. The aminoacid sequence was called Lm-PLA(2)-Peru, contains an aspartate at position 49, this aminoacid in conjunction with other conserved residues such as Tyr-28, Gly-30, Gly-32, His-48, Tyr52, Asp99 are important for enzymatic activity. The comparison with the amino acid sequence data banks showed of similarity between PLA(2) from Lachesis stenophrys (93%) and other PLA(2) snake venoms and over 80% of other sPLA(2) family Viperidae venoms. A phylogenetic analysis showed that Lm-PLA(2)-Peru grouped with other acidic [Asp(49)] sPLA(2) previously isolated from Bothriechis schlegelii venom showing 89 % nucleotide sequence identity. Finally, the computer modeling indicated that enzyme had the characteristic structure of sPLA(2) group II that consisted of three α-helices, a β-wing, a short helix and a calcium-binding loop. The nucleotide sequence corresponding to the first transcript of gene from PLA(2) cloned of Lachesis muta venom, snake from the Peruvian rainforest.
Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi
2006-02-10
We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.
Random digital encryption secure communication system
NASA Technical Reports Server (NTRS)
Doland, G. D. (Inventor)
1982-01-01
The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system.
Tanaka-Okuyama, Makiko; Shibata, Fukashi; Yoshido, Atsuo; Marec, František; Wu, Chengcang; Zhang, Hongbin; Goldsmith, Marian R.
2009-01-01
Background Genome sequencing projects have been completed for several species representing four highly diverged holometabolous insect orders, Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The striking evolutionary diversity of insects argues a need for efficient methods to apply genome information from such models to genetically uncharacterized species. Constructing conserved synteny maps plays a crucial role in this task. Here, we demonstrate the use of fluorescence in situ hybridization with bacterial artificial chromosome probes as a powerful tool for physical mapping of genes and comparative genome analysis in Lepidoptera, which have numerous and morphologically uniform holokinetic chromosomes. Methodology/Principal Findings We isolated 214 clones containing 159 orthologs of well conserved single-copy genes of a sequenced lepidopteran model, the silkworm, Bombyx mori, from a BAC library of a sphingid with an unexplored genome, the tobacco hornworm, Manduca sexta. We then constructed a BAC-FISH karyotype identifying all 28 chromosomes of M. sexta by mapping 124 loci using the corresponding BAC clones. BAC probes from three M. sexta chromosomes also generated clear signals on the corresponding chromosomes of the convolvulus hawk moth, Agrius convolvuli, which belongs to the same subfamily, Sphinginae, as M. sexta. Conclusions/Significance Comparison of the M. sexta BAC physical map with the linkage map and genome sequence of B. mori pointed to extensive conserved synteny including conserved gene order in most chromosomes. Only a few rearrangements, including three inversions, three translocations, and two fission/fusion events were estimated to have occurred after the divergence of Bombycidae and Sphingidae. These results add to accumulating evidence for the stability of lepidopteran genomes. Generating signals on A. convolvuli chromosomes using heterologous M. sexta probes demonstrated that BAC-FISH with orthologous sequences can be used for karyotyping a wide range of related and genetically uncharacterized species, significantly extending the ability to develop synteny maps for comparative and functional genomics. PMID:19829706
Investigations on the ORF 167L of lymphocystis disease virus (Iridoviridae).
Essbauer, Sandra; Fischer, Uwe; Bergmann, Sven; Ahne, Winfried
2004-01-01
The predicted open reading frame 167L (ORF 167L) of lymphocystis disease virus (LCDV, Iridoviridae ) isolated from plaice, dab and flounder was investigated. The ORF 167L corresponding genes of the three LCDV isolates were amplified, cloned and sequenced. A comparison of the LCDV strains showed that the nucleotide sequence of ORF 167L and its deduced amino acid sequence were highly conserved in the genus lymphocystivirus (a homology of 80% in dab and flounder/plaice, 97% in plaice and flounder). The N-terminus protein predicted from the ORF 167L suggests similarities to the tumor necrosis factor receptor (TNFR)-family, and to TNFR-like proteins, which play an important role in various poxvirus species. Further, homology to the CUB-domain was shown at the C-terminus of the LCDV protein. Phylogenetic analyses of partial LCDV protein sequences identified two clusters: one cluster containing the flounder and plaice LCDV isolate (LCDV-1), and another cluster, containing the dab LCDV isolate (LCDV-2). The ORF 167L of plaice LCDV was expressed in Escherichia coli, and in fish cells. The expressed ORF resulted in a 30-kDa cytoplasmic protein lacking a signal peptide. An established monoclonal antibody (mAb 18) was used to detect LCDV proteins in skin explants of flounders and cryosections of dab skin. Specific fluorescence was found in the cytoplasm of intact epitheloid cells of the lymphocystis capsule and in the epidermis skin covering the lymphocystic nodules. LCDV-specific labelling of mAb 18 was also shown in spleen and liver tissue of LCDV-positive flounders. The ORF 167L protein seemed not to have the extracellular receptor function predicted from the usual cellular TNFR. The myxomavirus M-T2 protein, a poxviral TNFR homologue, was also shown not to have TNFR-like functions but to be involved in the apoptosis signal cascade.
Giannelli, Marco; Diciotti, Stefano; Tessa, Carlo; Mascalchi, Mario
2010-01-01
Although in EPI-fMRI analyses typical acquisition parameters (TR, TE, matrix, slice thickness, etc.) are generally employed, various readout bandwidth (BW) values are used as a function of gradients characteristics of the MR scanner. Echo spacing (ES) is another fundamental parameter of EPI-fMRI acquisition sequences but the employed ES value is not usually reported in fMRI studies. In the present work, the authors investigated the effect of ES and BW on basic performances of EPI-fMRI sequences in terms of temporal stability and overall image quality of time series acquisition. EPI-fMRI acquisitions of the same water phantom were performed using two clinical MR scanner systems (scanners A and B) with different gradient characteristics and functional designs of radiofrequency coils. For both scanners, the employed ES values ranged from 0.75 to 1.33 ms. The used BW values ranged from 125.0 to 250.0 kHz/64pixels and from 78.1 to 185.2 kHz/64pixels for scanners A and B, respectively. The temporal stability of EPI-fMRI sequence was assessed measuring the signal-to-fluctuation noise ratio (SFNR) and signal drift (DR), while the overall image quality was assessed evaluating the signal-to-noise ratio (SNR(ts)) and nonuniformity (NU(ts)) of the time series acquisition. For both scanners, no significant effect of ES and BW on signal drift was revealed. The SFNR, NU(ts) and SNR(ts) values of scanner A did not significantly vary with ES. On the other hand, the SFNR, NU(ts), and SNR(ts) values of scanner B significantly varied with ES. SFNR (5.8%) and SNR(ts) (5.9%) increased with increasing ES. SFNR (25% scanner A, 32% scanner B) and SNR(ts) (26.2% scanner A, 30.1% scanner B) values of both scanners significantly decreased with increasing BW. NU(ts) values of scanners A and B were less than 3% for all BW and ES values. Nonetheless, scanner A was characterized by a significant upward trend (3% percentage of variation) of time series nonuniformity with increasing BW while NU(ts) of scanner B significantly increased (19% percentage of variation) with increasing ES. Temporal stability (SFNR and DR) and overall image quality (NU(ts) and SNR(ts)) of EPI-fMRI time series can significantly vary with echo spacing and readout bandwidth. The specific pattern of variation may depend on the performance of each single MR scanner system in terms of gradients characteristics, EPI sequence calibrations (eddy currents, shimming, etc.), and functional design of radiofrequency coil. Our results indicate that the employment of low BW improves not only the signal-to-noise ratio of EPI-fMRI time series but also the temporal stability of functional acquisitions. The use of minimum ES values is not entirely advantageous when the MR scanner system is characterized by gradients with low performances and suboptimal EPI sequence calibration. Since differences in basic performances of MR scanner system are potential source of variability for fMRI activation, phantom measurements of SFNR, DR, NU(ts), and SNR(ts) can be executed before subjects acquisitions to monitor the stability of MR scanner performances in clinical group comparison and longitudinal studies.
Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I
2018-04-14
Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.
1993-01-01
We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067
Cheng, Wei; Cai, Shu; Sun, Jia-yu; Xia, Chun-chao; Li, Zhen-lin; Chen, Yu-cheng; Zhong, Yao-zu
2015-05-01
To compare the two sequences [single shot true-FISP-PSIR (single shot-PSIR) and segmented-turbo-FLASH-PSIR (segmented-PSIR)] in the value of quantification for myocardial infarct size at 3. 0 tesla MRI. 38 patients with clinical confirmed myocardial infarction were served a comprehensive gadonilium cardiac MRI at 3. 0 tesla MRI system (Trio, Siemens). Myocardial delayed enhancement (MDE) were performed by single shot-PSIR and segmented-PSIR sequences separatedly in 12-20 min followed gadopentetate dimeglumine injection (0. 15 mmol/kg). The quality of MDE images were analysed by experienced physicians. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) between the two techniques were compared. Myocardial infarct size was quantified by a dedicated software automatically (Q-mass, Medis). All objectives were scanned on the 3. 0T MR successfully. No significant difference was found in SNR and CNR of the image quality between the two sequences (P>0. 05), as well as the total myocardial volume, between two sequences (P>0. 05). Furthermore, there were still no difference in the infarct size [single shot-PSIR (30. 87 ± 15. 72) mL, segmented-PSIR (29. 26±14. 07) ml], ratio [single shot-PSIR (22. 94%±10. 94%), segmented-PSIR (20. 75% ± 8. 78%)] between the two sequences (P>0. 05). However, the average aquisition time of single shot-PSIR (21. 4 s) was less than that of the latter (380 s). Single shot-PSIR is equal to segmented-PSIR in detecting the myocardial infarct size with less acquisition time, which is valuable in the clinic application and further research.
Legault, Boris A; Lopez-Lopez, Arantxa; Alba-Casado, Jose Carlos; Doolittle, W Ford; Bolhuis, Henk; Rodriguez-Valera, Francisco; Papke, R Thane
2006-01-01
Background Mature saturated brine (crystallizers) communities are largely dominated (>80% of cells) by the square halophilic archaeon "Haloquadratum walsbyi". The recent cultivation of the strain HBSQ001 and thesequencing of its genome allows comparison with the metagenome of this taxonomically simplified environment. Similar studies carried out in other extreme environments have revealed very little diversity in gene content among the cell lineages present. Results The metagenome of the microbial community of a crystallizer pond has been analyzed by end sequencing a 2000 clone fosmid library and comparing the sequences obtained with the genome sequence of "Haloquadratum walsbyi". The genome of the sequenced strain was retrieved nearly complete within this environmental DNA library. However, many ORF's that could be ascribed to the "Haloquadratum" metapopulation by common genome characteristics or scaffolding to the strain genome were not present in the specific sequenced isolate. Particularly, three regions of the sequenced genome were associated with multiple rearrangements and the presence of different genes from the metapopulation. Many transposition and phage related genes were found within this pool which, together with the associated atypical GC content in these areas, supports lateral gene transfer mediated by these elements as the most probable genetic cause of this variability. Additionally, these sequences were highly enriched in putative regulatory and signal transduction functions. Conclusion These results point to a large pan-genome (total gene repertoire of the genus/species) even in this highly specialized extremophile and at a single geographic location. The extensive gene repertoire is what might be expected of a population that exploits a diverse nutrient pool, resulting from the degradation of biomass produced at lower salinities. PMID:16820057
Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel
2015-01-01
Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A
2005-01-01
Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, p<0.003), while no significant differences were found for the other brain regions. The SI CR was significantly better (i.e. lower) for the turbo-PEPSI than for the GRE sequence (p<0.00001). Owing to its very short scan time and high sensitivity to the haemorrhage foci, the turbo-PEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.
Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar
Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua
2016-01-01
Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power. PMID:27483261
Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar.
Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua
2016-07-28
Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power.
Processing Motion Signals in Complex Environments
NASA Technical Reports Server (NTRS)
Verghese, Preeti
2000-01-01
Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent with a trajectory. These results parallel the lack of increased apparent contrast along a static contour made up of similarly oriented elements.
2012-01-01
Background Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. Results HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. Conclusions Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains. PMID:22475007
Dynamics of actin evolution in dinoflagellates.
Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F
2011-04-01
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
Veale, Andrew J.
2017-01-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. PMID:29045601
do Nascimento, Adriana Mendes; Cuvillier-Hot, Virginie; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino; Hartfelder, Klaus
2004-05-01
Social life is prone to invasion by microorganisms, and binding of ferric ions by transferrin is an efficient strategy to restrict their access to iron. In this study, we isolated cDNA and genomic clones encoding an Apis mellifera transferrin (AmTRF) gene. It has an open reading frame (ORF) of 2136 bp spread over nine exons. The deduced protein sequence comprises 686 amino acid residues plus a 26 residues signal sequence, giving a predicted molecular mass of 76 kDa. Comparison of the deduced AmTRF amino acid sequence with known insect transferrins revealed significant similarity extending over the entire sequence. It clusters with monoferric transferrins, with which it shares putative iron-binding residues in the N-terminal lobe. In a functional analysis of AmTRF expression in honey bee development, we monitored its expression profile in the larval and pupal stages. The negative regulation of AmTRF by ecdysteroids deduced from the developmental expression profile was confirmed by experimental treatment of spinning-stage honey bee larvae with 20-hydroxyecdysone, and of fourth instar-larvae with juvenile hormone. A juvenile hormone application to spinning-stage larvae, in contrast, had only a minor effect on AmTRF transcript levels. This is the first study implicating ecdysteroids in the developmental regulation of transferrin expression in an insect species.
BRAF mutation testing in solid tumors: a methodological comparison.
Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J
2014-09-01
Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Marzocchi, W.; Vilardo, G.; Hill, D.P.; Ricciardi, G.P.; Ricco, C.
2001-01-01
We analyzed and compared the seismic activity that has occurred in the last two to three decades in three distinct volcanic areas: Phlegraean Fields, Italy; Vesuvius, Italy; and Long Valley, California. Our main goal is to identify and discuss common features and peculiarities in the temporal evolution of earthquake sequences that may reflect similarities and differences in the generating processes between these volcanic systems. In particular, we tried to characterize the time series of the number of events and of the seismic energy release in terms of stochastic, deterministic, and chaotic components. The time sequences from each area consist of thousands of earthquakes that allow a detailed quantitative analysis and comparison. The results obtained showed no evidence for either deterministic or chaotic components in the earthquake sequences in Long Valley caldera, which appears to be dominated by stochastic behavior. In contrast, earthquake sequences at Phlegrean Fields and Mount Vesuvius show a deterministic signal mainly consisting of a 24-hour periodicity. Our analysis suggests that the modulation in seismicity is in some way related to thermal diurnal processes, rather than luni-solar tidal effects. Independently from the process that generates these periodicities on the seismicity., it is suggested that the lack (or presence) of diurnal cycles is seismic swarms of volcanic areas could be closely linked to the presence (or lack) of magma motion.
Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor
Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012more » alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.« less
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural Characterization of the Predominant Family of Histidine Kinase Sensor Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Hendrickson, W
2010-01-01
Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of themore » most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.« less
Mitogen-activated protein kinase cascades in Vitis vinifera
Çakır, Birsen; Kılıçkaya, Ozan
2015-01-01
Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761
Han, Benfeng; Zhang, Shen; Zeng, Fanrong; Mao, Jianjun
2017-01-01
Background The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. Results By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Conclusions Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species. PMID:28683101
Han, Benfeng; Zhang, Shen; Zeng, Fanrong; Mao, Jianjun
2017-01-01
The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species.
Method and means for measurement and control of pulsed charged beams
Lewis, R.N.
A beam of bunches of charged particles is controlled by generating a signal in response to the passage of a bunch and adding to that signal a phase-flipped reference signal. The sum is amplified, detected, and applied to a synchronous detector to obtain a comparison of the phase of the reference signal with the phase of the signal responsive to the bunch. The comparison provides an error signal to control bunching.
Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps
NASA Technical Reports Server (NTRS)
Stroeer, A.; Blackburn, L.; Camp, J.
2011-01-01
Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.
Diagnostic performance of dark-blood T2-weighted CMR for evaluation of acute myocardial injury.
Srichai, Monvadi B; Lim, Ruth P; Lath, Narayan; Babb, James; Axel, Leon; Kim, Daniel
2013-01-01
We compared the image quality and diagnostic performance of 2 fat-suppression methods for black-blood T2-weighted fast spin-echo (FSE), which are as follows: (a) short T1 inversion recovery (STIR; FSE-STIR) and (b) spectral adiabatic inversion recovery (SPAIR; FSE-SPAIR), for detection of acute myocardial injury. Edema-sensitive T2-weighted FSE cardiac magnetic resonance (CMR) imaging is useful in detecting acute myocardial injury but may experience reduced myocardial signal and signal dropout. The SPAIR pulse aims to eliminate artifacts associated with the STIR pulse. A total of 65 consecutive patients referred for CMR evaluation of myocardial structure and function underwent FSE-STIR and FSE-SPAIR, in addition to cine and late gadolinium enhancement (LGE) CMR. T2-weighted FSE images were independently evaluated by 2 readers for image quality and artifacts (Likert scale of 1-5; best-worst) and presence of increased myocardial signal suggestive of edema. In addition, clinical CMR interpretation, incorporating all CMR sequences available, was recorded for comparison. Diagnostic performance of each T2-weighted sequence was measured using recent (<30 days) troponin elevation greater than 2 times the upper limit of normal as the reference standard for acute myocardial injury. Of the 65 patients, there were 21 (32%) with acute myocardial injury. Image quality and artifact scores were significantly better with FSE-SPAIR compared with FSE-STIR (2.15 vs 2.68, P < 0.01; 2.62 vs 3.05, P < 0.01, respectively). The sensitivity, specificity, positive predictive value, and negative predictive value for acute myocardial injury were as follows: 29%, 93%, 67%, and 73% for FSE-SPAIR; 38%, 91%, 67%, and 75% for FSE-STIR; 71%, 98%, 94%, and 88% for clinical interpretation including LGE, T2, and wall motion. There was a statistically significant difference in sensitivity between the clinical interpretation and each of the T2-weighted sequences but not between each T2-weighted sequence. Although FSE-SPAIR demonstrated significantly improved image quality and decreased artifacts, isolated interpretations of each T2-weighted technique demonstrated high specificity but overall low sensitivity for the detection of myocardial injury, with no difference in accuracy between the techniques. However, real-world interpretation in combination with cine and LGE CMR methods significantly improves the overall sensitivity and diagnostic performance.
Subashi, Ergys; Choudhury, Kingshuk R; Johnson, G Allan
2014-03-01
The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0-1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K(trans) with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T10). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%-70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K(trans) can be calculated. Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.
Tactile information transfer: A comparison of two stimulation sites
NASA Astrophysics Data System (ADS)
Summers, Ian R.; Whybrow, Jon J.; Gratton, Denise A.; Milnes, Peter; Brown, Brian H.; Stevens, John C.
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (~100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s-1 at the wrist and 5 bits s-1 at the fingertip.
Tactile information transfer: a comparison of two stimulation sites.
Summers, lan R; Whybrow, Jon J; Gratton, Denise A; Milnes, Peter; Brown, Brian H; Stevens, John C
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (approximately 100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s(-1) at the wrist and 5 bits s(-1) at the fingertip.
Determining Aliasing in Isolated Signal Conditioning Modules
NASA Technical Reports Server (NTRS)
2009-01-01
The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.
Kumar, Dilip; Kirti, Pulugurtha Bharadwaja
2015-01-01
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800
Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies
Kozak, Krzysztof M.; Wahlberg, Niklas; Neild, Andrew F. E.; Dasmahapatra, Kanchon K.; Mallet, James; Jiggins, Chris D.
2015-01-01
Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet. PMID:25634098
Dewhurst, Henry M.; Choudhury, Shilpa; Torres, Matthew P.
2015-01-01
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. PMID:26070665
Li, Bo; Li, Hao; Dong, Li; Huang, Guofu
2017-11-01
In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.
Calibrated Color and Albedo Maps of Mercury
NASA Astrophysics Data System (ADS)
Robinson, M. S.; Lucey, P. G.
1996-03-01
In order to determine the albedo and color of the mercurian surface, we are completing calibrated mosaics of Mariner 10 image data. A set of clear filter mosaics is being compiled in such a way as to maximize the signal-to-noise-ratio of the data and to allow for a quantitative measure of the precision of the data on a pixel-by-pixel basis. Three major imaging sequences of Mercury were acquired by Mariner 10: incoming first encounter (centered at 20S, 2E), outgoing first encounter (centered at 20N, 175E), and southern hemisphere second encounter (centered at 40S, 100E). For each sequence we are making separate mosaics for each camera (A and B) in order to have independent measurements. For each mosaic, regions of overlap from frame-to-frame are being averaged and the attendant standard deviations are being calculated. Due to the highly redundant nature of the data, each pixel in each mosaic will be an average calculated from 1-10 images. Each mosaic will have a corresponding standard deviation and n (number of measurements) map. A final mosaic will be created by averaging the six independent mosaics. This procedure lessens the effects of random noise and calibration residuals. From these data an albedo map will be produced using an improved photometric function for the Moon. A similar procedure is being followed for the lower resolution color sequences (ultraviolet, blue, orange, ultraviolet polarized). These data will be calibrated to absolute units through comparison of Mariner 10 images acquired of the Moon and Jupiter. Spectral interpretation of these new color and albedo maps will be presented with an emphasis on comparison with the Moon.
Rahal, M; Kervaire, B; Villard, J; Tiercy, J-M
2008-03-01
Human leukocyte antigen (HLA) typing by polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSO) hybridization on solid phase (microbead assay) or polymerase chain reaction-sequence-specific primers (PCR-SSP) requires interpretation softwares to detect all possible allele combinations. These programs propose allele calls by taking into account false-positive or false-negative signal(s). The laboratory has the option to validate typing results in the presence of strongly cross-reacting or apparent false-negative signals. Alternatively, these seemingly aberrant signals may disclose novel variants. We report here four new HLA-B (B*5620 and B*5716) and HLA-DRB1 alleles (DRB1*110107 and DRB1*1474) that were detected by apparent false-negative or -positive hybridization or amplification patterns, and ultimately resolved by sequencing. To avoid allele misassignments, a comprehensive evaluation of acquired data as documented in a quality assurance system is therefore required to confirm unambiguous typing interpretation.
1994-01-01
The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide. PMID:8034740
Goerner, Frank L.; Duong, Timothy; Stafford, R. Jason; Clarke, Geoffrey D.
2013-01-01
Purpose: To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Results: Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity. The results of the two-way ANOVA analysis suggest that R-value and pulse sequence type produce the largest influences on uniformity and PPI reconstruction method had relatively little effect. Conclusions: Two of the methods of measuring signal intensity uniformity, described by the (NEMA) MRI standards, consistently indicated a decrease in uniformity with an increase in R-value. Other methods investigated did not demonstrate consistent results for evaluating signal uniformity in MR images obtained by partially parallel methods. However, because the spatial distribution of noise affects uniformity, it is recommended that additional uniformity quality metrics be investigated for partially parallel MR images. PMID:23927345
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Korber, B T; Osmanov, S; Esparza, J; Myers, G
1994-11-01
The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.
Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays
Binder, Hans; Fasold, Mario; Glomb, Torsten
2009-01-01
Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253
Dai, Qi; Yang, Yanchun; Wang, Tianming
2008-10-15
Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, Thomas G.; Ives, Jeffrey T.
1993-01-01
A method and apparatus for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means.
Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences.
Montagnier, Luc; Aïssa, Jamal; Ferris, Stéphane; Montagnier, Jean-Luc; Lavallée, Claude
2009-06-01
A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.
Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris.
Ide, Nobuyuki; Masuda, Tetsuya; Kitabatake, Naofumi
2007-11-23
Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis.
Yin, Changchuan
2015-04-01
To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.
Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong
2015-01-01
Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were relatively low, ranging from 68.7-97.9%. The housekeeping genes rpoB and gyrB1 were demonstrated to be alternative classification markers to the species level based on intra- and inter-species comparisons, whereas based on phylogenetic tree rpoB proved to be reliable phylogenetic marker for the genus Prevotella.
Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong
2015-01-01
Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the inter-species similarities were relatively low, ranging from 68.7–97.9%. The housekeeping genes rpoB and gyrB1 were demonstrated to be alternative classification markers to the species level based on intra- and inter-species comparisons, whereas based on phylogenetic tree rpoB proved to be reliable phylogenetic marker for the genus Prevotella. PMID:26103050
Sahu, Dinesh K; Panda, Soumya P; Panda, Sujata; Das, Paramananda; Meher, Prem K; Hazra, Rupenangshu K; Peatman, Eric; Liu, Zhanjiang J; Eknath, Ambekar E; Nandi, Samiran
2013-07-15
Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most frequent motif. Twenty loci showed polymorphism in 36 unrelated individuals with allele frequency ranging from 2 to 7 per locus. The observed heterozygosity ranged from 0.096 to 0.774 whereas the expected heterozygosity ranged from 0.109 to 0.801. Identification of 182 important reproduction-related genes and expression pattern of 16 transcripts in preparatory and post-spawning phase along with 20 polymorphic EST-SSRs should be highly useful for the future reproductive molecular studies and selection program in Labeo rohita. Copyright © 2013 Elsevier B.V. All rights reserved.
Cloning of human prourokinase cDNA without the signal peptide and expression in Escherichia coli.
Hu, B; Li, J; Yu, W; Fang, J
1993-01-01
Human prourokinase (pro-UK) cDNA without the signal peptide was obtained using synthetic oligonucleotide and DNA recombination techniques and was successfully expressed in E. coli. The plasmid pMMUK which contained pro-UK cDNA (including both the entire coding sequence and the sequence for signal peptide) was digested with Hind III and PstI, so that the N-terminal 371-bp fragment could be recovered. A 304-bp fragment was collected from the 371-bp fragment after partial digestion with Fnu4HI in order to remove the signal peptide sequence. An intermediate plasmid was formed after this 304-bp fragment and the synthetic oligonucleotide was ligated with pUC18. Correctness of the ligation was confirmed by enzyme digestion and sequencing. By joining the PstI-PstI fragment of pro-UK to the plasmid we obtained the final plasmid which contained the entire coding sequence of pro-UK without the signal peptide. The coding sequence with correct orientation was inserted into pBV220 under the control of the temperature-induced promoter PRPL, and mature pro-UK was expressed in E. coli at 42 degrees C. Both sonicated supernatant and inclusion bodies of the bacterial host JM101 showed positive results by ELISA and FAPA assays. After renaturation, the biological activity of the expressed product was increased from 500-1000IU/L to about 60,000IU/L. The bacterial pro-UK showed a molecular weight of about 47,000 daltons by Western blot analysis. It can be completely inhibited by UK antiserum but not by t-PA antiserum nor by normal rabbit serum.
Zhang, Zhongyang; Hao, Ke
2015-11-01
Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.
Zhang, Zhongyang; Hao, Ke
2015-01-01
Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378
Oono, Ryoko
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889
NASA Technical Reports Server (NTRS)
Stolc, Viktor (Inventor); Brock, Mathew W. (Inventor)
2011-01-01
Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.
Carl, Michael; Bydder, Graeme M; Du, Jiang
2016-08-01
The long repetition time and inversion time with inversion recovery preparation ultrashort echo time (UTE) often causes prohibitively long scan times. We present an optimized method for long T2 signal suppression in which several k-space spokes are acquired after each inversion preparation. Using Bloch equations the sequence parameters such as TI and flip angle were optimized to suppress the long T2 water and fat signals and to maximize short T2 contrast. Volunteer imaging was performed on a healthy male volunteer. Inversion recovery preparation was performed using a Silver-Hoult adiabatic inversion pulse together with a three-dimensional (3D) UTE (3D Cones) acquisition. The theoretical signal curves generally agreed with the experimentally measured region of interest curves. The multispoke inversion recovery method showed good muscle and fatty bone marrow suppression, and highlighted short T2 signals such as these from the femoral and tibial cortex. Inversion recovery 3D UTE imaging with multiple spoke acquisitions can be used to effectively suppress long T2 signals and highlight short T2 signals within clinical scan times. Theoretical modeling can be used to determine sequence parameters to optimize long T2 signal suppression and maximize short T2 signals. Experimental results on a volunteer confirmed the theoretical predictions. Magn Reson Med 76:577-582, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Signal-3L: A 3-layer approach for predicting signal peptides.
Shen, Hong-Bin; Chou, Kuo-Chen
2007-11-16
Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or http://202.120.37.186/bioinf/Signal-3L, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide annotations or are annotated with uncertain terms but are classified by Signal-3L as secretory proteins are provided in a downloadable file. The large-scale file is prepared with Microsoft Excel and named "Tab-Signal-3L.xls", and will be updated once a year to include new protein entries and reflect the continuous development of Signal-3L.
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M
2015-05-01
When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao
2015-02-01
In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.
Breaking the computational barriers of pairwise genome comparison.
