Science.gov

Sample records for signals statistical mapping

  1. Statistical Mapping by Computer.

    ERIC Educational Resources Information Center

    Utano, Jack J.

    The function of a statistical map is to provide readers with a visual impression of the data so that they may be able to identify any geographic characteristics of the displayed phenomena. The increasingly important role played by the computer in the production of statistical maps is manifested by the varied examples of computer maps in recent…

  2. The Statistical Value of Raw Fluorescence Signal in Luminex xMAP Based Multiplex Immunoassays

    PubMed Central

    Breen, Edmond J.; Tan, Woei; Khan, Alamgir

    2016-01-01

    Tissue samples (plasma, saliva, serum or urine) from 169 patients classified as either normal or having one of seven possible diseases are analysed across three 96-well plates for the presences of 37 analytes using cytokine inflammation multiplexed immunoassay panels. Censoring for concentration data caused problems for analysis of the low abundant analytes. Using fluorescence analysis over concentration based analysis allowed analysis of these low abundant analytes. Mixed-effects analysis on the resulting fluorescence and concentration responses reveals a combination of censoring and mapping the fluorescence responses to concentration values, through a 5PL curve, changed observed analyte concentrations. Simulation verifies this, by showing a dependence on the mean florescence response and its distribution on the observed analyte concentration levels. Differences from normality, in the fluorescence responses, can lead to differences in concentration estimates and unreliable probabilities for treatment effects. It is seen that when fluorescence responses are normally distributed, probabilities of treatment effects for fluorescence based t-tests has greater statistical power than the same probabilities from concentration based t-tests. We add evidence that the fluorescence response, unlike concentration values, doesn’t require censoring and we show with respect to differential analysis on the fluorescence responses that background correction is not required. PMID:27243383

  3. Concept Maps in Introductory Statistics

    ERIC Educational Resources Information Center

    Witmer, Jeffrey A.

    2016-01-01

    Concept maps are tools for organizing thoughts on the main ideas in a course. I present an example of a concept map that was created through the work of students in an introductory class and discuss major topics in statistics and relationships among them.

  4. Concept Maps in Introductory Statistics

    ERIC Educational Resources Information Center

    Witmer, Jeffrey A.

    2016-01-01

    Concept maps are tools for organizing thoughts on the main ideas in a course. I present an example of a concept map that was created through the work of students in an introductory class and discuss major topics in statistics and relationships among them.

  5. Statistical methods in physical mapping

    SciTech Connect

    Nelson, David O.

    1995-05-01

    One of the great success stories of modern molecular genetics has been the ability of biologists to isolate and characterize the genes responsible for serious inherited diseases like fragile X syndrome, cystic fibrosis and myotonic muscular dystrophy. This dissertation concentrates on constructing high-resolution physical maps. It demonstrates how probabilistic modeling and statistical analysis can aid molecular geneticists in the tasks of planning, execution, and evaluation of physical maps of chromosomes and large chromosomal regions. The dissertation is divided into six chapters. Chapter 1 provides an introduction to the field of physical mapping, describing the role of physical mapping in gene isolation and ill past efforts at mapping chromosomal regions. The next two chapters review and extend known results on predicting progress in large mapping projects. Such predictions help project planners decide between various approaches and tactics for mapping large regions of the human genome. Chapter 2 shows how probability models have been used in the past to predict progress in mapping projects. Chapter 3 presents new results, based on stationary point process theory, for progress measures for mapping projects based on directed mapping strategies. Chapter 4 describes in detail the construction of all initial high-resolution physical map for human chromosome 19. This chapter introduces the probability and statistical models involved in map construction in the context of a large, ongoing physical mapping project. Chapter 5 concentrates on one such model, the trinomial model. This chapter contains new results on the large-sample behavior of this model, including distributional results, asymptotic moments, and detection error rates. In addition, it contains an optimality result concerning experimental procedures based on the trinomial model. The last chapter explores unsolved problems and describes future work.

  6. Applications of statistics to thematic mapping.

    USGS Publications Warehouse

    Rosenfield, G.H.; Melley, M.L.

    1980-01-01

    Two statistical problems occurring in the effort to analyze thematic maps and mapping are determining the accuracy of thematic content and comparing factors studied in thematic mapping. Statistical procedures applicable to thematic mapping involve sampling, determining accuracy, and comparing factors. A sampling procedure using an unaligned pattern within a square grid network is applicable for use with thematic maps. Sample size may be determined using the binomial distribution based upon the confidence interval to define the true mean of the population within certain limits. The confidence interval may also be used to define the upper and lower limits of the accuracy of the thematic map. - from Authors

  7. Statistical and computational challenges in physical mapping

    SciTech Connect

    Nelson, D.O.; Speed, T.P.

    1994-06-01

    One of the great success stories of modern molecular genetics has been the ability of biologists to isolate and characterize the genes responsible for serious inherited diseases like Huntington`s disease, cystic fibrosis, and myotonic dystrophy. Instrumental in these efforts has been the construction of so-called {open_quotes}physical maps{close_quotes} of large regions of human chromosomes. Constructing a physical map of a chromosome presents a number of interesting challenges to the computational statistician. In addition to the general ill-posedness of the problem, complications include the size of the data sets, computational complexity, and the pervasiveness of experimental error. The nature of the problem and the presence of many levels of experimental uncertainty make statistical approaches to map construction appealing. Simultaneously, however, the size and combinatorial complexity of the problem make such approaches computationally demanding. In this paper we discuss what physical maps are and describe three different kinds of physical maps, outlining issues which arise in constructing them. In addition, we describe our experience with powerful, interactive statistical computing environments. We found that the ability to create high-level specifications of proposed algorithms which could then be directly executed provided a flexible rapid prototyping facility for developing new statistical models and methods. The ability to check the implementation of an algorithm by comparing its results to that of an executable specification enabled us to rapidly debug both specification and implementation in an environment of changing needs.

  8. Multivariate Statistical Mapping of Spectroscopic Imaging Data

    PubMed Central

    Young, K.; Govind, V.; Sharma, K.; Studholme, C.; Maudsley, A.A; Schuff, N.

    2010-01-01

    For magnetic resonance spectroscopic imaging (MRSI) studies of the brain it is important to measure the distribution of metabolites in a regionally unbiased way - that is without restrictions to apriori defined regions of interest (ROI). Since MRSI provides measures of multiple metabolites simultaneously at each voxel, there is furthermore great interest in utilizing the multidimensional nature of MRSI for gains in statistical power. Voxelwise multivariate statistical mapping is expected to address both of these issues but it has not been previously employed for SI studies of brain. The aims of this study were to: 1) develop and validate multivariate voxel based statistical mapping for MRSI and 2) demonstrate that multivariate tests can be more powerful than univariate tests in identifying patterns of altered brain metabolism. Specifically, we compared multivariate to univariate tests in identifying known regional patterns in simulated data and regional patterns of metabolite alterations due to amyotrophic lateral sclerosis, a devastating brain disease of the motor neurons. PMID:19953514

  9. Studies in statistical signal processing

    NASA Astrophysics Data System (ADS)

    Kailath, Thomas

    1990-06-01

    The primary objective of our research is to develop efficient and numerically stable algorithms for nonstationary signal processing problems by understanding and exploiting special structures, both deterministic and stochastic, in the problems. We also strive to establish and broaden links with related disciplines, such as cascade filter synthesis, scattering theory, numerical linear algebra, and mathematical operator theory for the purpose of cross fertilization of ideas and techniques. These explorations have led to new results both in estimation theory and in these other fields, e.g., to new algorithms for triangular and QR factorization of structured matrices, new techniques for root location and stability testing, new realizations for multiple-input/multiple-output (MIMO) transfer functions, and new recursions for orthogonal polynomials on the unit circle and the real line as well as on other curves.

  10. Controlling the statistical properties of expanding maps

    NASA Astrophysics Data System (ADS)

    Galatolo, Stefano; Pollicott, Mark

    2017-07-01

    How can one change a system, in order to change its statistical properties in a prescribed way? In this note we consider a control problem related to the theory of linear response. Given an expanding map of the unit circle with an associated invariant density, we can consider the inverse problem of finding which first order changes in the transformation can achieve a given first order perturbation in the density. We show the general mathematical structure of the problem, the existence of many solutions in the case of expanding maps of the circle and the existence of optimal ones. We investigate in depth the example of the doubling map, where we give a complete solution of the problem.

  11. Statistical characterization of the standard map

    NASA Astrophysics Data System (ADS)

    Ruiz, Guiomar; Tirnakli, Ugur; Borges, Ernesto P.; Tsallis, Constantino

    2017-06-01

    The standard map, paradigmatic conservative system in the (x, p) phase space, has been recently shown (Tirnakli and Borges (2016 Sci. Rep. 6 23644)) to exhibit interesting statistical behaviors directly related to the value of the standard map external parameter K. A comprehensive statistical numerical description is achieved in the present paper. More precisely, for large values of K (e.g. K  =  10) where the Lyapunov exponents are neatly positive over virtually the entire phase space consistently with Boltzmann-Gibbs (BG) statistics, we verify that the q-generalized indices related to the entropy production q{ent} , the sensitivity to initial conditions q{sen} , the distribution of a time-averaged (over successive iterations) phase-space coordinate q{stat} , and the relaxation to the equilibrium final state q{rel} , collapse onto a fixed point, i.e. q{ent}=q{sen}=q{stat}=q{rel}=1 . In remarkable contrast, for small values of K (e.g. K  =  0.2) where the Lyapunov exponents are virtually zero over the entire phase space, we verify q{ent}=q{sen}=0 , q{stat} ≃ 1.935 , and q{rel} ≃1.4 . The situation corresponding to intermediate values of K, where both stable orbits and a chaotic sea are present, is discussed as well. The present results transparently illustrate when BG behavior and/or q-statistical behavior are observed.

  12. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  13. Statistical mapping of count survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.; Sauer, J.R.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.

    2002-01-01

    We apply a Poisson mixed model to the problem of mapping (or predicting) bird relative abundance from counts collected from the North American Breeding Bird Survey (BBS). The model expresses the logarithm of the Poisson mean as a sum of a fixed term (which may depend on habitat variables) and a random effect which accounts for remaining unexplained variation. The random effect is assumed to be spatially correlated, thus providing a more general model than the traditional Poisson regression approach. Consequently, the model is capable of improved prediction when data are autocorrelated. Moreover, formulation of the mapping problem in terms of a statistical model facilitates a wide variety of inference problems which are cumbersome or even impossible using standard methods of mapping. For example, assessment of prediction uncertainty, including the formal comparison of predictions at different locations, or through time, using the model-based prediction variance is straightforward under the Poisson model (not so with many nominally model-free methods). Also, ecologists may generally be interested in quantifying the response of a species to particular habitat covariates or other landscape attributes. Proper accounting for the uncertainty in these estimated effects is crucially dependent on specification of a meaningful statistical model. Finally, the model may be used to aid in sampling design, by modifying the existing sampling plan in a manner which minimizes some variance-based criterion. Model fitting under this model is carried out using a simulation technique known as Markov Chain Monte Carlo. Application of the model is illustrated using Mourning Dove (Zenaida macroura) counts from Pennsylvania BBS routes. We produce both a model-based map depicting relative abundance, and the corresponding map of prediction uncertainty. We briefly address the issue of spatial sampling design under this model. Finally, we close with some discussion of mapping in relation to

  14. Statistical aspects of genetic mapping in autopolyploids.

    PubMed

    Ripol, M I; Churchill, G A; da Silva, J A; Sorrells, M

    1999-07-22

    Many plant species of agriculture importance are polyploid, having more than two copies of each chromosome per cell. In this paper, we describe statistical methods for genetic map construction in autopolyploid species with particular reference to the use of molecular markers. The first step is to determine the dosage of each DNA fragment (electrophoretic band) from its segregation ratio. Fragments present in a single dose can be used to construct framework maps for individual chromosomes. Fragments present in multiple doses can often be used to link the single chromosome maps into homologous groups and provide additional ordering information. Marker phenotype probabilities were calculated for pairs of markers arranged in different configurations among the homologous chromosomes. These probabilities were used to compute a maximum likelihood estimator of the recombination fraction between pairs of markers. A likelihood ratio test for linkage of multidose markers was derived. The information provided by each configuration and power and sample size considerations are also discussed. A set of 294 RFLP markers scored on 90 plants of the species Saccharum spontaneum L. was used to illustrate the construction of an autopolyploid map. Previous studies conducted on the same data revealed that this species of sugar cane is an autooctaploid with 64 chromosomes arranged into eight homologous groups. The methodology described permitted consolidation of 54 linkage groups into ten homologous groups.

  15. Model for neural signaling leap statistics

    NASA Astrophysics Data System (ADS)

    Chevrollier, Martine; Oriá, Marcos

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.

  16. Statistical physics approaches to understanding physiological signals

    NASA Astrophysics Data System (ADS)

    Chen, Zhi

    This thesis applies novel statistical physics approaches to investigate complex mechanisms underlying some physiological signals related to human motor activity and stroke. The scale-invariant properties of motor activity fluctuations and the phase coupling between blood flow (BF) in the brain and blood pressure (BP) at the finger are studied. Both BF and BP signals are controlled by cerebral autoregulation, the impairment of which is relevant to stroke. Part I of this thesis introduces experimental methods of assessing human activity fluctuations, BF and BP signals. These signals are often nonstationary, i.e., the mean and the standard deviation of signals are not invariant under time shifts. This fact imposes challenges in correctly analyzing properties of such signals. A review of conventional methods and the methods from statistical physics in quantifying long-range power-law correlations (an important scale-invariant property) and phase coupling in nonstationary signals is provided. Part II investigates the effects of trends, nonstationarities and applying certain nonlinear filters on the scale-invariant properties of signals. Nonlinear logarithmic filters are shown to change correlation properties of anti-correlated signals and strongly positively-correlated signals. It is also shown that different types of trends may change correlation properties and thus mask true correlations in the original signal. A "superposition rule" is established to quantitatively describe the relationship among correlation properties of any two signals and the sum of these two signals. Based on this rule, simulations are conducted to show how to distinguish the correlations due to trends and nonstationaries from the true correlations in the real world signals. Part III investigates dynamics of human activity fluctuations. Results suggest that apparently random forearm motion possesses previously unrecognized dynamic patterns characterized by common distribution forms, scale

  17. Apparatus for statistical time-series analysis of electrical signals

    NASA Technical Reports Server (NTRS)

    Stewart, C. H. (Inventor)

    1973-01-01

    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented.

  18. Statistical signal processing in sensor networks

    NASA Astrophysics Data System (ADS)

    Guerriero, Marco

    approach to overcoming the difficulties in large-sensor surveillance, and we illustrate promising performance results with simulated surveillance data. The third topic of this dissertation deals with distributed target detection in SN using Scan Statistics. We introduce a sequential procedure to detect a target with distributed sensors in a two dimensional region. The detection is carried out in a mobile fusion center which successively counts the number of binary decisions reported by local sensors lying inside its moving field of view. This is a two-dimensional scan statistic an emerging tool from the statistics field that has been applied to a variety of anomaly detection problems such as of epidemics or computer intrusion, but that seems to be unfamiliar to the signal processing community. We show that an optimal size of the field of view exists. We compare the sequential two-dimensional scan statistic test and two other tests. We also present results for system level detection. In the last topic we study a Repeated Significance Test (RST) with applications to sequential detection in SN. We introduce a randomly truncated sequential hypothesis test. Using the framework of a RST, we study a sequential test with truncation time based on a random stopping time. Using the Functional Central Limit Theorem (FCLT) for a sequence of statistics, we derive a general result that can be employed in developing a repeated significance test with random sample size. We present effective methods for evaluating accurate approximations for the probability of type I error and the power function. Numerical results are presented to evaluate the accuracy of these approximations. We apply the proposed test to a decentralized sequential detection in sensor networks (SN) with communication constraints. Finally a sequential detection problem with measurements at random times is investigated.

  19. Maximally Informative Statistics for Localization and Mapping

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.

    2001-01-01

    This paper presents an algorithm for localization and mapping for a mobile robot using monocular vision and odometry as its means of sensing. The approach uses the Variable State Dimension filtering (VSDF) framework to combine aspects of Extended Kalman filtering and nonlinear batch optimization. This paper describes two primary improvements to the VSDF. The first is to use an interpolation scheme based on Gaussian quadrature to linearize measurements rather than relying on analytic Jacobians. The second is to replace the inverse covariance matrix in the VSDF with its Cholesky factor to improve the computational complexity. Results of applying the filter to the problem of localization and mapping with omnidirectional vision are presented.

  20. A Statistical Approach for Ambiguous Sequence Mappings

    USDA-ARS?s Scientific Manuscript database

    When attempting to map RNA sequences to a reference genome, high percentages of short sequence reads are often assigned to multiple genomic locations. One approach to handling these “ambiguous mappings” has been to discard them. This results in a loss of data, which can sometimes be as much as 45% o...

  1. Geometry of basic statistical physics mapping

    NASA Astrophysics Data System (ADS)

    Angelelli, Mario; Konopelchenko, Boris

    2016-09-01

    The geometry of hypersurfaces defined by the relation which generalizes the classical formula for free energy in terms of microstates is studied. The induced metric, the Riemann curvature tensor, the Gauss-Kronecker curvature and its associated entropy are calculated. A special class of ideal statistical hypersurfaces is analyzed in detail. Non-ideal hypersurfaces and singularities similar to those of the phase transitions are considered. The tropical limit of the statistical hypersurfaces and the double scaling tropical limit are discussed too.

  2. Statistical mechanics and visual signal processing

    NASA Astrophysics Data System (ADS)

    Potters, Marc; Bialek, William

    1994-11-01

    We show how to use the language of statistical field theory to address and solve problems in which one must estimate some aspect of the environnent from the data in an array of sensors. In the field theory formulation the optimal estimator can be written as an expectation value in an ensemble where the input data act as external field. Problems at low signal-to-noise ratio can be solved in perturbation theory, while high signal-to-noise ratios are treated with a saddle-point approximation. These ideas are illustrated in detail by an example of visual motion estimation which is chosen to model a problem solved by the fly's brain. The optimal estimator bas a rich structure, adapting to various parameters of the environnent such as the mean-square contrast and the corrélation time of contrast fluctuations. This structure is in qualitative accord with existing measurements on motion sensitive neurons in the fly's brain, and the adaptive properties of the optimal estimator may help resolve conficts among different interpretations of these data. Finally we propose some crucial direct tests of the adaptive behavior. Nous montrons comment employer le langage de la théorie statistique des champs pour poser et résoudre des problèmes où l'on doit estimer une caractéristique de l'environnement à l'aide de données provenant d'un ensemble de détecteurs. Dans ce formalisme, l'estimateur optimal peut être écrit comme la valeur moyenne d'un opérateur, l'ensemble des données d'entrée agissant comme un champ externe. Les problèmes à faible rapport signal-bruit sont résolus par la théorie des perturbations. La méthode du col est employée pour ceux à haut rapport signal-bruit. Ces idées sont illustrées en détails sur un modèle d'estimation visuelle du mouvement basé sur un problème résolu par la mouche. L'estimateur optimal a une structure très riche, s'adaptant à divers paramètres de l'environnement tels la variance du contraste et le temps de corr

  3. Efficient statistical mapping of avian count data

    USGS Publications Warehouse

    Royle, J. Andrew; Wikle, C.K.

    2005-01-01

    We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.

  4. A statistical model of intra-chromosome contact maps.

    PubMed

    Nazarov, Leonid I; Tamm, Mikhail V; Avetisov, Vladik A; Nechaev, Sergei K

    2015-02-07

    A statistical model describing a fine structure of the intra-chromosome maps obtained by a genome-wide chromosome conformation capture method (Hi-C) is proposed. The model combines hierarchical chain folding with a quenched heteropolymer structure of primary chromatin sequences. It is conjectured that the observed Hi-C maps are statistical averages over many different ways of hierarchical genome folding. It is shown that the existence of a quenched primary structure coupled with hierarchical folding induces a full range of features observed in experimental Hi-C maps: hierarchical elements, chess-board intermittency and large-scale compartmentalization.

  5. Statistical Characterization of the Medical Ultrasound Echo Signals

    PubMed Central

    Cai, Runqiu

    2016-01-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis. PMID:27991564

  6. Statistical Characterization of the Medical Ultrasound Echo Signals

    NASA Astrophysics Data System (ADS)

    Cai, Runqiu

    2016-12-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis.

  7. Spectral statistics of Lyapunov exponents in coupled map networks

    NASA Astrophysics Data System (ADS)

    Patra, Soumen K.; Ghosh, Anandamohan

    2017-03-01

    Spectral statistics of the Lyapunov exponents computed for coupled map networks bear strong signatures of different phases emergent from the spatiotemporal dynamics. We find that the distributions of gaps in the Lyapunov spectrum for the chaotic and the synchronized phases show Poisson and GOE statistics, respectively, in agreement with the universal predictions of the random matrix theory. The presence of quenched disorder in coupled map networks generates a non-trivial chaotic Griffiths phase for intermediate coupling strengths. The Lyapunov spectral statistics obtained for the chaotic Griffiths phase show strong suppression of gaps and the Lyapunov vectors indicate a unique intermittent dynamical localization.

  8. Analysis of the chaotic maps generating different statistical distributions

    NASA Astrophysics Data System (ADS)

    Lawnik, M.

    2015-09-01

    The analysis of the chaotic maps, enabling the derivation of numbers from given statistical distributions was presented. The analyzed chaotic maps are in the form xk+1 = F-1(U(F(xk))), where F is the cumulative distribution function, U is the skew tent map and F-1 is the inverse function of F. The analysis was presented on the example of chaotic map with the standard normal distribution in view of his computational efficiency and accuracy. On the grounds of the conducted analysis, it should be indicated that the method not always allows to generate the values from the given distribution.

  9. Tissue Characterization on Ultrasound Harmonic Signals using Nakagami Statistics

    NASA Astrophysics Data System (ADS)

    Lin, Fanglue; Cristea, Anca; Cachard, Christian; Basset, Olivier

    Quantitative ultrasound (QUS) imaging provides a way to characterize biological tissue. The QUS estimates can be obtained from the envelope statistics. Previous studies are mainly based on the whole backscattered signals analysis. However, the ultrasound propagation is a nonlinear process and the harmonic signals can therefore reveal the nonlinear nature of a biological medium. The present study investigates the statistics of harmonic signal envelopes to relate the distribution parameters to the nonlinear coefficients. The main results demonstrate that the distributions exhibit a different behavior for fundamental and harmonic signals and that media with different nonlinearities can be distinguished, when using Nakagami statistics on the harmonic signal envelopes.

  10. Signal Processing in the Linear Statistical Model

    DTIC Science & Technology

    1994-11-04

    Covariance Bounds," Proc 07th Asilo - mar Conf on Signals, Systems, and Computers, Pacific Grove, CA (November 1993). [MuS9l] C. T. Mullis and L. L. Scharf...Transforms," Proc Asilo - mar Con. on Signals, Systems, and Computers, Asilomar, CA (November 1991). [SpS94] M. Spurbeck and L. L. Scharf, "Least Squares...McWhorter and L. L. Scharf, "Multiwindow Estimators of Correlation," Proc 28th Annual Asilo - mar Conf on Signals, Systems, and Computers, Asilomar, CA

  11. Statistical Analysis of Molecular Signal Recording

    PubMed Central

    Glaser, Joshua I.; Moffitt, Jeffrey R.; Tyo, Keith; Boyden, Edward S.; Church, George; Kording, Konrad P.

    2013-01-01

    A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a “molecular ticker tape”, in which an engineered DNA polymerase (DNAP) writes time-varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding, particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties similar to natural polymerases could be used to perform experiments in which neural activity is compared across several experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations. Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike temporal resolution over experimentally relevant timescales. PMID:23874187

  12. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics.

    PubMed

    Tirnakli, Ugur; Borges, Ernesto P

    2016-03-23

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results.

  13. Localizing National Fragmentation Statistics with Forest Type Maps

    Treesearch

    Kurt H. Riitters; John W. Coulston; James D. Wickham

    2003-01-01

    Fragmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003 National Report on Sustainable Forests by combining state vegetation maps with national...

  14. SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS

    SciTech Connect

    Patanchon, Guillaume; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Netterfield, Calvin B.; Olmi, Luca

    2009-12-20

    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion-limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyze BLAST observations of a roughly 10 deg{sup 2} map centered on the Great Observatories Origins Deep Survey South field. We provide estimates of number counts at the three BLAST wavelengths 250, 350, and 500 mum; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power laws. We observe a generally very steep slope for the counts of about -3.7 at 250 mum, and -4.5 at 350 and 500 mum, over the range approx0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well suited for analysis of data from the Herschel satellite.

  15. Map of isotachs - statistical approach and meteorological information transfer

    SciTech Connect

    Menezes, A.A.; da Silva, J.I.; Coutinho, C.E.O.

    1985-09-01

    This report gives a statistical treatment of available wind data from airports in Brazil and provides a map of isotachs for extreme yearly wind velocities. A comparison between the statistical models of Frechet and Gumbel is carried out, leading to the adoption of the latter. The low density of meteorological stations used in this approach restricts the knowledge of wind activity. This fact was accounted for in the analytical method for spatial transfer of climatic data. Recommendations are given on how to enlarge the amount of available data.

  16. Fault Tolerant Statistical Signal Processing Algorithms for Parallel Architectures.

    DTIC Science & Technology

    2014-09-26

    AD-fi57 393 FAULT TOLERANT STATISTICAL SIGNAL PROCESSING ALGORITHMS i/i FOR PARALLEL ARCH U) JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF ELECTRICAL...COVERED * ’ Fault Tolerant Statistical Signal Processing Technical A l g o r i t h m s f o r P a r a l l e l A r c h i t e c t u r e s a ._ P E R F O R M I...Identify by block number) , Fault Tolerance, Signal Processing, Parallel Architecture 0 20. ABSTRACT (Continue on reveree side It neceseary and identify by

  17. Biological Parametric Mapping WITH Robust AND Non-Parametric Statistics

    PubMed Central

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-01-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, regions of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrices. Recently, biological parametric mapping has extended the widely popular statistical parametric mapping approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and non-parametric regression in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provide a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities. PMID:21569856

  18. Biological parametric mapping with robust and non-parametric statistics.

    PubMed

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M; Landman, Bennett A

    2011-07-15

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, regions of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrices. Recently, biological parametric mapping has extended the widely popular statistical parametric mapping approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and non-parametric regression in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provide a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics

    PubMed Central

    Tirnakli, Ugur; Borges, Ernesto P.

    2016-01-01

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results. PMID:27004989

  20. Diffusion-based population statistics using tract probability maps.

    PubMed

    Wassermann, Demian; Kanterakis, Efstathios; Gur, Ruben C; Deriche, Rachid; Verma, Ragini

    2010-01-01

    We present a novel technique for the tract-based statistical analysis of diffusion imaging data. In our technique, we represent each white matter (WM) tract as a tract probability map (TPM): a function mapping a point to its probability of belonging to the tract. We start by automatically clustering the tracts identified in the brain via tractography into TPMs using a novel Gaussian process framework. Then, each tract is modeled by the skeleton of its TPM, a medial representation with a tubular or sheet-like geometry. The appropriate geometry for each tract is implicitly inferred from the data instead of being selected a priori, as is done by current tract-specific approaches. The TPM representation makes it possible to average diffusion imaging based features along directions locally perpendicular to the skeleton of each WM tract, increasing the sensitivity and specificity of statistical analyses on the WM. Our framework therefore facilitates the automated analysis of WM tract bundles, and enables the quantification and visualization of tract-based statistical differences between groups. We have demonstrated the applicability of our framework by studying WM differences between 34 schizophrenia patients and 24 healthy controls.

  1. One-dimensional statistical parametric mapping in Python.

    PubMed

    Pataky, Todd C

    2012-01-01

    Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.

  2. Detection of Doppler Microembolic Signals Using High Order Statistics

    PubMed Central

    Geryes, Maroun; Hassan, Walid; Mcheick, Ali

    2016-01-01

    Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of microemboli. The most common standard detection is achieved through the Doppler energy signal and depends on an empirically set constant threshold. On the other hand, in the past few years, higher order statistics have been an extensive field of research as they represent descriptive statistics that can be used to detect signal outliers. In this study, we propose new types of microembolic detectors based on the windowed calculation of the third moment skewness and fourth moment kurtosis of the energy signal. During energy embolus-free periods the distribution of the energy is not altered and the skewness and kurtosis signals do not exhibit any peak values. In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis signals exhibit peaks, corresponding to the latter emboli. Applied on real signals, the detection of microemboli through the skewness and kurtosis signals outperformed the detection through standard methods. The sensitivities and specificities reached 78% and 91% and 80% and 90% for the skewness and kurtosis detectors, respectively. PMID:28096889

  3. Statistical optimisation techniques in fatigue signal editing problem

    SciTech Connect

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  4. Significance probability mapping: the final touch in t-statistic mapping.

    PubMed

    Hassainia, F; Petit, D; Montplaisir, J

    1994-01-01

    Significance Probability Mapping (SPM), based on Student's t-statistic, is widely used for comparing mean brain topography maps of two groups. The map resulting from this process represents the distribution of t-values over the entire scalp. However, t-values by themselves cannot reveal whether or not group differences are significant. Significance levels associated with a few t-values are therefore commonly indicated on map legends to give the reader an idea of the significance levels of t-values. Nevertheless, a precise significance level topography cannot be achieved with these few significance values. We introduce a new kind of map which directly displays significance level topography in order to relieve the reader from converting multiple t-values to their corresponding significance probabilities, and to obtain a good quantification and a better localization of regions with significant differences between groups. As an illustration of this type of map, we present a comparison of EEG activity in Alzheimer's patients and age-matched control subjects for both wakefulness and REM sleep.