Torreno, Oscar; Trelles, Oswaldo
2015-08-11
Conventional pairwise sequence comparison software algorithms are being used to process much larger datasets than they were originally designed for. This can result in processing bottlenecks that limit software capabilities or prevent full use of the available hardware resources. Overcoming the barriers that limit the efficient computational analysis of large biological sequence datasets by retrofitting existing algorithms or by creating new applications represents a major challenge for the bioinformatics community. We have developed C libraries for pairwise sequence comparison within diverse architectures, ranging from commodity systems to high performance and cloud computing environments. Exhaustive tests were performed using different datasets of closely- and distantly-related sequences that span from small viral genomes to large mammalian chromosomes. The tests demonstrated that our solution is capable of generating high quality results with a linear-time response and controlled memory consumption, being comparable or faster than the current state-of-the-art methods. We have addressed the problem of pairwise and all-versus-all comparison of large sequences in general, greatly increasing the limits on input data size. The approach described here is based on a modular out-of-core strategy that uses secondary storage to avoid reaching memory limits during the identification of High-scoring Segment Pairs (HSPs) between the sequences under comparison. Software engineering concepts were applied to avoid intermediate result re-calculation, to minimise the performance impact of input/output (I/O) operations and to modularise the process, thus enhancing application flexibility and extendibility. Our computationally-efficient approach allows tasks such as the massive comparison of complete genomes, evolutionary event detection, the identification of conserved synteny blocks and inter-genome distance calculations to be performed more effectively.
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
A binary search approach to whole-genome data analysis.
Brodsky, Leonid; Kogan, Simon; Benjacob, Eshel; Nevo, Eviatar
2010-09-28
A sequence analysis-oriented binary search-like algorithm was transformed to a sensitive and accurate analysis tool for processing whole-genome data. The advantage of the algorithm over previous methods is its ability to detect the margins of both short and long genome fragments, enriched by up-regulated signals, at equal accuracy. The score of an enriched genome fragment reflects the difference between the actual concentration of up-regulated signals in the fragment and the chromosome signal baseline. The "divide-and-conquer"-type algorithm detects a series of nonintersecting fragments of various lengths with locally optimal scores. The procedure is applied to detected fragments in a nested manner by recalculating the lower-than-baseline signals in the chromosome. The algorithm was applied to simulated whole-genome data, and its sensitivity/specificity were compared with those of several alternative algorithms. The algorithm was also tested with four biological tiling array datasets comprising Arabidopsis (i) expression and (ii) histone 3 lysine 27 trimethylation CHIP-on-chip datasets; Saccharomyces cerevisiae (iii) spliced intron data and (iv) chromatin remodeling factor binding sites. The analyses' results demonstrate the power of the algorithm in identifying both the short up-regulated fragments (such as exons and transcription factor binding sites) and the long--even moderately up-regulated zones--at their precise genome margins. The algorithm generates an accurate whole-genome landscape that could be used for cross-comparison of signals across the same genome in evolutionary and general genomic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.
Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up tomore » 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.« less
Characterization of human brown adipose tissue by chemical-shift water-fat MRI.
Hu, Houchun H; Perkins, Thomas G; Chia, Jonathan M; Gilsanz, Vicente
2013-01-01
The purpose of this study was to characterize human brown adipose tissue (BAT) with chemical-shift water-fat MRI and to determine whether trends and differences in fat-signal fractions and T2(*) relaxation times between BAT and white adipose tissue (WAT) are consistently observed postmortem and in vivo in infants, adolescents, and adults. A postmortem body and eight patients were studied. A six-echo spoiled gradient-echo chemical-shift water-fat MRI sequence was performed at 3 T to jointly quantify fat-signal fraction and T2(*) in interscapular-supraclavicular BAT and subcutaneous WAT. To confirm BAT identity, biopsy and histology served as the reference in the postmortem study and PET/CT was used in five of the eight patients who required examination for medical care. Fat-signal fractions and T2(*) times were lower in BAT than in WAT in the postmortem example and in seven of eight patients. With the exception of one case, nominal comparisons between brown and white adipose tissues were statistically significant (p < 0.05). Between subjects, a large range of fat-signal fraction values was observed in BAT but not in WAT. We have shown that fat-signal fractions and T2(*) values jointly derived from chemical-shift water-fat MRI are lower in BAT than in WAT likely because of differences in cellular structures, triglyceride content, and vascularization. The two metrics can serve as complementary biomarkers in the detection of BAT.
MAP kinase pathways in the yeast Saccharomyces cerevisiae
NASA Technical Reports Server (NTRS)
Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)
1998-01-01
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Propeller speed and phase sensor
NASA Technical Reports Server (NTRS)
Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)
1992-01-01
A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing
USDA-ARS?s Scientific Manuscript database
Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
Chen, H T; Alexander, C B; Mage, R G
1995-06-15
Normal rabbits preferentially rearrange the 3'-most VH gene, VH1, to encode Igs with VHa allotypes, which constitute the majority of rabbit serum Igs. A gene conversion-like mechanism is employed to diversify the primary Ab repertoire. In mutant Alicia rabbits that derived from a rabbit with VHa2 allotype, the VH1 gene was deleted. Our previous studies showed that the first functional gene (VH4) or VH4-like genes were rearranged in 2- to 8-wk-old homozygous Alicia. The VH1a2-like sequences that were found in splenic mRNA from 6-wk and older Alicia rabbits still had some residues that were typical of VH4. The appearances of sequences resembling that of VH1a2 may have been caused by gene conversions that altered the sequences of the rearranged VH or there may have been rearrangement of upstream VH1a2-like genes later in development. To investigate this further, we constructed a cosmid library and isolated a VH1a2-like gene, VH12-1-6, with a sequence almost identical to VH1a2. This gene had a deleted base in the heptamer of its recombination signal sequence. However, even if this defect diminished or eliminated its ability to rearrange, the a2-like gene could have acted as a donor for gene-conversion-like alteration of rearranged VH genes. Sequence comparisons suggested that this gene or a gene like it could have acted as a donor for gene conversion in mutant Alicia and in normal rabbits.
Hepatitis delta genotypes in chronic delta infection in the northeast of Spain (Catalonia).
Cotrina, M; Buti, M; Jardi, R; Quer, J; Rodriguez, F; Pascual, C; Esteban, R; Guardia, J
1998-06-01
Based on genetic analysis of variants obtained around the world, three genotypes of the hepatitis delta virus have been defined. Hepatitis delta virus variants have been associated with different disease patterns and geographic distributions. To determine the prevalence of hepatitis delta virus genotypes in the northeast of Spain (Catalonia) and the correlation with transmission routes and clinical disease, we studied the nucleotide divergence of the consensus sequence of HDV RNA obtained from 33 patients with chronic delta hepatitis (24 were intravenous drug users and nine had no risk factors), and four patients with acute self-limited delta infection. Serum HDV RNA was amplified by the polymerase chain reaction technique and a fragment of 350 nucleotides (nt 910 to 1259) was directly sequenced. Genetic analysis of the nucleotide consensus sequence obtained showed a high degree of conservation among sequences (93% of mean). Comparison of these sequences with those derived from different geographic areas and pertaining to genotypes I, II and III, showed a mean sequence identity of 92% with genotype I, 73% with genotype II and 61% with genotype III. At the amino acid level (aa 115 to 214), the mean identity was 87% with genotype I, 63% with genotype II and 56% with genotype III. Conserved regions included the RNA editing domain, the carboxyl terminal 19 amino acids of the hepatitis delta antigen and the polyadenylation signal of the viral mRNA. Hepatitis delta virus isolates in the northeast of Spain are exclusively genotype I, independently of the transmission route and the type of infection. No hepatitis delta virus subgenotypes were found, suggesting that the origin of hepatitis delta virus infection in our geographical area is homogeneous.
Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses
Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.
2004-01-01
The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.
Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.
Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark
2016-01-01
Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.
Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks
Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark
2016-01-01
Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies. PMID:27446025
Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications
NASA Astrophysics Data System (ADS)
Daniel, Weston Lewis
This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA limit for this ion in drinking water. Finally, Chapter 6 describes the synthesis of high density lipoprotein biomimetic nanoparticles capable of binding cholesterol. These structures use a gold nanoparticle core to template the assembly of a mixed phospholipid layer and the adsorption of apolipoprotein A-I. These synthesized structures have the general size and surface composition of natural HDL and bind free cholesterol with a Kd of 4 nM.
Dengg, S; Kneissl, S
2013-01-01
Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n = 15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.
Kutyavin, Igor V.
2010-01-01
The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection. PMID:19969535
Proudhon, D; Wei, J; Briat, J; Theil, E C
1996-03-01
Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.
Ghouila, Amel; Florent, Isabelle; Guerfali, Fatma Zahra; Terrapon, Nicolas; Laouini, Dhafer; Yahia, Sadok Ben; Gascuel, Olivier; Bréhélin, Laurent
2014-01-01
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searching for domains in divergent species. Recently, methods for HMM/HMM comparisons have been proposed and proved to be more sensitive than sequence/HMM approaches in certain cases. However, these approaches are usually not used for protein domain discovery at a genome scale, and the benefit that could be expected from their utilization for this problem has not been investigated. Using proteins of P. falciparum and L. major as examples, we investigate the extent to which HMM/HMM comparisons can identify new domain occurrences not already identified by sequence/HMM approaches. We show that although HMM/HMM comparisons are much more sensitive than sequence/HMM comparisons, they are not sufficiently accurate to be used as a standalone complement of sequence/HMM approaches at the genome scale. Hence, we propose to use domain co-occurrence--the general domain tendency to preferentially appear along with some favorite domains in the proteins--to improve the accuracy of the approach. We show that the combination of HMM/HMM comparisons and co-occurrence domain detection boosts protein annotations. At an estimated False Discovery Rate of 5%, it revealed 901 and 1098 new domains in Plasmodium and Leishmania proteins, respectively. Manual inspection of part of these predictions shows that it contains several domain families that were missing in the two organisms. All new domain occurrences have been integrated in the EuPathDomains database, along with the GO annotations that can be deduced.
Ghouila, Amel; Florent, Isabelle; Guerfali, Fatma Zahra; Terrapon, Nicolas; Laouini, Dhafer; Yahia, Sadok Ben; Gascuel, Olivier; Bréhélin, Laurent
2014-01-01
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searching for domains in divergent species. Recently, methods for HMM/HMM comparisons have been proposed and proved to be more sensitive than sequence/HMM approaches in certain cases. However, these approaches are usually not used for protein domain discovery at a genome scale, and the benefit that could be expected from their utilization for this problem has not been investigated. Using proteins of P. falciparum and L. major as examples, we investigate the extent to which HMM/HMM comparisons can identify new domain occurrences not already identified by sequence/HMM approaches. We show that although HMM/HMM comparisons are much more sensitive than sequence/HMM comparisons, they are not sufficiently accurate to be used as a standalone complement of sequence/HMM approaches at the genome scale. Hence, we propose to use domain co-occurrence — the general domain tendency to preferentially appear along with some favorite domains in the proteins — to improve the accuracy of the approach. We show that the combination of HMM/HMM comparisons and co-occurrence domain detection boosts protein annotations. At an estimated False Discovery Rate of 5%, it revealed 901 and 1098 new domains in Plasmodium and Leishmania proteins, respectively. Manual inspection of part of these predictions shows that it contains several domain families that were missing in the two organisms. All new domain occurrences have been integrated in the EuPathDomains database, along with the GO annotations that can be deduced. PMID:24901648
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Tang, Tjun Y; Howarth, Simon P S; Miller, Sam R; Graves, Martin J; U‐King‐Im, Jean‐Marie; Trivedi, Rikin A; Li, Zhi Yong; Walsh, Stewart R; Brown, Andrew P; Kirkpatrick, Peter J; Gaunt, Michael E; Gillard, Jonathan H
2007-01-01
Background Inflammation is a recognised risk factor for the vulnerable atherosclerotic plaque. The aim of this study was to explore whether there is a difference in the degree of magnetic resonance (MR) defined inflammation using ultra small superparamagnetic iron oxide (USPIO) particles within carotid atheroma in completely asymptomatic individuals and the asymptomatic carotid stenosis contralateral to the symptomatic side. Methods 20 symptomatic patients with contralateral disease and 20 completely asymptomatic patients underwent multi‐sequence MR imaging before and 36 h after USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant was calculated following USPIO administration. Mean signal change was compared across all quadrants in the two groups. Results The mean percentage of quadrants showing signal loss was 53% in the contralateral group compared with 31% in completely asymptomatic individuals (p = 0.025). The mean percentages showing enhancement were 44% and 65%, respectively (p = 0.024). The mean signal difference between the two groups was 8.6% (95% CI 1.6% to 15.6%; p = 0.017). Conclusions Truly asymptomatic plaques seem to demonstrate inflammation but not to the extent of the contralateral asymptomatic stenosis to the symptomatic side. Inflammatory activity may be a significant risk factor in asymptomatic disease. PMID:17578854
Random noise effects in pulse-mode digital multilayer neural networks.
Kim, Y C; Shanblatt, M A
1995-01-01
A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.
Ponting, C P; Mott, R; Bork, P; Copley, R R
2001-12-01
Sequence database searching methods such as BLAST, are invaluable for predicting molecular function on the basis of sequence similarities among single regions of proteins. Searches of whole databases however, are not optimized to detect multiple homologous regions within a single polypeptide. Here we have used the prospero algorithm to perform self-comparisons of all predicted Drosophila melanogaster gene products. Predicted repeats, and their homologs from all species, were analyzed further to detect hitherto unappreciated evolutionary relationships. Results included the identification of novel tandem repeats in the human X-linked retinitis pigmentosa type-2 gene product, repeated segments in cystinosin, associated with a defect in cystine transport, and 'nested' homologous domains in dysferlin, whose gene is mutated in limb girdle muscular dystrophy. Novel signaling domain families were found that may regulate the microtubule-based cytoskeleton and ubiquitin-mediated proteolysis, respectively. Two families of glycosyl hydrolases were shown to contain internal repetitions that hint at their evolution via a piecemeal, modular approach. In addition, three examples of fruit fly genes were detected with tandem exons that appear to have arisen via internal duplication. These findings demonstrate how completely sequenced genomes can be exploited to further understand the relationships between molecular structure, function, and evolution.
Replication Protein A-1 Has a Preference for the Telomeric G-rich Sequence in Trypanosoma cruzi.
Pavani, Raphael Souza; Vitarelli, Marcela O; Fernandes, Carlos A H; Mattioli, Fabio F; Morone, Mariana; Menezes, Milene C; Fontes, Marcos R M; Cano, Maria Isabel N; Elias, Maria Carolina
2018-05-01
Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Advances in DNA metabarcoding for food and wildlife forensic species identification.
Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther
2016-07-01
Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.
The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus
Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku
1998-01-01
The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928
Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue.
Serna, A; Maitz, M; O'Connell, T; Santandrea, G; Thevissen, K; Tienens, K; Hueros, G; Faleri, C; Cai, G; Lottspeich, F; Thompson, R D
2001-03-01
A series of endosperm transfer layer-specific transcripts has been identified in maize by differential screening of a cDNA library of transcripts at 10 days after pollination. Sequence comparisons revealed among this class of cDNAs a novel, small gene family of highly diverged sequences encoding basal layer antifungal proteins (BAPs). The bap genes mapped to two loci on chromosomes 4 and 10. So far, bap-homologous sequences have been detected only in maize, teosinte and sorghum, and are not present in grasses outside the Andropogoneae tribe. BAP2 is synthesized as a pre-proprotein, and is processed by successive removal of a signal peptide and a 29-residue prodomain. The proprotein can be detected exclusively in microsomal membrane-containing fractions of kernel extracts. Immunolocalization reveals BAP2 to be predominantly located in the placentochalazal cells of the pedicel, adjacent to the basal endosperm transfer layer (BETL) cells, although the BAP2 transcript is found only in the BETL cells. The biological roles of BAP2 propeptide and mature peptide have been investigated by heterologous expression of the proprotein in Escherichia coli, and by tests of its fungistatic activity and that of the fully processed form in vitro. The mature BAP2 peptide exhibits potent broad-range activity against a range of filamentous fungi, including several plant pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, E.F.; Roussel, M.F.; Hampe, A.
1986-08-01
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence ofmore » the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.« less
You, Min Kyoung; Kim, Jin Hwa; Lee, Yeo Jin; Jeong, Ye Sol; Ha, Sun-Hwa
2016-12-22
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting peptide by displaying cytosolic localization of OsPSY2(ΔPTp):mCherry in rice protoplast, in contrast to chloroplast localization of OsPSY2:mCherry in a punctate pattern. The peptide sequence of a PTp was predicted to harbor two transmembrane domains eligible for a putative PG-targeting signal. To assess and enhance the PG-targeting ability of PTp, the original PTp DNA sequence ( PTp ) was modified to a synthetic DNA sequence ( stPTp ), which had 84.4% similarity to the original sequence. The motivation of this modification was to reduce the GC ratio from 75% to 65% and to disentangle the hairpin loop structures of PTp . These two DNA sequences were fused to the sequence of the synthetic green fluorescent protein (sGFP) and drove GFP expression with different efficiencies. In particular, the RNA and protein levels of stPTp-sGFP were slightly improved to 1.4-fold and 1.3-fold more than those of sGFP, respectively. The green fluorescent signals of their mature proteins were all observed as speckle-like patterns with slightly blurred stromal signals in chloroplasts. These discrete green speckles of PTp - sGFP and stPTp - sGFP corresponded exactly to the red fluorescent signal displayed by OsPSY2:mCherry in both etiolated and greening protoplasts and it is presumed to correspond to distinct PGs. In conclusion, we identified PTp as a transit peptide sequence facilitating preferential translocation of foreign proteins to PGs, and developed an improved PTp sequence, a s tPTp , which is expected to be very useful for applications in plant biotechnologies requiring precise micro-compartmental localization in plastids.
Circulation of Endemic Type 2 Vaccine-Derived Poliovirus in Egypt from 1983 to 1993
Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen
2003-01-01
From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5′ untranslated region (5′ UTR) and noncapsid- 3′ UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide. PMID:12857906
Ogris, Kathrin; Petrovic, Andreas; Scheicher, Sylvia; Sprenger, Hanna; Urschler, Martin; Hassler, Eva Maria; Yen, Kathrin; Scheurer, Eva
2017-06-01
In legal medicine, reliable localization and analysis of hematomas in subcutaneous fatty tissue is required for forensic reconstruction. Due to the absence of ionizing radiation, magnetic resonance imaging (MRI) is particularly suited to examining living persons with forensically relevant injuries. However, there is limited experience regarding MRI signal properties of hemorrhage in soft tissue. The aim of this study was to evaluate MR sequences with respect to their ability to show high contrast between hematomas and subcutaneous fatty tissue as well as to reliably determine the volume of artificial hematomas. Porcine tissue models were prepared by injecting blood into the subcutaneous fatty tissue to create artificial hematomas. MR images were acquired at 3T and four blinded observers conducted manual segmentation of the hematomas. To assess segmentability, the agreement of measured volume with the known volume of injected blood was statistically analyzed. A physically motivated normalization taking into account partial volume effect was applied to the data to ensure comparable results among differently sized hematomas. The inversion recovery sequence exhibited the best segmentability rate, whereas the T1T2w turbo spin echo sequence showed the most accurate results regarding volume estimation. Both sequences led to reproducible volume estimations. This study demonstrates that MRI is a promising forensic tool to assess and visualize even very small amounts of blood in soft tissue. The presented results enable the improvement of protocols for detection and volume determination of hemorrhage in forensically relevant cases and also provide fundamental knowledge for future in-vivo examinations.
Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993.
Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen
2003-08-01
From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5' untranslated region (5' UTR) and noncapsid- 3' UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide.
Khan, Rishi L; Gonye, Gregory E; Gao, Guang; Schwaber, James S
2006-01-01
Background Using microarrays by co-hybridizing two samples labeled with different dyes enables differential gene expression measurements and comparisons across slides while controlling for within-slide variability. Typically one dye produces weaker signal intensities than the other often causing signals to be undetectable. In addition, undetectable spots represent a large problem for two-color microarray designs and most arrays contain at least 40% undetectable spots even when labeled with reference samples such as Stratagene's Universal Reference RNAs™. Results We introduce a novel universal reference sample that produces strong signal for all spots on the array, increasing the average fraction of detectable spots to 97%. Maximizing detectable spots on the reference image channel also decreases the variability of microarray data allowing for reliable detection of smaller differential gene expression changes. The reference sample is derived from sequence contained in the parental EST clone vector pT7T3D-Pac and is called vector RNA (vRNA). We show that vRNA can also be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This reference sample can be made inexpensively in large quantities as a renewable resource that is consistent across experiments. Conclusion Results of this study show that vRNA provides a useful universal reference that yields high signal for almost all spots on a microarray, reduces variation and allows for comparisons between experiments and laboratories. Further, it can be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This type of reference allows for detection of small changes in differential expression while reference designs in general allow for large-scale multivariate experimental designs. vRNA in combination with reference designs enable systems biology microarray experiments of small physiologically relevant changes. PMID:16677381
Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.
1998-01-01
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994
Two different groups of signal sequence in M-superfamily conotoxins.
Wang, Qi; Jiang, Hui; Han, Yu-Hong; Yuan, Duo-Duo; Chi, Cheng-Wu
2008-04-01
M-superfamily conotoxins can be divided into four branches (M-1, M-2, M-3 and M-4) according to the number of amino acid residues in the third Cys loop. In general, it is widely accepted that the conotoxin signal peptides of each superfamily are strictly conserved. Recently, we cloned six cDNAs of novel M-superfamily conotoxins from Conus leopardus, Conus marmoreus and Conus quercinus, belonging to either M-1 or M-3 branch. These conotoxins, judging from the putative peptide sequences deducted from cDNAs, are rich in acidic residues and share highly conserved signal and pro-peptide region. However, they are quite different from the reported conotoxins of M-2 and M-4 branches even in their signal peptides, which in general are considered highly conserved for each superfamily of conotoxins. The signal sequences of M-1 and M-3 conotoxins composed of 24 residues start with MLKMGVVL-, while those of M-2 and M-4 conotoxins composed of 25 residues start with MMSKLGVL-. It is another example that different types of signal peptides can exist within a superfamily besides the I-conotoxin superfamily. In addition to the different disulfide connectivity of M-1 conotoxins from that of M-4 or M-2 conotoxins, the sequence alignment, preferential Cys codon usage and phylogenetic tree analysis suggest that M-1 and M-3 conotoxins have much closer relationship, being different from the conotoxins of other two branches (M-4 and M-2) of M-superfamily.
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637
A 3D sequence-independent representation of the protein data bank.
Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H
1995-10-01
Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The resulting set can serve as a basis for extensive structural classification and studies of 3D recurring motifs and of sequence-structure relationships. The clustering algorithm succeeds in classifying into the same structural family chains with no significant sequence homology, e.g. all the globins in one single group, all the trypsin-like serine proteases in another or all the immunoglobulin-like folds into a third. In addition, unexpected structural similarities of interest have been automatically detected between pairs of chains. A cluster analysis of the representative structures demonstrates the way the "structural universe' is populated.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, T.G.; Ives, J.T.
1993-12-28
A method and apparatus are presented for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means. 16 figures.
Sequence comparison alignment-free approach based on suffix tree and L-words frequency.
Soares, Inês; Goios, Ana; Amorim, António
2012-01-01
The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.
Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha
2018-06-12
This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.
DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (∼98%), even with a poor signal/noise ratio. PMID:22677395
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-03-01
Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org
Phrase boundary effects on the temporal kinematics of sequential tongue tip consonants1
Byrd, Dani; Lee, Sungbok; Campos-Astorkiza, Rebeka
2008-01-01
This study evaluates the effects of phrase boundaries on the intra- and intergestural kinematic characteristics of blended gestures, i.e., overlapping gestures produced with a single articulator. The sequences examined are the juncture geminate [d(#)d], the sequence [d(#)z], and, for comparison, the singleton tongue tip gesture in [d(#)b]. This allows the investigation of the process of gestural aggregation [Munhall, K. G., and Löfqvist, A. (1992). “Gestural aggregation in speech: laryngeal gestures,” J. Phonetics 20, 93–110] and the manner in which it is affected by prosodic structure. Juncture geminates are predicted to be affected by prosodic boundaries in the same way as other gestures; that is, they should display prosodic lengthening and lesser overlap across a boundary. Articulatory prosodic lengthening is also investigated using a signal alignment method of the functional data analysis framework [Ramsay, J. O., and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. (Springer-Verlag, New York)]. This provides the ability to examine a time warping function that characterizes relative timing difference (i.e., lagging or advancing) of a test signal with respect to a given reference, thus offering a way of illuminating local nonlinear deformations at work in prosodic lengthening. These findings are discussed in light of the π-gesture framework of Byrd and Saltzman [(2003) “The elastic phrase: Modeling the dynamics of boundary-adjacent lengthening,” J. Phonetics 31, 149–180]. PMID:18537396
Sato, Y; Ogasawara, K; Narumi, S; Sasaki, M; Saito, A; Tsushima, E; Namba, T; Kobayashi, M; Yoshida, K; Terayama, Y; Ogawa, A
2016-06-01
Preoperative identification of plaque vulnerability may allow improved risk stratification for patients considered for carotid endarterectomy. The present study aimed to determine which plaque imaging technique, cardiac-gated black-blood fast spin-echo, magnetization-prepared rapid acquisition of gradient echo, source image of 3D time-of-flight MR angiography, or noncardiac-gated spin-echo, most accurately predicts development of microembolic signals during exposure of carotid arteries in carotid endarterectomy. Eighty patients with ICA stenosis (≥70%) underwent the 4 sequences of preoperative MR plaque imaging of the affected carotid bifurcation and then carotid endarterectomy under transcranial Doppler monitoring of microembolic signals in the ipsilateral middle cerebral artery. The contrast ratio of the carotid plaque was calculated by dividing plaque signal intensity by sternocleidomastoid muscle signal intensity. Microembolic signals during exposure of carotid arteries were detected in 23 patients (29%), 3 of whom developed new neurologic deficits postoperatively. Those deficits remained at 24 hours after surgery in only 1 patient. The area under the receiver operating characteristic curve to discriminate between the presence and absence of microembolic signals during exposure of the carotid arteries was significantly greater with nongated spin-echo than with black-blood fast spin-echo (difference between areas, 0.258; P < .0001), MPRAGE (difference between areas, 0.106; P = .0023), or source image of 3D time-of-flight MR angiography (difference between areas, 0.128; P = .0010). Negative binomial regression showed that in the 23 patients with microembolic signals, the contrast ratio was associated with the number of microembolic signals only in nongated spin-echo (risk ratio, 1.36; 95% confidence interval, 1.01-1.97; P < .001). Nongated spin-echo may predict the development of microembolic signals during exposure of the carotid arteries in carotid endarterectomy more accurately than other MR plaque imaging techniques. © 2016 by American Journal of Neuroradiology.
Free-breathing cardiac MR stress perfusion with real-time slice tracking.
Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza
2014-09-01
To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.
Cloning and characterization of BmK86, a novel K{sup +}-channel blocker from scorpion venom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Xin; Cao, Zhijian; Yin, Shijin
2007-09-07
Scorpion venom represents a tremendous hitherto unexplored resource for understanding ion channels. BmK86 is a novel K{sup +}-channel toxin gene isolated from a cDNA library of Mesobuthus martensii Karsch, which encodes a signal peptide of 22 amino acid residues and a mature toxin of 35 residues with three disulfide bridges. The genomic sequence of BmK86 consists of two exons disrupted by an intron of 72 bp. Comparison with the other scorpion toxins BmK86 shows low sequence similarity. The GST-BmK86 fusion protein was successfully expressed in Escherichia coli. The fusion protein was cleaved by enterokinase and the recombinant BmK86 was purifiedmore » by HPLC. Using whole-cell patch-clamp recording, the recombinant BmK86 was found to inhibit the potassium current of mKv1.3 channel expressed in COS7 cells. These results indicated that BmK86 belongs to a representative member of a novel subfamily of {alpha}-KTxs. The systematic number assigned to BmK86 is {alpha}-KTx26.1.« less
2011-01-01
Background In animals, signaling of Bone Morphogenetic Proteins (BMPs) is essential for dorsoventral (DV) patterning of the embryo, but how BMP signaling evolved with changes in embryonic DV differentiation is largely unclear. Based on the extensive knowledge of BMP signaling in Drosophila melanogaster, the morphological diversity of extraembryonic tissues in different fly species provides a comparative system to address this question. The closest relatives of D. melanogaster with clearly distinct DV differentiation are hover flies (Diptera: Syrphidae). The syrphid Episyrphus balteatus is a commercial bio-agent against aphids and has been established as a model organism for developmental studies and chemical ecology. The dorsal blastoderm of E. balteatus gives rise to two extraembryonic tissues (serosa and amnion), whereas in D. melanogaster, the dorsal blastoderm differentiates into a single extraembryonic epithelium (amnioserosa). Recent studies indicate that several BMP signaling components of D. melanogaster, including the BMP ligand Screw (Scw) and other extracellular regulators, evolved in the dipteran lineage through gene duplication and functional divergence. These findings raise the question of whether the complement of BMP signaling components changed with the origin of the amnioserosa. Results To search for BMP signaling components in E. balteatus, we generated and analyzed transcriptomes of freshly laid eggs (0-30 minutes) and late blastoderm to early germband extension stages (3-6 hours) using Roche/454 sequencing. We identified putative E. balteatus orthologues of 43% of all annotated D. melanogaster genes, including the genes of all BMP ligands and other BMP signaling components. Conclusion The diversification of several BMP signaling components in the dipteran linage of D. melanogaster preceded the origin of the amnioserosa. [Transcriptome sequence data from this study have been deposited at the NCBI Sequence Read Archive (SRP005289); individually assembled sequences have been deposited at GenBank (JN006969-JN006986).] PMID:21627820
Bahouth, Suleiman W; Nooh, Mohammed M
2017-08-01
Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction pathway in membranes. Copyright © 2017. Published by Elsevier Inc.
IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS
Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...
An Evolutionary Machine Learning Framework for Big Data Sequence Mining
ERIC Educational Resources Information Center
Kamath, Uday Krishna
2014-01-01
Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…
TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.
Detection of signals in mRNAs that influence translation.
Brown, Chris M; Jacobs, Grant; Stockwell, Peter; Schreiber, Mark
2003-01-01
Genome sequencing efforts mean that we now have extensive data from a wide range of organisms to study. Understanding the differing natures of the biology of these organisms is an important aim of genome analysis. We are interested in signals that affect translation of mRNAs. Some signals in the mRNA influence how efficiently it is translated into protein. Previous studies have indicated that many important signals are located around the initiation and termination codons. We have developed tools described here to extract the relevant sequence regions from GenBank. To create databases organised by species, or higher taxonomic groupings (eg planta), a program was developed to dynamically view and edit the taxonomy database. Data from relevant species were then extracted using our Genbank feature table parser. We analysed all available sequences, particularly those from complete genomes. Patterns were then identified using information theory. The software is available from http://transterm.otago.ac.nz. Patterns around the initiation codons for most of the organisms fall into two groups, containing the previously known Shine-Dalgarno and Kozaks efficiency signals. However, we have identified several organisms that appear to utilise novel systems. Our analysis indicates that some organisms with extremely high GC% genomes do not have a strong dependence on base pairing ribosome binding sites, as the complementary sequence is absent from many genes.
Hjouj, Mohammad; Rubinsky, Boris
2010-07-01
We introduce and characterize the use of MRI for studying nonthermal irreversible electroporation (NTIRE) in a vegetative tissue model. NTIRE is a new minimally invasive surgical technique for tissue ablation in which microsecond, high electric-field pulses form nanoscale defects in the cell membrane that lead to cell death. Clinical NTIRE sequences were applied to a potato tuber tissue model. The potato is used for NTIRE studies because cell damage is readily visible with optical means through a natural oxidation process of released intracellular enzymes (polyphenol oxidase) and the formation of brown-black melanins. MRI sequences of the treated area were taken at various times before and after NTIRE and compared with photographic images. A comparison was made between T1W, T2W, FLAIR and STIR MRIs of NTIRE and photographic images. Some MRI sequences show changes in areas treated by irreversible electroporation. T1W and FLAIR produce brighter images of the treated areas. In contrast, the signal was lost from the treated area when a suppression technique, STIR, was used. There was similarity between optical photographic images of the treated tissue and MRIs of the same areas. This is the first study to characterize MRI of NTIRE in vegetative tissue. We find that NTIRE produces changes in vegetative tissue that can be imaged by certain MRI sequences. This could make MRI an effective tool to study the fundamentals of NTIRE in nonanimal tissue.
NASA Technical Reports Server (NTRS)
Wallace, G. R.; Weathers, G. D.; Graf, E. R.
1973-01-01
The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.
Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement.
Maryn, Youri; Zarowski, Andrzej
2015-11-01
Sound intensity is an important acoustic feature of voice/speech signals. Yet recordings are performed with different microphone, amplifier, and computer configurations, and it is therefore crucial to calibrate sound intensity measures of clinical audio recording and analysis systems on the basis of output of a sound-level meter. This study was designed to evaluate feasibility, validity, and accuracy of calibration methods, including audiometric speech noise signals and human voice signals under typical speech conditions. Calibration consisted of 3 comparisons between data from 29 measurement microphone-and-computer systems and data from the sound-level meter: signal-specific comparison with audiometric speech noise at 5 levels, signal-specific comparison with natural voice at 3 levels, and cross-signal comparison with natural voice at 3 levels. Intensity measures from recording systems were then linearly converted into calibrated data on the basis of these comparisons, and validity and accuracy of calibrated sound intensity were investigated. Very strong correlations and quasisimilarity were found between calibrated data and sound-level meter data across calibration methods and recording systems. Calibration of clinical sound intensity measures according to this method is feasible, valid, accurate, and representative for a heterogeneous set of microphones and data acquisition systems in real-life circumstances with distinct noise contexts.
Veale, Andrew J; Russello, Michael A
2017-10-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Bushell, Claire A.; Grant, Paul R.; Cowen, Simon; Gutierrez-Aguirre, Ion; O'Sullivan, Denise M.; Žel, Jana; Milavec, Mojca; Foy, Carole A.; Nastouli, Eleni; Garson, Jeremy A.; Huggett, Jim F.
2015-01-01
Digital PCR (dPCR) is being increasingly used for the quantification of sequence variations, including single nucleotide polymorphisms (SNPs), due to its high accuracy and precision in comparison with techniques such as quantitative PCR (qPCR) and melt curve analysis. To develop and evaluate dPCR for SNP detection using DNA, RNA, and clinical samples, an influenza virus model of resistance to oseltamivir (Tamiflu) was used. First, this study was able to recognize and reduce off-target amplification in dPCR quantification, thereby enabling technical sensitivities down to 0.1% SNP abundance at a range of template concentrations, a 50-fold improvement on the qPCR assay used routinely in the clinic. Second, a method was developed for determining the false-positive rate (background) signal. Finally, comparison of dPCR with qPCR results on clinical samples demonstrated the potential impact dPCR could have on clinical research and patient management by earlier (trace) detection of rare drug-resistant sequence variants. Ultimately this could reduce the quantity of ineffective drugs taken and facilitate early switching to alternative medication when available. In the short term such methods could advance our understanding of microbial dynamics and therapeutic responses in a range of infectious diseases such as HIV, viral hepatitis, and tuberculosis. Furthermore, the findings presented here are directly relevant to other diagnostic areas, such as the detection of rare SNPs in malignancy, monitoring of graft rejection, and fetal screening. PMID:26659206
Whale, Alexandra S; Bushell, Claire A; Grant, Paul R; Cowen, Simon; Gutierrez-Aguirre, Ion; O'Sullivan, Denise M; Žel, Jana; Milavec, Mojca; Foy, Carole A; Nastouli, Eleni; Garson, Jeremy A; Huggett, Jim F
2016-02-01
Digital PCR (dPCR) is being increasingly used for the quantification of sequence variations, including single nucleotide polymorphisms (SNPs), due to its high accuracy and precision in comparison with techniques such as quantitative PCR (qPCR) and melt curve analysis. To develop and evaluate dPCR for SNP detection using DNA, RNA, and clinical samples, an influenza virus model of resistance to oseltamivir (Tamiflu) was used. First, this study was able to recognize and reduce off-target amplification in dPCR quantification, thereby enabling technical sensitivities down to 0.1% SNP abundance at a range of template concentrations, a 50-fold improvement on the qPCR assay used routinely in the clinic. Second, a method was developed for determining the false-positive rate (background) signal. Finally, comparison of dPCR with qPCR results on clinical samples demonstrated the potential impact dPCR could have on clinical research and patient management by earlier (trace) detection of rare drug-resistant sequence variants. Ultimately this could reduce the quantity of ineffective drugs taken and facilitate early switching to alternative medication when available. In the short term such methods could advance our understanding of microbial dynamics and therapeutic responses in a range of infectious diseases such as HIV, viral hepatitis, and tuberculosis. Furthermore, the findings presented here are directly relevant to other diagnostic areas, such as the detection of rare SNPs in malignancy, monitoring of graft rejection, and fetal screening. Copyright © 2016 Whale et al.
NASA Astrophysics Data System (ADS)
Khalighi, Mohammad Mehdi; Delso, Gaspar; Maramraju, Sri Harsha; Deller, Timothy W.; Levin, Craig S.; Glover, Gary H.
2016-10-01
A silicon photomultiplier (SiPM)-based time-of-flight capable PET detector has been integrated with a 70 cm wide-bore 3T MR scanner for simultaneous whole-body imaging (MR750w, GE Healthcare, Waukesha, WI). After insertion of the PET detector, the final PET/MR bore is 60 cm wide (SIGNA PET/MR, GE Healthcare, Waukesha, WI). The MR performance was compared before and after the PET ring insertion. B0 homogeneity, B1+ uniformity of the body coil along with peak B1+, coherent noise, and FBIRN (Function Biomedical Informatics Research Network) tests are used to compare the MR performance. It is shown that B0 homogeneity and coherent noise have not changed according to the system specifications. Peak B1+ is increased by 33% and B1+ inhomogeneity is increased by 4% after PET ring insertion due to a smaller diameter body coil design. The FBIRN test shows similar temporal stability before and after PET ring insertion. Due to a smaller body coil on the PET/MR system, the signal fluctuation to noise ratio (SFNR) and SNR for body receive coil, are improved by 40% and 160% for Echo Planar Imaging (EPI) and spiral sequences respectively. Comparison using RF- and gradient-intensive clinical sequences shows inserting the PET detectors into the wide-bore MRI has not compromised the MR image quality according to these tests.
Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.
Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767
Structure and stability of the ankyrin domain of the Drosophila Notch receptor.
Zweifel, Mark E; Leahy, Daniel J; Hughson, Frederick M; Barrick, Doug
2003-11-01
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-20
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.
NASA Technical Reports Server (NTRS)
Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)
2013-01-01
Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.
Hypointense signal lesions of the articular cartilage: a review of current concepts.
Markhardt, B Keegan; Chang, Eric Y
2014-01-01
Discussion of articular cartilage disease detection by MRI usually focuses on the presence of bright signal on T2-weighted sequences, such as in Grade 1 chondromalacia and cartilage fissures containing fluid. Less emphasis has been placed on how cartilage disease may be manifested by dark signal on T2-weighted sequences. The appearance of the recently described "cartilage black line sign" of the femoral trochlea highlights these lesions and further raises the question of their etiology. We illustrate various hypointense signal lesions that are not restricted to the femoral trochlea of the knee joint and discuss the possible etiologies for these lesions. Copyright © 2014 Elsevier Inc. All rights reserved.
Identification of the 14-3-3 gene family in Rafflesia cantleyi
NASA Astrophysics Data System (ADS)
Rosli, Khadijah; Wan, Kiew-Lian
2018-04-01
Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.
Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results
NASA Astrophysics Data System (ADS)
Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.
2005-12-01
We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.
NASA Astrophysics Data System (ADS)
Fishman, M. M.
1985-01-01
The problem of multialternative sequential discernment of processes is formulated in terms of conditionally optimum procedures minimizing the average length of observations, without any probabilistic assumptions about any one occurring process, rather than in terms of Bayes procedures minimizing the average risk. The problem is to find the procedure that will transform inequalities into equalities. The problem is formulated for various models of signal observation and data processing: (1) discernment of signals from background interference by a multichannel system; (2) discernment of pulse sequences with unknown time delay; (3) discernment of harmonic signals with unknown frequency. An asymptotically optimum sequential procedure is constructed which compares the statistics of the likelihood ratio with the mean-weighted likelihood ratio and estimates the upper bound for conditional average lengths of observations. This procedure is shown to remain valid as the upper bound for the probability of erroneous partial solutions decreases approaching zero and the number of hypotheses increases approaching infinity. It also remains valid under certain special constraints on the probability such as a threshold. A comparison with a fixed-length procedure reveals that this sequential procedure decreases the length of observations to one quarter, on the average, when the probability of erroneous partial solutions is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen
2013-12-15
Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less
Using video-oriented instructions to speed up sequence comparison.
Wozniak, A
1997-04-01
This document presents an implementation of the well-known Smith-Waterman algorithm for comparison of proteic and nucleic sequences, using specialized video instructions. These instructions, SIMD-like in their design, make possible parallelization of the algorithm at the instruction level. Benchmarks on an ULTRA SPARC running at 167 MHz show a speed-up factor of two compared to the same algorithm implemented with integer instructions on the same machine. Performance reaches over 18 million matrix cells per second on a single processor, giving to our knowledge the fastest implementation of the Smith-Waterman algorithm on a workstation. The accelerated procedure was introduced in LASSAP--a LArge Scale Sequence compArison Package software developed at INRIA--which handles parallelism at higher level. On a SUN Enterprise 6000 server with 12 processors, a speed of nearly 200 million matrix cells per second has been obtained. A sequence of length 300 amino acids is scanned against SWISSPROT R33 (1,8531,385 residues) in 29 s. This procedure is not restricted to databank scanning. It applies to all cases handled by LASSAP (intra- and inter-bank comparisons, Z-score computation, etc.
Itamochi, Hiroaki; Oishi, Tetsuro; Oumi, Nao; Takeuchi, Satoshi; Yoshihara, Kosuke; Mikami, Mikio; Yaegashi, Nobuo; Terao, Yasuhisa; Takehara, Kazuhiro; Ushijima, Kimio; Watari, Hidemichi; Aoki, Daisuke; Kimura, Tadashi; Nakamura, Toshiaki; Yokoyama, Yoshihito; Kigawa, Junzo; Sugiyama, Toru
2017-08-22
Ovarian clear cell carcinoma (OCCC) is mostly resistant to standard chemotherapy that results in poor patient survival. To understand the genetic background of these tumours, we performed whole-genome sequencing of OCCC tumours. Tumour tissue samples and matched blood samples were obtained from 55 Japanese women diagnosed with OCCC. Whole-genome sequencing was performed using the Illumina HiSeq platform according to standard protocols. Alterations to the switch/sucrose non-fermentable (SWI/SNF) subunit, the phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway, and the receptor tyrosine kinase (RTK)/Ras signalling pathway were found in 51%, 42%, and 29% of OCCC tumours, respectively. The 3-year overall survival (OS) rate for patients with an activated PI3K/Akt signalling pathway was significantly higher than that for those with inactive pathway (91 vs 40%, hazard ratio 0.24 (95% confidence interval (CI) 0.10-0.56), P=0.0010). Similarly, the OS was significantly higher in patients with the activated RTK/Ras signalling pathway than in those with the inactive pathway (91 vs 53%, hazard ratio 0.35 (95% CI 0.13-0.94), P=0.0373). Multivariable analysis revealed that activation of the PI3K/Akt and RTK/Ras signalling pathways was an independent prognostic factor for patients with OCCC. The PI3K/Akt and RTK/Ras signalling pathways may be potential prognostic biomarkers for OCCC patients. Furthermore, our whole-genome sequencing data highlight important pathways for molecular and biological characterisations and potential therapeutic targeting in OCCC.