  5. Protein Scaffolds in MAP Kinase Signalling

    PubMed Central

    Brown, Matthew D.; Sacks, David B.

    2009-01-01

    The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond in an appropriate way. Diverse cellular functions, ranging from differentiation and proliferation to migration and inflammation, are regulated by MAPK signalling. Therefore, cells have developed mechanisms by which this single pathway modulates numerous cellular responses from a wide range of activating factors. This specificity is achieved by several mechanisms, including temporal and spatial control of MAPK signalling components. Key to this control are protein scaffolds, which are multidomain proteins that interact with components of the MAPK cascade in order to assemble signalling complexes. Studies conducted on different scaffolds, in different biological systems, have shown that scaffolds exert substantial control over MAPK signalling, influencing the signal intensity, time course and, importantly, the cellular responses. Protein scaffolds, therefore, are integral elements in the modulation of the MAPK network in fundamental physiological processes. PMID:19091303

  6. Signal Processing For Chemical Sensing: Statistics or Biological Inspiration

    NASA Astrophysics Data System (ADS)

    Marco, Santiago

    2011-09-01

    Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

  7. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  8. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  9. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  10. Statistical quality indicators for electron-density maps

    PubMed Central

    Tickle, Ian J.

    2012-01-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ2 significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor. PMID:22505266

  11. Statistical quality indicators for electron-density maps.

    PubMed

    Tickle, Ian J

    2012-04-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ(2) significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  12. Statistical quality indicators for electron-density maps

    SciTech Connect

    Tickle, Ian J.

    2012-04-01

    A likelihood-based metric for scoring the local agreement of a structure model with the observed electron density is described. The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ{sup 2} significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  13. Statistical signal processing for an implantable ethanol biosensor.

    PubMed

    Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J

    2006-01-01

    The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. Signal processing for an implantable ethanol MEMS bio sensor under simultaneous development is described where the sensor-signal processing system will provide a novel approach to this need. For safety and user acceptability issues, the sensor will be implanted subcutaneously and therefore measure peripheral-tissue ethanol concentration. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which determines ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration.

  14. How Service Choreography Statistics Reduce the Ontology Mapping Problem

    NASA Astrophysics Data System (ADS)

    Besana, Paolo; Robertson, Dave

    In open and distributed environments ontology mapping provides interoperability between interacting actors. However, conventional mapping systems focus on acquiring static information, and on mapping whole ontologies, which is infeasible in open systems. This paper shows that the interactions themselves between the actors can be used to predict mappings, simplifying dynamic ontology mapping. The intuitive idea is that similar interactions follow similar conventions and patterns, which can be analysed. The computed model can be used to suggest the possible mappings for the exchanged messages in new interactions. The suggestions can be evaluate by any standard ontology matcher: if they are accurate, the matchers avoid evaluating mappings unrelated to the interaction.

  15. The statistics of local motion signals in naturalistic movies.

    PubMed

    Nitzany, Eyal I; Victor, Jonathan D

    2014-04-14

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics.

  16. The statistics of local motion signals in naturalistic movies

    PubMed Central

    Nitzany, Eyal I.; Victor, Jonathan D.

    2014-01-01

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics. PMID:24732243

  17. Pooling sexes when assessing ground reaction forces during walking: Statistical Parametric Mapping versus traditional approach.

    PubMed

    Castro, Marcelo P; Pataky, Todd C; Sole, Gisela; Vilas-Boas, Joao Paulo

    2015-07-16

    Ground reaction force (GRF) data from men and women are commonly pooled for analyses. However, it may not be justifiable to pool sexes on the basis of discrete parameters extracted from continuous GRF gait waveforms because this can miss continuous effects. Forty healthy participants (20 men and 20 women) walked at a cadence of 100 steps per minute across two force plates, recording GRFs. Two statistical methods were used to test the null hypothesis of no mean GRF differences between sexes: (i) Statistical Parametric Mapping-using the entire three-component GRF waveform; and (ii) traditional approach-using the first and second vertical GRF peaks. Statistical Parametric Mapping results suggested large sex differences, which post-hoc analyses suggested were due predominantly to higher anterior-posterior and vertical GRFs in early stance in women compared to men. Statistically significant differences were observed for the first GRF peak and similar values for the second GRF peak. These contrasting results emphasise that different parts of the waveform have different signal strengths and thus that one may use the traditional approach to choose arbitrary metrics and make arbitrary conclusions. We suggest that researchers and clinicians consider both the entire gait waveforms and sex-specificity when analysing GRF data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Statistical Analysis of Noisy Signals Using Classification Tools

    SciTech Connect

    Thompson, Sandra E.; Heredia-Langner, Alejandro; Johnson, Timothy J.; Foster, Nancy S.; Valentine, Nancy B.; Amonette, James E.

    2005-06-04

    The potential use of chemicals, biotoxins and biological pathogens are a threat to military and police forces as well as the general public. Rapid identification of these agents is made difficult due to the noisy nature of the signal that can be obtained from portable, in-field sensors. In previously published articles, we created a flowchart that illustrated a method for triaging bacterial identification by combining standard statistical techniques for discrimination and identification with mid-infrared spectroscopic data. The present work documents the process of characterizing and eliminating the sources of the noise and outlines how multidisciplinary teams are necessary to accomplish that goal.

  19. Linear System Models for Ultrasonic Imaging: Application to Signal Statistics

    PubMed Central

    Zemp, Roger J.; Abbey, Craig K.; Insana, Michael F.

    2009-01-01

    Linear equations for modeling echo signals from shift-variant systems forming ultrasonic B-mode, Doppler, and strain images are analyzed and extended. The approach is based on a solution to the homogeneous wave equation for random inhomogeneous media. When the system is shift-variant, the spatial sensitivity function—defined as a spatial weighting function that determines the scattering volume for a fixed point of time—has advantages over the point-spread function traditionally used to analyze ultrasound systems. Spatial sensitivity functions are necessary for determining statistical moments in the context of rigorous image quality assessment, and they are time-reversed copies of point-spread functions for shift variant systems. A criterion is proposed to assess the validity of a local shift-invariance assumption. The analysis reveals realistic situations in which in-phase signals are correlated to the corresponding quadrature signals, which has strong implications for assessing lesion detectability. Also revealed is an opportunity to enhance near- and far-field spatial resolution by matched filtering unfocused beams. The analysis connects several well-known approaches to modeling ultrasonic echo signals. PMID:12839176

  20. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Mitra, Sanjit; Rotti, Aditya; Pant, Nidhi; Souradeep, Tarun

    2016-06-01

    Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients and . Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of "throwing the baby out with the bathwater".

  1. A comprehensive map of the mTOR signaling network

    PubMed Central

    Caron, Etienne; Ghosh, Samik; Matsuoka, Yukiko; Ashton-Beaucage, Dariel; Therrien, Marc; Lemieux, Sébastien; Perreault, Claude; Roux, Philippe P; Kitano, Hiroaki

    2010-01-01

    The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer. PMID:21179025

  2. Reconstruction of Thermographic Signals to Map Perforator Vessels in Humans.

    PubMed

    Liu, Wei-Min; Maivelett, Jordan; Kato, Gregory J; Taylor, James G; Yang, Wen-Chin; Liu, Yun-Chung; Yang, You-Gang; Gorbach, Alexander M

    2012-01-01

    Thermal representations on the surface of a human forearm of underlying perforator vessels have previously been mapped via recovery-enhanced infrared imaging, which is performed as skin blood flow recovers to baseline levels following cooling of the forearm. We noted that the same vessels could also be observed during reactive hyperaemia tests after complete 5-min occlusion of the forearm by an inflatable cuff. However, not all subjects showed vessels with acceptable contrast. Therefore, we applied a thermographic signal reconstruction algorithm to reactive hyperaemia testing, which substantially enhanced signal-to-noise ratios between perforator vessels and their surroundings, thereby enabling their mapping with higher accuracy and a shorter occlusion period.

  3. Carrier recovery systems for arbitrarily mapped APK signals

    NASA Astrophysics Data System (ADS)

    Matsuo, Y.; Namiki, J.

    1982-10-01

    This paper introduces new carrier recovery techniques for general amplitude-phase keying (APK) modulation signals. The APK's include not only normal QAM but also arbitrarily mapped APK's, including an unsymmetrical APK. Difficulty in phase error detection due to signal mapping complexity, undesirable stable-lock point existence, and the contradiction between a fast acquisition and an accurate steady state performance can be overcome. For that purpose, an acquisition mode and a steady-state mode are used. Furthermore, read-only memories (ROM) are used for recognizing various system states. Random sampling controlled PLL noise performance and acquisition mode carrier recovery circuit pull-in performance with hysteresis property was obtained.

  4. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling[S

    PubMed Central

    Danai, Laura V.; Guilherme, Adilson; Guntur, Kalyani V.; Straubhaar, Juerg; Nicoloro, Sarah M.; Czech, Michael P.

    2013-01-01

    Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of 14C-glucose and 14C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism. PMID:23924694

  5. Natural scene statistics and the structure of orientation maps in the visual cortex.

    PubMed

    Hunt, Jonathan J; Giacomantonio, Clare E; Tang, Huajin; Mortimer, Duncan; Jaffer, Sajjida; Vorobyov, Vasily; Ericksson, Geoffery; Sengpiel, Frank; Goodhill, Geoffrey J

    2009-08-01

    Visual activity after eye-opening influences feature map structure in primary visual cortex (V1). For instance, rearing cats in an environment of stripes of one orientation yields an over-representation of that orientation in V1. However, whether such changes also affect the higher-order statistics of orientation maps is unknown. A statistical bias of orientation maps in normally raised animals is that the probability of the angular difference in orientation preference between each pair of points in the cortex depends on the angle of the line joining those points relative to a fixed but arbitrary set of axes. Natural images show an analogous statistical bias; however, whether this drives the development of comparable structure in V1 is unknown. We examined these statistics for normal, stripe-reared and dark-reared cats, and found that the biases present were not consistently related to those present in the input, or to genetic relationships. We compared these results with two computational models of orientation map development, an analytical model and a Hebbian model. The analytical model failed to reproduce the experimentally observed statistics. In the Hebbian model, while orientation difference statistics could be strongly driven by the input, statistics similar to those seen in experimental maps arose only when symmetry breaking was allowed to occur spontaneously. These results suggest that these statistical biases of orientation maps arise primarily spontaneously, rather than being governed by either input statistics or genetic mechanisms.

  6. LOCALIZING NATIONAL FRAGMENTATION STATISTICS WITH FOREST TYPE MAPS

    EPA Science Inventory

    Fragmmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003...

  7. LOCALIZING NATIONAL FRAGMENTATION STATISTICS WITH FOREST TYPE MAPS

    EPA Science Inventory

    Fragmmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003...

  8. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  9. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  10. A statistical approach for validating eSOTER and digital soil maps in front of traditional soil maps

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Baritz, Rainer; Köthe, Rüdiger; Melms, Stephan; Günther, Susann

    2015-04-01

    During the European research project eSOTER, three different Digital Soil Maps (DSM) were developed for the pilot area Chemnitz 1:250,000 (FP7 eSOTER project, grant agreement nr. 211578). The core task of the project was to revise the SOTER method for the interpretation of soil and terrain data. It was one of the working hypothesis that eSOTER does not only provide terrain data with typical soil profiles, but that the new products actually perform like a conceptual soil map. The three eSOTER maps for the pilot area considerably differed in spatial representation and content of soil classes. In this study we compare the three eSOTER maps against existing reconnaissance soil maps keeping in mind that traditional soil maps have many subjective issues and intended bias regarding the overestimation and emphasize of certain features. Hence, a true validation of the proper representation of modeled soil maps is hardly possible; rather a statistical comparison between modeled and empirical approaches is possible. If eSOTER data represent conceptual soil maps, then different eSOTER, DSM and conventional maps from various sources and different regions could be harmonized towards consistent new data sets for large areas including the whole European continent. One of the eSOTER maps has been developed closely to the traditional SOTER method: terrain classification data (derived from SRTM DEM) were combined with lithology data (re-interpreted geological map); the corresponding terrain units were then extended with soil information: a very dense regional soil profile data set was used to define soil mapping units based on a statistical grouping of terrain units. The second map is a pure DSM map using continuous terrain parameters instead of terrain classification; radiospectrometric data were used to supplement parent material information from geology maps. The classification method Random Forest was used. The third approach predicts soil diagnostic properties based on

  11. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  12. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data.

    PubMed

    Wigginton, Janis E; Abecasis, Gonçalo R

    2005-08-15

    We describe a tool that produces summary statistics and basic quality assessments for gene-mapping data, accommodating either pedigree or case-control datasets. Our tool can also produce graphic output in the PDF format.

  13. Interfacing US Census map files with statistical graphics software: Application and use in epidemiology

    SciTech Connect

    Rizzardi, M.; Mohr, M.S.; Merrill, D.W.; Selvin, S. California Univ., Berkeley, CA . School of Public Health)

    1993-03-01

    In 1990, the United States Bureau of the Census released detailed geographic map files known as TIGER/Line (Topologically Integrated Geographic Encoding and Referencing). The TIGER files, accessible through purchase or Federal repository libraries, contain 24 billion characters of data describing various geographic features including coastlines, hydrography, transportation networks, political boundaries, etc. covering the entire United States. Many of these physical features are of potential interest in epidemiological case studies. Unfortunately, the TIGER database only provides raw alphanumeric data; no utility software, graphical or otherwise, is included. Recently, the S statistical software package has been extended to include a map display function. The map function augments S's high-level approach toward statistical analysis and graphical display of data. Coupling this statistical software with the map database developed for US Census data collection will facilitate epidemiological research. We discuss the technical background necessary to utilize the TIGER database for mapping with S. Two types of S maps, segment-based and polygon-based, are discussed along with methods to construct them from TIGER data. Polygon-based maps are useful for displaying regional statistical data; e.g., disease rates or incidence at the census tract level. Segment-based maps are easier to assemble and appropriate if the data are not regionalized. Census tract data of AIDS incidence in San Francisco (CA) and lung cancer case locations relative to petrochemical refinery sites in Contra Costa County (CA) are used to illustrate the methods and potential uses of interfacing the TIGER database with S.

  14. Effects of Concept Mapping Strategy on Learning Performance in Business and Economics Statistics

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang

    2009-01-01

    A concept map (CM) is a hierarchically arranged, graphic representation of the relationships among concepts. Concept mapping (CMING) is the process of constructing a CM. This paper examines whether a CMING strategy can be useful in helping students to improve their learning performance in a business and economics statistics course. A single…

  15. Effects of Concept Mapping Strategy on Learning Performance in Business and Economics Statistics

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang

    2009-01-01

    A concept map (CM) is a hierarchically arranged, graphic representation of the relationships among concepts. Concept mapping (CMING) is the process of constructing a CM. This paper examines whether a CMING strategy can be useful in helping students to improve their learning performance in a business and economics statistics course. A single…

  16. Statistical Signal Processing Methods in Scattering and Imaging

    NASA Astrophysics Data System (ADS)

    Zambrano Nunez, Maytee

    This Ph.D. dissertation project addresses two related topics in wave-based signal processing: 1) Cramer-Rao bound (CRB) analysis of scattering systems formed by pointlike scatterers in one-dimensional (1D) and three-dimensional (3D) spaces. 2) Compressive optical coherent imaging, based on the incorporation of sparsity priors in the reconstructions. The first topic addresses for wave scattering systems in 1D and 3D spaces the information content about scattering parameters, in particular, the targets' positions and strengths, and derived quantities, that is contained in scattering data corresponding to reflective, transmissive, and more general sensing modalities. This part of the dissertation derives the Cramer-Rao bound (CRB) for the estimation of parameters of scalar wave scattering systems formed by point scatterers. The results shed light on the fundamental difference between the approximate Born approximation model for weak scatterers and the more general multiple scattering model, and facilitate the identification of regions in parameter space where multiple scattering facilitates or obstructs the estimation of parameters from scattering data, as well as of sensing configurations giving maximal or minimal information about the parameters. The derived results are illustrated with numerical examples, with particular emphasis on the imaging resolution which we quantify via a relative resolution index borrowed from a previous paper. Additionally, this work investigates fundamental limits of estimation performance for the localization of the targets and the inverse scattering problem. The second topic of the effort describes a novel compressive-sensing-based technique for optical imaging with a coherent single-detector system. This hybrid opto-micro-electromechanical, coherent single-detector imaging system applies the latest developments in the nascent field of compressive sensing to the problem of computational imaging of wavefield intensity from a small number

  17. Visual Map Development: Bidirectional Signaling, Bifunctional Guidance Molecules, and Competition

    PubMed Central

    Feldheim, David A.; O’Leary, Dennis D. M.

    2010-01-01

    Topographic maps are a two-dimensional representation of one neural structure within another and serve as the main strategy to organize sensory information. The retina’s projection via axons of retinal ganglion cells to midbrain visual centers, the optic tectum/superior colliculus, is the leading model to elucidate mechanisms of topographic map formation. Each axis of the retina is mapped independently using different mechanisms and sets of axon guidance molecules expressed in gradients to achieve the goal of representing a point in the retina onto a point within the target. An axon’s termination along the temporal-nasal mapping axis is determined by opposing gradients of EphAs and ephrin-As that act through their forward and reverse signaling, respectively, within the projecting axons, each of which inhibits interstitial branching, cooperating with a branch-promoting activity, to generate topographic specific branching along the shaft of the parent axons that overshoot their correct termination zone along the anterior-posterior axis of the target. The dorsal-ventral termination position is then determined using a gradient of ephrin-B that can act as a repellent or attractant depending on the ephrin-B concentration relative to EphB levels on the interstitial branches to guide them along the medial-lateral axis of the target to their correct termination zone, where they arborize. In both cases, axon-axon competition results in axon mapping based on relative rather than absolute levels of repellent or attractant activity. The map is subsequently refined through large-scale pruning driven in large part by patterned retinal activity. PMID:20880989

  18. A statistical model for dissecting genomic imprinting through genetic mapping.

    PubMed

    Cui, Yuehua; Cheverud, James M; Wu, Rongling

    2007-07-01

    As a result of nonequivalent genetic contribution of maternal and paternal genomes to offsprings, genomic imprinting or called parent-of-origin effect, has been broadly identified in plants, animals and humans. Its role in shaping organism's development has been unanimously recognized. However, statistical methods for identifying imprinted quantitative trait loci (iQTL) and estimating the imprinted effect have not been well developed. In this article, we propose an efficient statistical procedure for genomewide estimating and testing the effects of significant iQTL underlying the quantitative variation of interested traits. The developed model can be applied to two different genetic cross designs, backcross and F(2) families derived from inbred lines. The proposed procedure is built within the maximum likelihood framework and implemented with the EM algorithm. Extensive simulation studies show that the proposed model is well performed in a variety of situations. To demonstrate the usefulness of the proposed approach, we apply the model to a published data in an F(2) family derived from LG/S and SM/S mouse stains. Two partially maternal imprinting iQTL are identified which regulate the growth of body weight. Our approach provides a testable framework for identifying and estimating iQTL involved in the genetic control of complex traits.

  19. Statistics of cellular signal transduction as a race to the nucleus by multiple random walkers in compartment/phosphorylation space.

    PubMed

    Lu, Ting; Shen, Tongye; Zong, Chenghang; Hasty, Jeff; Wolynes, Peter G

    2006-11-07

    Cellular signal transduction often involves a reaction network of phosphorylation and transport events arranged with a ladder topology. If we keep track of the location of the phosphate groups describing an abstract state space, a simple model of signal transduction involving enzymes can be mapped on to a problem of how multiple biased random walkers compete to reach their target in the nucleus yielding a signal. Here, the first passage time probability and the survival probability for multiple walkers can be used to characterize the response of the network. The statistics of the first passage through the network has an asymmetric distribution with a long tail arising from the hierarchical structure of the network. This distribution implies a significant difference between the mean and the most probable signal transduction time. The response patterns for various external inputs generated by our model agree with recent experiments. In addition, the model predicts that there is an optimal phosphorylation enzyme concentration for rapid signal transduction.

  20. Estimation of the statistical characteristics of signals on a background of atmospheric radio noise

    NASA Astrophysics Data System (ADS)

    Kabanov, V. V.

    1987-09-01

    A method for the detection and estimation of a signal on a background of atmospheric radio noise (ARN) with unknown characteristics is proposed which is based on the presence or absence of zeros in the characteristic functions (CFs) of the signal and ARN. The zero-position estimation makes it possible to verify statistical hypotheses, and to determine the parameters of the signal CF model and the signal statistical characteristics.

  1. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  2. Construction of cosmic string induced temperature anisotropy maps with CMBFAST and statistical analysis

    NASA Astrophysics Data System (ADS)

    Simatos, N.; Perivolaropoulos, L.

    2001-01-01

    We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.

  3. Sharing brain mapping statistical results with the neuroimaging data model.

    PubMed

    Maumet, Camille; Auer, Tibor; Bowring, Alexander; Chen, Gang; Das, Samir; Flandin, Guillaume; Ghosh, Satrajit; Glatard, Tristan; Gorgolewski, Krzysztof J; Helmer, Karl G; Jenkinson, Mark; Keator, David B; Nichols, B Nolan; Poline, Jean-Baptiste; Reynolds, Richard; Sochat, Vanessa; Turner, Jessica; Nichols, Thomas E

    2016-12-06

    Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html.

  4. Sharing brain mapping statistical results with the neuroimaging data model

    PubMed Central

    Maumet, Camille; Auer, Tibor; Bowring, Alexander; Chen, Gang; Das, Samir; Flandin, Guillaume; Ghosh, Satrajit; Glatard, Tristan; Gorgolewski, Krzysztof J.; Helmer, Karl G.; Jenkinson, Mark; Keator, David B.; Nichols, B. Nolan; Poline, Jean-Baptiste; Reynolds, Richard; Sochat, Vanessa; Turner, Jessica; Nichols, Thomas E.

    2016-01-01

    Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html. PMID:27922621

  5. NetSlim: high-confidence curated signaling maps

    PubMed Central

    Raju, Rajesh; Nanjappa, Vishalakshi; Balakrishnan, Lavanya; Radhakrishnan, Aneesha; Thomas, Joji Kurian; Sharma, Jyoti; Tian, Maozhen; Palapetta, Shyam Mohan; Subbannayya, Tejaswini; Sekhar, Nirujogi Raja; Muthusamy, Babylakshmi; Goel, Renu; Subbannayya, Yashwanth; Telikicherla, Deepthi; Bhattacharjee, Mitali; Pinto, Sneha M.; Syed, Nazia; Srikanth, Manda Srinivas; Sathe, Gajanan J.; Ahmad, Sartaj; Chavan, Sandip N.; Sameer Kumar, Ghantasala S.; Marimuthu, Arivusudar; Prasad, T. S. K.; Harsha, H. C.; Rahiman, B Abdul; Ohara, Osamu; Bader, Gary D.; Sujatha Mohan, S.; Schiemann, William P.; Pandey, Akhilesh

    2011-01-01

    We previously developed NetPath as a resource for comprehensive manually curated signal transduction pathways. The pathways in NetPath contain a large number of molecules and reactions which can sometimes be difficult to visualize or interpret given their complexity. To overcome this potential limitation, we have developed a set of more stringent curation and inclusion criteria for pathway reactions to generate high-confidence signaling maps. NetSlim is a new resource that contains this ‘core’ subset of reactions for each pathway for easy visualization and manipulation. The pathways in NetSlim are freely available at http://www.netpath.org/netslim. Database URL: www.netpath.org/netslim PMID:21959865

  6. Statistics for ionospherically diffracted VHF/UHF signals.

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Fremouw, E. J.

    1973-01-01

    In this paper, a general characterization of the statistics for an ionospherically diffracted, monochromatic plane wave is presented. The main results are restricted to weak scatter, although two possible extensions that accommodate large phase perturbations and multiple scatter are discussed. A detailed discussion of the first-order statistics of amplitude is given. The general Gaussian distribution is discussed together with its Nakagami-distribution approximation and the log-normal distribution. By using a segment of ATS-3 satellite data recorded at Lima, Peru, we show equally good fits to Gaussian and log-normal distributions at least for the limited dynamic range available. The Nakagami distribution provides only a poor approximation.

  7. Statistical threshold determination method through noise map generation for two dimensional amplitude and time-of-flight mapping of guided waves

    NASA Astrophysics Data System (ADS)

    Yenn Chong, See; Lee, Jung-Ryul; Yik Park, Chan

    2013-03-01

    Conventional threshold crossing technique generally encounters the difficulty in setting a common threshold level in the extraction of the respective time-of-flights (ToFs) and amplitudes from the guided waves obtained at many different points by spatial scanning. Therefore, we propose a statistical threshold determination method through noise map generation to automatically process numerous guided waves having different propagation distances. First, a two-dimensional (2-D) noise map is generated using one-dimensional (1-D) WT magnitudes at time zero of the acquired waves. Then, the probability density functions (PDFs) of Gamma distribution, Weibull distribution and exponential distribution are used to model the measured 2-D noise map. Graphical goodness-of-fit measurements are used to find the best fit among the three theoretical distributions. Then, the threshold level is automatically determined by selecting the desired confidence level of the noise rejection in the cumulative distribution function of the best fit PDF. Based on this threshold level, the amplitudes and ToFs are extracted and mapped into a 2-D matrix array form. The threshold level determined by the noise statistics may cross the noise signal after time zero. These crossings are represented as salt-and-pepper noise in the ToF and amplitude maps but finally removed by the 1-D median filter. This proposed method was verified in a thick stainless steel hollow cylinder where guided waves were acquired in an area of 180 mm×126 mm of the cylinder by using a laser ultrasonic scanning system and an ultrasonic sensor. The Gamma distribution was estimated as the best fit to the verification experimental data by the proposed algorithm. The statistical parameters of the Gamma distribution were used to determine the threshold level appropriate for most of the guided waves. The ToFs and amplitudes of the first arrival mode were mapped into a 2-D matrix array form. Each map included 447 noisy points out of 90

  8. Statistical Signal Models and Algorithms for Image Analysis

    DTIC Science & Technology

    1984-10-25

    In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction

  9. Statistical Behavior of Signals from the Wideband Satellite

    DTIC Science & Technology

    1978-12-31

    Nakagami - m distribution for intensity, which approaches the Rice distribution as m approaches unity from above and equals the Rayleigh distribution when...generalized Gaussian hypotheses in different regimes of the signal fluctuation spectrum; and Nakagami - m , which is an approximation to generalized...between the two classical models. A strong conclusion has been reached in support of the Nakagami - m distribution as a general descriptor of intensity

  10. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models.

    PubMed

    Chen, Ben-Ting; Shieh, Jay; Huang, Chang-Wei; Chen, Wen-Shiang; Chen, Shing-Ru; Chen, Chuin-Shan

    2014-01-01

    Non-invasive temperature measurement of tissues deep inside the body has great potential for clinical applications, such as temperature monitoring during thermal therapy and early diagnosis of diseases. We developed a novel method for both temperature estimation and thermal mapping that uses ultrasound B-mode radiofrequency data. The proposed method is a hybrid that combines elements of physical and statistical models to achieve higher precision and resolution of temperature variations and distribution. We propose a dimensionless combined index (CI) that combines the echo shift differential and signal intensity difference with a weighting factor relative to the distance from the heat source. In vitro experiments verified that the combined index has a strong linear relationship with temperature variation and can be used to effectively estimate temperature with an average relative error <5%. This algorithm provides an alternative for imaging guidance-based techniques during thermal therapy and could easily be integrated into existing ultrasound systems. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Inferential statistics for transient signal detection in radio astronomy phased arrays

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.; Alkhweldi, Marwan

    2015-05-01

    In this paper we develop two statistical rules for the purpose of detecting pulsars and transients using signals from phased array feeds installed on a radio telescope in place of a traditional horn receiver. We assume a known response of the antenna arrays and known coupling among array elements. We briefly summarize a set of pre-processing steps applied to raw array data prior to signal detection and then derive two detection statistics assuming two models for the unknown radio source astronomical signal: (1) the signal is deterministic and (2) the signal is a random process. The performance of both detectors is analyzed using both real and simulated data.

  12. Interfacing US Census map files with statistical graphics software: Application and use in epidemiology. Revision 1

    SciTech Connect

    Rizzardi, M.; Mohr, M.S.; Merrill, D.W.; Selvin, S. |

    1993-03-01

    In 1990, the United States Bureau of the Census released detailed geographic map files known as TIGER/Line (Topologically Integrated Geographic Encoding and Referencing). The TIGER files, accessible through purchase or Federal repository libraries, contain 24 billion characters of data describing various geographic features including coastlines, hydrography, transportation networks, political boundaries, etc. covering the entire United States. Many of these physical features are of potential interest in epidemiological case studies. Unfortunately, the TIGER database only provides raw alphanumeric data; no utility software, graphical or otherwise, is included. Recently, the S statistical software package has been extended to include a map display function. The map function augments S`s high-level approach toward statistical analysis and graphical display of data. Coupling this statistical software with the map database developed for US Census data collection will facilitate epidemiological research. We discuss the technical background necessary to utilize the TIGER database for mapping with S. Two types of S maps, segment-based and polygon-based, are discussed along with methods to construct them from TIGER data. Polygon-based maps are useful for displaying regional statistical data; e.g., disease rates or incidence at the census tract level. Segment-based maps are easier to assemble and appropriate if the data are not regionalized. Census tract data of AIDS incidence in San Francisco (CA) and lung cancer case locations relative to petrochemical refinery sites in Contra Costa County (CA) are used to illustrate the methods and potential uses of interfacing the TIGER database with S.

  13. Interfacing U.S. census map files with statistical graphics software: application and use in epidemiology.

    PubMed

    Rizzardi, M; Mohr, M S; Merrill, D W; Selvin, S

    1993-10-01

    In 1990, the United States Bureau of the Census released detailed geographic map files known as TIGER/Line (Topologically Integrated Geographic Encoding and Referencing). The TIGER files, accessible through purchase or federal repository libraries, contain 24 billion characters of data describing various geographic features including coastlines, hydrography, transportation networks, political boundaries, etc. for the entire United States. Many of these physical features are of potential interest in epidemiological case studies. Unfortunately, the TIGER data base only provides raw alphanumeric data; no utility software, graphical or otherwise, is included. Recently, the S statistical software package has been extended to include a map display function. The map function augments S's high-level approach towards statistical analysis and graphical display of data. Coupling this statistical software with the map data base developed for U.S. Census data collection will facilitate epidemiological research. We discuss the technical background necessary to utilize the TIGER data base for mapping with S. Two types of S maps, segment-based and polygon-based, are discussed along with methods to construct them from TIGER data. Polygon-based maps are useful for displaying regional statistical data, such as disease rates or incidence at the census tract level. Segment-based maps are easier to assemble and are appropriate when the data are not regionalized. Census tract data of AIDS incidence in San Francisco and lung cancer case locations relative to petrochemical refinery sites in Contra Costa County are used to illustrate the methods and potential uses of interfacing the TIGER data base with S.

  14. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.

    PubMed

    Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J

    2015-07-01

    Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf.

  15. Statistical and signal-processing concepts in surface metrology

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1986-03-01

    This paper proposes the use of a simple two-scale model of surface roughness for testing and specifying the topographic figure and finish of synchrotron-radiation mirrors. In this approach the effects of figure and finish are described in terms of their slope distribution and power spectrum, respectively, which are then combined with the system point spread function to produce a composite image. The result can be used to predict mirror performance or to translate design requirements into manufacturing specifications. Pacing problems in this approach are the development of a practical long-trace slope-profiling instrument and realistic statistical models for figure and finish errors.

  16. Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses.

    PubMed

    Leydesdorff, Loet; Kogler, Dieter Franz; Yan, Bowen

    2017-01-01

    The Cooperative Patent Classifications (CPC) recently developed cooperatively by the European and US Patent Offices provide a new basis for mapping patents and portfolio analysis. CPC replaces International Patent Classifications (IPC) of the World Intellectual Property Organization. In this study, we update our routines previously based on IPC for CPC and use the occasion for rethinking various parameter choices. The new maps are significantly different from the previous ones, although this may not always be obvious on visual inspection. We provide nested maps online and a routine for generating portfolio overlays on the maps; a new tool is provided for "difference maps" between patent portfolios of organizations or firms. This is illustrated by comparing the portfolios of patents granted to two competing firms-Novartis and MSD-in 2016. Furthermore, the data is organized for the purpose of statistical analysis.

  17. Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration.

    PubMed

    Leow, Alex D; Yanovsky, Igor; Chiang, Ming-Chang; Lee, Agatha D; Klunder, Andrea D; Lu, Allen; Becker, James T; Davis, Simon W; Toga, Arthur W; Thompson, Paul M

    2007-06-01

    Maps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use themto motivate a new numerical method to construct unbiased nonlinear image registration. First, we argue that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. We then examine the statistical distributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mechanical models. With this framework, unbiased image registration can be constructed by quantifying the symmetric KL-distance between the identity map and the resulting deformation. Implementation details, addressing the proposed unbiased registration as well as the minimization of symmetric image matching functionals, are then discussed and shown to be applicable to other registration methods, such as inverse consistent registration. In the results section, we test the proposed framework, as well as present an illustrative application mapping detailed 3-D brain changes in sequential magnetic resonance imaging scans of a patient diagnosed with semantic dementia. Using permutation tests, we show that the symmetrization of image registration statistically reduces skewness in the log-Jacobian map.

  18. Statistical mapping of sheet aiquile SE-20-9 (national map) making use of ERTS images

    NASA Technical Reports Server (NTRS)

    Torrez, J. G.; Brockman, C. E.; Castro, A. F.

    1977-01-01

    New possibilities of remote sensing by means of satellites to do research on natural resources are reported. These images make it possible to carry out integrated studies of natural resources in the shortest time possible and with small investments. Various maps and a complete description of each are included. With the use of these satellites, scientists can hopefully plan development projects at the national level.

  19. Statistical measures of Planck scale signal correlations in interferometers

    NASA Astrophysics Data System (ADS)

    Hogan, Craig J.; Kwon, Ohkyung

    2017-04-01

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parameterized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. Simple projections of sensitivity for realistic experimental set-ups suggests that measurements will confirm or rule out a class of Planck scale departures from classical geometry.

  20. Statistical measures of Planck scale signal correlations in interferometers

    SciTech Connect

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  1. A statistical framework for eQTL mapping using RNA-seq data.

    PubMed

    Sun, Wei

    2012-03-01

    RNA-seq may replace gene expression microarrays in the near future. Using RNA-seq, the expression of a gene can be estimated using the total number of sequence reads mapped to that gene, known as the total read count (TReC). Traditional expression quantitative trait locus (eQTL) mapping methods, such as linear regression, can be applied to TReC measurements after they are properly normalized. In this article, we show that eQTL mapping, by directly modeling TReC using discrete distributions, has higher statistical power than the two-step approach: data normalization followed by linear regression. In addition, RNA-seq provides information on allele-specific expression (ASE) that is not available from microarrays. By combining the information from TReC and ASE, we can computationally distinguish cis- and trans-eQTL and further improve the power of cis-eQTL mapping. Both simulation and real data studies confirm the improved power of our new methods. We also discuss the design issues of RNA-seq experiments. Specifically, we show that by combining TReC and ASE measurements, it is possible to minimize cost and retain the statistical power of cis-eQTL mapping by reducing sample size while increasing the number of sequence reads per sample. In addition to RNA-seq data, our method can also be employed to study the genetic basis of other types of sequencing data, such as chromatin immunoprecipitation followed by DNA sequencing data. In this article, we focus on eQTL mapping of a single gene using the association-based method. However, our method establishes a statistical framework for future developments of eQTL mapping methods using RNA-seq data (e.g., linkage-based eQTL mapping), and the joint study of multiple genetic markers and/or multiple genes. © 2011, The International Biometric Society.

  2. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate

  3. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of

  4. How Narrative Focus and a Statistical Map Shape Health Policy Support Among State Legislators.

    PubMed

    Niederdeppe, Jeff; Roh, Sungjong; Dreisbach, Caitlin

    2016-01-01

    This study attempts to advance theorizing about health policy advocacy with combinations of narrative focus and a statistical map in an attempt to increase state legislators' support for policies to address the issue of obesity by reducing food deserts. Specifically, we examine state legislators' responses to variations in narrative focus (individual vs. community) about causes and solutions for food deserts in U.S. communities, and a statistical map (presence vs. absence) depicting the prevalence of food deserts across the United States. Using a Web-based randomized experiment (N=496), we show that narrative focus and the statistical map interact to produce different patterns of cognitive response and support for policies to reduce the prevalence of food deserts. The presence of a statistical map showing the prevalence of food deserts in the United States appeared to matter only when combined with an individual narrative, offsetting the fact that the individual narrative in isolation produced fewer thoughts consistent with the story's persuasive goal and more counterarguments in opposition to environmental causes and solutions for obesity than other message conditions. The image did not have an impact when combined with a story describing a community at large. Cognitive responses fully mediated message effects on intended persuasive outcomes. We conclude by discussing the study's contributions to communication theory and practice.

  5. Dynamic statistical parametric mapping for analyzing the magnetoencephalographic epileptiform activity in patients with epilepsy.

    PubMed

    Shiraishi, Hideaki; Stufflebeam, Steven M; Knake, Susanne; Ahlfors, Seppo P; Sudo, Akira; Asahina, Naoko; Egawa, Kiyoshi; Hatanaka, Keisaku; Kohsaka, Shinobu; Saitoh, Shinji; Grant, P Ellen; Dale, Anders M; Halgren, Eric

    2005-04-01

    Our current purpose is to evaluate the applicability of dynamic statistical parametric mapping, a novel method for localizing epileptiform activity recorded with magnetoencephalography in patients with epilepsy. We report four pediatric patients with focal epilepsies. Magnetoencephalographic data were collected with a 306-channel whole-head helmet-shaped sensor array. We calculated equivalent current dipoles and dynamic statistical parametric mapping movies of the interictal epileptiform discharges that were based in the minimum-L2 norm estimate, minimizing the square sum of the dipole element amplitudes. The dynamic statistical parametric mapping analysis of interictal epileptiform discharges can demonstrate the rapid change and propagation of interical epileptiform discharges. According to these findings, specific epileptogenic lesion-focal cortical dysplasia could be found and patients could be operated on successfully. The presurgical analysis of interictal epileptiform discharges using dynamic statistical parametric mapping seems to be promising in patients with a possible underlying focal cortical dysplasia and might help to guide the placement of invasive electrodes.

  6. Development of PowerMap: a software package for statistical power calculation in neuroimaging studies.

    PubMed

    Joyce, Karen E; Hayasaka, Satoru

    2012-10-01

    Although there are a number of statistical software tools for voxel-based massively univariate analysis of neuroimaging data, such as fMRI (functional MRI), PET (positron emission tomography), and VBM (voxel-based morphometry), very few software tools exist for power and sample size calculation for neuroimaging studies. Unlike typical biomedical studies, outcomes from neuroimaging studies are 3D images of correlated voxels, requiring a correction for massive multiple comparisons. Thus, a specialized power calculation tool is needed for planning neuroimaging studies. To facilitate this process, we developed a software tool specifically designed for neuroimaging data. The software tool, called PowerMap, implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. In this paper, we provide an overview of the statistical framework behind the PowerMap tool. Three worked examples are also provided, a regression analysis, an ANOVA (analysis of variance), and a two-sample T-test, in order to demonstrate the study planning process with PowerMap. We envision that PowerMap will be a great aide for future neuroimaging research.

  7. Development of PowerMap: a software package for statistical power calculation in neuroimaging studies

    PubMed Central

    Joyce, Karen E.; Hayasaka, Satoru

    2015-01-01

    Although there are a number of statistical software tools for voxel-based massively univariate analysis of neuroimaging data, such as fMRI (functional MRI), PET (positron emission tomography), and VBM (voxel-based morphometry), very few software tools exist for power and sample size calculation for neuroimaging studies. Unlike typical biomedical studies, outcomes from neuroimaging studies are 3D images of correlated voxels, requiring a correction for massive multiple comparisons. Thus, a specialized power calculation tool is needed for planning neuroimaging studies. To facilitate this process, we developed a software tool specifically designed for neuroimaging data. The software tool, called PowerMap, implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. In this paper, we provide an overview of the statistical framework behind the PowerMap tool. Three worked examples are also provided, a regression analysis, an ANOVA (analysis of variance), and a two-sample T-test, in order to demonstrate the study planning process with PowerMap. We envision that PowerMap will be a great aide for future neuroimaging research. PMID:22644868

  8. Distinguishability notion based on Wootters statistical distance: Application to discrete maps.

    PubMed

    Gomez, Ignacio S; Portesi, M; Lamberti, P W

    2017-08-01

    We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d¯ for an arbitrary discrete map. Moreover, from d¯, we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d¯, which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.

  9. Distinguishability notion based on Wootters statistical distance: Application to discrete maps

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.

    2017-08-01

    We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.

  10. On the distortion of elevation dependent warming signals by quantile mapping

    NASA Astrophysics Data System (ADS)

    Jury, Martin W.; Mendlik, Thomas; Maraun, Douglas

    2017-04-01

    Elevation dependent warming (EDW), the amplification of warming under climate change with elevation, is likely to accelerate changes in e.g. cryospheric and hydrological systems. Responsible for EDW is a mixture of processes including snow albedo feedback, cloud formations or the location of aerosols. The degree of incorporation of this processes varies across state of the art climate models. In a recent study we were preparing bias corrected model output of CMIP5 GCMs and CORDEX RCMs over the Himalayan region for the glacier modelling community. In a first attempt we used quantile mapping (QM) to generate this data. A beforehand model evaluation showed that more than two third of the 49 included climate models were able to reproduce positive trend differences between areas of higher and lower elevations in winter, clearly visible in all of our five observational datasets used. Regrettably, we noticed that height dependent trend signals provided by models were distorted, most of the time in the direction of less EDW, sometimes even reversing EDW signals present in the models before the bias correction. As a consequence, we refrained from using quantile mapping for our task, as EDW poses one important factor influencing the climate in high altitudes for the nearer and more distant future, and used a climate change signal preserving bias correction approach. Here we present our findings of the distortion of the EDW temperature change by QM and discuss the influence of QM on different statistical properties as well as their modifications.

  11. A comparison of anisotropic statistical properties of CMB maps based on the WMAP and planck space mission data

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Naiden, Ya. V.

    2016-10-01

    We compare the anisotropic properties of the cosmic microwave background (CMB) maps constructed based on the data of NASA's WMAP (9th year of observations) and ESA's Planck (2015 release) space missions. In our analysis, we use two two-dimensional estimators of the scatter of the signal on a sphere, which amount to algorithms of mapping the ratio of the scatter in the Northern and Southern hemispheres depending on the method of dividing (specifically, rotating and cutting) the sky into hemispheres. The scatter is computed either as a standard deviation σ, or as the difference between the minimum and maximum values on a given hemisphere. Applying both estimators to the CMB anisotropy datameasured by two spacemissions, Planck and WMAP, we compared the variations of the background at different angular scales.Maps with a resolution of l ≤ 100 show that the division into regions with different levels of statistical anisotropy lies close to the ecliptic plane, and after preliminary removal of the l ≤ 20 harmonics from the CMB data, the anisotropic signal related to the Galaxy begins to dominate.

  12. Nodal Domain Statistics for Quantum Maps, Percolation, and Stochastic Loewner Evolution

    SciTech Connect

    Keating, J. P.; Marklof, J.; Williams, I. G.

    2006-07-21

    We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant {kappa} close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.

  13. When a Map is Worth One-Thousand Anovas: Applications of Statistical Cartography in Special Education Research and Planning.

    ERIC Educational Resources Information Center

    Joiner, Lee Marvin

    1979-01-01

    The article describes the methods and procedures of computerized statistical cartography, the production of statistical maps, and provides suggestions for its application in special education research and planning. (Author/CL)

  14. Description and comparison of geologic maps with FRAGSTATS - A spatial statistics program

    USGS Publications Warehouse

    Raines, G.L.

    2002-01-01

    FRAGSTATS is a public-domain GIS implementation of a set of spatial statistics that address a fundamental problem in GIS applications, description and comparison of maps. The spatial statistics from the 1:2,500,000-scale United States geologic map of Nevada, the central United States, and the northeastern United States quantify the differences in complexity and variability between these three geologic terranes. Nevada is defined by a large number of patches of small size and low size variability, whereas the Central area has a small number of patches with smaller relative size variability. All three areas have similar map-unit shape complexity with Nevada having the lowest. Based on the density of edges, the areas can be ranked from highest to lowest, as Nevada, Central, and Northeast. The Shannon diversity index ranks the areas from highest to lowest, as Northeast, Nevada, and Central, but the Shannon evenness index ranks them from highest to lowest, as Northeast, Central, and Nevada. These rankings may reflect the influence of folding in the Northeast and Central areas as opposed to basin and range extension in Nevada. The core areas statistic ranks the areas for spatial accuracy from highest to lowest, as Central, Northeast, and Nevada, with Northeast and Nevada being similar. For a scale comparison, the FRAGSTATS statistics quantify the increased complexity and spatial accuracy that is inherent in going from small- to larger-scale maps. For example for 1:2,500,000-1:500,000-scale maps of Nevada, respectively, the area weighted fractal dimension increase from 1.1 to 1.18, and the total core areas index almost doubles from 39.09 to 63.38. In addition, the fractal dimensions discriminate gross lithology and tectonic terranes. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. A Synergy Cropland of China by Fusing Multiple Existing Maps and Statistics.

    PubMed

    Lu, Miao; Wu, Wenbin; You, Liangzhi; Chen, Di; Zhang, Li; Yang, Peng; Tang, Huajun

    2017-07-12

    Accurate information on cropland extent is critical for scientific research and resource management. Several cropland products from remotely sensed datasets are available. Nevertheless, significant inconsistency exists among these products and the cropland areas estimated from these products differ considerably from statistics. In this study, we propose a hierarchical optimization synergy approach (HOSA) to develop a hybrid cropland map of China, circa 2010, by fusing five existing cropland products, i.e., GlobeLand30, Climate Change Initiative Land Cover (CCI-LC), GlobCover 2009, MODIS Collection 5 (MODIS C5), and MODIS Cropland, and sub-national statistics of cropland area. HOSA simplifies the widely used method of score assignment into two steps, including determination of optimal agreement level and identification of the best product combination. The accuracy assessment indicates that the synergy map has higher accuracy of spatial locations and better consistency with statistics than the five existing datasets individually. This suggests that the synergy approach can improve the accuracy of cropland mapping and enhance consistency with statistics.

  16. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    SciTech Connect

    Chingangbam, Pravabati; Park, Changbom E-mail: cbp@kias.re.kr

    2009-12-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g{sub NL}. The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g{sub NL} and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g{sub NL} > 0 and less of both for g{sub NL} < 0. The deviation increases linearly with g{sub NL} and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g{sub NL} that are clearly distinct from the quadratic order perturbations, encoded in the parameter f{sub NL}. Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g{sub NL} and f{sub NL} type non-Gaussianities.

  17. Tables of square-law signal detection statistics for Hann spectra with 50 percent overlap

    NASA Technical Reports Server (NTRS)

    Deans, Stanley R.; Cullers, D. Kent

    1991-01-01

    The Search for Extraterrestrial Intelligence, currently being planned by NASA, will require that an enormous amount of data be analyzed in real time by special purpose hardware. It is expected that overlapped Hann data windows will play an important role in this analysis. In order to understand the statistical implication of this approach, it has been necessary to compute detection statistics for overlapped Hann spectra. Tables of signal detection statistics are given for false alarm rates from 10(exp -14) to 10(exp -1) and signal detection probabilities from 0.50 to 0.99; the number of computed spectra ranges from 4 to 2000.

  18. Statistics of attenuation by rain of 13 GHz signals on Earth-space paths in Canada

    NASA Astrophysics Data System (ADS)

    Webber, R. V.; Strickland, J. I.; Schlesak, J. J.

    1986-04-01

    To accommodate the increased number of users of radio signals, communication systems are being designed more and more to operate at microwave frequencies that were hitherto unused. A major difficulty with frequencies above 10 GHz is that they are attenuated by rain. Attenuation statistics and fade rate statistics from six locations, all in Canada, are presented for 13 GHz signals on Earth-space paths. These statistics are based on a total of 15.7 station-years of attenuation measurements with the operating time of the individual stations ranging from 1.68 to 4.91 years.

  19. Comments on the statistical analysis of excess variance in the COBE differential microwave radiometer maps

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Smoot, G. F.; Kogut, A.; Hinshaw, G.; Tenorio, L.; Lineweaver, C.; Bennett, C. L.; Lubin, P. M.

    1994-01-01

    Cosmic anisotrophy produces an excess variance sq sigma(sub sky) in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigma(sub sky)(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)(exp 0.5). The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)(exp 0.5) to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigma(sub sky)(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)(exp 0.5) = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).

  20. Current practices in spatial analysis of cancer data: mapping health statistics to inform policymakers and the public

    PubMed Central

    Bell, B Sue; Hoskins, Richard E; Pickle, Linda Williams; Wartenberg, Daniel

    2006-01-01

    Background To communicate population-based cancer statistics, cancer researchers have a long tradition of presenting data in a spatial representation, or map. Historically, health data were presented in printed atlases in which the map producer selected the content and format. The availability of geographic information systems (GIS) with comprehensive mapping and spatial analysis capability for desktop and Internet mapping has greatly expanded the number of producers and consumers of health maps, including policymakers and the public. Because health maps, particularly ones that show elevated cancer rates, historically have raised public concerns, it is essential that these maps be designed to be accurate, clear, and interpretable for the broad range of users who may view them. This article focuses on designing maps to communicate effectively. It is based on years of research into the use of health maps for communicating among public health researchers. Results The basics for designing maps that communicate effectively are similar to the basics for any mode of communication. Tasks include deciding on the purpose, knowing the audience and its characteristics, choosing a media suitable for both the purpose and the audience, and finally testing the map design to ensure that it suits the purpose with the intended audience, and communicates accurately and effectively. Special considerations for health maps include ensuring confidentiality and reflecting the uncertainty of small area statistics. Statistical maps need to be based on sound practices and principles developed by the statistical and cartographic communities. Conclusion The biggest challenge is to ensure that maps of health statistics inform without misinforming. Advances in the sciences of cartography, statistics, and visualization of spatial data are constantly expanding the toolkit available to mapmakers to meet this challenge. Asking potential users to answer questions or to talk about what they see is

  1. Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui

    PubMed Central

    2012-01-01

    Background The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. Methods This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Results Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. Conclusions This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics

  2. Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui.

    PubMed

    Newton, Richard; Deonarine, Andrew; Wernisch, Lorenz

    2012-09-24

    The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics data. Fourthly, we envisage an

  3. Application of higher order statistics/spectra in biomedical signals--a review.

    PubMed

    Chua, Kuang Chua; Chandran, Vinod; Acharya, U Rajendra; Lim, Choo Min

    2010-09-01

    For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second-order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.

  4. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment

    PubMed Central

    Hashim, Mazlan

    2015-01-01

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning. PMID:25898919

  5. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment.

    PubMed

    Shahabi, Himan; Hashim, Mazlan

    2015-04-22

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning.

  6. Improved Statistical Signal Processing of Nonstationary Random Processes Using Time-Warping

    NASA Astrophysics Data System (ADS)

    Wisdom, Scott Thomas

    A common assumption used in statistical signal processing of nonstationary random signals is that the signals are locally stationary. Using this assumption, data is segmented into short analysis frames, and processing is performed using these short frames. Short frames limit the amount of data available, which in turn limits the performance of statistical estimators. In this thesis, we propose a novel method that promises improved performance for a variety of statistical signal processing algorithms. This method proposes to estimate certain time-varying parameters of nonstationary signals and then use this estimated information to perform a time-warping of the data that compensates for the time-varying parameters. Since the time-warped data is more stationary, longer analysis frames may be used, which improves the performance of statistical estimators. We first examine the spectral statistics of two particular types of nonstationary random processes that are useful for modeling ship propeller noise and voiced speech. We examine the effect of time-varying frequency content on these spectral statistics, and in addition show that the cross-frequency spectral statistics of these signals contain significant additional information that is not usually exploited using a stationary assumption. This information, combined with our proposed method, promises improvements for a wide variety of applications in the future. We then describe and test an implementation of our time-warping method, the fan-chirp transform. We apply our method to two applications, detection of ship noise in a passive sonar application and joint denoising and dereverberation of speech. Our method yields improved results for both applications compared to conventional methods.

  7. Testing for phylogenetic signal in biological traits: the ubiquity of cross-product statistics.

    PubMed

    Pavoine, Sandrine; Ricotta, Carlo

    2013-03-01

    To evaluate rates of evolution, to establish tests of correlation between two traits, or to investigate to what degree the phylogeny of a species assemblage is predictive of a trait value so-called tests for phylogenetic signal are used. Being based on different approaches, these tests are generally thought to possess quite different statistical performances. In this article, we show that the Blomberg et al. K and K*, the Abouheif index, the Moran's I, and the Mantel correlation are all based on a cross-product statistic, and are thus all related to each other when they are associated to a permutation test of phylogenetic signal. What changes is only the way phylogenetic and trait similarities (or dissimilarities) among the tips of a phylogeny are computed. The definitions of the phylogenetic and trait-based (dis)similarities among tips thus determines the performance of the tests. We shortly discuss the biological and statistical consequences (in terms of power and type I error of the tests) of the observed relatedness among the statistics that allow tests for phylogenetic signal. Blomberg et al. K* statistic appears as one on the most efficient approaches to test for phylogenetic signal. When branch lengths are not available or not accurate, Abouheif's Cmean statistic is a powerful alternative to K*.

  8. Topological false discovery rates for brain mapping based on signal height.

    PubMed

    Li, Junning; Gahm, Jin Kyu; Shi, Yonggang; Toga, Arthur W

    2016-11-09

    Correcting the effect of multiple testing is important in statistical parametric mapping. If the threshold is too liberal, then spurious claims may flood in; if it is too conservative, then true hints may be overlooked. It is highly desirable to combine random field theory and the false discovery rate (FDR) to achieve more powerful detection under gauged topological errors. However, the current FDR method based on peak height does not fully meet this expectation, and sometimes is more conservative than the traditional family-wise error rate method, for unexplained reasons. In this paper, we introduce a new topological FDR method based on signal height. As analyzed in theory and validated with extensive experiments, it controls error rates much more accurately than the peak FDR method does, and substantially gains detection power. In addition, we discover reasons behind the peak FDR method's under-performance, and formulate equations to predict the two methods' behavior. Copyright © 2016. Published by Elsevier Inc.

  9. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  10. Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Rodríguez-Gonzálvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A.

    2015-02-01

    This paper discusses a methodology to evaluate the precision and the accuracy of a commercial Mobile Mapping System (MMS) with advanced statistical methods. So far, the metric potentialities of this emerging mapping technology have been studied in few papers, where generally the assumption that errors follow a normal distribution is made. In fact, this hypothesis should be carefully verified in advance, in order to test how well the Gaussian classic statistics can adapt to datasets that are usually affected by asymmetrical gross errors. The workflow adopted in this study relies on a Gaussian assessment, followed by an outlier filtering process. Finally, non-parametric statistical models are applied, in order to achieve a robust estimation of the error dispersion. Among the different MMSs available on the market, the latest solution provided by RIEGL is here tested, i.e. the VMX-450 Mobile Laser Scanning System. The test-area is the historic city centre of Trento (Italy), selected in order to assess the system performance in dealing with a challenging and historic urban scenario. Reference measures are derived from photogrammetric and Terrestrial Laser Scanning (TLS) surveys. All datasets show a large lack of symmetry that leads to the conclusion that the standard normal parameters are not adequate to assess this type of data. The use of non-normal statistics gives thus a more appropriate description of the data and yields results that meet the quoted a-priori errors.

  11. PROBING THE DARK FLOW SIGNAL IN WMAP 9 -YEAR AND PLANCK COSMIC MICROWAVE BACKGROUND MAPS

    SciTech Connect

    Atrio-Barandela, F.; Kashlinsky, A.; Ebeling, H.; Fixsen, D. J.; Kocevski, D. E-mail: Alexander.Kashlinsky@nasa.gov E-mail: Dale.Fixsen@nasa.gov

    2015-09-10

    The “dark flow” dipole is a statistically significant dipole found at the position of galaxy clusters in filtered maps of Cosmic Microwave Background (CMB) temperature anisotropies. The dipole measured in WMAP 3-, 5-, and 7- year data releases was (1) mutually consistent, (2) roughly aligned with the all-sky CMB dipole, and (3) correlated with clusters’ X-ray luminosities. We analyzed WMAP 9 -year and Planck 1st- year data releases using a catalog of 980 clusters outside of the Kp0 mask to test our earlier findings. The dipoles measured on these new data sets are fully compatible with our earlier estimates, are similar in amplitude and direction to our previous results, and are in disagreement with the results of an earlier study by the Planck Collaboration. Furthermore, in the Planck data sets dipoles are found to be independent of frequency, ruling out the thermal Sunyaev–Zeldovich as the source of the effect. In the data of both WMAP and Planck we find a clear correlation between the dipole measured at the cluster location in filtered maps and the average anisotropy on the original maps, further proving that the dipole is associated with clusters. The dipole signal is dominated by the most massive clusters, with a statistical significance that is better than 99%, slightly larger than in WMAP. Since both data sets differ in foreground contributions, instrumental noise, and other systematics, the agreement between the WMAP and Planck dipoles argues against them being due to systematic effects in either of the experiments.

  12. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas

    2016-06-01

    Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for

  13. Statistical analysis of surrogate signals to incorporate respiratory motion variability into radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wilms, Matthias; Ehrhardt, Jan; Werner, René; Marx, Mirko; Handels, Heinz

    2014-03-01

    Respiratory motion and its variability lead to location uncertainties in radiation therapy (RT) of thoracic and abdominal tumors. Current approaches for motion compensation in RT are usually driven by respiratory surrogate signals, e.g., spirometry. In this contribution, we present an approach for statistical analysis, modeling and subsequent simulation of surrogate signals on a cycle-by-cycle basis. The simulated signals represent typical patient-specific variations of, e.g., breathing amplitude and cycle period. For the underlying statistical analysis, all breathing cycles of an observed signal are consistently parameterized using approximating B-spline curves. Statistics on breathing cycles are then performed by using the parameters of the B-spline approximations. Assuming that these parameters follow a multivariate Gaussian distribution, realistic time-continuous surrogate signals of arbitrary length can be generated and used to simulate the internal motion of tumors and organs based on a patient-specific diffeomorphic correspondence model. As an example, we show how this approach can be employed in RT treatment planning to calculate tumor appearance probabilities and to statistically assess the impact of respiratory motion and its variability on planned dose distributions.