RNA degradation and models for post-transcriptional gene-silencing.
Meins, F
2000-06-01
Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are 'aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boore, Jeffrey L.
2004-11-27
Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less
Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea
2012-11-01
The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0.06) did not exhibit significant differences, quantitative DW single-shot TSE imaging (p = 0.002) and quantitative chemical-shift imaging (p = 0.01) showed significant differences between benign and malignant fractures. The DW-PSIF sequence (delta = 3 ms) had the highest accuracy in differentiating benign from malignant vertebral fractures. Quantitative chemical-shift imaging and quantitative DW single-shot TSE imaging had a lower accuracy than DW-PSIF imaging because of a large overlap. Qualitative assessment of opposed-phase, DW-EPI, and DW single-shot TSE sequences and quantitative assessment of the DW-EPI sequence were not suitable for distinguishing between benign and malignant vertebral fractures.
Shiau, LieJune; Schwalger, Tilo; Lindner, Benjamin
2015-06-01
We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo, ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.
Nieves, Mariela; De Oliveira, Edivaldo H C; Amaral, Paulo J S; Nagamachi, Cleusa Y; Pieczarka, Julio C; Mühlmann, María C; Mudry, Marta D
2011-04-01
The karyotype of the neotropical primate genus Cebus (Platyrrhini: Cebidae), considered the most ancestral one, shows the greatest amount of heterochromatin described among Platyrrhini genera. Banding techniques and restriction enzyme digestion have previously revealed great variability of quantity and composition of heterochromatin in this genus. In this context, we use fluorescence in situ hybridization (FISH) to analyse this genomic region and discuss its possible role in the diversification of Cebus.We used a heterochromatin probe for chromosome 11 of Cebus libidinosus (11qHe+ CLI probe), obtained by chromosome microdissection. Twenty-six specimens belonging to the families Atelidae, Cebidae, Callitrichidae and Pithecidae (Platyrrhini) were studied. Fourteen out of 26 specimens were Cebus (Cebidae) individuals of C. libidinosus, C. xanthosternos, C. apella, C. nigritus, C. albifrons, C. kaapori and C. olivaceus. In Cebus specimens, we found 6 to 22 positive signals located in interstitial and telomeric positions along the different species. No hybridization signal was observed among the remaining Ceboidea species, thus reinforcing the idea of a Cebus-specific heterochromatin composed of a complex system of repetitive sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muha, Villo; Zagyva, Imre; Venkei, Zsolt
2009-04-03
Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform wasmore » excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.« less
Zelinsky, G J
2001-02-01
Search, memory, and strategy constraints on change detection were analyzed in terms of oculomotor variables. Observers viewed a repeating sequence of three displays (Scene 1-->Mask-->Scene 2-->Mask...) and indicated the presence-absence of a changing object between Scenes 1 and 2. Scenes depicted real-world objects arranged on a surface. Manipulations included set size (one, three, or nine items) and the orientation of the changing objects (similar or different). Eye movements increased with the number of potentially changing objects in the scene, with this set size effect suggesting a relationship between change detection and search. A preferential fixation analysis determined that memory constraints are better described by the operation comparing the pre- and postchange objects than as a capacity limitation, and a scanpath analysis revealed a change detection strategy relying on the peripheral encoding and comparison of display items. These findings support a signal-in-noise interpretation of change detection in which the signal varies with the similarity of the changing objects and the noise is determined by the distractor objects and scene background.
Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman
2013-01-01
Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.
Nabavi, Reza; Conneely, Brendan; McCarthy, Elaine; Good, Barbara; Shayan, Parviz; DE Waal, Theo
2014-09-01
Accurate identification of sheep nematodes is a critical point in epidemiological studies and monitoring of drug resistance in flocks. However, due to a close morphological similarity between the eggs and larval stages of many of these nematodes, such identification is not a trivial task. There are a number of studies showing that molecular targets in ribosomal DNA (Internal transcribed spacer 1, 2 and Intergenic spacer) are suitable for accurate identification of sheep bursate nematodes. The objective of present study was to compare the ITS1, ITS2 and IGS regions of Iranian common bursate nematodes in order to choose best target for specific identification methods. The first and second internal transcribed spacers (ITS1and ITS2) and intergenic spacer (IGS) of the ribosomal DNA (rDNA) of 5 common Iranian bursate nematodes of sheep were sequenced. The sequences of some non-Iranian isolates were used for comparison in order to evaluate the variation in sequence homology between geographically different nematode populations. Comparison of the ITS1 and ITS2 sequences of Iranian nematodes showed greatest similarity among Teladorsagia circumcincta and Marshallagia marshalli of 94% and 88%, respectively. While Trichostrongylus colubriformis and M. marshalli showed the highest homology (99%) in the IGS sequences. Comparison of the spacer sequences of Iranian with non-Iranian isolates showed significantly higher variation in Haemonchus contortus compared to the other species. Both the ITS1 and ITS2 sequences are convenient targets to have species-specific identification of Iranian bursate nematodes. On the other hand the IGS region may be a less suitable molecular target.
Extracting stationary segments from non-stationary synthetic and cardiac signals
NASA Astrophysics Data System (ADS)
Rodríguez, María. G.; Ledezma, Carlos A.; Perpiñán, Gilberto; Wong, Sara; Altuve, Miguel
2015-01-01
Physiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.
Kamato, Danielle; Bhaskarala, Venkata Vijayanand; Mantri, Nitin; Oh, Tae Gyu; Ling, Dora; Janke, Reearna; Zheng, Wenhua; Little, Peter J; Osman, Narin
2017-01-01
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Deresiewicz, R L; Flaxenburg, J; Leng, K; Kasper, D L
1996-01-01
To explore whether a novel staphylococcal clone or structural variant of toxic shock syndrome toxin 1 is associated with Kawasaki syndrome, six toxigenic strains of Staphylococcus aureus from Kawasaki syndrome patients were studied. The strains were divisible into two groups based on phenotypic and genotypic characteristics and are therefore unequivocally not clonal. Portions of the tstH genes of each strain were sequenced. Three were sequenced in their entirety, while the remainder were sequenced from codon 66 to codon 137 of the mature protein only. Two of the former group differed slightly in the sequences of their signal peptides relative to the sequence published for the tstH signal peptide. Those differences did not affect toxin processing or secretion. The sequenced portions of the regions encoding mature toxic shock syndrome toxin 1 were identical in all six strains and corresponded exactly to the published sequence of tstH. No evidence was found for the existence of a structural variant of tstH uniquely associated with Kawasaki syndrome. PMID:8757881
Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.
Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph
2006-08-01
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals
Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou
2015-01-01
Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180
DNA base-calling from a nanopore using a Viterbi algorithm.
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-05-16
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
BCL2 oncogene translocation is mediated by a chi-like consensus
1992-01-01
Examination of 64 translocations involving the major breakpoint region (mbr) of the BCL2 oncogene and the immunoglobulin heavy chain locus identified three short (14, 16, and 18 bp) segments within the mbr at which translocations occurred with very high frequency. Each of these clusters was associated with a 15-bp region of sequence homology, the principal one containing an octamer related to chi, the procaryotic activator of recombination. The presence of short deletions and N nucleotide additions at the breakpoints, as well as involvement of JH and DH coding regions, suggested that these sequences served as signals capable of interacting with the VDJ recombinase complex, even though no homology with the traditional heptamer/spacer/nonamer (IgRSS) existed. Furthermore, the BCL2 signal sequences were employed in a bidirectional fashion and could mediate recombination of one mbr region with another. Segments homologous to the BCL2 signal sequences flanked individual members of the XP family of diversity gene segments, which were themselves highly overrepresented in the reciprocal products (18q-) of BCL2 translocation. We propose that the chi-like signal sequences of BCL2 represent a distinct class of recognition sites for the recombinase complex, responsible for initiating interactions between regions of DNA separated by great distances, and that BCL2 translocation begins by a recombination event between mbr and DXP chi signals. Since recombinant joints containing chi, not IgRSS, occur in brain cells expressing RAG-1 (Matsuoka, M., F. Nagawa, K. Okazaki, L. Kingsbury, K. Yoshida, U. Muller, D. T. Larue, J. A. Winer, and H. Sakano. 1991. Science [Wash. DC]. 254:81; reference 1), we further suggest that the product of this gene could mediate both BCL2 translocation and the first step of normal DJ assembly through the creation of chi joints, rather than signal or coding joints. PMID:1588282
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
Insights from Human/Mouse genome comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennacchio, Len A.
2003-03-30
Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less
NASA Astrophysics Data System (ADS)
Sun, S. M.; Slightom, J. L.; Hall, T. C.
1981-01-01
A plant gene coding for the major storage protein (phaseolin, G1-globulin) of the French bean was isolated from a genomic library constructed in the phage vector Charon 24A. Comparison of the nucleotide sequence of part of the gene with that of the cloned messenger RNA (cDNA) revealed the presence of three intervening sequences, all beginning with GTand ending with AG. The 5' and 3' boundaries of intervening sequences TVS-A (88 base pairs) and IVS-B (124 base pairs) are similar to those described for animal and viral genes, but the 3' boundary of IVS-C (129 base pairs) shows some differences. A sequence of 185 amino acids deduced from the cloned DMAs represents about 40% of a phaseolin polypeptide.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-01-01
Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515
Structure, organization and expression of common carp (Cyprinus carpio L.) SLP-76 gene.
Huang, Rong; Sun, Xiao-Feng; Hu, Wei; Wang, Ya-Ping; Guo, Qiong-Lin
2008-05-01
SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp SLP-76 was 2007 bp, consisting of a 5'-terminal untranslated region (UTR) of 285 bp, a 3'-terminal UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homologues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts.
Kromrey, Marie-Luise; Liedtke, Kim Rouven; Ittermann, Till; Langner, Sönke; Kirsch, Michael; Weitschies, Werner; Kühn, Jens-Peter
2017-02-01
To investigate if application of macrocyclic gadolinium-based contrast agents in volunteers is associated with neuronal deposition detected by magnetic resonance imaging in a 5-year longitudinal survey. Three hundred eighty-seven volunteers who participated in a population-based study were enrolled. Subjects underwent plain T1-weighted brain MRI at baseline and 5 years later with identical sequence parameters. At baseline, 271 participants additionally received intravenous injection of the macrocyclic contrast agent gadobutrol (0.15 mmol/kg). A control group including 116 subjects received no contrast agent. Relative signal intensities of thalamus, pallidum, pons and dentate nucleus were compared at baseline and follow-up. No difference in relative signal intensities was observed between contrast group (thalamus, p = 0.865; pallidum, p = 0.263; pons, p = 0.533; dentate nucleus, p = 0.396) and control group (thalamus, p = 0.683; pallidum; p = 0.970; pons, p = 0.773; dentate nucleus, p = 0.232) at both times. Comparison between both groups revealed no significant differences in relative signal intensities (thalamus, p = 0.413; pallidum, p = 0.653; pons, p = 0.460; dentate nucleus, p = 0.751). The study showed no significant change in globus pallidus-to-thalamus or dentate nucleus-to-pons ratios. Five years after administration of a 1.5-fold dose gadobutrol to normal subjects, signal intensity of thalamus, pallidum, pons and dentate nucleus did not differ from participants who had not received gadobutrol. • Gadobutrol does not lead to neuronal signal alterations after 5 years. • Neuronal deposition of macrocyclic contrast agent could not be confirmed. • Macrocyclic contrast agents in a proven dosage are safe.
USDA-ARS?s Scientific Manuscript database
Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan, E-mail: gjohnson@duke.edu
2014-03-15
Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agentmore » concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.« less
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2017-03-01
In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.
Modeling the dynamics of choice.
Baum, William M; Davison, Michael
2009-06-01
A simple linear-operator model both describes and predicts the dynamics of choice that may underlie the matching relation. We measured inter-food choice within components of a schedule that presented seven different pairs of concurrent variable-interval schedules for 12 food deliveries each with no signals indicating which pair was in force. This measure of local choice was accurately described and predicted as obtained reinforcer sequences shifted it to favor one alternative or the other. The effect of a changeover delay was reflected in one parameter, the asymptote, whereas the effect of a difference in overall rate of food delivery was reflected in the other parameter, rate of approach to the asymptote. The model takes choice as a primary dependent variable, not derived by comparison between alternatives-an approach that agrees with the molar view of behaviour.
3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize.