  14. Study of statistical properties of random signals in multirate filter banks

    NASA Astrophysics Data System (ADS)

    Lan, Leu-Shing

    1995-04-01

    Previous works on subband-related signal processing were mainly dedicated to the applications of subband systems and to the formulation of multirate filter banks. Only very limited results can be found that treat statistical properties of random signals inside a multirate filter bank. In this paper, such a theoretical study is performed from the statistical viewpoint. Our main interest lies in how a multirate structure interacts with a random signal. The key statistical properties examined are stationarity, autocorrelation, cross-correlation, power spectral density, and spectral flatness measure. Exact explicit expressions are obtained. These results have their counterparts in a fullband system; however, inside a multirate structure or a subband system, the aliasing effect caused by decimation should be taken into account. In a multirate system, stationarity is not preserved when an upsampling (or expanding) operation is encountered. Furthermore the equivalent filtering operation is nonlinear. A test example of an AR-1 process is included for demonstration. From this example, an interesting phenomenon is observed. When the correlation coefficient of the AR-1 process is close to 1, the lowpassed signal is not, in any sense, a rough replica of the source. This example justifies the significance and necessity of a theoretical analysis of subband systems from a statistical viewpoint. We believe that stochastic signal processing applications of a subband structure such as estimation, detection, recognition, etc. will benefit from study of this nature.

  15. Hierarchical statistical analysis of complex analog and mixed-signal systems

    NASA Astrophysics Data System (ADS)

    Webb, Matthew; Tang, Hua

    2014-12-01

    With increasing process parameter variations in nanometre regime, circuits and systems encounter significant performance variations and therefore statistical analysis has become increasingly important. For complex analog and mixed-signal circuits and systems, efficient yet accurate statistical analysis has been a challenge mainly due to significant simulation and modelling time. In the past years, there have been various approaches proposed for statistical analysis of analog and mixed-signal circuits. A recent work is reported to address statistical analysis for continuous-time Delta-Sigma modulators. In this article, we generalise that method and present a hierarchical method for efficient statistical analysis of complex analog and mixed-signal circuits while maintaining reasonable accuracy. At circuit level, we use the response surface modelling method to extract quadratic models of circuit-level performance parameters in terms of process parameters. Then at system level, we use behavioural models and apply the Monte-Carlo method for statistical evaluation of system performance parameters. We illustrate and validate the method on a continuous-time Delta-Sigma modulator and an analog filter.

  16. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics.

    PubMed

    Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J

    2016-11-01

    Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities.

  17. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    SciTech Connect

    Sprowles, Amy; Wu Yimi; Kung, H.-J.; Wisdom, Ron . E-mail: ronald.wisdom@ucdmc.ucdavis.edu

    2005-08-15

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.

  18. The spatial statistics formalism applied to mapping electromagnetic radiation in urban areas.

    PubMed

    Paniagua, Jesus M; Rufo, Montaña; Jimenez, Antonio; Antolin, Alicia

    2013-01-01

    Determining the electromagnetic radiation levels in urban areas is a complicated task. Various approaches have been taken, including numerical simulations using different models of propagation, sampling campaigns to measure field values with which to validate theoretical models, and the formalism of spatial statistics. In the work, we present here that this latter technique was used to construct maps of electric field and its associated uncertainty from experimental data. For this purpose, a field meter and a broadband probe sensitive in the 100-kHz-3-GHz frequency range were used to take 1,020 measurements around buildings and along the perimeter of the area. The distance between sampling points was 5 m. The results were stored in a geographic information system to facilitate data handling and analysis, in particular, the application of the formalism of spatial statistical to the analysis of the distribution of the field levels over the study area. The spatial structure was analyzed using the variographic technique, with the field levels at non-sampled points being interpolated by kriging. The results indicated that, in the urban area analyzed in the present work, the linear density of sampling points could be reduced to a distance which coincides with the length of the blocks of buildings without the statistical parameters varying significantly and with the field level maps being reproduced qualitatively and quantitatively.

  19. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  20. Quantification of Liver Tumors Using Statistical Characteristics of Ultrasonic RF Signals

    NASA Astrophysics Data System (ADS)

    Chono, Tomoaki; Ito, Masayasu

    We propose a method for quantification of liver tumors using statistical characteristics of ultrasonic RF signals. Parameters of K distribution show the characteristics of a soft tissue. The proposed method of chi-square test(CST) can estimate the most appropriate parameters of K distribution, which are fitted to an observed amplitude distribution. Method of moment(MOM), method combining maximum likelihood and MOM(ML/MOM), and CST are compared on simulated RF signals. The CST is applied to RF signals of liver tumors including 38 hepatocellular carcinomas(malignancy) and 12 hepatic hemangiomas(benignancy). The accuracy of discriminant analysis are 78% and 50% for malignancy and benignancy, respectively.

  1. Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy

    PubMed Central

    Tanaka, Naoaki; Cole, Andrew J.; von Pechmann, Deidre; Wakeman, Daniel G.; Hämäläinen, Matti S.; Liu, Hesheng; Madsen, Joseph R.; Bourgeois, Blaise F.; Stufflebeam, Steven M.

    2009-01-01

    The purpose of this study is to assess the clinical value of spatiotemporal source analysis for analyzing ictal magnetoencephalography (MEG). Ictal MEG and simultaneous scalp EEG was recorded in five patients with medically intractable frontal lobe epilepsy. Dynamic statistical parametric maps (dSPMs) were calculated at the peak of early ictal spikes for the purpose of estimating the spatiotemporal cortical source distribution. DSPM solutions were mapped onto a cortical surface, which was derived from each patient's MRI. Equivalent current dipoles (ECDs) were calculated using a single-dipole model for comparison with dSPMs. In all patients, dSPMs tended to have a localized activation, consistent with the clinically-determined ictal onset zone, whereas most ECDs were considered to be inappropriate sources according to their goodness-of-fit values. Analyzing ictal MEG spikes by using dSPMs may provide useful information in presurgical evaluation of epilepsy. PMID:19394198

  2. Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy.

    PubMed

    Tanaka, Naoaki; Cole, Andrew J; von Pechmann, Deidre; Wakeman, Daniel G; Hämäläinen, Matti S; Liu, Hesheng; Madsen, Joseph R; Bourgeois, Blaise F; Stufflebeam, Steven M

    2009-08-01

    The purpose of this study is to assess the clinical value of spatiotemporal source analysis for analyzing ictal magnetoencephalography (MEG). Ictal MEG and simultaneous scalp EEG was recorded in five patients with medically intractable frontal lobe epilepsy. Dynamic statistical parametric maps (dSPMs) were calculated at the peak of early ictal spikes for the purpose of estimating the spatiotemporal cortical source distribution. DSPM solutions were mapped onto a cortical surface, which was derived from each patient's MRI. Equivalent current dipoles (ECDs) were calculated using a single-dipole model for comparison with dSPMs. In all patients, dSPMs tended to have a localized activation, consistent with the clinically determined ictal onset zone, whereas most ECDs were considered to be inappropriate sources according to their goodness-of-fit values. Analyzing ictal MEG spikes by using dSPMs may provide useful information in presurgical evaluation of epilepsy.

  3. Training site statistics from Landsat and Seasat satellite imagery registered to a common map base

    NASA Technical Reports Server (NTRS)

    Clark, J.

    1981-01-01

    Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.

  4. The Kullback-Leibler divergence as an estimator of the statistical properties of CMB maps

    SciTech Connect

    Ben-David, Assaf; Jackson, Andrew D.; Liu, Hao E-mail: liuhao@nbi.dk

    2015-06-01

    The identification of unsubtracted foreground residuals in the cosmic microwave background maps on large scales is of crucial importance for the analysis of polarization signals. These residuals add a non-Gaussian contribution to the data. We propose the Kullback-Leibler (KL) divergence as an effective, non-parametric test on the one-point probability distribution function of the data. With motivation in information theory, the KL divergence takes into account the entire range of the distribution and is highly non-local. We demonstrate its use by analyzing the large scales of the Planck 2013 SMICA temperature fluctuation map and find it consistent with the expected distribution at a level of 6%. Comparing the results to those obtained using the more popular Kolmogorov-Smirnov test, we find the two methods to be in general agreement.

  5. Uncertainty into statistical landslide susceptibility models resulting from terrain mapping units and landslide input data

    NASA Astrophysics Data System (ADS)

    Zêzere, José Luis; Pereira, Susana; Melo, Raquel; Oliveira, Sérgio; Garcia, Ricardo

    2017-04-01

    There are multiple sources of uncertainty within statistically-based landslide susceptibility assessment that needs to be accounted and monitored. In this work we evaluate and discuss differences observed on landslide susceptibility maps resulting from the selection of the terrain mapping unit and the selection of the feature type to represent landslides (polygon vs point). The work is performed in the Silveira Basin (18.2 square kilometres) located north of Lisbon, Portugal, using a unique database of geo-environmental landslide predisposing factors and an inventory of 81 shallow translational slides. The Logistic Regression is the statistical method selected to combine the predictive factors with the dependent variable. Four landslide susceptibility models were computed using the complete landslide inventory and considering the total landslide area over four different terrain mapping units: Slope Terrain Units (STU), Geo-Hydrological Terrain Units (GHTU), Census Terrain Units (CTU) and Grid Cell Terrain Units (GCTU). Four additional landslide susceptibility models were made over the same four terrain mapping units using a landslide training group (50% of the inventory randomly selected). These models were independently validated with the other 50% of the landslide inventory (landslide test group). Lastly, two additional landslide susceptibility models were computed over GCTU, one using the landslide training group represented as point features corresponding to the centroid of landslide, and other using the centroid of landslide rupture zone. In total, 10 landslide susceptibility maps were constructed and classified in 10 classes of equal number of terrain units to allow comparison. The evaluation of the prediction skills of susceptibility models was made using ROC metrics and Success and Prediction rate curves. Lastly, the landslide susceptibility maps computed over GCTU were compared using the Kappa statistics. With this work we conclude that large differences

  6. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  7. Mapping signaling pathway cross-talk in Drosophila cells

    PubMed Central

    Ammeux, Noemie; Housden, Benjamin E.; Georgiadis, Andrew; Hu, Yanhui; Perrimon, Norbert

    2016-01-01

    During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell–cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly. PMID:27528688

  8. The Effect of Kinetic Properties on Statistical Variations of Ultrasound Signals Backscattered from Flowing Blood

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung; Lin, Yi-Hsun; Wang, Shyh-Hau

    2009-02-01

    Yet very little is known about the effect of “black hole” (BH) phenomenon on backscattering signal statistics under the laminar flow. To further explore this issue, measurements were performed from the porcine blood (with hematocrits of 20 and 50%) circulating in a mock flow loop under various steady flows at velocities ranged from 15 to 122 mm/s using a 10 MHz ultrasonic transducer. Results showed that the BH was apparent for the 50% blood flowing at a low velocity. The BH tended to be decreased with the increase of flow velocity and that it was hardly observed from the 20% blood. The probability density function of signals backscattered from blood tended to distribute as pre-Rayleigh statistics and the Nakagami parameter was less than 1. The spatial distribution of red cell aggregation in the flow tube is a predominant factor leading to statistical variations of ultrasonic backscattering in the flowing blood.

  9. Noncosmological signal contributions to the COBE DMR anisotropy maps

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Hinshaw, G.; Banday, A.; Kogut, A.; Wright, E. L.; Loewenstein, K.; Cheng, E. S.

    1993-09-01

    We examine the COBE Differential Microwave Radiometer (DMR) data for evidence of noncosmological source contributions. The DMR maps are cross-correlated with maps of rich clusters, extragalactic IRAS sources, HEAO 1 A-2 X-ray emission, and 5 GHz radio sources. We limit the rms contributions from these sources on a 7 deg angular scale to less than 10 micro-K (95 percent confidence level) in the DMR maps, although the LMC probably contributes about 50 micro-K to a limited region of the sky. Thus, our previous interpretation that the fluctuations in the COBE DMR data are most likely due to cosmic fluctuations at the surface of last scattering remains intact. The Comptonization parameter for hot electrons traced by rich clusters is limited to delta(y) less than 2 x 10 exp -6 (95 percent confidence level) averaged over the 7 deg DMR beam.

  10. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  11. Signal digitizing system and method based on amplitude-to-time optical mapping

    DOEpatents

    Chou, Jason; Bennett, Corey V; Hernandez, Vince

    2015-01-13

    A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.

  12. Limitations to mapping habitat-use areas in changing landscapes using the Mahalanobis distance statistic

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    1998-01-01

    We tested the potential of a GIS mapping technique, using a resource selection model developed for black-tailed jackrabbits (Lepus californicus) and based on the Mahalanobis distance statistic, to track changes in shrubsteppe habitats in southwestern Idaho. If successful, the technique could be used to predict animal use areas, or those undergoing change, in different regions from the same selection function and variables without additional sampling. We determined the multivariate mean vector of 7 GIS variables that described habitats used by jackrabbits. We then ranked the similarity of all cells in the GIS coverage from their Mahalanobis distance to the mean habitat vector. The resulting map accurately depicted areas where we sighted jackrabbits on verification surveys. We then simulated an increase in shrublands (which are important habitats). Contrary to expectation, the new configurations were classified as lower similarity relative to the original mean habitat vector. Because the selection function is based on a unimodal mean, any deviation, even if biologically positive, creates larger Malanobis distances and lower similarity values. We recommend the Mahalanobis distance technique for mapping animal use areas when animals are distributed optimally, the landscape is well-sampled to determine the mean habitat vector, and distributions of the habitat variables does not change.

  13. Mapping vegetation communities using statistical data fusion in the Ozark National Scenic Riverways, Missouri, USA

    USGS Publications Warehouse

    Chastain, R.A.; Struckhoff, M.A.; He, H.S.; Larsen, D.R.

    2008-01-01

    A vegetation community map was produced for the Ozark National Scenic Riverways consistent with the association level of the National Vegetation Classification System. Vegetation communities were differentiated using a large array of variables derived from remote sensing and topographic data, which were fused into independent mathematical functions using a discriminant analysis classification approach. Remote sensing data provided variables that discriminated vegetation communities based on differences in color, spectral reflectance, greenness, brightness, and texture. Topographic data facilitated differentiation of vegetation communities based on indirect gradients (e.g., landform position, slope, aspect), which relate to variations in resource and disturbance gradients. Variables derived from these data sources represent both actual and potential vegetation community patterns on the landscape. A hybrid combination of statistical and photointerpretation methods was used to obtain an overall accuracy of 63 percent for a map with 49 vegetation community and land-cover classes, and 78 percent for a 33-class map of the study area. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  14. Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation.

    PubMed

    Paul, Joseph S; Al Nashash, Hasan; Luft, Andreas R; Le, Thinh M

    2006-07-01

    Statistically mapped speckle autocorrelation images (SAR) were used to track the hemodynamically active perfusion regions in the rat cortex during and following DC current stimulation with high transverse spatial resolution (38 um). The SAR images provided a spatio-temporal information about the net activation patterns of Cerebral Blood Flow (CBF) changes over a period of time as against those changes for each frame interval estimated using spatial contrasts derived from the first order spatial statistics. Thus the information about the relative maxima of perfusion during a Transient Hyperaemic Episode (THE) across different regions in the imaging window could be identified without the need for actually having to estimate the spatial contrast maps of the imaged region for each frame contained in the time window of observation. With the application of DC stimulation, the regions with a high correlation in the temporal fluctuations were representative of the areas that underwent least changes in activation. By varying the intensity of stimulation, THEs were observed for stimulation current densities in the range 0.1-3.8 mA/mm2 using both the derived speckle contrast maps and concurrently on a Laser Doppler Flow meter, with its probe positioned 1 mm from the site of stimulation. For current densities below the lower threshold of stimulation, the SAR images revealed an unprecedented reduction in the surge amplitude at sites distal to the region of stimulation. This was accompanied by an increase in pixel areas representing minimally active regions of perfusion ("perfusion islets") with no identifiable peak in the hemodynamic responses estimated from speckle contrast variations. The SAR images can be a useful tool for visualization of slow wave perfusion dynamics during cortical stimulation.

  15. Statistical aspect of trait mapping using a dense set of markers: A partial review

    SciTech Connect

    Dupuis, J.

    1996-12-31

    This paper presents a review of statistical methods used to locate trait loci using maps of markers spanning the whole genome. Such maps are becoming readily available and can be especially useful in mapping traits that are non Mendelian. Genome-wide search for a trait locus is often called a {open_quotes}global search{close_quotes}. Global search methods include, but are not restricted to, identifying disease susceptibility genes using affected relative pairs, finding quantitative trait loci in experimental organisms and locating quantitative trait loci in humans. For human linkage, we concentrate on methods using pairs of affected relatives rather than pedigree analysis. We begin in the next section with a review of work on the use of affected pairs of relatives to identify gene loci that increase susceptibility to a particular disease. We first review Risch`s 1990 series of papers. Risch`s method can be used to search the entire genome for such susceptibility genes. Using Risch`s idea Elston explored the issue of how many pairs and markers are necessary to reach a certain probability of detecting a locus if there exists one. He proposed a more economical two stage design that uses few markers at the first stage but adds markers around the {open_quotes}promising{close_quotes} area of the genome at the second stage. However, Risch and Elston do not use multipoint linkage analysis, which takes into account all markers at once (rather than one at a time) in the calculation of the test statistic. Such multipoint methods for affected relatives have been developed by Feingold and Feingold et al. The last authors` multipoint method is based on a continuous specification of identity by descent between the affected relatives but can also be used for a set of linked markers spanning the genome. A brief description of their method and treatment of more complex issues such as combining relative pairs is included. 29 refs., 4 tabs.

  16. A Comprehensive Statistical Model for Cell Signaling and Protein Activity Inference

    PubMed Central

    Yörük, Erdem; Ochs, Michael F.; Geman, Donald; Younes, Laurent

    2010-01-01

    Protein signaling networks play a central role in transcriptional regulation and the etiology of many diseases. Statistical methods, particularly Bayesian networks, have been widely used to model cell signaling, mostly for model organisms and with focus on uncovering connectivity rather than inferring aberrations. Extensions to mammalian systems have not yielded compelling results, due likely to greatly increased complexity and limited proteomic measurements in vivo. In this study, we propose a comprehensive statistical model that is anchored to a predefined core topology, has a limited complexity due to parameter sharing and uses micorarray data of mRNA transcripts as the only observable components of signaling. Specifically, we account for cell heterogeneity and a multi-level process, representing signaling as a Bayesian network at the cell level, modeling measurements as ensemble averages at the tissue level and incorporating patient-to-patient differences at the population level. Motivated by the goal of identifying individual protein abnormalities as potential therapeutical targets, we applied our method to the RAS-RAF network using a breast cancer study with 118 patients. We demonstrated rigorous statistical inference, established reproducibility through simulations and the ability to recover receptor status from available microarray data. PMID:20855924

  17. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale

    NASA Astrophysics Data System (ADS)

    Schicker, Renée; Moon, Vicki

    2012-08-01

    Landslide susceptibility assessment was undertaken for the Waikato Region, New Zealand. Landslide inventory data were extracted from a pre-existing database that included few landslides in the region (1.4% of area), and is limited in terms of completeness of record and location uncertainty. This database is in contrast to those normally used for research, which are derived for the research project and are complete and accurate, but is representative of those that may exist within government bodies. This paper applies statistical methods to derive a meaningful predictive map for planning purposes from such a relatively poorly defined database. Susceptibility maps for both logistic regression and weights of evidence were derived and evaluated using success, prediction, and ROC curves. Both statistical methods gave models with fair predictive capacity for validation samples from the original database with areas under ROC curves (AUC) of 0.71 to 0.75. An independent set of landslide data compiled from observations made in Google Earth showed lower overall prediction quality, with the logistic regression method giving the best prediction (AUC = 0.71). For this regional assessment, categorical data proved a major constraint on the application of logistic regression as the area considered has complex geology and geomorphology. As a result, the large number of categories required led to a complex and unwieldy statistical model, whereas division into fewer categories meant that real variability in the area could not be adequately represented. This limited the result to a model with two continuous variables, slope and mean monthly rainfall. The incomplete record in the database proved of little concern for the logistic regression method as the model was able to generalise landslide locations from the known sites well, giving a similar AUC value for the original and independent data; the same was not true for the weights of evidence method which was not successful at

  18. Mapping paths: new approaches to dissect eukaryotic signaling circuitry

    PubMed Central

    Mutlu, Nebibe; Kumar, Anuj

    2016-01-01

    Eukaryotic cells are precisely “wired” to coordinate changes in external and intracellular signals with corresponding adjustments in the output of complex and often interconnected signaling pathways. These pathways are critical in understanding cellular growth and function, and several experimental trends are emerging with applicability toward more fully describing the composition and topology of eukaryotic signaling networks. In particular, recent studies have implemented CRISPR/Cas-based screens in mouse and human cell lines for genes involved in various cell growth and disease phenotypes. Proteomic methods using mass spectrometry have enabled quantitative and dynamic profiling of protein interactions, revealing previously undiscovered complexes and allele-specific protein interactions. Methods for the single-cell study of protein localization and gene expression have been integrated with computational analyses to provide insight into cell signaling in yeast and metazoans. In this review, we present an overview of exemplary studies using the above approaches, relevant for the analysis of cell signaling and indeed, more broadly, for many modern biological applications. PMID:27540473

  19. Identification of Statistical Invariance for Anodic Signals of Mk-IV Electrorefiner

    SciTech Connect

    Supathorn Phongikaroon; Tae-Sic Yoo

    2007-09-01

    A statistical invariance technique is proposed for an analysis of anodic signals from the Mk-IV electrorefiner (ER) currently used for treating spent EBR-II fuel. Voltage and applied current signals obtained from the Data Archival Software System (DASS) were used in this study. In general, the plots of these signals from different experimental runs present complex patterns to analyze—the currents were adjusted and shut-off due to limited ampere-hr or cut-off cell voltage; the voltage would increase showing a sign that uranium in the fuel elements had been depleted. Rather than directly analyzing these sets of time-series signals, a simple nonlinear function of these signal sequences and division were observed, which returned resistance series information. The primary idea deriving the methodology presented in this paper is that “anodic resistance time series should show intrinsic kinetic progress of anodic ER process.” A simple histogram-based analysis reveals notable statistical information, which may be invariant under ideal ER operating conditions. For instance, the results suggest that mostly uranium dissolution would be preferentially transferred around 0.00217 - 0.00354 ohm and other minor distribution peaks may possibly represent other transfers of fission species in the system.

  20. Statistical study on propagation characteristics of Omega signals (VLF) in magnetosphere detected by the Akebono satellite

    NASA Astrophysics Data System (ADS)

    Suarjaya, I. Made Agus Dwi; Kasahara, Yoshiya; Goto, Yoshitaka

    2017-07-01

    This paper shows a statistical analysis of 10.2 kHz Omega broadcasts of an artificial signal broadcast from ground stations, propagated in the plasmasphere, and detected using an automatic detection method we developed. We study the propagation patterns of the Omega signals to understand the propagation characteristics that are strongly affected by plasmaspheric electron density and the ambient magnetic field. We show the unique propagation patterns of the Omega 10.2 kHz signal when it was broadcast from two high-middle-latitude stations. We use about eight years of data captured by the Poynting flux analyzer subsystem on board the Akebono satellite from October 1989 to September 1997. We demonstrate that the signals broadcast from almost the same latitude (in geomagnetic coordinates) propagated differently depending on the geographic latitude. We also study propagation characteristics as a function of local time, season, and solar activity. The Omega signal tended to propagate farther on the nightside than on the dayside and was more widely distributed during winter than during summer. When solar activity was at maximum, the Omega signal propagated at a lower intensity level. In contrast, when solar activity was at minimum, the Omega signal propagated at a higher intensity and farther from the transmitter station.[Figure not available: see fulltext.

  1. Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    NASA Technical Reports Server (NTRS)

    Satorius, E.; Brady, R.; Deich, W.; Gulkis, S.; Olsen, E.

    1988-01-01

    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters.

  2. Signal analysis applications of nonlinear dynamics and higher-order statistics

    NASA Astrophysics Data System (ADS)

    Solinsky, James C.; Feeney, John J.

    1994-03-01

    The use of higher-order statistics (HOS) in acoustic, and financial signal analysis applications is outlined in theory and followed with specific data examples. HOS analysis is used to identify data regions of interest, and nonlinear dynamics (ND) analysis is used in a 4D embedded space to show structural density changes resulting from the HOS regions. A second-order statistical comparison is made with the same data processed to have random Fourier phase, since the HOS information is contained in this nonrandom phase. These empirical results indicate that HOS data regions are structural distortions to a second-order planar disk in the 4D ND analysis space.

  3. Signal-to-noise ratio and aberration statistics in ocular aberrometry.

    PubMed

    Bará, Salvador; Pailos, Eliseo; Arines, Justo

    2012-06-15

    We define a signal-to-noise ratio (SNR) for eye aberrometry in terms of the sensor geometry, measurement noise, and population statistics. The overall estimation error is composed of three main contributions: the bias in the estimated modes, the truncation error, and the error due to the noise propagation. This last term can be easily parametrized by the proposed SNR. We compute the overall error as well as the magnitude of its three components for a typical sensor configuration, population statistics, and different SNR. We show that there are an optimum number of Zernike aberration modes to be retrieved in each case.

  4. Signal waveform detection with statistical automaton for internet and web service streaming.

    PubMed

    Tseng, Kuo-Kun; Ji, Yuzhu; Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying

    2014-01-01

    In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.

  5. A dynamic scanning method based on signal-statistics for scanning electron microscopy.

    PubMed

    Timischl, F

    2014-01-01

    A novel dynamic scanning method for noise reduction in scanning electron microscopy and related applications is presented. The scanning method dynamically adjusts the scanning speed of the electron beam depending on the statistical behavior of the detector signal and gives SEM images with uniform and predefined standard deviation, independent of the signal value itself. In the case of partially saturated images, the proposed method decreases image acquisition time without sacrificing image quality. The effectiveness of the proposed method is shown and compared to the conventional scanning method and median filtering using numerical simulations.

  6. Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming

    PubMed Central

    Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying

    2014-01-01

    In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment. PMID:25032231

  7. Statistical Analysis of ATM-Dependent Signaling in Quantitative Mass Spectrometry Phosphoproteomics.

    PubMed

    Waardenberg, Ashley J

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase, which when perturbed is associated with modified protein signaling that ultimately leads to a range of neurological and DNA repair defects. Recent advances in phospho-proteomics coupled with high-resolution mass-spectrometry provide new opportunities to dissect signaling pathways that ATM utilize under a number of conditions. This chapter begins by providing a brief overview of ATM function, its various regulatory roles and then leads into a workflow focused on the use of the statistical programming language R, together with code, for the identification of ATM-dependent substrates in the cytoplasm. This chapter cannot cover statistical properties in depth nor the range of possible methods in great detail, but instead aims to equip researchers with a set of tools to perform analysis between two conditions through examples with R functions.

  8. Statistics

    Cancer.gov

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  9. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  10. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    PubMed Central

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway. Images PMID:8157002

  11. Detection and Discrimination at the Intersection of Statistical Signal Processing and Machine Learning

    DTIC Science & Technology

    2008-03-31

    Superresolution ”, Invited paper, The Computer Journal, April 2007; doi: 10.1093/comjnl/bxm007 4 8. M. Elad, P. Milanfar, R. Rubinstein, “Analysis versus...Elad, and P. Milanfar, “Video-to-Video Dynamic Superresolution for Grayscale and Color Sequences ”, EURASIP Journal of Applied Signal Processing...Special Issue on Superresolution Imaging, Volume 2006, Article ID 61859, Pages 1-15. 12. M. Shahram, and P. Milanfar, “Statistical and Information

  12. Effect of image compression for model and human observers in signal-known-statistically tasks

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Pham, Binh; Abbey, Craig K.

    2002-04-01

    Previous studies have shown that model observers can be used for automated evaluation and optimization of image compression with respect to human visual performance in a task where the signal does not vary and is known a priori by the observer (signal known exactly, SKE). Here, we extend previous work to two tasks that are intended to more realistically represent the day-to-day visual diagnostic decision in the clinical setting. In the signal known exactly but variable task (SKEV), the signal varies from trial to trial (e.g., size, shape, etc) but is known to the observer. In the signal known statistically task (SKS) the signal varies from trial to trial and the observer does not have knowledge of which signal is present in that trial. We compare SKEV/SKS human and model observer performance detecting simulated arterial filling defects embedded in real coronary angiographic backgrounds in images that have undergone different amounts of JPEG and JPEG 2000 image compression. Our results show that both human and model performance at low compression ratios is better for the JPEG algorithm than the JPEG 2000 algorithm. Metrics of image quality such as the root mean square error (or the related peak signal to noise ratio) incorrectly predict a JPEG 2000 superiority. Results also show that although model and to a lesser extent human performance improves with the trial to trial knowledge of the signal present (SKEV vs. SKS task), conclusions about which compression algorithm is better (JPEG vs. JPEG 2000) for the current task would not change whether one used an SKEV or SKS task. These findings might suggest that the computationally more tractable SKEV models could be used as a good first approximation for automated evaluation of the more clinically realistic SKS task.

  13. Using statistical distances to detect changes in the normal behavior of ECG-Holter signals

    NASA Astrophysics Data System (ADS)

    Bastos de Figueiredo, Julio C.; Furuie, Sergio S.

    2001-05-01

    One of the main problems in the study of complex systems is to define a good metric that can distinguish between different dynamical behaviors in a nonlinear system. In this work we describe a method to detect different types of behaviors in a long term ECG-Holter using short portions of the Holter signal. This method is based on the calculation of the statistical distance between two distributions in a phase-space of a dynamical system. A short portion of an ECG-Holter signal with normal behavior is used to reconstruct the trajectory of an attractor in low dimensional phase-space. The points in this trajectory are interpreted as statistical distributions in the phase-space and assumed to represent the normal dynamical behavior of the ECG recording in this space. A fast algorithm is then used to compute the statistical distance between this attractor and all other attractors that are built using a sliding temporal window over the signal. For normal cases the distance stayed almost constant and below a threshold. For cases with abnormal transients, on the abnormal portion of ECG, the distance increased consistently with morphological changes.

  14. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    NASA Astrophysics Data System (ADS)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  15. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model

  16. Demonstration of fundamental statistics by studying timing of electronics signals in a physics-based laboratory

    NASA Astrophysics Data System (ADS)

    Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.

    2017-07-01

    We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.

  17. Statistical properties of chaos demonstrated in a class of one-dimensional maps

    NASA Astrophysics Data System (ADS)

    Csordás, András; Györgyi, Géza; Szépfalusy, Péter; Tél, Tamás

    1993-01-01

    One-dimensional maps with complete grammar are investigated in both permanent and transient chaotic cases. The discussion focuses on statistical characteristics such as Lyapunov exponent, generalized entropies and dimensions, free energies, and their finite size corrections. Our approach is based on the eigenvalue problem of generalized Frobenius-Perron operators, which are treated numerically as well as by perturbative and other analytical methods. The examples include the universal chaos function relevant near the period doubling threshold. Special emphasis is put on the entropies and their decay rates because of their invariance under the most general class of coordinate changes. Phase-transition-like phenomena at the border state of chaos due to intermittency and super instability are presented.

  18. Mapping character types onto space: the urban-rural distinction in early statistical writings.

    PubMed

    Bayatrizi, Zohreh

    2011-01-01

    This article investigates the construction of urban/rural binary distinctions in 18th- and 19th-century social scientific literature, and in particular in the writings of the statistical societies in England. The 18th-century writers were primarily concerned with the spread of luxury, vice, and effeminacy among the upper social strata in large cities. Later on, statisticians began to focus on moral hazards among the urban working poor. These writings are significant in several respects: they contributed to the spatial mapping of moral character, played a role in the development of quantitative social scientific techniques, and foreshadowed later sociological debates over the nature and consequences of social evolution from simpler to more complex societies.

  19. Statistical properties of chaos demonstrated in a class of one-dimensional maps.

    PubMed

    Csordas, Andras; Gyorgyi, Geza; Szepfalusy, Peter; Tel, Tamas

    1993-01-01

    One-dimensional maps with complete grammar are investigated in both permanent and transient chaotic cases. The discussion focuses on statistical characteristics such as Lyapunov exponent, generalized entropies and dimensions, free energies, and their finite size corrections. Our approach is based on the eigenvalue problem of generalized Frobenius-Perron operators, which are treated numerically as well as by perturbative and other analytical methods. The examples include the universal chaos function relevant near the period doubling threshold. Special emphasis is put on the entropies and their decay rates because of their invariance under the most general class of coordinate changes. Phase-transition-like phenomena at the border state of chaos due to intermittency and super instability are presented.

  20. Spatial-Temporal Change Detection in NDVI Data Through Statistical Parametric Mapping

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Yadav, V.; Gutierrez, K.

    2011-12-01

    Detection of significant changes in vegetation patterns provides a quantitative means of defining phenological response to changing climate. These changes may be indicative of long-term trends or shorter-duration conditions. In either case, quantifying the significance of the change patterns is critical in order to better understand the underlying processes. Spatial and temporal correlation within imaged data sets complicates change detection and must be taken into account. We apply a novel approach, Statistical Parametric Mapping (SPM), to change detection in Normalized Difference Vegetation Index (NDVI) data. SPM has been developed for identification of regions of anomalous activation in human brain imaging given functional magnetic resonance imaging (fMRI) data. Here, we adapt SPM to work on identifying anomalous regions of vegetation density within 30 years of weekly NDVI imagery. Significant change in any given image pixel is defined as a deviation from the expected value. Expected values are calculated using sinusoidal regression models fit to previous data at that location. The amount of deviation of an observation from the expected value is calculated using a modified t-test that accounts for temporal correlation in the regression data. The t-tests are applied independently to each pixel to create a t-statistic map for every time step. For a given time step, the probability that the maximum t-value exceeds a given threshold can be calculated to determine times with significant deviations, but standard techniques are not applicable due to the large number of pixels searched to find the maximum. SPM takes into account the spatial correlation of the t-statistic map to determine the significance of the maximum observed t-value. Theory developed for truncated Gaussian fields as part of SPM provides the expected number and size of regions within the t-statistic map that exceed a given threshold. The significance of the excursion regions can be assessed and then

  1. Infants rapidly learn word-referent mappings via cross-situational statistics

    PubMed Central

    Smith, Linda; Yu, Chen

    2008-01-01

    First word learning should be difficult because any pairing of a word and scene presents the learner with an infinite number of possible referents. Accordingly, theorists of children’s rapid word learning have sought constraints on word-referent mappings. These constraints are thought to work by enabling learners to resolve the ambiguity inherent in any labeled scene to determine the speaker’s intended referent at that moment. The present study shows that 12- and 14-month old infants can resolve the uncertainty problem in another way, not by unambiguously deciding the referent in a single word-scene pairing, but by rapidly evaluating the statistical evidence across many individually ambiguous words and scenes. PMID:17692305

  2. An Efficient Resampling Method for Assessing Genome-Wide Statistical Significance in Mapping Quantitative Trait Loci

    PubMed Central

    Zou, Fei; Fine, Jason P.; Hu, Jianhua; Lin, D. Y.

    2004-01-01

    Assessing genome-wide statistical significance is an important and difficult problem in multipoint linkage analysis. Due to multiple tests on the same genome, the usual pointwise significance level based on the chi-square approximation is inappropriate. Permutation is widely used to determine genome-wide significance. Theoretical approximations are available for simple experimental crosses. In this article, we propose a resampling procedure to assess the significance of genome-wide QTL mapping for experimental crosses. The proposed method is computationally much less intensive than the permutation procedure (in the order of 102 or higher) and is applicable to complex breeding designs and sophisticated genetic models that cannot be handled by the permutation and theoretical methods. The usefulness of the proposed method is demonstrated through simulation studies and an application to a Drosophila backcross. PMID:15611194

  3. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  4. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  5. Stereoscopic correspondence by applying physical constraints and statistical observations to dissimilarity map

    NASA Astrophysics Data System (ADS)

    Chao, Tsi Y.; Wang, Sheng-Jyh; Hang, Hsueh-Ming

    2000-05-01

    To deal with the correspondence problem in stereo imaging, a new approach is presented to find the disparity information on a newly defined dissimilarity map (DSMP). Base don an image formation model of stereo images and some statistical observations, two constraints and four assumptions are adopted. In addition, a few heuristic criteria are developed to define a unique solution. All these constraints, assumptions and criteria are applied to the DSMP to find the correspondence. At first, the Epipolar Constraint, the Valid Pairing Constraint and the Lambertian Surface Assumption are applied to DSMP to locate the Low Dissimilarity Zones (LDZs). Then, the Opaque Assumption and the Minimum Occlusion Assumption are applied to LDZs to obtain the admissible LDZ sets. Finally, the Depth Smoothness Assumption and some other criteria are applied to the admissible LDZ sets to produce the final answer. The focus of this paper is to find the constraints and assumptions in the stereo correspondence problem and then properly convert these constraints and assumptions into executable procedures on the DSMP. In addition to its ability in estimating occlusion accurately, this approach works well even when the commonly used monotonic ordering assumption is violated. The simulation results show that occlusions can be properly handled and the disparity map can be calculated with a fairly high degree of accuracy.

  6. Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference.

    PubMed

    Johnson, Eric D; Tubau, Elisabet

    2016-09-27

    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations.

  7. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Alzheimer’s disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language) map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map) based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/. PMID:22647208

  8. Statistics and topology of the COBE differential microwave radiometer first-year sky maps

    NASA Astrophysics Data System (ADS)

    Smoot, G. F.; Tenorio, L.; Banday, A. J.; Kogut, A.; Wright, E. L.; Hinshaw, G.; Bennett, C. L.

    1994-12-01

    We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Qrms-PS, independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Qrms-PS = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Qrms-PS = 13.2 +/- 2.5 micro-K and n = 1.7(+0.3(-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.

  9. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2016-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  10. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.

    PubMed

    Brown, D Andrew; Lazar, Nicole A; Datta, Gauri S; Jang, Woncheol; McDowell, Jennifer E

    2014-01-01

    The analysis of functional neuroimaging data often involves the simultaneous testing for activation at thousands of voxels, leading to a massive multiple testing problem. This is true whether the data analyzed are time courses observed at each voxel or a collection of summary statistics such as statistical parametric maps (SPMs). It is known that classical multiplicity corrections become strongly conservative in the presence of a massive number of tests. Some more popular approaches for thresholding imaging data, such as the Benjamini-Hochberg step-up procedure for false discovery rate control, tend to lose precision or power when the assumption of independence of the data does not hold. Bayesian approaches to large scale simultaneous inference also often rely on the assumption of independence. We introduce a spatial dependence structure into a Bayesian testing model for the analysis of SPMs. By using SPMs rather than the voxel time courses, much of the computational burden of Bayesian analysis is mitigated. Increased power is demonstrated by using the dependence model to draw inference on a real dataset collected in a fMRI study of cognitive control. The model also is shown to lead to improved identification of neural activation patterns known to be associated with eye movement tasks. © 2013.

  11. Patterns of trunk muscle activation during walking and pole walking using statistical non-parametric mapping.

    PubMed

    Zoffoli, Luca; Ditroilo, Massimiliano; Federici, Ario; Lucertini, Francesco

    2017-09-09

    This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An integrated user-friendly ArcMAP tool for bivariate statistical modeling in geoscience applications

    NASA Astrophysics Data System (ADS)

    Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusof, Z.; Tehrany, M. S.

    2014-10-01

    Modeling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard modeling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, BSM (bivariate statistical modeler), for BSA technique is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and is created by a simple graphical user interface, which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.

  13. Advances in statistical methods to map quantitative trait loci in outbred populations.

    PubMed

    Hoeschele, I; Uimari, P; Grignola, F E; Zhang, Q; Gage, K M

    1997-11-01

    Statistical methods to map quantitative trait loci (QTL) in outbred populations are reviewed, extensions and applications to human and plant genetic data are indicated, and areas for further research are identified. Simple and computationally inexpensive methods include (multiple) linear regression of phenotype on marker genotypes and regression of squared phenotypic differences among relative pairs on estimated proportions of identity-by-descent at a locus. These methods are less suited for genetic parameter estimation in outbred populations but allow the determination of test statistic distributions via simulation or data permutation; however, further inferences including confidence intervals of QTL location require the use of Monte Carlo or bootstrap sampling techniques. A method which is intermediate in computational requirements is residual maximum likelihood (REML) with a covariance matrix of random QTL effects conditional on information from multiple linked markers. Testing for the number of QTLs on a chromosome is difficult in a classical framework. The computationally most demanding methods are maximum likelihood and Bayesian analysis, which take account of the distribution of multilocus marker-QTL genotypes on a pedigree and permit investigators to fit different models of variation at the QTL. The Bayesian analysis includes the number of QTLs on a chromosome as an unknown.

  14. Advances in Statistical Methods to Map Quantitative Trait Loci in Outbred Populations

    PubMed Central

    Hoeschele, I.; Uimari, P.; Grignola, F. E.; Zhang, Q.; Gage, K. M.

    1997-01-01

    Statistical methods to map quantitative trait loci (QTL) in outbred populations are reviewed, extensions and applications to human and plant genetic data are indicated, and areas for further research are identified. Simple and computationally inexpensive methods include (multiple) linear regression of phenotype on marker genotypes and regression of squared phenotypic differences among relative pairs on estimated proportions of identity-by-descent at a locus. These methods are less suited for genetic parameter estimation in outbred populations but allow the determination of test statistic distributions via simulation or data permutation; however, further inferences including confidence intervals of QTL location require the use of Monte Carlo or bootstrap sampling techniques. A method which is intermediate in computational requirements is residual maximum likelihood (REML) with a covariance matrix of random QTL effects conditional on information from multiple linked markers. Testing for the number of QTLs on a chromosome is difficult in a classical framework. The computationally most demanding methods are maximum likelihood and Bayesian analysis, which take account of the distribution of multilocus marker-QTL genotypes on a pedigree and permit investigators to fit different models of variation at the QTL. The Bayesian analysis includes the number of QTLs on a chromosome as an unknown. PMID:9383084

  15. Time-REferenced data Kriging (TREK): mapping hydrological statistics given their time of reference

    NASA Astrophysics Data System (ADS)

    Porcheron, Delphine; Leblois, Etienne; Sauquet, Eric

    2016-04-01

    A major issue in water sciences is to predict runoff parameters at ungauged sites. Estimates can be obtained by various methods. Among them, geostatistical approaches provide interpolation methods that consequently use explicit assumptions on the variable of interest. Geostatistical techniques have been applied to precipitation and temperature fields and later extended to estimate runoff features considered as basin-support variates along the river network (e.g. Gottschalk, 1993; Sauquet et al., 2000; Skoien et al., 2006; Gottschalk et al., 2011). To obtain robust estimations, the first step is to collect a relevant dataset. Sauquet et al. (2000) and Sauquet (2006) suggest including a large number of catchments with long and common observation periods to ensure both reliability and temporal consistency in runoff estimates. However most observation networks evolve with time. Several choices are thus possible to define an optimal reference period maximizing either spatial or temporal overlap. However, the constraints usually lead to discard a significant number of stations. Time-REferenced data Kriging method (TREK) has been developed to overcome this issue. Here is proposed a method of geostatistical estimation considering the temporal support over which a hydrological statistic has been estimated. This allows attenuating the loss of data previously caused by the application of a strict reference period. The time reference remains for the targeted map itself. The weights depend on the observation period of the data included in the dataset and how near this is to the target period. In this presentation, the concepts of TREK will be introduced and thereafter illustrated to map mean annual runoff in France. References Gottschalk, L., 1993, Correlation and covariance of runoff. Stochastic Hydrology and Hydraulics 7(2), 85-101. Sauquet, E., Gottschalk, L. and Leblois, E., 2000, Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation

  16. Statistical Power of Expression Quantitative Trait Loci for Mapping of Complex Trait Loci in Natural Populations

    PubMed Central

    Schliekelman, Paul

    2008-01-01

    A number of recent genomewide surveys have found numerous QTL for gene expression, often with intermediate to high heritability values. As a result, there is currently a great deal of interest in genetical genomics—that is, the combination of genomewide expression data and molecular marker data to elucidate the genetics of complex traits. To date, most genetical genomics studies have focused on generating candidate genes for previously known trait loci or have otherwise leveraged existing knowledge about trait-related genes. The purpose of this study is to explore the potential for genetical genomics approaches in the context of genomewide scans for complex trait loci. I explore the expected strength of association between expression-level traits and a clinical trait, as a function of the underlying genetic model in natural populations. I give calculations of statistical power for detecting differential expression between affected and unaffected individuals. I model both reactive and causative expression-level traits with both additive and multiplicative multilocus models for the relationship between phenotype and genotype and explore a variety of assumptions about dominance, number of segregating loci, and other parameters. There are two key results. If a transcript is causative for the disease (in the sense that disease risk depends directly on transcript level), then the power to detect association between transcript and disease is quite good. Sample sizes on the order of 100 are sufficient for 80% power. On the other hand, if the transcript is reactive to a disease locus, then the correlation between expression-level traits and disease is low unless the expression-level trait shares several causative loci with the disease—that is, the expression-level trait itself is a complex trait. Thus, there is a trade-off between the power to show association between a reactive expression-level trait and the clinical trait of interest and the power to map expression

  17. Landslide Mapping and Modeling Using Remote Sensing, GIS and Statistical Analysis of District Muzaffarabad, Pakistan

    NASA Astrophysics Data System (ADS)

    Khalid, Nimrah; Mushtaq, Saman

    2016-07-01

    Occurrence factors of Landslide hazard can be natural such as high slopes, geological conditions and lineaments, faults, rain, and river cutting. Man-made factors such as road cuttings, deforestation or development can also contribute to the landsliding. The focus of this study was to model those landslides susceptible prone to hazard areas which in turn can help for the development, urbanization and for setting up rules or regulations to save nature and environment of the area. The focal of the current research work was the Earthquake of October, 2005 also known as Kashmir Earthquake, the epicenter location of the earthquake 34°29'35″N 73°37'44″E at height of ~2000 from mean sea level and ~20 Km North-East from Muzaffarabad city, Azad Jammu & Kashmir, at the scale of 1:50000 Geological map of 43-F/11, tehsil Nauseri area. The techniques used in this research is based on theorem of Bayes's bivariat statistic (weight of evidence) which predicts the events geographically and on input layers and the relationship of event. A relationship between event of landslide and factors was studied and analyzed using this method. Subsequently a prediction of the occurrence of the spatial location of the landslide event was established successfully. The relationship of distribution of landslide and factors layers was calculated using the statistical methods which enabled to predict the landslides zones in different areas. The methodology applied proved that the success rate was 80% landslide occurred in 18% area and prediction rate was 70% of landslides occurred in 70% of area. The use satellite remote sensing data, and GIS with the integration of statistical method are definitely an effective tool for predicting the future landslide prone areas.

  18. Computational meta-analysis of statistical parametric maps in major depression.

    PubMed

    Arnone, Danilo; Job, Dominic; Selvaraj, Sudhakar; Abe, Osamu; Amico, Francesco; Cheng, Yuqi; Colloby, Sean J; O'Brien, John T; Frodl, Thomas; Gotlib, Ian H; Ham, Byung-Joo; Kim, M Justin; Koolschijn, P Cédric M P; Périco, Cintia A-M; Salvadore, Giacomo; Thomas, Alan J; Van Tol, Marie-José; van der Wee, Nic J A; Veltman, Dick J; Wagner, Gerd; McIntosh, Andrew M

    2016-04-01

    Several neuroimaging meta-analyses have summarized structural brain changes in major depression using coordinate-based methods. These methods might be biased toward brain regions where significant differences were found in the original studies. In this study, a novel voxel-based technique is implemented that estimates and meta-analyses between-group differences in grey matter from individual MRI studies, which are then applied to the study of major depression. A systematic review and meta-analysis of voxel-based morphometry studies were conducted comparing participants with major depression and healthy controls by using statistical parametric maps. Summary effect sizes were computed correcting for multiple comparisons at the voxel level. Publication bias and heterogeneity were also estimated and the excess of heterogeneity was investigated with metaregression analyses. Patients with major depression were characterized by diffuse bilateral grey matter loss in ventrolateral and ventromedial frontal systems extending into temporal gyri compared to healthy controls. Grey matter reduction was also detected in the right parahippocampal and fusiform gyri, hippocampus, and bilateral thalamus. Other areas included parietal lobes and cerebellum. There was no evidence of statistically significant publication bias or heterogeneity. The novel computational meta-analytic approach used in this study identified extensive grey matter loss in key brain regions implicated in emotion generation and regulation. Results are not biased toward the findings of the original studies because they include all available imaging data, irrespective of statistically significant regions, resulting in enhanced detection of additional areas of grey matter loss. © 2016 Wiley Periodicals, Inc.

  19. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.

    PubMed

    Fan, Kai; Sun, Xingzhi; Tao, Ying; Xu, Linhao; Wang, Chen; Mao, Xianling; Peng, Bo; Pan, Yue

    2010-11-13

    Post-marketing pharmacovigilance is important for public health, as many Adverse Drug Events (ADEs) are unknown when those drugs were approved for marketing. However, due to the large number of reported drugs and drug combinations, detecting ADE signals by mining these reports is becoming a challenging task in terms of computational complexity. Recently, a parallel programming model, MapReduce has been introduced by Google to support large-scale data intensive applications. In this study, we proposed a MapReduce-based algorithm, for common ADE detection approach, Proportional Reporting Ratio (PRR), and tested it in mining spontaneous ADE reports from FDA. The purpose is to investigate the possibility of using MapReduce principle to speed up biomedical data mining tasks using this pharmacovigilance case as one specific example. The results demonstrated that MapReduce programming model could improve the performance of common signal detection algorithm for pharmacovigilance in a distributed computation environment at approximately liner speedup rates.

  20. Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    NASA Technical Reports Server (NTRS)

    Stroeer, A.; Blackburn, L.; Camp, J.

    2011-01-01

    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

  1. Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    NASA Technical Reports Server (NTRS)

    Stroeer, A.; Blackburn, L.; Camp, J.

    2011-01-01

    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

  2. Effect of experimental parameters and resulting analytical signal statistics in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Klus, Jakub; Pořízka, Pavel; Prochazka, David; Novotný, Jan; Novotný, Karel; Kaiser, Jozef

    2016-12-01

    The purpose of this work is to provide detailed study of statistical behavior of different types of analytical signals in typical of Laser-Induced Breakdown Spectroscopy (LIBS) measurements. The main goal of this work is to justify usage of arithmetic mean and standard deviation as statistical estimates of expected value of selected analytical signal. In contrary to the general assumption that LIBS data show Gaussian distribution, this paper deals with the hypothesis that the data rather demonstrate Generalized Extreme Value Distribution. The study is realized on 10 selected lines measured on NIST glass standard. In order to cover wide range of possible applications three different spectra internal standardization techniques and their influence on distribution were studied. Finally, assuming that the data comes from a single distribution and the central limit theorem is valid, the influence of accumulations on the line distribution is examined and discussed. Statistical tools used and described in this paper can be utilized by other researchers to confirm their hypotheses and verify utilization of Gaussian distribution or even novel data processing methods.

  3. PAR2 exerts local protection against acute pancreatitis via modulation of MAP kinase and MAP kinase phosphatase signaling.

    PubMed

    Namkung, Wan; Yoon, Jae Seok; Kim, Kyung Hwan; Lee, Min Goo

    2008-11-01

    During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.

  4. Map4k4 signaling nodes in metabolic and cardiovascular diseases

    PubMed Central

    Virbasius, Joseph V.; Czech, Michael P.

    2016-01-01

    Map4k4, originally identified in siRNA screens and characterized by tissue specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFκB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed in the future, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4. PMID:27160798

  5. Direct statistical modeling and its implications for predictive mapping in mining exploration

    NASA Astrophysics Data System (ADS)

    Sterligov, Boris; Gumiaux, Charles; Barbanson, Luc; Chen, Yan; Cassard, Daniel; Cherkasov, Sergey; Zolotaya, Ludmila

    2010-05-01

    Recent advances in geosciences make more and more multidisciplinary data available for mining exploration. This allowed developing methodologies for computing forecast ore maps from the statistical combination of such different input parameters, all based on an inverse problem theory. Numerous statistical methods (e.g. algebraic method, weight of evidence, Siris method, etc) with varying degrees of complexity in their development and implementation, have been proposed and/or adapted for ore geology purposes. In literature, such approaches are often presented through applications on natural examples and the results obtained can present specificities due to local characteristics. Moreover, though crucial for statistical computations, "minimum requirements" needed for input parameters (number of minimum data points, spatial distribution of objects, etc) are often only poorly expressed. From these, problems often arise when one has to choose between one and the other method for her/his specific question. In this study, a direct statistical modeling approach is developed in order to i) evaluate the constraints on the input parameters and ii) test the validity of different existing inversion methods. The approach particularly focused on the analysis of spatial relationships between location of points and various objects (e.g. polygons and /or polylines) which is particularly well adapted to constrain the influence of intrusive bodies - such as a granite - and faults or ductile shear-zones on spatial location of ore deposits (point objects). The method is designed in a way to insure a-dimensionality with respect to scale. In this approach, both spatial distribution and topology of objects (polygons and polylines) can be parametrized by the user (e.g. density of objects, length, surface, orientation, clustering). Then, the distance of points with respect to a given type of objects (polygons or polylines) is given using a probability distribution. The location of points is

  6. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  7. Analysis of Bidirectional Associative Memory using Self-consistent Signal to Noise Analysis and Statistical Neurodynamics

    NASA Astrophysics Data System (ADS)

    Shouno, Hayaru; Kido, Shoji; Okada, Masato

    2004-09-01

    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.

  8. Quantitative mapping and statistical evaluation of fracture minerals in the granitic bedrock at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Löfgren, Martin; Sidborn, Magnus

    2016-10-01

    This article provides quantitative data on occurrences and amounts of fracture minerals that coat discrete fractures in granitic rock at the Forsmark site in Sweden. The data are useful for retardation modelling of radionuclide and other contaminants, and for groundwater composition calculations. In a unique campaign, 2071 open fractures in groundwater conducting rock have been mapped with respect to chlorite, calcite, and pyrite. In total 767 m of drill core has been studied from very shallow rock down to ~1000 m depth. The occurrences of fracture minerals, their thicknesses, and their fractions of surface coverage have been recorded for up to eight layers for each fracture. Detection limits are, for each layer, 0.1 mm for the thickness and 1 % for the surface coverage, except for pyrite crystals where surface coverages down to 0.01 % are detectable. The abundance of data has permitted statistical treatment, using parametric and non-parametric methods. Parametric fittings have been made to log-normal, truncated log-normal, and beta distributions. Chlorite, calcite, and pyrite were found in 57 %, 52 %, and 10 % of all mapped fractures, respectively. The fracture mineral thickness was 0.1 mm for calcite, 0.2 mm for chlorite, and 2 μm for pyrite, as averaged over the fracture surface area. For 50 % and 99 % of all fractures the total fracture coating thickness was less than 0.1 mm and 1 mm, respectively, which is important for diffusion resistance estimates. Average surface coverages were 18 % for calcite, 38 % for chlorite, and 0.5 % for pyrite. These data may be used for calculating the reaction capacity of flow paths.

  9. Statistical modeling and MAP estimation for body fat quantification with MRI ratio imaging

    NASA Astrophysics Data System (ADS)

    Wong, Wilbur C. K.; Johnson, David H.; Wilson, David L.

    2008-03-01

    We are developing small animal imaging techniques to characterize the kinetics of lipid accumulation/reduction of fat depots in response to genetic/dietary factors associated with obesity and metabolic syndromes. Recently, we developed an MR ratio imaging technique that approximately yields lipid/{lipid + water}. In this work, we develop a statistical model for the ratio distribution that explicitly includes a partial volume (PV) fraction of fat and a mixture of a Rician and multiple Gaussians. Monte Carlo hypothesis testing showed that our model was valid over a wide range of coefficient of variation of the denominator distribution (c.v.: 0-0:20) and correlation coefficient among the numerator and denominator (ρ 0-0.95), which cover the typical values that we found in MRI data sets (c.v.: 0:027-0:063, ρ: 0:50-0:75). Then a maximum a posteriori (MAP) estimate for the fat percentage per voxel is proposed. Using a digital phantom with many PV voxels, we found that ratio values were not linearly related to PV fat content and that our method accurately described the histogram. In addition, the new method estimated the ground truth within +1.6% vs. +43% for an approach using an uncorrected ratio image, when we simply threshold the ratio image. On the six genetically obese rat data sets, the MAP estimate gave total fat volumes of 279 +/- 45mL, values 21% smaller than those from the uncorrected ratio images, principally due to the non-linear PV effect. We conclude that our algorithm can increase the accuracy of fat volume quantification even in regions having many PV voxels, e.g. ectopic fat depots.

  10. An experimental study of the temporal statistics of radio signals scattered by rain

    NASA Technical Reports Server (NTRS)

    Hubbard, R. W.; Hull, J. A.; Rice, P. L.; Wells, P. I.

    1973-01-01

    A fixed-beam bistatic CW experiment designed to measure the temporal statistics of the volume reflectivity produced by hydrometeors at several selected altitudes, scattering angles, and at two frequencies (3.6 and 7.8 GHz) is described. Surface rain gauge data, local meteorological data, surveillance S-band radar, and great-circle path propagation measurements were also made to describe the general weather and propagation conditions and to distinguish precipitation scatter signals from those caused by ducting and other nonhydrometeor scatter mechanisms. The data analysis procedures were designed to provide an assessment of a one-year sample of data with a time resolution of one minute. The cumulative distributions of the bistatic signals for all of the rainy minutes during this period are presented for the several path geometries.

  11. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    PubMed

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  12. A computationally efficient order statistics based outlier detection technique for EEG signals.

    PubMed

    Giri, Bapun K; Sarkar, Soumajyoti; Mazumder, Satyaki; Das, Koel

    2015-01-01

    Detecting artifacts in EEG data produced by muscle activity, eye blinks and electrical noise is a common and important problem in EEG applications. We present a novel outlier detection method based on order statistics. We propose a 2 step procedure comprising of detecting noisy EEG channels followed by detection of noisy epochs in the outlier channels. The performance of our method is tested systematically using simulated and real EEG data. Our technique produces significant improvement in detecting EEG artifacts over state-of-the-art outlier detection technique used in EEG applications. The proposed method can serve as a general outlier detection tool for different types of noisy signals.