Fátima Barroso, M; Freitas, Maria; Oliveira, M Beatriz P P; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; Delerue-Matos, Cristina
2015-03-01
In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Detection of BRAF mutations from solid tumors using Tumorplex™ technology
Yo, Jacob; Hay, Katie S.L.; Vinayagamoorthy, Dilanthi; Maryanski, Danielle; Carter, Mark; Wiegel, Joseph; Vinayagamoorthy, Thuraiayah
2015-01-01
Allele specific multiplex sequencing (Tumorplex™) is a new molecular platform for the detection of single base mutation in tumor biopsies with high sensitivity for clinical testing. Tumorplex™ is a novel modification of Sanger sequencing technology that generates both mutant and wild type nucleotide sequences simultaneously in the same electropherogram. The molecular weight of the two sequencing primers are different such that the two sequences generated are separated, thus eliminating possible suppression of mutant signal by the more abundant wild type signal. Tumorplex™ platform technology was tested using BRAF mutation V600E. These studies were performed with cloned BRAF mutations and genomic DNA extracted from tumor cells carrying 50% mutant allele. The lower limit of detection for BRAF V600E was found to be 20 genome equivalents (GE) using genomic DNA extracted from mutation specific cell lines. Sensitivity of the assay was tested by challenging the mutant allele with wild type allele at 20 GE, and was able to detect BRAF mutant signal at a GE ration of 20:1 × 107 (mutant to wild-type). This level of sensitivity can detect low abundance of clonal mutations in tumor biopsies and eliminate the need for cell enrichment. • Tumorplex™ is a single tube assay that permits the recognition of mutant allele without suppression by wildtype signal. • Tumorplex™ provides a high level of sensitivity. • Tumorplex™ can be used with small sample size with mixed population of cells carrying heterogeneous gDNA. PMID:26258049
Sasazawa, Yukiko; Sato, Natsumi; Suzuki, Takehiro; Dohmae, Naoshi; Simizu, Siro
The thrombopoietin receptor, also known as c-Mpl, is a member of the cytokine superfamily, which regulates the differentiation of megakaryocytes and formation of platelets by binding to its ligand, thrombopoietin (TPO), through Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. The loss-of-function mutations of c-Mpl cause severe thrombocytopenia due to impaired megakaryocytopoiesis, and gain-of-function mutations cause thrombocythemia. c-Mpl contains two Trp-Ser-Xaa-Trp-Ser (Xaa represents any amino acids) sequences, which are characteristic sequences of type I cytokine receptors, corresponding to C-mannosylation consensus sequences: Trp-Xaa-Xaa-Trp/Cys. C-mannosylation is a post-translational modification of tryptophan residue in which one mannose is attached to the first tryptophan residue in the consensus sequence via C-C linkage. Although c-Mpl contains some C-mannosylation sequences, whether c-Mpl is C-mannosylated or not has been uninvestigated. We identified that c-Mpl is C-mannosylated not only at Trp(269) and Trp(474), which are putative C-mannosylation site, but also at Trp(272), Trp(416), and Trp(477). Using C-mannosylation defective mutant of c-Mpl, the C-mannosylated tryptophan residues at four sites (Trp(269), Trp(272), Trp(474), and Trp(477)) are essential for c-Mpl-mediated JAK-STAT signaling. Our findings suggested that C-mannosylation of c-Mpl is a possible therapeutic target for platelet disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Kudchadker, R
Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less
NLSdb-major update for database of nuclear localization signals and nuclear export signals.
Bernhofer, Michael; Goldberg, Tatyana; Wolf, Silvana; Ahmed, Mohamed; Zaugg, Julian; Boden, Mikael; Rost, Burkhard
2018-01-04
NLSdb is a database collecting nuclear export signals (NES) and nuclear localization signals (NLS) along with experimentally annotated nuclear and non-nuclear proteins. NES and NLS are short sequence motifs related to protein transport out of and into the nucleus. The updated NLSdb now contains 2253 NLS and introduces 398 NES. The potential sets of novel NES and NLS have been generated by a simple 'in silico mutagenesis' protocol. We started with motifs annotated by experiments. In step 1, we increased specificity such that no known non-nuclear protein matched the refined motif. In step 2, we increased the sensitivity trying to match several different families with a motif. We then iterated over steps 1 and 2. The final set of 2253 NLS motifs matched 35% of 8421 experimentally verified nuclear proteins (up from 21% for the previous version) and none of 18 278 non-nuclear proteins. We updated the web interface providing multiple options to search protein sequences for NES and NLS motifs, and to evaluate your own signal sequences. NLSdb can be accessed via Rostlab services at: https://rostlab.org/services/nlsdb/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Characterization of 67P/Churyumov-Gerasimenko interior from CONSERT signal amplitude variability
NASA Astrophysics Data System (ADS)
Zine, Sonia; Kofman, Wlodek; Herique, Alain; Hahnel, Ronny; Plettemeier, Dirk; Rogez, Yves; Statz, Christoph; Ciarletti, Valerie
2016-04-01
The bistatic radar CONSERT on Rosetta and Philae operated for 9 hours during Philae's First Science Sequence (FSS), on 12 and 13 November 2014. A strong signal was detected for 30 min at the beginning of the sequence, and for 80 min at the end. The signal propagated through the smaller lobe of the nucleus, with a length of propagation ranging between 200 and 800m, and a rapid decrease of its amplitude. First results have been published, based on the study of the signal propagation delay and the propagation path (Kofman et al., Science 2015; Ciarletti et al, A&A, 2015). This work focuses on the study of the signal amplitude, which shows variability throughout the acquisition sequence. The cause of this variability is twofold: (1) losses within the comet interior; (2) depolarization due to both antennas' varying relative attitudes. We simulate the depolarization by taking into account Rosetta's position and attitude on its orbit and by making assumptions on Philae's position, attitude, and close environment on the comet (dielectric properties). Then we assess the variability due to losses within the medium, and infer a characterization of the composition of the comet interior.
Li, Wei; Jiang, Wei; Wang, Lei
2016-10-12
In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Eliminating Late Recurrence to Eradicate Breast Cancer
2013-09-01
translocation of proteins with a specific signal sequence that (in CMA) is recognized by the LAMP2A receptor on the lysosome (1). This review focuses on...signal sequence directing it to the conventional secretory pathway via the Golgi apparatus and the endoplasmic reticulum (ER). Interestingly, recent...clear- ance (55, 56). Autophagy has been implicated in the etiology of this disease by genome -wide association studies identifying disease-related
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
NASA Astrophysics Data System (ADS)
Giridhar, K.
The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron. PMID:24748787
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence.
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.
Tauzin, Tibor; Csík, Andor; Kis, Anna; Kovács, Krisztina; Topál, József
2015-07-01
Ostensive signals preceding referential cues are crucial in communication-based human knowledge acquisition processes. Since dogs are sensitive to both human ostensive and referential signals, here we investigate whether they also take into account the order of these signals and, in an object-choice task, respond to human pointing more readily when it is preceded by an ostensive cue indicating communicative intent. Adult pet dogs (n = 75) of different breeds were presented with different sequences of a three-step human action. In the relevant sequence (RS) condition, subjects were presented with an ostensive attention getter (verbal addressing and eye contact), followed by referential pointing at one of two identical targets and then a non-ostensive attention getter (clapping of hands). In the irrelevant sequence (IS) condition, the order of attention getters was swapped. We found that dogs chose the target indicated by pointing more frequently in the RS as compared to the IS condition. While dogs selected randomly between the target locations in the IS condition, they performed significantly better than chance in the RS condition. Based on a further control experiment (n = 22), it seems that this effect is not driven by the aversive or irrelevant nature of the non-ostensive cue. This suggests that dogs are sensitive to the order of signal sequences, and the exploitation of human referential pointing depends on the behaviour pattern in which the informing cue is embedded.
Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca
2006-12-01
Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).
Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif
2018-07-01
Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.
2013-01-01
Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567
Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738.
Kwon, Taesoo; Kim, Jung-Beom; Bak, Young-Seok; Yu, Young-Bin; Kwon, Ki Sung; Kim, Won; Cho, Seung-Hak
2016-01-01
The non-shiga toxin-producing Escherichia coli (non-STEC) O157 is a pathogenic strain that cause diarrhea but does not cause hemolytic-uremic syndrome, or hemorrhagic colitis. Here, we present the 5-Mb draft genome sequence of non-STEC O157 NCCP15738, which was isolated from the feces of a Korean patient with diarrhea, and describe its features and the structural basis for its genome evolution. A total of 565-Mbp paired-end reads were generated using the Illumina-HiSeq 2000 platform. The reads were assembled into 135 scaffolds throughout the de novo assembly. The assembled genome size of NCCP15738 was 5,005,278 bp with an N50 value of 142,450 bp and 50.65 % G+C content. Using Rapid Annotation using Subsystem Technology analysis, we predicted 4780 ORFs and 31 RNA genes. The evolutionary tree was inferred from multiple sequence alignment of 45 E. coli species. The most closely related neighbor of NCCP15738 indicated by whole-genome phylogeny was E. coli UMNK88, but that indicated by multilocus sequence analysis was E. coli DH1(ME8569). A comparison between the NCCP15738 genome and those of reference strains, E. coli K-12 substr. MG1655 and EHEC O157:H7 EDL933 by bioinformatics analyses revealed unique genes in NCCP15738 associated with lysis protein S, two-component signal transduction system, conjugation, the flagellum, nucleotide-binding proteins, and metal-ion binding proteins. Notably, NCCP15738 has a dual flagella system like that in Vibrio parahaemolyticus, Aeromonas spp., and Rhodospirillum centenum. The draft genome sequence and the results of bioinformatics analysis of NCCP15738 provide the basis for understanding the genomic evolution of this strain.
Paldurai, Anandan; Subbiah, Madhuri; Kumar, Sachin; Collins, Peter L.; Samal, Siba K.
2009-01-01
Complete consensus genome sequences were determined for avian paramyxovirus type 8 (APMV-8) strains goose/Delaware/1053/76 (prototype strain) and pintail/Wakuya/20/78. The genome of each strain is 15,342 nucleotides (nt) long, which follows the “rule of six”. The genome consists of six genes in the order of 3′-N-P/V/W-M-F-HN-L-5′. The genes are flanked on either side by conserved transcription start and stop signals, and have intergenic regions ranging from 1 to 30 nt. The genome contains a 55 nt leader region at the 3′-end and a 171 nt trailer region at the 5′-end. Comparison of sequences of strains Delaware and Wakuya showed nucleotide identity of 96.8% at the genome level and amino acid identities of 99.3%, 96.5%, 98.6%, 99.4%, 98.6% and 99.1% for the predicted N, P, M, F, HN and L proteins, respectively. Both strains grew in embryonated chicken eggs and in primary chicken embryo kidney cells, and 293T cells. Both strains contained only a single basic residue at the cleavage activation site of the F protein and their efficiency of replication in vitro depended on and was augmented by, the presence of exogenous protease in most cell lines. Sequence alignment and phylogenic analysis of the predicted amino acid sequence of APMV-8 strain Delaware proteins with the cognate proteins of other available APMV serotypes showed that APMV-8 is more closely related to APMV-2 and -6 than to APMV-1, -3 and -4. PMID:19341613
NASA Astrophysics Data System (ADS)
Bertleff, Marco; Domsch, Sebastian; Laun, Frederik B.; Kuder, Tristan A.; Schad, Lothar R.
2017-05-01
Diffusion pore imaging (DPI) has recently been proposed as a means to acquire images of the average pore shape in an image voxel or region of interest. The highly asymmetric gradient scheme of its sequence makes it substantially demanding in terms of the hardware of the NMR system. The aim of this work is to show the feasibility of DPI on a preclinical 9.4 T animal scanner. Using water-filled capillaries with an inner radius of 10 μm, four different variants of the DPI sequence were compared in 1D and 2D measurements. The pulse sequences applied cover the basic implementation using one long and one temporally narrow gradient pulse, a CPMG-like variant with multiple refocusing RF pulses as well as two variants splitting up the long gradient and distributing it on either side of the refocusing pulse. Substantial differences between the methods were found in terms of signal-to-noise ratio, contrast, blurring, deviations from the expected results and sensitivity to gradient imperfections. Each of the tested sequences was found to produce characteristic gradient mismatches dependent on the absolute value, direction and sign of the applied q-value. Read gradients were applied to compensate these mismatches translating them into time shifts, which enabled 1D DPI yielding capillary radius estimations within the tolerances specified by the manufacturer. For a successful DPI application in 2D, a novel gradient amplitude adaption scheme was implemented to correct for the occurring time shifts. Using this adaption, higher conformity to the expected pore shape, reduced blurring and enhanced contrast were achieved. Images of the phantom's pore shape could be acquired with a nominal resolution of 2.2 μm.
Satoh, Dan; Hiraoka, Yasutaka; Colman, Brian; Matsuda, Yusuke
2001-01-01
A single intracellular carbonic anhydrase (CA) was detected in air-grown and, at reduced levels, in high CO2-grown cells of the marine diatom Phaeodactylum tricornutum (UTEX 642). No external CA activity was detected irrespective of growth CO2 conditions. Ethoxyzolamide (0.4 mm), a CA-specific inhibitor, severely inhibited high-affinity photosynthesis at low concentrations of dissolved inorganic carbon, whereas 2 mm acetazolamide had little effect on the affinity for dissolved inorganic carbon, suggesting that internal CA is crucial for the operation of a carbon concentrating mechanism in P. tricornutum. Internal CA was purified 36.7-fold of that of cell homogenates by ammonium sulfate precipitation, and two-step column chromatography on diethylaminoethyl-sephacel and p-aminomethylbenzene sulfone amide agarose. The purified CA was shown, by SDS-PAGE, to comprise an electrophoretically single polypeptide of 28 kD under both reduced and nonreduced conditions. The entire sequence of the cDNA of this CA was obtained by the rapid amplification of cDNA ends method and indicated that the cDNA encodes 282 amino acids. Comparison of this putative precursor sequence with the N-terminal amino acid sequence of the purified CA indicated that it included a possible signal sequence of up to 46 amino acids at the N terminus. The mature CA was found to consist of 236 amino acids and the sequence was homologous to β-type CAs. Even though the zinc-ligand amino acid residues were shown to be completely conserved, the amino acid residues that may constitute a CO2-binding site appeared to be unique among the β-CAs so far reported. PMID:11500545
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
Chen, Gang; Wang, Feng; Dillenburger, Barbara C.; Friedman, Robert M.; Chen, Li M.; Gore, John C.; Avison, Malcolm J.; Roe, Anna W.
2011-01-01
Functional magnetic resonance imaging (fMRI), at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 hours, partitioned into short (<10 minutes) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 minutes, culminating, after about 140 training sessions, in sessions that last about four hours. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7 T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly two-fold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent (BOLD) based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of sub-millimeter functional structures in the awake monkey brain. PMID:22055855
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy efficiency in wireless communication systems
Caffrey, Michael Paul; Palmer, Joseph McRae
2012-12-11
Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.
USDA-ARS?s Scientific Manuscript database
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...
NASA Technical Reports Server (NTRS)
Hanna, M. F. (Inventor)
1973-01-01
An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.
Escribano, Julio; Coca-Prados, Miguel
2002-08-28
The ciliary body is largely known for its major roles in the regulation of aqueous humor secretion, intraocular pressure, and accommodation of the lens. In this review article we applied bioinformatics to re-examine hundreds of expressed sequence tags (ESTs) previously isolated by subtractive hybridization from a human ciliary body library [1]. The DNA sequences of these clones have been recently added to the web site of NEIBank. DNA sequence comparisons of subtracted ESTs were performed against all entries in the last available release of the non-redundant database containing GenBank, EMBL, DDBJ and PDB sequences using the BlastN program accessed through NCBI's BLAST services on the internet (NCBI). Sequences were also compared and mapped using the Blast search program provided through the Internet by the Human Genome Project (UCSC). A total number of 284 independent ESTs were classified in 17 functional groups. Analysis of their relationships allowed to define the expression of five major groups of known genes: (i) protein synthesis, folding, secretion and degradation (20%); (ii) energy supply and biosynthesis (12%); (iii) contractility and cytoskeleton structure (6%); (iv) cellular signaling and cell cycle regulation (7%); and (v) nerve cell related tasks (2%), including neuropeptide processing and putative non-visual phototransduction and circadian rhythm control. The largest group contain unidentified sequences, a total of 105 sequences, accounting for 37% of ESTs. The unidentified sequences show similarity to genomic non-coding regions, or genes of unknown function. The most highly represented EST, correspond to myocilin, a gene involved in glaucoma. The data also confirms the secretory functions of the ciliary epithelium, and its high metabolism; the presence of a neuroendocrine peptidergic system presumably involved in the regulation of the intraocular pressure and/or aqueous humor secretion. Additional genes may be related to a non-visual phototransduction cascade and/or to circadian rhythms. Overall this initial group of subtracted ESTs can lead to uncover novel physiological functions of the ciliary body in normal and in disease, as well as novel candidate genes for ocular diseases.
MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa.
Catalano, Domenico; Licciulli, Flavio; Turi, Antonio; Grillo, Giorgio; Saccone, Cecilia; D'Elia, Domenica
2006-01-24
Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism. In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein) as well as useful tools for their extraction and export. MitoRes http://www2.ba.itb.cnr.it/MitoRes/ consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein) and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions) ready to be used for in silico analysis. The tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular features and evolution of mitochondrial targeting sequences. The way it provides for the retrieval and extraction of sequences allows the user to overcome the obstacles encountered in the integrative use of different bioinformatic resources and the completeness of the sequence collection allows intra- and interspecies comparison at different biological levels (gene, transcript and protein).
Dynamic magnetic resonance imaging of the breast: Comparison of gadobutrol vs. Gd-DTPA.
Escribano, F; Sentís, M; Oliva, J C; Tortajada, L; Villajos, M; Martín, A; Ganau, S
To compare the pharmacokinetic profile of gadobutrol versus Gd-DTPA in dynamic contrast-enhanced MRI (DCE-MRI) in patients with breast cancer. Secondary objectives included comparing the safety profiles and diagnostic efficacy of the two contrast agents for detecting additional malignant lesions. This retrospective observational study included 400 patients with histologically confirmed breast cancer; 200 underwent DCE-MRI with Gd-DTPA (Magnevist®) and 200 underwent DCE-MRI with gadobutrol (Gadovist®). Pharmacokinetic parameters and signal intensity were analyzed in a region of interest placed in the area within the lesion that had greatest signal intensity in postcontrast sequences. We compared the two groups on pharmacokinetic variables (K trans , K ep , and V e ), time-signal intensity curves, and the number of additional malignant lesions detected. The relative signal intensity (enhancement) was higher with gadobutrol than with Gd-DTPA. Washout was lower with gadobutrol than with Gd-DTPA (46% vs. 58,29%, respectively; p=0,0323). Values for K trans and K ep were higher for gadobutrol (p=0,001). There were no differences in the number of histologically confirmed additional malignant lesions detected (p=0,387). Relative enhancement is greater with gadobutrol, but washout is more pronounced with Gd-DTPA. The number of additional malignant lesions detected did not differ between the two contrast agents. Both contrasts are safe. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Du, Wenchong; Kelly, Steve W.
2013-01-01
The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feild, M.J.; Armstrong, F.B.
1987-05-01
E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and (/sup 3/H)-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealedmore » limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region.« less
Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L
1988-01-01
Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2009-01-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences composed of a succession of repeats (23- to 47-bp long) separated by unique sequences called spacers. Polymorphism can be observed in different strains of a species and may be used for genotyping. We describe protocols and bioinformatics tools that allow the identification of CRISPRs from sequenced genomes, their comparison, and their component determination (the direct repeats and the spacers). A schematic representation of the spacer organization can be produced, allowing an easy comparison between strains.
Rotary pin-in-maze discriminator
Benavides, Gilbert L.
1997-01-01
A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position.
Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard
2016-10-01
Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.
Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed
2016-05-01
Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, Ji Soo; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Kyung Ah; Choi, Jin-Young; Lim, Joon Seok; Park, Mi-Suk; Kim, Ki Whang
2013-07-01
To compare the breathhold, navigator-triggered, and free-breathing techniques in diffusion-weighted magnetic resonance imaging (MRI) for the evaluation of focal liver lesions on a 3.0T system. Fifty-two patients (36 men, 16 women; mean age, 56.4 years) with focal liver lesions underwent breathhold, navigator-triggered, and free-breathing diffusion-weighted imaging (DWI) of the liver on a 3.0 Tesla (T) system. All sequences were performed with b values of 50 and 800 s/mm(2) and identical parameters except for signal averages (two for navigator-triggered, one for breathhold, and four for free-breathing) and repetition time (3389 ms for navigator-triggered, 1500 ms for breathhold, and 4400 ms for free-breathing). A total of 74 lesions (50 malignant, 24 benign) were evaluated. The signal-to-noise ratios (SNR) of the liver and lesions, contrast-to-noise ratios (CNR) of each lesion, and ADC values of the liver and lesions were compared for each DWI sequence. The detection sensitivity and characterization accuracy were also compared. The SNRs of the liver and lesions were significantly lower for breathhold DWI than for non-breathhold DWI (navigator-triggered and free-breathing DWI) for all b values. The CNRs of the lesions were also significantly lower for breathhold DWI than for non-breathhold DWI. The ADC values of the liver and focal lesions measured using the three DWI techniques were not significantly different and showed good correlation. For lesion detection and characterization, there were no significant differences between breathhold and non-breathhold DWI. Both breathhold and non-breathhold DWI are comparable for the detection or characterization of focal liver lesions at 3.0T; however, non-breathhold DWI provides higher SNR and CNR than breathhold DWI. In addition, although free-breathing and navigator-triggered DWI sequences show similar performance for 3.0T liver imaging, free-breathing DWI is more time efficient than navigator-triggered DWI. Copyright © 2013 Wiley Periodicals, Inc.
Ryner, L C; Takagaki, Y; Manley, J L
1989-01-01
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively. Images PMID:2566911
Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...
Chingandu, Nomatter; Zia-Ur-Rehman, Muhammad; Sreenivasan, Thyail N; Surujdeo-Maharaj, Surendra; Umaharan, Pathmanathan; Gutierrez, Osman A; Brown, Judith K
2017-05-01
Suspected virus-like symptoms were observed in cacao plants in Trinidad during 1943, and the viruses associated with these symptoms were designated as strains A and B of cacao Trinidad virus (CTV). However, viral etiology has not been demonstrated for either phenotype. Total DNA was isolated from symptomatic cacao leaves exhibiting the CTV A and B phenotypes and subjected to Illumina HiSeq and Sanger DNA sequencing. Based on de novo assembly, two apparently full-length badnavirus genomes of 7,533 and 7,454 nucleotides (nt) were associated with CTV strain A and B, respectively. The Trinidad badnaviral genomes contained four open reading frames, three of which are characteristic of other known badnaviruses, and a fourth that is present in only some badnaviruses. Both badnaviral genomes harbored hallmark caulimovirus-like features, including a tRNA Met priming site, a TATA box, and a polyadenylation-like signal. Pairwise comparisons of the RT-RNase H region indicated that the Trinidad isolates share 57-71% nt sequence identity with other known badnaviruses. Based on the system for badnavirus species demarcation in which viruses with less than 80% nt sequence identity in the RT-RNase gene are considered members of separate species, these isolates represent two previously unidentified badnaviruses, herein named cacao mild mosaic virus and cacao yellow vein banding virus, making them the first cacao-infecting badnaviruses identified thus far in the Western Hemisphere.
Identification of Group B Streptococcal Sip Protein, Which Elicits Cross-Protective Immunity
Brodeur, Bernard R.; Boyer, Martine; Charlebois, Isabelle; Hamel, Josée; Couture, France; Rioux, Clément R.; Martin, Denis
2000-01-01
A protein of group B streptococci (GBS), named Sip for surface immunogenic protein, which is distinct from previously described surface proteins, was identified after immunological screening of a genomic library. Immunoblots using a Sip-specific monoclonal antibody indicated that a protein band with an approximate molecular mass of 53 kDa which did not vary in size was present in every GBS strain tested. Representatives of all nine GBS serotypes were included in the panel of strains. Cloning and sequencing of the sip gene revealed an open reading frame of 1,305 nucleotides coding for a polypeptide of 434 amino acid residues, with a calculated pI of 6.84 and molecular mass of 45.5 kDa. Comparison of the nucleotide sequences from six different strains confirmed with 98% identity that the sip gene is highly conserved among GBS isolates. N-terminal amino acid sequencing also indicated the presence of a 25-amino-acid signal peptide which is cleaved in the mature protein. More importantly, immunization with the recombinant Sip protein efficiently protected CD-1 mice against deadly challenges with six GBS strains of serotypes Ia/c, Ib, II/R, III, V, and VI. The data presented in this study suggest that this highly conserved protein induces cross-protective immunity against GBS infections and emphasize its potential as a universal vaccine candidate. PMID:10992461
Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase
Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.
2016-01-01
Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624
Gilly, Arthur; Ritchie, Graham Rs; Southam, Lorraine; Farmaki, Aliki-Eleni; Tsafantakis, Emmanouil; Dedoussis, George; Zeggini, Eleftheria
2016-06-01
Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (β = -1.09,σ = 0.163, P = 8.2 × 10 -11 ) and a second loss of function mutation, rs138326449 (β = -1.17,σ = 0.188, P = 1.14 × 10 -9 ). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10 -31 , n = 13 480). © The Author 2016. Published by Oxford University Press.
Gilly, Arthur; Ritchie, Graham Rs; Southam, Lorraine; Farmaki, Aliki-Eleni; Tsafantakis, Emmanouil; Dedoussis, George; Zeggini, Eleftheria
2016-01-01
Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (β = −1.09,σ = 0.163, P = 8.2 × 10−11) and a second loss of function mutation, rs138326449 (β = −1.17,σ = 0.188, P = 1.14 × 10−9). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10−31, n = 13 480). PMID:27146844
NASA Astrophysics Data System (ADS)
Latinovic, T. S.; Kalabic, S. B.; Barz, C. R.; Petrica, P. Paul; Pop-Vădean, A.
2018-01-01
This paper analyzes the influence of the Doppler Effect on the length of time to establish synchronization pseudorandom sequences in radio communications systems with an expanded spectrum. Also, this paper explores the possibility of using secure wireless communication for modular robots. Wireless communication could be used for local and global communication. We analyzed a radio communication system integrator, including the two effects of the Doppler signal on the duration of establishing synchronization of the received and locally generated pseudorandom sequence. The effects of the impact of the variability of the phase were analyzed between the said sequences and correspondence of the phases of these signals with the interval of time of acquisition of received sequences. An analysis of these impacts is essential in the transmission of signal and protection of the transfer of information in the communication systems with an expanded range (telecommunications, mobile telephony, Global Navigation Satellite System GNSS, and wireless communication). Results show that wireless communication can provide a safety approach for communication with mobile robots.
Fujimoto, Satoru; Sugano, Shigeo S.; Kuwata, Keiko; Osakabe, Keishi; Matsunaga, Sachihiro
2016-01-01
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms. PMID:27811079
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
BayesMotif: de novo protein sorting motif discovery from impure datasets.
Hu, Jianjun; Zhang, Fan
2010-01-18
Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.
Kinematics and spectra of planetary nebulae with O VI-sequence nuclei
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1976-01-01
Spectral features of NGC 5189 and NGC 6905 are tabulated. Fabry-Perot profiles around H alpha and O III lambda 5007 of NGC 5189, NGC 6905, NGC 246, and NGC 1535, are illustrated. The latter planetary nebula is a non-O VI-sequence, comparison object of high excitation. The kinematics of the four planetary nebulae are simply analyzed. Discussion of these data is motivated by the possibility of collisional excitation by high-speed ejecta from broad-lined O VI-sequence nuclei, and by the opportunity to make a comparison with conditions in the supernova remnant or ring nebula, G2.4 + 1.4, which contains an O VI-sequence nucleus of Population I.
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Aguilar, Juan A; Adams, Ralph W; Duckett, Simon B; Green, Gary G R; Kandiah, Rathika
2011-01-01
A new family of NMR pulse sequences is reported for the recording of para-hydrogen enhanced NMR spectra. This Only Para-hydrogen SpectroscopY (OPSY) approach uses coherence selection to separate hyperpolarized signals from those of fully relaxed and thermally equilibrated protons. Sequence design, performance, practical aspects and applicability to other hyperpolarization techniques are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
Real-time filtering and detection of dynamics for compression of HDTV
NASA Technical Reports Server (NTRS)
Sauer, Ken D.; Bauer, Peter
1991-01-01
The preprocessing of video sequences for data compressing is discussed. The end goal associated with this is a compression system for HDTV capable of transmitting perceptually lossless sequences at under one bit per pixel. Two subtopics were emphasized to prepare the video signal for more efficient coding: (1) nonlinear filtering to remove noise and shape the signal spectrum to take advantage of insensitivities of human viewers; and (2) segmentation of each frame into temporally dynamic/static regions for conditional frame replenishment. The latter technique operates best under the assumption that the sequence can be modelled as a superposition of active foreground and static background. The considerations were restricted to monochrome data, since it was expected to use the standard luminance/chrominance decomposition, which concentrates most of the bandwidth requirements in the luminance. Similar methods may be applied to the two chrominance signals.
Method and apparatus for characterizing reflected ultrasonic pulses
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1991-01-01
The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.
VizieR Online Data Catalog: KIC 8462852 GTC spectra (Deeg+, 2018)
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Alonso, R.; Nespral, D.; Boyajian, T.
2018-01-01
Spectra obtained in the follow-up of KIC 8462852 (Boyajian's star) with OSIRIS at the GTC telescope. These spectra have been reduced as described in the paper and are contained in two directories, for target and comparison spectra: sp_target contains spectra of the target star (KIC 8462852) sp_compar contains spectra of the comparison star (KIC 8462763) At each pointing of the GTC, a sequence of 10-45 spectra was generated. The individual spectra are named: tpXXYY.dat for the target spectra and cpXXYY.dat for the comparison spectra, where XX is the pointing number, and YY is a sequence number. The format of each spectrum file is a two-column ascii file: Wavelength (Angstrom) | Flux (arbitrary units)) The files times_pXX.dat correspond to each of the pointings and contain the times of mid-exposure of each spectrum, in the HJD_UTC-2400000 framework. These times apply to both target and comparison spectra and are ordered by increasing sequence number. There are a total of 516 spectra of the target and 516 spectra of the comparison. (19 data files).
Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D
2017-12-01
Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.