  13. New Statistical Textural Transforms for Non-Stationary Signals; Application to Generalized Multifractal Analysis

    DTIC Science & Technology

    2000-01-01

    stalactite looking signal on top). 3 A segmentation-oriented strategy for textural transforms On one hand, the idea of associating a texture...segmentation methods that combine statistical parameters and neural networks’° because the network parameters are adjusted on training sets. One of the...texture log. The stalactite looking curve on top is the homogeneity index. 1.30 Ilo+00 1.25 1.20 1.15 1.10 1.05 S 1.00 1= 0.95 0.90 0.85 le-02 0.80

  14. Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series.

    PubMed

    Robinson, Mark A; Vanrenterghem, Jos; Pataky, Todd C

    2015-02-01

    Multi-muscle EMG time-series are highly correlated and time dependent yet traditional statistical analysis of scalars from an EMG time-series fails to account for such dependencies. This paper promotes the use of SPM vector-field analysis for the generalised analysis of EMG time-series. We reanalysed a publicly available dataset of Young versus Adult EMG gait data to contrast scalar and SPM vector-field analysis. Independent scalar analyses of EMG data between 35% and 45% stance phase showed no statistical differences between the Young and Adult groups. SPM vector-field analysis did however identify statistical differences within this time period. As scalar analysis failed to consider the multi-muscle and time dependence of the EMG time-series it exhibited Type II error. SPM vector-field analysis on the other hand accounts for both dependencies whilst tightly controlling for Type I and Type II error making it highly applicable to EMG data analysis. Additionally SPM vector-field analysis is generalizable to linear and non-linear parametric and non-parametric statistical models, allowing its use under constraints that are common to electromyography and kinesiology.

  15. Climatic signals registered as Carbon isotopic values in Metasequoia leaf tissues: A statistical analysis

    NASA Astrophysics Data System (ADS)

    Yang, H.; Blais, B.; Perez, G.; Pagani, M.

    2006-12-01

    To examine climatic signals registered as carbon isotopic values in leaf tissues of C3 plants, we collected mature leaf tissues from sun and shade leaves of Metasequoia trees germinated from the 1947 batch of seeds from China and planted along a latitudinal gradient of the United States. Samples from 40 individual trees, along with fossilized material from the early Tertiary of the Canadian Arctic, were analyzed for C and concentration and isotopic values using EA-IRMS after the removal of free lipids. The generated datasets were then merged with climate data compiled from each tree site recorded as average values over the past thirty years (1971-2002, NOAA database). When the isotope data were cross plotted against each geographic and climatic indicator, Latitude, Mean Annual Temperature (MAT), Average Summer Mean Temperature (ASMT)(June-August), Mean Annual Precipitation (MAP), and Average Summer Mean Precipitation (ASMP) respectively correlation patterns were revealed. The best correlating trend was obtained between temperature parameters and C isotopic values, and this correlation is stronger in the northern leaf samples than the southern samples. We discovered a strong positive correlation between latitude and the offset of C isotopic values between shade and sun leaves. This investigation represents a comprehensive examination on climatic signals registered as C isotopic values on a single species that is marked by single genetic source. The results bear implications on paleoclimatic interpretations of C isotopic signals obtained from fossil plant tissues.

  16. Statistics and topology of the COBE differential microwave radiometer first-year sky maps

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Tenorio, L.; Banday, A. J.; Kogut, A.; Wright, E. L.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Q(sub rms-PS), independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Q(sub rms-PS) = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Q(sub rms-PS) = 13.2 +/- 2.5 micro-K and n = 1.7(sup (+0.3) sub (-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.

  17. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications

    NASA Astrophysics Data System (ADS)

    Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusoff, Z. M.; Tehrany, M. S.

    2015-03-01

    Modelling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modelling. Bivariate statistical analysis (BSA) assists in hazard modelling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time-consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, bivariate statistical modeler (BSM), for BSA technique is proposed. Three popular BSA techniques, such as frequency ratio, weight-of-evidence (WoE), and evidential belief function (EBF) models, are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and created by a simple graphical user interface (GUI), which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve (AUC) is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.

  18. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.

    PubMed

    Setty, Manu; Leslie, Christina S

    2015-05-01

    Genome-wide maps of transcription factor (TF) occupancy and regions of open chromatin implicitly contain DNA sequence signals for multiple factors. We present SeqGL, a novel de novo motif discovery algorithm to identify multiple TF sequence signals from ChIP-, DNase-, and ATAC-seq profiles. SeqGL trains a discriminative model using a k-mer feature representation together with group lasso regularization to extract a collection of sequence signals that distinguish peak sequences from flanking regions. Benchmarked on over 100 ChIP-seq experiments, SeqGL outperformed traditional motif discovery tools in discriminative accuracy. Furthermore, SeqGL can be naturally used with multitask learning to identify genomic and cell-type context determinants of TF binding. SeqGL successfully scales to the large multiplicity of sequence signals in DNase- or ATAC-seq maps. In particular, SeqGL was able to identify a number of ChIP-seq validated sequence signals that were not found by traditional motif discovery algorithms. Thus compared to widely used motif discovery algorithms, SeqGL demonstrates both greater discriminative accuracy and higher sensitivity for detecting the DNA sequence signals underlying regulatory element maps. SeqGL is available at http://cbio.mskcc.org/public/Leslie/SeqGL/.

  19. Global statistical maps of extreme-event magnetic observatory 1 min first differences in horizontal intensity

    USGS Publications Warehouse

    Love, Jeffrey J.; Coisson, Pierdavide; Pulkkinen, Antti

    2016-01-01

    Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity ΔBh, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold (nT/min) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55°, we estimate once-per-century ΔBh, S, and R exceedances and a site-to-site, proportional, 1 standard deviation range [1 σ, lower and upper] to be, respectively, 1000, [690, 1450]; 500, [350, 720]; and 200, [140, 280] nT/min. At 40°, we estimate once-per-century ΔBh, S, and R exceedances and 1 σ values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nT/min.

  20. Global Statistical Maps of Extreme-Event Magnetic Observatory 1 Min First Differences in Horizontal Intensity

    NASA Technical Reports Server (NTRS)

    Love, Jeffrey J.; Coïsson, Pierdavide; Pulkkinen, Antti

    2016-01-01

    Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity (delta)Bh, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold(nTmin) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55deg, we estimate once-per-century (delta)Bh, S, and R exceedances and a site-to-site,proportional, 1 standard deviation range [1(sigma), lower and upper] to be, respectively, 1000, [690, 1450]; 500,[350, 720]; and 200, [140, 280] nTmin. At 40deg, we estimate once-per-century (delta)Bh, S, and R exceedances and1(sigma) values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nTmin.

  1. Global Statistical Maps of Extreme-Event Magnetic Observatory 1 Min First Differences in Horizontal Intensity

    NASA Technical Reports Server (NTRS)

    Love, Jeffrey J.; Coïsson, Pierdavide; Pulkkinen, Antti

    2016-01-01

    Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity (delta)Bh, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold(nTmin) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55deg, we estimate once-per-century (delta)Bh, S, and R exceedances and a site-to-site,proportional, 1 standard deviation range [1(sigma), lower and upper] to be, respectively, 1000, [690, 1450]; 500,[350, 720]; and 200, [140, 280] nTmin. At 40deg, we estimate once-per-century (delta)Bh, S, and R exceedances and1(sigma) values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nTmin.

  2. GIS-aided Statistical Landslide Susceptibility Modeling And Mapping Of Antipolo Rizal (Philippines)

    NASA Astrophysics Data System (ADS)

    Dumlao, A. J.; Victor, J. A.

    2015-09-01

    Slope instability associated with heavy rainfall or earthquake is a familiar geotechnical problem in the Philippines. The main objective of this study is to perform a detailed landslide susceptibility assessment of Antipolo City. The statistical method of assessment used was logistic regression. Landslide inventory was done through interpretation of aerial photographs and satellite images with corresponding field verification. In this study, morphologic and non-morphologic factors contributing to landslide occurrence and their corresponding spatial relationships were considered. The analysis of landslide susceptibility was implemented in a Geographic Information System (GIS). The 17320 randomly selected datasets were divided into training and test data sets. K- cross fold validation is done with k= 5. The subsamples are then fitted five times with k-1 training data set and the remaining fold as the validation data set. The AUROC of each model is validated using each corresponding data set. The AUROC of the five models are; 0.978, 0.977, 0.977, 0.974, and 0.979 respectively, implying that the models are effective in correctly predicting the occurrence and nonoccurrence of landslide activity. Field verification was also done. The landslide susceptibility map was then generated from the model. It is classified into four categories; low, moderate, high and very high susceptibility. The study also shows that almost 40% of Antipolo City has been assessed to be potentially dangerous areas in terms of landslide occurrence.

  3. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  4. Statistical Analysis of Photopyroelectric Signals using Histogram and Kernel Density Estimation for differentiation of Maize Seeds

    NASA Astrophysics Data System (ADS)

    Rojas-Lima, J. E.; Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2016-09-01

    Considering the necessity of photothermal alternative approaches for characterizing nonhomogeneous materials like maize seeds, the objective of this research work was to analyze statistically the amplitude variations of photopyroelectric signals, by means of nonparametric techniques such as the histogram and the kernel density estimator, and the probability density function of the amplitude variations of two genotypes of maize seeds with different pigmentations and structural components: crystalline and floury. To determine if the probability density function had a known parametric form, the histogram was determined which did not present a known parametric form, so the kernel density estimator using the Gaussian kernel, with an efficiency of 95 % in density estimation, was used to obtain the probability density function. The results obtained indicated that maize seeds could be differentiated in terms of the statistical values for floury and crystalline seeds such as the mean (93.11, 159.21), variance (1.64× 103, 1.48× 103), and standard deviation (40.54, 38.47) obtained from the amplitude variations of photopyroelectric signals in the case of the histogram approach. For the case of the kernel density estimator, seeds can be differentiated in terms of kernel bandwidth or smoothing constant h of 9.85 and 6.09 for floury and crystalline seeds, respectively.

  5. Statistics-based filtering for low signal-to-noise ratios, applied to rocket plume imaging

    NASA Astrophysics Data System (ADS)

    Hovland, Harald

    2017-05-01

    Extracting information from low signal to noise ratio images poses significant challenges. Noise makes extracting spatial features difficult, in particular if extraction of both large, smooth features at the same time as point-like features is required. This work describes a new statistical approach, able to handle both simultaneously, with the capacity of handling both positive and negative contrast signatures. The basic idea in this approach is that each pixel value can represent underlying statistics to a varying degree, depending on how similar it is to samples taken close to it, spatially and/or temporally. If the sample is similar to its surroundings, it is strongly filtered and also affects the filtering of neighboring samples, but if it is significantly different, it will remain largely unfiltered and does not influence neighboring pixel filtering. Simulations show that the filtering maintains energy conservation, significantly limits noise and at the same time maintains signal integrity. The filter is found to adapt to noise characteristics and spatiotemporal variations of the background. The technique is found to be well suited to rocket plume imaging, but is adaptable to a broad range of other applications.

  6. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    PubMed Central

    Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

  8. Moment-to-moment brain signal variability: a next frontier in human brain mapping?

    PubMed

    Garrett, Douglas D; Samanez-Larkin, Gregory R; MacDonald, Stuart W S; Lindenberger, Ulman; McIntosh, Anthony R; Grady, Cheryl L

    2013-05-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human lifespan development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain.

  9. Accuracy assessment of maps of forest condition: Statistical design and methodological considerations [Chapter 5

    Treesearch

    Raymond L. Czaplewski

    2003-01-01

    No thematic map is perfect. Some pixels or polygons are not accurately classified, no matter how well the map is crafted. Therefore, thematic maps need metadata that sufficiently characterize the nature and degree of these imperfections. To decision-makers, an accuracy assessment helps judge the risks of using imperfect geospatial data. To analysts, an accuracy...

  10. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  11. Introducing the Statistical Redundancy of Instantaneous Phases of the Seismic Signal to Isolate Persistent Sources

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Gaudot, I.; Mocquet, A.; Schimmel, M.; Le Feuvre, M.

    2016-12-01

    We introduce a new method based on pairwise comparisons among a set of synchronous time-series to detect signal redundancies in the seismic ambient wavefield. This approach is based on instantaneous phase coherence statistics, assuming the ergodicity property of a random signal. The first and second moments of the distribution of all possible pairwise phase coherences are used to define the phase randomness. Both theory and synthetic experiments show that, for perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and 1 - 2/π, respectively. Any departure from these values signs the presence of a redundant phase in the raw continuous signal. To detect a repetitive signal propagating between two receivers, the raw time series are split into short-time windows before a cross-correlation operation. For each time sample of the cross-correlation collection, the distribution of all possible pairwise instantaneous phases reflects the redundant behaviour of any persistent localized source. The previously detected 26 s period microseismic source is used to illustrate one of the possible ways of handling phase coherence statistics. The dataset is composed by continuous vertical component during the month of August 2004, recorded at four stations. Classical signal processing steps (including removing the mean, trend and the instrumental response) are applied before bandpass filter the data between 23 and 32 s. Each 31 day length seismogram is split into 372 × 2 h time windows to be cross-correlated among all possible station pairs. We observe that, for all station pairs, the mean overall coherence value is close to zero for most time lags, except for specific time windows for which there is a noticeable departure from the null value. The conversion of the mean overall coherences values into geographical locations using a standard 3.5 km/s group velocity value leads to a source located in the Gulf of Guinea, in a very good agreement with

  12. Intensity invariance properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers.

    PubMed

    Clemens, Jan; Weschke, Gerroth; Vogel, Astrid; Ronacher, Bernhard

    2010-04-01

    The temporal pattern of amplitude modulations (AM) is often used to recognize acoustic objects. To identify objects reliably, intensity invariant representations have to be formed. We approached this problem within the auditory pathway of grasshoppers. We presented AM patterns modulated at different time scales and intensities. Metric space analysis of neuronal responses allowed us to determine how well, how invariantly, and at which time scales AM frequency is encoded. We find that in some neurons spike-count cues contribute substantially (20-60%) to the decoding of AM frequency at a single intensity. However, such cues are not robust when intensity varies. The general intensity invariance of the system is poor. However, there exists a range of AM frequencies around 83 Hz where intensity invariance of local interneurons is relatively high. In this range, natural communication signals exhibit much variation between species, suggesting an important behavioral role for this frequency band. We hypothesize, just as has been proposed for human speech, that the communication signals might have evolved to match the processing properties of the receivers. This contrasts with optimal coding theory, which postulates that neuronal systems are adapted to the statistics of the relevant signals.

  13. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-14

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.

  14. Signal to noise ratio in water balance maps with different resolution

    NASA Astrophysics Data System (ADS)

    Yan, Ziqi; Gottschalk, Lars; Wang, Jianhua

    2016-12-01

    What is the best resolution of annual water balance maps for a correct balance between the basic spatial signal in the observations of precipitation, actual evapotranspiration and runoff across a larger drainage basin and the error in estimates for grid cells in the map to avoid giving a false impression of accuracy? To answer this question an approach based a signal to noise ratio is proposed, which allows finding the optimal resolution maximizing the signal in the map. The approach is demonstrated on gauge data in the Huai River Basin, China. Stochastic interpolation methods were applied to create grid maps of long-term mean values, as well as for estimating variances of the three water balance components in a range of scales from 5 × 5 km to 200 × 200 km2 grid cells. Interpolation algorithms using covariances of long-term means of data with different spatial support were developed. The identified optimal resolutions by the signal to noise ratio appeared to be very different - 10 × 10, 50 × 50, and 30 × 30 km2 for precipitation, actual evapotranspiration, and runoff, respectively. These values are directly linked to the observation network densities. The magnitude of the signal to noise ratio shows similar strong differences with values 34, 3.7, and 5.4, respectively. It gives a direct indication of the reliability of the map, which can be considered as satisfactory only for precipitation for the data available for the present study. The critical factors for this magnitude are parameters characterising the spatial covariance in data and the network density.

  15. NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain.

    PubMed

    Gorgolewski, Krzysztof J; Varoquaux, Gael; Rivera, Gabriel; Schwartz, Yannick; Sochat, Vanessa V; Ghosh, Satrajit S; Maumet, Camille; Nichols, Thomas E; Poline, Jean-Baptiste; Yarkoni, Tal; Margulies, Daniel S; Poldrack, Russell A

    2016-01-01

    NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain

    PubMed Central

    Gorgolewski, Krzysztof J.; Varoquaux, Gael; Rivera, Gabriel; Schwartz, Yannick; Sochat, Vanessa V.; Ghosh, Satrajit S.; Maumet, Camille; Nichols, Thomas E.; Poline, Jean-Baptiste; Yarkoni, Tal; Margulies, Daniel S.; Poldrack, Russell A.

    2016-01-01

    NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard, and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps. PMID:25869863

  17. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  18. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Becker, T. W.; Schorlemmer, D.; Stanchits, S.; Sammis, C. G.; Rybacki, E.; Dresen, G. H.

    2011-12-01

    Seismicity clusters within fault zones are likely connected to the structure, geometric complexity and size of asperities which perturb and intensify the stress field in their periphery. To gain further insight into fault mechanical processes, we study stick-slip sequences in an analog, laboratory setting. Analysis of small scale fracture processes expressed by acoustic emissions (AEs) provide the possibility to investigate how microseismicity is linked to fault heterogeneities and the occurrence of dynamic slip events. We investigated if geometrical fault heterogeneities and asperities identified from post-experimental X-ray computer tomography (CT) scans can be linked to AE statistics. We conducted triaxial compression experiments on intact and notched Westerly granite samples and recorded mechanical and seismic data throughout each experiment. Initially samples were fractured at 75 MPa confining pressure. We then locked the fractured surface by increasing the confinement up to 150 MPa and reactivated the fault by resuming the axial load. The introduction of notches lead to the formation of a localized fault toward the middle of the specimen. We were able to observe up to six slip events with variable stress drops between 130-180 MPa during an individual experiment, allowing to monitor the changes in AE event patterns in connection to ongoing asperity fracture with successive slip events. The present study connects spatial b-value (slope of the frequency-magnitude distribution), seismic moment release and event density maps with CT scans of faulted rock samples. We performed a detailed spatial analysis of event clusters before and after stick slips. AE hypocenter distributions showed a high degree of spatial clustering close to low b-value regions. Slip events and the connected acoustic emission "aftershocks" nucleated within or at the periphery of areas of low b. Aftershock rates could be described by the modified Omori law. To identify larger scale geometric

  19. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea.

    PubMed

    Leroch, Michaela; Mueller, Nathalie; Hinsenkamp, Isabel; Hahn, Matthias

    2015-10-01

    Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen-activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant-pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild-type. Although the wild-type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co-regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  20. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    PubMed

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. How Can We Evaluate the Accuracy of Small Stream Maps? -Focusing on Sampling Method and Statistical Analysis -

    NASA Astrophysics Data System (ADS)

    Park, J.

    2010-12-01

    statistics such as stream length or stream order. In this study, we suggest linear transactional sampling method and, practically, a stream and road crossing points KHAT- based sampling method to collect field stream position. We also review existing estimation methods and feasibility of the application of the error matrix, and Z-statistics for stream maps, which have not been previously inspected. We find that the visual inspection, hydrological statistics, and headwater-based estimation methods provide insufficient information on the positional accuracy and that the error matrix and KHAT-statistics are effective in evaluating stream network positions by pairing a remote sensing data product with a field reference data, but Z-statistics still has limitation in comparing the two different remote sensing data-based stream map products since the variance converges to zero. In order to compare two stream maps, we develop a new statistical approach which is based on the McNemar test.

  2. Statistical synthesis of radiometric imaging formation in scanning radiometers with signal weight processing by Kravchenko windows

    NASA Astrophysics Data System (ADS)

    Volosyuk, V. K.; Kravchenko, V. F.; Pavlikov, V. V.; Pustovoit, V. I.

    2014-05-01

    Statistical optimization of the radiometric images (RMIs) algorithms formation in scanning radiometers with weight correction of the antenna amplitude-phase distribution and synchronous sliding strobing of the received noise-like signal by a function describing the antenna pattern corrected by temporal Kravchenko windows is performed for the first time. The ambiguity function (AF) of the scanning radiometer, which determines the RMI quality, is found. It is established that the AF shape substantially depends on the amplitude field distribution (AFD) in the antenna. It is shown that the use of the AFD in the antenna in the form of weight functions (classic and Kravchenko) makes it possible to correct the AF shape and to increase the RMI quality. A simulation of the RMI formation algorithm is performed. It follows from the analysis of simulation data that the use of the weight Kravchenko functions provides higher accuracy of the RMI restoration compared with classic weight functions.

  3. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude

  4. An Interactive Macrophage Signal Transduction Map Facilitates Comparative Analyses of High-Throughput Data.

    PubMed

    Wentker, Pia; Eberhardt, Martin; Dreyer, Florian S; Bertrams, Wilhelm; Cantone, Martina; Griss, Kathrin; Schmeck, Bernd; Vera, Julio

    2017-03-01

    Macrophages (Mϕs) are key players in the coordination of the lifesaving or detrimental immune response against infections. The mechanistic understanding of the functional modulation of Mϕs by pathogens and pharmaceutical interventions at the signal transduction level is still far from complete. The complexity of pathways and their cross-talk benefits from holistic computational approaches. In the present study, we reconstructed a comprehensive, validated, and annotated map of signal transduction pathways in inflammatory Mϕs based on the current literature. In a second step, we selectively expanded this curated map with database knowledge. We provide both versions to the scientific community via a Web platform that is designed to facilitate exploration and analysis of high-throughput data. The platform comes preloaded with logarithmic fold changes from 44 data sets on Mϕ stimulation. We exploited three of these data sets-human primary Mϕs infected with the common lung pathogens Streptococcus pneumoniae, Legionella pneumophila, or Mycobacterium tuberculosis-in a case study to show how our map can be customized with expression data to pinpoint regulated subnetworks and druggable molecules. From the three infection scenarios, we extracted a regulatory core of 41 factors, including TNF, CCL5, CXCL10, IL-18, and IL-12 p40, and identified 140 drugs targeting 16 of them. Our approach promotes a comprehensive systems biology strategy for the exploitation of high-throughput data in the context of Mϕ signal transduction. In conclusion, we provide a set of tools to help scientists unravel details of Mϕ signaling. The interactive version of our Mϕ signal transduction map is accessible online at https://vcells.net/macrophage. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study.

    PubMed

    MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M

    2016-01-01

    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.

  6. Statistical characteristics of suction pressure signals for a centrifugal pump under cavitating conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Yu, Benxu; Ji, Yucheng; Lu, Jiaxin; Yuan, Shouqi

    2017-02-01

    Centrifugal pumps are often used in operating conditions where they can be susceptible to premature failure. The cavitation phenomenon is a common fault in centrifugal pumps and is associated with undesired effects. Among the numerous cavitation detection methods, the measurement of suction pressure fluctuation is one of the most used methods to detect or diagnose the degree of cavitation in a centrifugal pump. In this paper, a closed loop was established to investigate the pump cavitation phenomenon, the statistical parameters for PDF (Probability Density Function), Variance and RMS (Root Mean Square) were used to analyze the relationship between the cavitation performance and the suction pressure signals during the development of cavitation. It is found that the statistical parameters used in this research are able to capture critical cavitation condition and cavitation breakdown condition, whereas difficult for the detection of incipient cavitation in the pump. At part-load conditions, the pressure fluctuations at the impeller inlet show more complexity than the best efficiency point (BEP). Amplitude of PDF values of suction pressure increased steeply when the flow rate dropped to 40 m3/h (the design flow rate was 60 m3/h). One possible reason is that the flow structure in the impeller channel promotes an increase of the cavitation intensity when the flow rate is reduced to a certain degree. This shows that it is necessary to find the relationship between the cavitation instabilities and flow instabilities when centrifugal pumps operate under part-load flow rates.

  7. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  8. A statistical model for brain networks inferred from large-scale electrophysiological signals.

    PubMed

    Obando, Catalina; De Vico Fallani, Fabrizio

    2017-03-01

    Network science has been extensively developed to characterize the structural properties of complex systems, including brain networks inferred from neuroimaging data. As a result of the inference process, networks estimated from experimentally obtained biological data represent one instance of a larger number of realizations with similar intrinsic topology. A modelling approach is therefore needed to support statistical inference on the bottom-up local connectivity mechanisms influencing the formation of the estimated brain networks. Here, we adopted a statistical model based on exponential random graph models (ERGMs) to reproduce brain networks, or connectomes, estimated by spectral coherence between high-density electroencephalographic (EEG) signals. ERGMs are made up by different local graph metrics, whereas the parameters weight the respective contribution in explaining the observed network. We validated this approach in a dataset of N = 108 healthy subjects during eyes-open (EO) and eyes-closed (EC) resting-state conditions. Results showed that the tendency to form triangles and stars, reflecting clustering and node centrality, better explained the global properties of the EEG connectomes than other combinations of graph metrics. In particular, the synthetic networks generated by this model configuration replicated the characteristic differences found in real brain networks, with EO eliciting significantly higher segregation in the alpha frequency band (8-13 Hz) than EC. Furthermore, the fitted ERGM parameter values provided complementary information showing that clustering connections are significantly more represented from EC to EO in the alpha range, but also in the beta band (14-29 Hz), which is known to play a crucial role in cortical processing of visual input and externally oriented attention. Taken together, these findings support the current view of the functional segregation and integration of the brain in terms of modules and hubs, and provide a

  9. From Enormous 3D Maps of the Universe to Astrophysical and Cosmological Constraints: Statistical Tools for Realizing the Promise of 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max

    2015-01-01

    21 cm cosmology promises to provide an exquisite probe of astrophysics and cosmology during the cosmic dark ages and the epoch of reionization. An enormous volume of the universe, previously inaccessible, can be directly mapped by looking for the faint signal from hyperfine transition of neutral hydrogen. One day, 21 cm tomography could even eclipse the CMB as the most precise test of our cosmological models. Realizing that promise, however, has proven extremely challenging. We're looking for a small signal buried under foregrounds orders of magnitude stronger. We know that we're going to need very sensitive, and thus very large, low frequency interferometers. Those large interferometers produce vast quantities data, which must be carefully analyzed. In talk, I will present my Ph.D. work at MIT on the development and application of rigorous, fast, and robust statistical tools for extracting that cosmological signal while maintaining a thorough understanding of the error properties of those measurements. These tools reduce vast quanities of interferometric data into the statistics like the power spectrum that can be directly compared with theory and simulation, all while minimizing the amount of cosmological information lost. I will also present results from applying those techniques to data from the the Murchison Widefield Array and will discuss the exciting science they will enable with the upcoming Hydrogen Epoch of Reionization Array.

  10. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain.

    PubMed

    Gorgolewski, Krzysztof J; Varoquaux, Gael; Rivera, Gabriel; Schwarz, Yannick; Ghosh, Satrajit S; Maumet, Camille; Sochat, Vanessa V; Nichols, Thomas E; Poldrack, Russell A; Poline, Jean-Baptiste; Yarkoni, Tal; Margulies, Daniel S

    2015-01-01

    Here we present NeuroVault-a web based repository that allows researchers to store, share, visualize, and decode statistical maps of the human brain. NeuroVault is easy to use and employs modern web technologies to provide informative visualization of data without the need to install additional software. In addition, it leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps. The data are exposed through a public REST API enabling other services and tools to take advantage of it. NeuroVault is a new resource for researchers interested in conducting meta- and coactivation analyses.

  11. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Robledo, A.

    2002-10-01

    We uncover the dynamics at the chaos threshold μ∞ of the logistic map and find that it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ∞. We corroborate this structure analytically via the Feigenbaum renormalization-group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a q exponential, of which we determine the q index and the q-generalized Lyapunov coefficient λq. Our results are an unequivocal validation of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical points of nonlinear maps.

  12. Signal processing and statistical descriptive reanalysis of steady state chute-flow experiments

    NASA Astrophysics Data System (ADS)

    truong, hoan; eckert, nicolas; keylock, chris; naaim, mohamed; bellot, hervé

    2014-05-01

    An accurate knowledge of snow rheology is needed for the mitigation against avalanche hazard. Indeed snow avalanches have a significant impact on the livelihoods and economies of alpine communities. To do so, 60 small-scale in-situ flow experiments were performed with various slopes, temperatures and flow depths. The investigation of these data previously seemed to show the dense flow of dry snow may be composed of two layers; a sheared basal layer made of single snow grains and a less sheared upper layer made of large aggregates. These outcomes were mainly based on the mean velocity profile of the flow and on interpretation in terms of rheological behavior of granular materials and snow microstructure [Pierre G. Rognon et al., 2007]. Here, the main objective remains the same, but the rheological and physical viewpoints are put aside to extract as much information contained in the data as possible various using signal processing methods and descriptive statistics methods as the maximum overlap discrete wavelet transform (MODWT), transfer entropy (TE) and maximum cross-correlation (MCC). Specifically, we aim at the improving the velocity estimations as function of the depth particularly the velocity fluctuations around the mean profile to better document the behavior of dense dry snow flows during a steady and uniform chute regime. The data are composed of pairs of voltage signals (right and left), which makes that the velocity is known indirectly only. The MCC method is classically used to determine the time lag between both signals. Previously, the MCC method that showed the mean velocity profile may be fitted by a simple bilinear function [Pierre G. Rognon et al., 2007], but no interesting temporal dynamics could be highlighted. Hence, a new process method was developed to provide velocity series with much better temporal resolution. The process is mainly made of a MODWT-based denoising method and the choice of window size for correlation. The results prove to be

  13. Exploring relationship between asthma and air pollution: a geospatial methodology using dasymetric mapping, GIS analysis, and spatial statistics

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Liebens, Johan; Rao, Ranga

    2007-06-01

    This paper presents methodology using dasymetric mapping from remotely sensed imagery, geographic information system (GIS), spatial analysis and spatial statistics to explore relationship between asthma and air pollution in the Pensacola metropolitan region of Florida. Health outcome indicators thought to be sensitive to increased exposure of airborne environmental hazards are mortality and morbidity rates for total population asthma patients. Environmental data for the time around the year 1999 include point source pollution sites and emissions, traffic count with emission estimates, and a Landsat ETM+ image. Standardized mortality/morbility ratios (SMRs) were used as dependent variables for the analysis. A centroid map was created from the zip code map with each centroid assigned the corresponding SMR values. Then spatial interpolation using the Kriging method was used to generate continuous SMR surfaces. An emission or point count based kernel density raster map was created from each of the air pollution maps. A raster layer 'greenness' was extracted using tasseled cap transformation from the Landsat ETM+ image. The dasymetric mapping technique was employed to limit the analysis and modeling to the area where human activities occur. The ETM+ image was classified into a thematic land use/cover map and the developed area extracted. A road network was combined with the developed area to generate a buffer (buffer distance=1.5 km). A random sample with enough number of points was generated across the study area and 505 points were found within the developed area and the buffer. Data values at these sample points were extracted and used for statistical modeling. Two spatial autoregressive models (spatial error and spatial lag) were fitted. Both models show relationship between the asthmas outcome indicators and air pollution (positive) and 'greenness' (negative).

  14. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network.

    PubMed

    Tewari, Muneesh; Hu, Patrick J; Ahn, Jin Sook; Ayivi-Guedehoussou, Nono; Vidalain, Pierre-Olivier; Li, Siming; Milstein, Stuart; Armstrong, Chris M; Boxem, Mike; Butler, Maurice D; Busiguina, Svetlana; Rual, Jean-François; Ibarrola, Nieves; Chaklos, Sabrina T; Bertin, Nicolas; Vaglio, Philippe; Edgley, Mark L; King, Kevin V; Albert, Patrice S; Vandenhaute, Jean; Pandey, Akhilesh; Riddle, Donald L; Ruvkun, Gary; Vidal, Marc

    2004-02-27

    To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.

  15. Enhancing Local Climate Projections of Precipitation: Assets and Limitations of Quantile Mapping Techniques for Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Ivanov, Martin; Kotlarski, Sven; Schär, Christoph

    2015-04-01

    The Swiss CH2011 scenarios provide a portfolio of climate change scenarios for the region of Switzerland, specifically tailored for use in climate impact research. Although widely applied by a variety of end-users, these scenarios are subject to several limitations related to the underlying delta change methodology. Examples are difficulties to appropriately account for changes in the spatio-temporal variability of meteorological fields and for changes in extreme events. The recently launched ELAPSE project (Enhancing local and regional climate change projections for Switzerland) is connected to the EU COST Action VALUE (www.value-cost.eu) and aims at complementing CH2011 by further scenario products, including a bias-corrected version of daily scenarios at the site scale. For this purpose the well-established empirical quantile mapping (QM) methodology is employed. Here, daily temperature and precipitation output of 15 GCM-RCM model chains of the ENSEMBLES project is downscaled and bias-corrected to match observations at weather stations in Switzerland. We consider established QM techniques based on all empirical quantiles or linear interpolation between the empirical percentiles. In an attempt to improve the downscaling of extreme precipitation events, we also apply a parametric approximation of the daily precipitation distribution by a dynamically weighted mixture of a Gamma distribution for the bulk and a Pareto distribution for the right tail for the first time in the context of QM. All techniques are evaluated and intercompared in a cross-validation framework. The statistical downscaling substantially improves virtually all considered distributional and temporal characteristics as well as their spatial distribution. The empirical methods have in general very similar performances. The parametric method does not show an improvement over the empirical ones. Critical sites and seasons are highlighted and discussed. Special emphasis is placed on investigating the

  16. A signal processing view of strip-mapping synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Munson, David C., Jr.; Visentin, Robert L.

    1989-01-01

    The authors derive the fundamental strip-mapping SAR (synthetic aperture radar) imaging equations from first principles. They show that the resolution mechanism relies on the geometry of the imaging situation rather than on the Doppler effect. Both the airborne and spaceborne cases are considered. Range processing is discussed by presenting an analysis of pulse compression and formulating a mathematical model of the radar return signal. This formulation is used to obtain the airborne SAR model. The authors study the resolution mechanism and derive the signal processing relations needed to produce a high-resolution image. They introduce spotlight-mode SAR and briefly indicate how polar-format spotlight processing can be used in strip-mapping SAR. They discuss a number of current and future research directions in SAR imaging.

  17. Diffusion-Based Density-Equalizing Maps: an Interdisciplinary Approach to Visualizing Homicide Rates and Other Georeferenced Statistical Data

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián

    2012-12-01

    In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.

  18. Application of Polynomial and Radial Basis Function Maps to Signal Masking

    SciTech Connect

    Damiano, B.

    1998-01-01

    The objective of this research was to develop and demonstrate a technique for encrypting information by using a masking signal that closely approximates local ambient noise. Signal masking techniques developed to date have used nonlinear differential equations, spread spectrum, and various modulation schemes to encode information. While these techniques can effectively hide a signal, the resulting masks may not appear as ambient noise to an observer. The advantage of the proposed technique over commonly used masking methods is that the transmitted signal will appear as normal background noise, thus greatly reducing the probability of detection and exploitation. A promising near-term application of this technology presents itself in the area of clandestine minefield reconnaissance in shallow water areas. Shallow water mine-counter-mine (SWMCM) activity is essential for minefield avoidance, efficient minefield clearance, and effective selection of transit lanes within minefields. A key technology area for SWMCM is the development of special sonar waveforms with low probability of exploitation/intercept (LPE/LPI) attributes. In addition to LPE/LPI sonar, this technology has the potential to enable significant improvements in underwater acoustic communications. For SWMCM, the chaotic waveform research provides a mechanism for encrypted communications between a submarine (SSN) and an unmanned underwater vehicle (UUV) via an acoustic channel. Acoustic SSN/UUV communications would eliminate the need for a fiberoptic link between the two vessels, thus increasing the robustness of SWMCM. Similar applications may exist in the areas of radar masking and secure communications. The original approach called for the use of polynomial maps to generate a masking signal. Because polynomial maps were found to have highly restrictive stability criteria, the approach was modified to use radial basis function (RBF) maps. they have shown that stable RBF maps that closely approximate an

  19. The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals

    PubMed Central

    Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei

    2008-01-01

    This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets. PMID:27873804

  20. The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals.

    PubMed

    Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei

    2008-08-27

    This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets.

  1. Psychophysical Map Stability in Bilateral Sequential Cochlear Implantation: Comparing Current Audiology Methods to a New Statistical Definition.

    PubMed

    Domville-Lewis, Chloe; Santa Maria, Peter L; Upson, Gemma; Chester-Browne, Ronel; Atlas, Marcus D

    2015-01-01

    The purpose of this study was to establish a statistical definition for stability in cochlear implant maps. Once defined, this study aimed to compare the duration taken to achieve a stable map in first and second implants in patients who underwent sequential bilateral cochlear implantation. This article also sought to evaluate a number of factors that potentially affect map stability. A retrospective cohort study of 33 patients with sensorineural hearing loss who received sequential bilateral cochlear implantation (Cochlear, Sydney, Australia), performed by the senior author. Psychophysical parameters of hearing threshold scores, comfort scores, and the dynamic range were measured for the apical, medial, and basal portions of the cochlear implant electrode at a range of intervals postimplantation. Stability was defined statistically as a less than 10% difference in threshold, comfort, and dynamic range scores over three consecutive mapping sessions. A senior cochlear implant audiologist, blinded to implant order and the statistical results, separately analyzed these psychophysical map parameters using current assessment methods. First and second implants were compared for duration to achieve stability, age, gender, the duration of deafness, etiology of deafness, time between the insertion of the first and second implant, and the presence or absence of preoperative hearing aids were evaluated and its relationship to stability. Statistical analysis included performing a two-tailed Student's t tests and least squares regression analysis, with a statistical significance set at p ≤ 0.05. There was a significant positive correlation between the devised statistical definition and the current audiology methods for assessing stability, with a Pearson correlation coefficient r = 0.36 and a least squares regression slope (b) of 0.41, df(58), 95% confidence interval 0.07 to 0.55 (p = 0.004). The average duration from device switch on to stability in the first implant was 87

  2. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal.

    PubMed

    Smith, Rob; Taylor, Ryan M; Prince, John T

    2015-01-01

    The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts.

  3. Diffeomorphic metric mapping of hybrid diffusion imaging based on BFOR signal basis.

    PubMed

    Du, Jia; Hosseinbor, A Pasha; Chung, Moo K; Bendlin, Barbara B; Suryawanshi, Gaurav; Suryawanshi, Gaurav; Qiu, Anqi

    2013-01-01

    In this paper, we propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as LDDMM-HYDI. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and thus reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Using real HYDI datasets, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization.

  4. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    SciTech Connect

    Michalski, D; Huq, M; Bednarz, G; Lalonde, R; Yang, Y; Heron, D

    2014-06-01

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same is for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for

  5. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  6. SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.

    SciTech Connect

    Edwards, Lloyd A.; Paresol, Bernard

    2014-09-01

    This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

  7. Statistically Optimal Approximations of Astronomical Signals: Implications to Classification and Advanced Study of Variable Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Chinarova, L. L.; Kudashkina, L. S.; Marsakova, V. I.; Tkachenko, M. G.

    2016-06-01

    We have elaborated a set of new algorithms and programs for advanced time series analysis of (generally) multi-component multi-channel observations with irregularly spaced times of observations, which is a common case for large photometric surveys. Previous self-review on these methods for periodogram, scalegram, wavelet, autocorrelation analysis as well as on "running" or "sub-interval" local approximations were self-reviewed in (2003ASPC..292..391A). For an approximation of the phase light curves of nearly-periodic pulsating stars, we use a Trigonometric Polynomial (TP) fit of the statistically optimal degree and initial period improvement using differential corrections (1994OAP.....7...49A). For the determination of parameters of "characteristic points" (minima, maxima, crossings of some constant value etc.) we use a set of methods self-reviewed in 2005ASPC..335...37A, Results of the analysis of the catalogs compiled using these programs are presented in 2014AASP....4....3A. For more complicated signals, we use "phenomenological approximations" with "special shapes" based on functions defined on sub-intervals rather on the complete interval. E. g. for the Algol-type stars we developed the NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv1212.6707A, 2015JASS...32..127A), which was compared to common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree. The method allows determine the minimal set of parameters required for the "General Catalogue of Variable Stars", as well as an extended set of phenomenological and astrophysical parameters which may be used for the classification. Totally more that 1900 variable stars were studied in our group using these methods in a frame of the "Inter-Longitude Astronomy" campaign (2010OAP....23....8A) and the "Ukrainian Virtual Observatory" project (2012KPCB...28...85V).

  8. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans.

    PubMed

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J; Li, Qiuyan; Leongamornlert, Daniel; Saunders, Edward J; Stephens, Sarah; Cieza-Borrella, Clara; Whitmore, Ian; Benlloch Garcia, Sara; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schumacher, Fredrick; Haiman, Christopher A; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; Mcdonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokołorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Brenner, Hermann; Butterbach, Katja; Arndt, Volker; Park, Jong Y; Sellers, Thomas; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Clements, Judith A; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej; Govindasami, Koveela; Guy, Michelle; Lophatonanon, Artitaya; Muir, Kenneth; Viñuela, Ana; Brown, Andrew A; Freedman, Mathew; Conti, David V; Easton, Douglas; Coetzee, Gerhard A; Eeles, Rosalind A; Kote-Jarai, Zsofia

    2015-10-01

    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.

  9. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  10. A scalable neuroinformatics data flow for electrophysiological signals using MapReduce

    PubMed Central

    Jayapandian, Catherine; Wei, Annan; Ramesh, Priya; Zonjy, Bilal; Lhatoo, Samden D.; Loparo, Kenneth; Zhang, Guo-Qiang; Sahoo, Satya S.

    2015-01-01

    Data-driven neuroscience research is providing new insights in progression of neurological disorders and supporting the development of improved treatment approaches. However, the volume, velocity, and variety of neuroscience data generated from sophisticated recording instruments and acquisition methods have exacerbated the limited scalability of existing neuroinformatics tools. This makes it difficult for neuroscience researchers to effectively leverage the growing multi-modal neuroscience data to advance research in serious neurological disorders, such as epilepsy. We describe the development of the Cloudwave data flow that uses new data partitioning techniques to store and analyze electrophysiological signal in distributed computing infrastructure. The Cloudwave data flow uses MapReduce parallel programming algorithm to implement an integrated signal data processing pipeline that scales with large volume of data generated at high velocity. Using an epilepsy domain ontology together with an epilepsy focused extensible data representation format called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data heterogeneity and is interoperable with existing neuroinformatics data representation formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using a 30-node cluster installed with the open source Hadoop software stack. The results demonstrate that the Cloudwave data flow can process increasing volume of signal data by leveraging Hadoop Data Nodes to reduce the total data processing time. The Cloudwave data flow is a template for developing highly scalable neuroscience data processing pipelines using MapReduce algorithms to support a variety of user applications. PMID:25852536

  11. A scalable neuroinformatics data flow for electrophysiological signals using MapReduce.

    PubMed

    Jayapandian, Catherine; Wei, Annan; Ramesh, Priya; Zonjy, Bilal; Lhatoo, Samden D; Loparo, Kenneth; Zhang, Guo-Qiang; Sahoo, Satya S

    2015-01-01

    Data-driven neuroscience research is providing new insights in progression of neurological disorders and supporting the development of improved treatment approaches. However, the volume, velocity, and variety of neuroscience data generated from sophisticated recording instruments and acquisition methods have exacerbated the limited scalability of existing neuroinformatics tools. This makes it difficult for neuroscience researchers to effectively leverage the growing multi-modal neuroscience data to advance research in serious neurological disorders, such as epilepsy. We describe the development of the Cloudwave data flow that uses new data partitioning techniques to store and analyze electrophysiological signal in distributed computing infrastructure. The Cloudwave data flow uses MapReduce parallel programming algorithm to implement an integrated signal data processing pipeline that scales with large volume of data generated at high velocity. Using an epilepsy domain ontology together with an epilepsy focused extensible data representation format called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data heterogeneity and is interoperable with existing neuroinformatics data representation formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using a 30-node cluster installed with the open source Hadoop software stack. The results demonstrate that the Cloudwave data flow can process increasing volume of signal data by leveraging Hadoop Data Nodes to reduce the total data processing time. The Cloudwave data flow is a template for developing highly scalable neuroscience data processing pipelines using MapReduce algorithms to support a variety of user applications.

  12. Landslide susceptibility mapping using a bivariate statistical model in a tropical hilly area of southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Araújo, J. P. C.; DA Silva, L. M.; Dourado, F. A. D.; Fernandes, N.

    2015-12-01

    Landslides are the most damaging natural hazard in the mountainous region of Rio de Janeiro State in Brazil, responsible for thousands of deaths and important financial and environmental losses. However, this region has currently few landslide susceptibility maps implemented on an adequate scale. Identification of landslide susceptibility areas is fundamental in successful land use planning and management practices to reduce risk. This paper applied the Bayes' theorem based on weight of evidence (WoE) using 8 landslide-related factors in a geographic information system (GIS) for landslide susceptibility mapping. 378 landslide locations were identified and mapped on a selected basin in the city of Nova Friburgo, triggered by the January 2011 rainfall event. The landslide scars were divided into two subsets: training and validation subsets. The 8 landslide-related factors weighted by WoE were performed using chi-square test to indicate which variables are conditionally independent of each other to be used in the final map. Finally, the maps of weighted factors were summed up to construct the landslide susceptibility map and validated by the validation landslide subset. According to the results, slope, aspect and contribution area showed the higher positive spatial correlation with landslides. In the landslide susceptibility map, 21% of the area presented very low and low susceptibilities with 3% of the validation scars, 41% presented medium susceptibility with 22% of the validation scars and 38% presented high and very high susceptibilities with 75% of the validation scars. The very high susceptibility class stands for 16% of the basin area and has 54% of the all scars. The approach used in this study can be considered very useful since 75% of the area affected by landslides was included in the high and very high susceptibility classes.

  13. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies.

    PubMed

    Boxerman, J L; Rosen, B R; Weisskoff, R M

    1997-01-01

    The use of cerebral blood volume (CBV) maps generated from dynamic MRI studies tracking the bolus passage of paramagnetic contrast agents strongly depends on the signal-to-noise ratio (SNR) of the maps. The authors present a semianalytic model for the noise in CBV maps and introduce analytic and Monte Carlo techniques for determining the effect of experimental parameters and processing strategies upon CBV-SNR. CBV-SNR increases as more points are used to estimate the baseline signal level. For typical injections, maps made with 10 baseline points have 34% more noise than those made with 50 baseline points. For a given peak percentage signal drop, an optimum TE can be chosen that, in general, is less than the baseline T2. However, because CBV-SNR is relatively insensitive to TE around this optimum value, choosing TE approximately equal to T2 does not sacrifice much SNR for typical doses of contrast agent. The TR that maximizes spin-echo CBV-SNR satisfies TR/T1 approximately equal to 1.26, whereas as short a TR as possible should be used to maximize gradient-echo CBV-SNR. In general, CBV-SNR is maximized for a given dose of contrast agent by selecting as short an input bolus duration as possible. For image SNR exceeding 20-30, the gamma-fitting procedure adds little extra noise compared with simple numeric integration. However, for noisier input images, can be the case for high resolution echo-planar images, the covarying parameters of the gamma-variate fit broaden the distribution of the CBV estimate and thereby decrease CBV-SNR. The authors compared the analytic noise predicted by their model with that of actual patient data and found that the analytic model accounts for roughly 70% of the measured variability of CBV within white matter regions of interest.

  14. A photon counting detector model based on increment matrices to simulate statistically correct detector signals

    NASA Astrophysics Data System (ADS)

    Faby, Sebastian; Maier, Joscha; Simons, David; Schlemmer, Heinz-Peter; Lell, Michael; Kachelrieß, Marc

    2015-03-01

    We present a novel increment matrix concept to simulate the correlations in an energy-selective photon counting detector. Correlations between the energy bins of neighboring detector pixels are introduced by scattered and fluorescence photons, together with the broadening of the induced charge clouds as they travel towards the electrodes, leading to charge sharing. It is important to generate statistically correct detector signals for the different energy bins to be able to realistically assess the detector's performance in various tasks, e.g. material decomposition. Our increment matrix concept describes the counter increases in neighboring pixels on a single event level. Advantages of our model are the fact that much less random numbers are required than simulating single photons and that the increment matrices together with their probabilities have to be generated only once and can be stored for later use. The different occurring increment matrix sets and the corresponding probabilities are simulated using an analytic model of the photon-matter-interactions based on the photoelectric effect and Compton scattering, and the charge cloud drift, featuring thermal diffusion and Coulomb expansion of the charge cloud. The results obtained with this model are evaluated in terms of the spectral response for different detector geometries and the resulting energy bin sensitivity. Comparisons to published measured data and a parameterized detector model show both a good qualitative and quantitative agreement. We also studied the resulting covariance of reconstructed energy bin images.

  15. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps

    NASA Astrophysics Data System (ADS)

    Obermayer, K.; Blasdel, G. G.; Schulten, K.

    1992-05-01

    We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.

  16. Automatic Mapping Of Large Signal Processing Systems To A Parallel Machine

    NASA Astrophysics Data System (ADS)

    Printz, Harry; Kung, H. T.; Mummert, Todd; Scherer, Paul M.

    1989-12-01

    Since the spring of 1988, Carnegie Mellon University and the Naval Air Development Center have been working together to implement several large signal processing systems on the Warp parallel computer. In the course of this work, we have developed a prototype of a software tool that can automatically and efficiently map signal processing systems to distributed-memory parallel machines, such as Warp. We have used this tool to produce Warp implementations of small test systems. The automatically generated programs compare favorably with hand-crafted code. We believe this tool will be a significant aid in the creation of high speed signal processing systems. We assume that signal processing systems have the following characteristics: •They can be described by directed graphs of computational tasks; these graphs may contain thousands of task vertices. • Some tasks can be parallelized in a systolic or data-partitioned manner, while others cannot be parallelized at all. • The side effects of each task, if any, are limited to changes in local variables. • Each task has a data-independent execution time bound, which may be expressed as a function of the way it is parallelized, and the number of processors it is mapped to. In this paper we describe techniques to automatically map such systems to Warp-like parallel machines. We identify and address key issues in gracefully combining different parallel programming styles, in allocating processor, memory and communication bandwidth, and in generating and scheduling efficient parallel code. When iWarp, the VLSI version of the Warp machine, becomes available in 1990, we will extend this tool to generate efficient code for very large applications, which may require as many as 3000 iWarp processors, with an aggregate peak performance of 60 gigaflops.

  17. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality.

    PubMed

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-02-04

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.

  18. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality

    PubMed Central

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-01-01

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320

  19. Combining mapped and statistical data in forest ecological inventory and monitoring - supplementing an existing system

    Treesearch

    H. T. Schreuder; R. Czaplewski; R. G. Bailey

    1999-01-01

     forest ecological inventory and monitoring system combining information derived from maps and samples is proposed based on ecosystem regions (Bailey, 1994). The system extends the design of the USDA Forest Service Region 6 Inventory and Monitoring System (R6IMS) in the Pacific Northwest of the United States. The key uses of the information are briefly discussed and...

  20. A statistical model for QTL mapping in polysomic autotetraploids underlying double reduction

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: As a group of economically important species, linkage mapping of polysomic autotetraploids, including potato, sugarcane and rose, is difficult to conduct due to their unique meiotic property of double reduction that allows sister chromatids to enter into the same gamete. We desc...

  1. Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography.

    PubMed

    Goldenholz, Daniel M; Ahlfors, Seppo P; Hämäläinen, Matti S; Sharon, Dahlia; Ishitobi, Mamiko; Vaina, Lucia M; Stufflebeam, Steven M

    2009-04-01

    Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously.

  2. Mapping the Signal-To-Noise-Ratios of Cortical Sources in Magnetoencephalography and Electroencephalography

    PubMed Central

    Goldenholz, Daniel M.; Ahlfors, Seppo P.; Hämäläinen, Matti S.; Sharon, Dahlia; Ishitobi, Mamiko; Vaina, Lucia M.; Stufflebeam, Steven M.

    2010-01-01

    Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously. PMID:18465745

  3. MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo.

    PubMed

    Spilker, Annina C; Rabilotta, Alexia; Zbinden, Caroline; Labbé, Jean-Claude; Gotta, Monica

    2009-11-01

    PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.

  4. The Statistical Analysis of Global Oxygen ENAs Sky Maps from IBEX-Lo: Implication on the ENA sources

    NASA Astrophysics Data System (ADS)

    Park, J.; Kucharek, H.; Moebius, E.; Bochsler, P. A.

    2013-12-01

    Energetic Neutral Atoms (ENAs) created in the interstellar medium and heliospheric interface have been observed by the Interstellar Boundary Explorer (IBEX) orbiting the Earth on a highly elliptical trajectory since 2008. The science payload on this small spacecraft consists of two highly sensitive single-pixel ENA cameras: the IBEX-Lo sensor covering the energy ranges from 0.01 to 2 keV and the IBEX-Hi sensor covering the energy ranges from 0.3 to 6 keV. In order to measure the incident ENAs, the IBEX-Lo sensor uses a conversion surface to convert neutrals to negative ions. After passing an electrostatic analyzer, they are separated by species (H and heavier species) via a time-of-flight mass spectrometer. All-sky H ENA maps over three years were completed and show two significant features: the interstellar H and He neutral flow is shown at the low energy ranges (0.01 to 0.11 keV) and the ribbon appears at the higher energies (0.21 to 1.35 keV). Like in the hydrogen sky maps, the interstellar O+Ne neutral flow appears in all-sky O ENA maps at the energy ranges from 0.21 to 0.87 keV The distributed heliospheric Oxygen ENAs over the entire energy ranges is determined from very low counting statistics. In this study, we therefore apply the Cash's C statistics (Cash, 1979) and determine the upper and lower confidence limits (Gehrels, 1986) for the statistical significance among all events in all-sky O ENA maps. These newly created sky maps specifically show the distributed heliospheric O ENA flux surrounding the interstellar O+Ne neutral flow. This enhancement distributed ENA flux will provide us new insights into the ion population creation the ENA emission. It seems that there is no signature of ribbon in all-sky O ENA maps. If one assumes that the generation mechanism of the ribbon is the same for hydrogen and oxygen, the location of source ion population may be closer to the heliosheath. In this poster we will discuss all the results of this study and their

  5. A MAP OF THE INTEGRATED SACHS-WOLFE SIGNAL FROM LUMINOUS RED GALAXIES

    SciTech Connect

    Granett, Benjamin R.; Neyrinck, Mark C.; Szapudi, Istvan

    2009-08-10

    We construct a map of the time derivative of the gravitational potential traced by Sloan Digital Sky Survey luminous red galaxies (LRGs). The potential decays on large scales due to cosmic acceleration, leaving an imprint on cosmic microwave background (CMB) radiation through the integrated Sachs-Wolfe (ISW) effect. With a template fit, we directly measure this signature on the CMB at a 2{sigma} confidence level. The measurement is consistent with the cross-correlation statistic, strengthening the claim that dark energy is indeed the cause of the correlation. This new approach potentially simplifies the cosmological interpretation. Our constructed linear ISW map shows no evidence for degree-scale cold and hot spots associated with supervoid and supercluster structures. This suggests that the linear ISW effect in a concordance {lambda}CDM cosmology is insufficient to explain the strong CMB imprints from these structures that we previously reported.

  6. The Research of Feature Extraction Method of Liver Pathological Image Based on Multispatial Mapping and Statistical Properties

    PubMed Central

    Liu, Huiling; Xia, Bingbing; Yi, Dehui

    2016-01-01

    We propose a new feature extraction method of liver pathological image based on multispatial mapping and statistical properties. For liver pathological images of Hematein Eosin staining, the image of R and B channels can reflect the sensitivity of liver pathological images better, while the entropy space and Local Binary Pattern (LBP) space can reflect the texture features of the image better. To obtain the more comprehensive information, we map liver pathological images to the entropy space, LBP space, R space, and B space. The traditional Higher Order Local Autocorrelation Coefficients (HLAC) cannot reflect the overall information of the image, so we propose an average correction HLAC feature. We calculate the statistical properties and the average gray value of pathological images and then update the current pixel value as the absolute value of the difference between the current pixel gray value and the average gray value, which can be more sensitive to the gray value changes of pathological images. Lastly the HLAC template is used to calculate the features of the updated image. The experiment results show that the improved features of the multispatial mapping have the better classification performance for the liver cancer. PMID:27022407

  7. The Research of Feature Extraction Method of Liver Pathological Image Based on Multispatial Mapping and Statistical Properties.

    PubMed

    Liu, Huiling; Jiang, Huiyan; Xia, Bingbing; Yi, Dehui

    2016-01-01

    We propose a new feature extraction method of liver pathological image based on multispatial mapping and statistical properties. For liver pathological images of Hematein Eosin staining, the image of R and B channels can reflect the sensitivity of liver pathological images better, while the entropy space and Local Binary Pattern (LBP) space can reflect the texture features of the image better. To obtain the more comprehensive information, we map liver pathological images to the entropy space, LBP space, R space, and B space. The traditional Higher Order Local Autocorrelation Coefficients (HLAC) cannot reflect the overall information of the image, so we propose an average correction HLAC feature. We calculate the statistical properties and the average gray value of pathological images and then update the current pixel value as the absolute value of the difference between the current pixel gray value and the average gray value, which can be more sensitive to the gray value changes of pathological images. Lastly the HLAC template is used to calculate the features of the updated image. The experiment results show that the improved features of the multispatial mapping have the better classification performance for the liver cancer.

  8. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia.

    PubMed

    Della Rosa, Pasquale Anthony; Cerami, Chiara; Gallivanone, Francesca; Prestia, Annapaola; Caroli, Anna; Castiglioni, Isabella; Gilardi, Maria Carla; Frisoni, Giovanni; Friston, Karl; Ashburner, John; Perani, Daniela

    2014-10-01

    [18F]-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) is a widely used diagnostic tool that can detect and quantify pathophysiology, as assessed through changes in cerebral glucose metabolism. [18F]-FDG PET scans can be analyzed using voxel-based statistical methods such as Statistical Parametric Mapping (SPM) that provide statistical maps of brain abnormalities in single patients. In order to perform SPM, a "spatial normalization" of an individual's PET scan is required to match a reference PET template. The PET template currently used for SPM normalization is based on [15O]-H2O images and does not resemble either the specific metabolic features of [18F]-FDG brain scans or the specific morphological characteristics of individual brains affected by neurodegeneration. Thus, our aim was to create a new [18F]-FDG PET aging and dementia-specific template for spatial normalization, based on images derived from both age-matched controls and patients. We hypothesized that this template would increase spatial normalization accuracy and thereby preserve crucial information for research and diagnostic purposes. We investigated the statistical sensitivity and registration accuracy of normalization procedures based on the standard and new template-at the single-subject and group level-independently for subjects with Mild Cognitive Impairment (MCI), probable Alzheimer's Disease (AD), Frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). We found a significant statistical effect of the population-specific FDG template-based normalisation in key anatomical regions for each dementia subtype, suggesting that spatial normalization with the new template provides more accurate estimates of metabolic abnormalities for single-subject and group analysis, and therefore, a more effective diagnostic measure.

  9. The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame

    NASA Astrophysics Data System (ADS)

    Dimmock, A. P.; Nykyri, K.

    2013-08-01

    The magnetosheath operates as a natural filter between the solar wind and the magnetospheric plasma. As a result of this, the magnetosheath plays a crucial role in the plasma momentum and energy transport from the interplanetary medium into the magnetosphere. Statistical studies of the magnetosheath are difficult due to the dynamic nature of the terrestrial bow shock and the magnetopause. As a result of this, the spatial and temporal dependence of magnetosheath plasma properties under varying solar wind conditions is still not completely understood. We present a study of magnetosheath plasma properties using 5 years of THEMIS and OMNI data to produce statistical maps of fundamental magnetosheath plasma properties. The magnetosheath interplanetary medium reference frame is applied to present data in a normalized reference frame which accounts for both boundary and orbital motion. The statistical maps are compared with the MHD runs from the CCMC-BATS-R-US model which agree favorably. The results are also used to investigate the presence of any magnetosheath plasma parameter asymmetries and their possible causes.

  10. Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis

    PubMed Central

    Du, Jia; Hosseinbor, A. Pasha; Chung, Moo K.; Bendlin, Barbara B.; Suryawanshi, Gaurav; Alexander, Andrew L.; Qiu, Anqi

    2015-01-01

    We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI).We denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and the analytic form of the emsemble average propagator (EAP) reconstructure, as well as reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI. Finally, we show that the LDDMM-HYDI outperforms the LDDMM algorithm with diffusion tensors generated from each shell of HYDI. PMID:24972378

  11. Report on 3- and 4-Point Correlation Statistics in COBE DMR Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Gorski, Krzystof M.; Bennett, Charles L.; Banday, Anthony J.

    1996-01-01

    As part of the work performed under this contract, we have computed the 3- and 4-point correlation functions of the COBE-DMR 2-year and 4-year anisotropy maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data.

  12. Statistical approaches to human brain mapping by functional magnetic resonance imaging.

    PubMed

    Lange, N

    1996-02-28

    Proper use of functional neuro-imaging through effective experimental design and modern statistical analysis provides new insights in current brain research. This tutorial has two aims: to describe aspects of this technology to applied statisticians and to provide some statistical ideas to neuroscientists unfamiliar with quantitative analytic methods that accommodate randomness. Introductory background material and ample references to current literature on the physics of magnetic resonance imaging, Fourier methods for image reconstruction and measures of image quality are included. Two of the statistical approaches mentioned here are extensions of established methods for longitudinal data analysis to the frequency domain. A recent case study provides real-world instances of approaches, problems and open questions encountered in current functional neuro-imaging research and an introduction to the analysis of spatial time series in this context.

  13. Singular Value Spectrum Based Detection and Estimation of Non-Stationary Underwater Acoustic Signals and Their Statistical Modelling by Approximation.

    DTIC Science & Technology

    1992-03-01

    APPROXIMATION March 1992 Professors Nenad M Marinovic and Leonid Roytman Department of Electrical Engineering The City College of The City University...Non-Stationary . Underwater Acous’ic Signals and Their Statistical Modelling by Approximation W -,d, s r Nenad M. Marinovic and Leonid Roytman

  14. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  15. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  16. Statistical analysis of North Atlantic right whale (Eubalaena glacialis) signal trains in Cape Cod Bay, spring 2012.

    PubMed

    Urazghildiiev, Ildar R

    2014-11-01

    Statistical characteristics of signal trains produced by North Atlantic right whales (NARW) during the winter and early spring in Cape Cod Bay, MA are described. Data analysis was based on four days of acoustic recordings that were obtained with synchronized hydrophones. Based on temporal and geographical clustering of detected signals, 7264 NARW sounds were identified and associated with 559 signal trains. The detected signals were assigned to four classes of narrowband tonal calls--upcalls, downcalls, complex, and high frequency, and two classes of wideband sounds--gunshots and complex. Empirical distributions of the number of signals in trains, total duration of trains, the positions of NARW, and signal classes are presented. Results indicate that 68.9% of all signal trains consisted of 10 or fewer signals. Low and high frequency tonals that lacked wideband sounds formed 69.1% of trains; 5.0% of trains lacked tonals. Trains consisting of only upcalls comprised 44.2% of all detected trains. Because 18.3% of trains contained no upcalls, using detectors that identify all signal classes would improve right whale detection.

  17. DMI measurements impact on a position estimation with lack of GNSS signals during Mobile Mapping

    NASA Astrophysics Data System (ADS)

    Bobkowka, K.; Nykiel, G.; Tysiąc, P.

    2017-07-01

    Nowadays, Mobile Laser Scanning is common in use in addition to geodesy measurements. The data which are provided by the system characterizes with high precision and flexibility. To precise mapping, the accuracy of the data should be maintained. In Poland, according to the minister’s dispositions, the accuracy of the data should not exceeded 10 cm. With fully operated system it is easy to uphold, but there is a situation when a signal from an INS is not enough to preserve it. This paper is presenting the solution of a DMI use in Mobile Laser Scanning measurements as the support for position estimation during lack of satellites signal situation when the vehicle with the platform was entered the tunnel. To comparison the results a several of entrances was performed. This research helps understand the use of DMI in mobile data acquisition in different acquiring situations.

  18. Novel Resampling Improves Statistical Power for Multiple-Trait QTL Mapping

    PubMed Central

    Cheng, Riyan; Doerge, R. W.; Borevitz, Justin

    2017-01-01

    Multiple-trait analysis typically employs models that associate a quantitative trait locus (QTL) with all of the traits. As a result, statistical power for QTL detection may not be optimal if the QTL contributes to the phenotypic variation in only a small proportion of the traits. Excluding QTL effects that contribute little to the test statistic can improve statistical power. In this article, we show that an optimal power can be achieved when the number of QTL effects is best estimated, and that a stringent criterion for QTL effect selection may improve power when the number of QTL effects is small but can reduce power otherwise. We investigate strategies for excluding trivial QTL effects, and propose a method that improves statistical power when the number of QTL effects is relatively small, and fairly maintains the power when the number of QTL effects is large. The proposed method first uses resampling techniques to determine the number of nontrivial QTL effects, and then selects QTL effects by the backward elimination procedure for significance test. We also propose a method for testing QTL-trait associations that are desired for biological interpretation in applications. We validate our methods using simulations and Arabidopsis thaliana transcript data. PMID:28064191

  19. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  20. A Score-Statistic Approach for the Mapping of Quantitative-Trait Loci with Sibships of Arbitrary Size

    PubMed Central

    Wang, K.; Huang, J.

    2002-01-01

    The Haseman-Elston method is widely used for the mapping of quantitative-trait loci. However, this method does not use all the information in the data, because it only considers the sib-pair trait-value difference. In addition, the Haseman-Elston method was developed for independent sib pairs; its generalization to nonindependent sib pairs is not straightforward. Here we introduce a score test statistic derived from a normal likelihood based on multiplex sibship data, conditional on identical-by-descent sharing statuses. This score test is asymptotically equivalent to the corresponding likelihood-ratio test, but it is much easier to implement. Because the proposed test uses all of the trait values, it makes more efficient use of the data than does the Haseman-Elston method. The proposed test is naturally applicable to sibships of arbitrary size. The finite-sample properties of the proposed score statistic are evaluated via simulations. PMID:11791211

  1. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  2. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    PubMed

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  3. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy

    PubMed Central

    Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus

  4. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy.

    PubMed

    Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study

  5. Statistical Analysis of Acoustic Signal Propagating Through the South China Sea Basin

    DTIC Science & Technology

    2016-03-01

    ANALYSIS OF ACOUSTIC SIGNAL PROPAGATING THROUGH THE SOUTH CHINA SEA BASIN by Meihuei Chen March 2016 Thesis Advisor... ACOUSTIC SIGNAL PROPAGATING THROUGH THE SOUTH CHINA SEA BASIN 5. FUNDING NUMBERS 6. AUTHOR(S) Meihuei Chen 7. PERFORMING ORGANIZATION NAME(S) AND...China Sea (SCS) basin to study the effects of nonlinear internal waves on 400- Hz acoustic signal propagation. The acoustic arrival structure for this

  6. Mapping and correction of vascular hemodynamic latency in the BOLD signal.

    PubMed

    Chang, Catie; Thomason, Moriah E; Glover, Gary H

    2008-10-15

    Correlation and causality metrics can be applied to blood-oxygen level-dependent (BOLD) signal time series in order to infer neural synchrony and directions of information flow from fMRI data. However, the BOLD signal reflects both the underlying neural activity and the vascular response, the latter of which is governed by local vasomotor physiology. The presence of potential vascular latency differences thus poses a confound in the detection of neural synchrony as well as inferences about the causality of neural processes. In the present study, we investigate the use of a breath holding (BH) task for characterizing and correcting for voxel-wise neurovascular latency differences across the whole brain. We demonstrate that BH yields reliable measurements of relative timing differences between voxels, and further show that a BH-derived latency correction can impact both functional connectivity maps of the resting-state default-mode network and activation maps of an event-related working memory (WM) task.

  7. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  8. Evaluation of Extremely Small Sound Source Signals Used in Speaking-Aid System with Statistical Voice Conversion

    NASA Astrophysics Data System (ADS)

    Nakamura, Keigo; Toda, Tomoki; Saruwatari, Hiroshi; Shikano, Kiyohiro

    We have so far proposed a speaking-aid system for laryngectomees using a statistical voice conversion technique. In the proposed system, artificial speech articulated with extremely small sound source signals is detected with a Non-Audible Murmur (NAM) microphone, and then, the detected artificial speech is converted into more natural voice in a probabilistic manner. Although this system basically allows laryngectomees to speak while keeping the external source signals silent, it is still questionable how much these new sound source signals affect the converted speech quality. In this paper, we investigate the impact of various sound source signals on voice conversion accuracy. Various small sound source signals are designed by changing the spectral envelope and the waveform power independently. We conduct objective and subjective evaluations. The results of these experimental evaluations demonstrate that voice conversion accepts 1) various sound source signals with different spectral envelopes and 2) large degree of power of the sound source signals unless the power of speaking parts is almost equal to that of silence parts. Moreover, we also investigate the effectiveness of enhancing auditory feedback during speaking with the extremely small sound source signals.

  9. Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution.

    PubMed

    Châtel, A; Hamer, B; Talarmin, H; Dorange, G; Schröder, H C; Müller, W E G

    2010-03-01

    Stimulation of MAP kinase signal transduction pathway by various stressful stimuli was investigated in the marine bivalve Mytilus galloprovincialis. Analyses were performed in animals exposed in laboratory to selected pollutants and in mussels collected in winter and summer along the eastern Adriatic coast (Croatia). Effects of oxidative stress, induced by tributyltin, hydrogen peroxide and water soluble fraction of diesel fuel on the activation/phosphorylation of the three Mitogen-Activated Protein Kinases (MAPKs) p38, JNK and ERK using a newly developed ELISA procedure were evaluated. MAP kinase activation was analyzed 1h after exposure of mussels to chemical agents, and after recovery periods of 6 and 24h. Our results clearly indicated that pollutants generated different patterns of induction of the MAPK phosphorylation. Indeed, only pp38 and pJNK were activated with 11, 33 and 100 microg/L TBT, reaching a maximum activation after 6h in seawater following treatment of mussels with 11 microg/L TBT. Treatment with 0.074 and 0.222 mM H2O2 enhanced activation of both p38 and ERK. These two kinases were activated after 1h exposure, followed by a diminution after 6h of recovery in seawater and a reactivation after 24h. The levels of phosphorylated P38 and JNK were increased after mussel exposure with 7.5, 15 and 30% of water soluble fraction of diesel oil. P38 was activated concentration dependently at 1h exposure. Additionally, field study pointed out seasonal differences in MAP kinases activation as mussels collected during summer had a higher enzyme activation state than in winter, as well as sampling site differences which could be correlated to the industrial/tourism activity and environmental stresses (salinity). All the results converge towards MAP kinase signaling pathway being induced by various pollutants in M. galloprovincialis. This signaling cascade should be considered as a possible biomarker of environmental stress and pollution. 2009 Elsevier B.V. All

  10. Statistical methods for mapping quantitative trait loci from a dense set of markers.

    PubMed Central

    Dupuis, J; Siegmund, D

    1999-01-01

    Lander and Botstein introduced statistical methods for searching an entire genome for quantitative trait loci (QTL) in experimental organisms, with emphasis on a backcross design and QTL having only additive effects. We extend their results to intercross and other designs, and we compare the power of the resulting test as a function of the magnitude of the additive and dominance effects, the sample size and intermarker distances. We also compare three methods for constructing confidence regions for a QTL: likelihood regions, Bayesian credible sets, and support regions. We show that with an appropriate evaluation of the coverage probability a support region is approximately a confidence region, and we provide a theroretical explanation of the empirical observation that the size of the support region is proportional to the sample size, not the square root of the sample size, as one might expect from standard statistical theory. PMID:9872974

  11. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena Safa; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  12. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  13. Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking

    PubMed Central

    Syed, Durafshan Sakeena; Gowda, Swetha B.M.; Reddy, O Venkateswara; Reichert, Heinrich; VijayRaghavan, K

    2016-01-01

    Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here, we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map. DOI: http://dx.doi.org/10.7554/eLife.11572.001 PMID:26926907

  14. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae.

    PubMed

    Zhang, Xue; Liu, Wende; Li, Yang; Li, Guotian; Xu, Jin-Rong

    2017-08-11

    The Pmk1 and Mps1 MAP kinases are essential for appressorium formation and plant infection in Magnaporthe oryzae. However, their exact roles during invasive growth are not clear because pmk1 and mps1 mutants are defective in penetration. To further characterize their functions after penetration, in this study we expressed the Pseudomonas syringae effector HopAI known to inactivate plant MAP kinases in M. oryzae. Constitutive expression of HopAI with the RP27 or TrpC promoter resulted in defects in hyphal growth, conidiation, appressorium penetration and pathogenicity, which is similar to the phenotype of the mps1 mutant. HopAI interacted strongly with Mps1 in vivo and expression of dominant active MKK2 partially suppressed the defects of PRP27 -HopAI transformants, which were significantly reduced in Mps1 phosphorylation. When the infection-specific MIR1 (Magnaporthe-infection-related gene-1) promoter was used to express HopAI, PMIR1 -HopAI transformants were defective in the spreading of invasive hyphae and elicited strong defense responses in penetrated plant cells. Expression of HopAI in Fusarium graminearum also mainly affected the activation of Mgv1, an Mps1 orthologue. Taken together, our results showed that Mps1 is the major intracellular target of HopAI when it is overexpressed, and MAP kinase signalling is important for cell-to-cell movement of invasive hyphae in M. oryzae. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Modeling the effects of distortion, contrast, and signal-to-noise ratio on stereophotogrammetric range mapping

    NASA Astrophysics Data System (ADS)

    Sellar, R. Glenn; Deen, Robert G.; Huffman, William C.; Willson, Reginald G.

    2016-09-01

    Stereophotogrammetry typically employs a pair of cameras, or a single moving camera, to acquire pairs of images from different camera positions, in order to create a three dimensional `range map' of the area being observed. Applications of this technique for building three-dimensional shape models include aerial surveying, remote sensing, machine vision, and robotics. Factors that would be expected to affect the quality of the range maps include the projection function (distortion) of the lenses and the contrast (modulation) and signal-to-noise ratio (SNR) of the acquired image pairs. Basic models of the precision with which the range can be measured assume a pinhole-camera model of the geometry, i.e. that the lenses provide perspective projection with zero distortion. Very-wide-angle or `fisheye' lenses, however (for e.g. those used by robotic vehicles) typically exhibit projection functions that differ significantly from this assumption. To predict the stereophotogrammetric range precision for such applications, we extend the model to the case of an equidistant lens projection function suitable for a very-wide-angle lens. To predict the effects of contrast and SNR on range precision, we perform numerical simulations using stereo image pairs acquired by a stereo camera pair on NASA's Mars rover Curiosity. Contrast is degraded and noise is added to these data in a controlled fashion and the effects on the quality of the resulting range maps are assessed.

  16. Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE Iraq: a comparison of different statistical models

    NASA Astrophysics Data System (ADS)

    Othman, A. A.; Gloaguen, R.; Andreani, L.; Rahnama, M.

    2015-03-01

    During the last decades, expansion of settlements into areas prone to landslides in Iraq has increased the importance of accurate hazard assessment. Susceptibility mapping provides information about hazardous locations and thus helps to potentially prevent infrastructure damage due to mass wasting. The aim of this study is to evaluate and compare frequency ratio (FR), weight of evidence (WOE), logistic regression (LR) and probit regression (PR) approaches in combination with new geomorphological indices to determine the landslide susceptibility index (LSI). We tested these four methods in Mawat area, Kurdistan Region, NE Iraq, where landslides occur frequently. For this purpose, we evaluated 16 geomorphological, geological and environmental predicting factors mainly derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite. The available reference inventory includes 351 landslides representing a cumulative surface of 3.127 km2. This reference inventory was mapped from QuickBird data by manual delineation and partly verified by field survey. The areas under curve (AUC) of the receiver operating characteristic (ROC), and relative landslide density (R index) show that all models perform similarly and that focus should be put on the careful selection of proxies. The results indicate that the lithology and the slope aspects play major roles for landslide occurrences. Furthermore, this paper demonstrates that using hypsometric integral as a prediction factor instead of slope curvature gives better results and increases the accuracy of the LSI.

  17. Probing the statistics of transport in the Hénon Map

    NASA Astrophysics Data System (ADS)

    Alus, O.; Fishman, S.; Meiss, J. D.

    2016-09-01

    The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant "boundary circles." We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.

  18. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling.

    PubMed

    Jeong, Sangho; Palmer, Travis M; Lukowitz, Wolfgang

    2011-08-09

    The division of plant zygotes is typically asymmetric, generating daughter cells with different developmental fates. In Arabidopsis, the apical daughter cell produces the proembryo, whereas the basal daughter cell forms the mostly extraembryonic suspensor. Establishment of apical and basal fates is known to depend on the YODA (YDA) mitogen-associated protein (MAP) kinase cascade and WUSCHEL-LIKE HOMEOBOX (WOX) homeodomain transcription factors. Mutations in GROUNDED (GRD) cause anatomical defects implying a partial loss of developmental asymmetry in the first division. Subsequently, suspensor-specific WOX8 expression disappears while proembryo-specific ZLL expression expands in the mutants, revealing that basal fates are confounded. GRD encodes a small nuclear protein of the RWP-RK family and is broadly transcribed in the early embryo. Loss of GRD eliminates the dominant effects of hyperactive YDA variants, indicating that GRD is required for YDA-dependent signaling in the embryo. However, GRD function is not regulated via direct phosphorylation by MAP kinases, and forced expression of GRD does not suppress the effect of yda mutations. In a strong synthetic interaction, grd;wox8;wox9 triple mutants arrest as zygotes or one-cell embryos lacking apparent polarity. The predicted transcription factor GRD acts cooperatively with WOX homeodomain proteins to establish embryonic polarity in the first division. Like YDA, GRD promotes zygote elongation and basal cell fates. GRD function is required for YDA-dependent signaling but apparently not regulated by the YDA MAP kinase cascade. Similarity of GRD to Chlamydomonas MID suggests a conserved role for small RWP-RK proteins in regulating the transcriptional programs of generative cells and the zygote. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Progress in national-scale landslide susceptibility mapping in Romania using a combined statistical-heuristical approach

    NASA Astrophysics Data System (ADS)

    Bălteanu, Dan; Micu, Mihai; Malet, Jean-Philippe; Jurchescu, Marta; Sima, Mihaela; Kucsicsa, Gheorghe; Dumitrică, Cristina; Petrea, Dănuţ; Mărgărint, Ciprian; Bilaşco, Ştefan; Văcăreanu, Radu; Georgescu, Sever; Senzaconi, Francisc

    2017-04-01

    Landslide processes represent a very widespread geohazard in Romania, affecting mainly the hilly and plateau regions as well as the mountain sectors developed on flysch formations. Two main projects provided the framework for improving the existing national landslide susceptibility map (Bălteanu et al. 2010): the ELSUS (Pan-European and nation-wide landslide susceptibility assessment, EC-CERG) and the RO-RISK (Disaster Risk Evaluation at National Level, ESF-POCA) projects. The latter one, a flagship project aiming at strengthening risk prevention and management in Romania, focused on a national-level evaluation of the main risks in the country including landslides. The strategy for modeling landslide susceptibility was designed based on the experience gained from continental and national level assessments conducted in the frame of the International Programme on Landslides (IPL) project IPL-162, the European Landslides Expert Group - JRC and the ELSUS project. The newly proposed landslide susceptibility model used as input a reduced set of landslide conditioning factor maps available at scales of 1:100,000 - 1:200,000 and consisting of lithology, slope angle and land cover. The input data was further differentiated for specific natural environments, defined here as morpho-structural units in order to incorporate differences induced by elevation (vertical climatic zonation), morpho-structure as well as neotectonic features. In order to best discern the specific landslide conditioning elements, the analysis has been carried out for one single process category, namely slides. The existence of a landslide inventory covering the whole country's territory ( 30,000 records, Micu et al. 2014), although affected by incompleteness and lack of homogeneity, allowed for the application of a semi-quantitative, mixed statistical-heuristical approach having the advantage of combining the objectivity of statistics with expert-knowledge in calibrating class and factor weights. The

  20. Mapping of Planetary Surface Age Based on Crater Statistics Obtained by AN Automatic Detection Algorithm

    NASA Astrophysics Data System (ADS)

    Salih, A. L.; Mühlbauer, M.; Grumpe, A.; Pasckert, J. H.; Wöhler, C.; Hiesinger, H.

    2016-06-01

    The analysis of the impact crater size-frequency distribution (CSFD) is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly) global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results. With this detection threshold, the automatic crater detection algorithm can be applied to a much larger surface region around the calibration area. The proposed age estimation method is demonstrated for a Kaguya Terrain Camera image mosaic of 7.4 m per pixel resolution of the floor region of the lunar crater Tsiolkovsky, which consists of dark and flat mare basalt and has an area of nearly 10,000 km2. The region used for calibration, for which manual crater counts are available, has an area of 100 km2. In order to obtain a spatially resolved age map, CSFDs and surface ages are computed for overlapping quadratic regions of about 4.4 x 4.4 km2 size offset by a step width of 74 m. Our constructed surface age map of the floor of Tsiolkovsky shows age values of typically 3.2-3.3 Ga, while for small regions lower (down to 2.9 Ga) and higher

  1. Statistical mechanics of learning multiple orthogonal signals: asymptotic theory and fluctuation effects.

    PubMed

    Hoyle, D C; Rattray, M

    2007-01-01

    The learning of signal directions in high-dimensional data through orthogonal decomposition or principal component analysis (PCA) has many important applications in physics and engineering disciplines, e.g., wireless communication, information theory, and econophysics. The accuracy of the orthogonal decomposition can be studied using mean-field theory. Previous analysis of data produced from a model with a single signal direction has predicted a retarded learning phase transition below which learning is not possible, i.e., if the signal is too weak or the data set is too small then it is impossible to learn anything about the signal direction or magnitude. In this contribution we show that the result can be generalized to the case where there are multiple signal directions. Each nondegenerate signal is associated with a retarded learning transition. However, fluctuations around the mean-field solution lead to large finite size effects unless the signal strengths are very well separated. We evaluate the one-loop contribution to the mean-field theory, which shows that signal directions are indistinguishable from one another if their corresponding population eigenvalues are separated by O(N(-tau)) with exponent tau>1/3, where N is the data dimension. Numerical simulations are consistent with the analysis and show that finite size effects can persist even for very large data sets.

  2. Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus).

    PubMed

    Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R

    2012-05-01

    Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.

  3. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    NASA Astrophysics Data System (ADS)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  4. Map showing locations and statistical parameters of beach and offshore sand samples, Tutuila Island, American Samoa

    USGS Publications Warehouse

    Dingler, J.R.; Carlson, D.V.; Sallenger, A.H.

    1987-01-01

    In April 1985, sand samples were collected from many of the beaches on Tutuila Island, American Samoa, and in July 1985, three bays were surveyed using side-scan sonar and shallow seismic profiling. During that second trip, scuba divers collected sand samples from the surveyed areas. Dingler and others (1986) describes the study; this report presents the grain-size and composition data for the onshore and offshore sand samples. Locations of the onshore samples are plotted on the map of the island, which is reproduced from Normark and others (1985); locations of most of the offshore samples and side-scan sonar interpretations made during the study are plotted on enlargements (A and B, respectively) of Fagaitua and Nua-seetaga Bays. Lam Yuen (1981), U.S. Army Corps of Engineers (1980), and Sea Engineering Services Inc. (1980) provide additional information pertaining to the island's beaches.

  5. The ElderSmile TimeMap: Benefits of Connecting Statistics With Time and Place.

    PubMed

    Kum, Susan S; Wang, Hua; Wang, Peng; Jin, Zhu; De La Cruz, Leydis; Northridge, Mary E; Kunzel, Carol; Marshall, Stephen E; Metcalf, Sara S

    2015-09-01

    Community-based programs are critical for locally targeted public health education and accessible service delivery. Deriving useful information from such programs is important for their own evaluation and improvement and may facilitate research collaboration with partners and experts. Here we present an interactive Web-based application designed for a community-based oral health outreach program called ElderSmile to demonstrate how data can be summarized, filtered, compared, and visualized by time and place to inform program planning, evaluation, and research. The ElderSmile TimeMap ( http://www.acsu.buffalo.edu/∼smetcalf/resources/timemap.html ) is an emergent product of a US National Institutes of Health-funded collaboration of knowledge sharing among multidisciplinary team members at the University at Buffalo, Columbia University, and New York University.

  6. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  7. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal

    PubMed Central

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/fα. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow. PMID:19636388

  8. Mobility statistics and automated hazard mapping for debris flows and rock avalanches

    USGS Publications Warehouse

    Griswold, Julia P.; Iverson, Richard M.

    2008-01-01

    Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon

  9. Domain Specificity of MAP3K Family Members, MLK and Tak1, for JNK Signaling in Drosophila

    PubMed Central

    Stronach, Beth; Lennox, Ashley L.; Garlena, Rebecca A.

    2014-01-01

    A highly diverse set of protein kinases functions as early responders in the mitogen- and stress-activated protein kinase (MAPK/SAPK) signaling pathways. For instance, humans possess 14 MAPK kinase kinases (MAP3Ks) that activate Jun kinase (JNK) signaling downstream. A major challenge is to decipher the selective and redundant functions of these upstream MAP3Ks. Taking advantage of the relative simplicity of Drosophila melanogaster as a model system, we assessed MAP3K signaling specificity in several JNK-dependent processes during development and stress response. Our approach was to generate molecular chimeras between two MAP3K family members, the mixed lineage kinase, Slpr, and the TGF-β activated kinase, Tak1, which share 32% amino acid identity across the kinase domain but otherwise differ in sequence and domain structure, and then test the contributions of various domains for protein localization, complementation of mutants, and activation of signaling. We found that overexpression of the wild-type kinases stimulated JNK signaling in alternate contexts, so cells were capable of responding to both MAP3Ks, but with distinct outcomes. Relative to wild-type, the catalytic domain swaps compensated weakly or not at all, despite having a shared substrate, the JNK kinase Hep. Tak1 C-terminal domain-containing constructs were inhibitory in Tak1 signaling contexts, including tumor necrosis factor-dependent cell death and innate immune signaling; however, depressing antimicrobial gene expression did not necessarily cause phenotypic susceptibility to infection. These same constructs were neutral in the context of Slpr-dependent developmental signaling, reflecting differential subcellular protein localization and by inference, point of activation. Altogether, our findings suggest that the selective deployment of a particular MAP3K can be attributed in part to its inherent sequence differences, cellular localization, and binding partner availability. PMID:24429281

  10. Mapping and predicting malaria transmission in the People's Republic of China, using integrated biology-driven and statistical models.

    PubMed

    Yang, Guo-Jing; Gao, Qi; Zhou, Shui-Sen; Malone, John B; McCarroll, Jennifer C; Tanner, Marcel; Vounatsou, Penelope; Bergquist, Robert; Utzinger, Jürg; Zhou, Xiao-Nong

    2010-11-01

    The purpose of this study was to deepen our understanding of Plasmodium vivax malaria transmission patterns in the People's Republic of China (P.R. China). An integrated modeling approach was employed, combining biological and statistical models. A Delphi approach was used to determine environmental factors that govern malaria transmission. Key factors identified (i.e. temperature, rainfall and relative humidity) were utilized for subsequent mapping and modeling purposes. Yearly growing degree days, annual rainfall and effective yearly relative humidity were extracted from a 15-year time series (1981-1995) of daily environmental data readily available for 676 locations in P.R. China. A suite of eight multinomial regression models, ranging from the null model to a fully saturated one were constructed. Two different information criteria were used for model ranking, namely the corrected Akaike's information criterion and the Bayesian information criterion. Mapping was based on model output data, facilitated by using ArcGIS software. Temperature was found to be the most important environmental factor, followed by rainfall and relative humidity in the Delphi evaluation. However, relative humidity was found to be more important than rainfall and temperature in the ranking list according to the three single environmental factor regression models. We conclude that the distribution of the mosquito vector is mainly related to relative humidity, which thus determines the extent of malaria transmission. However, in regions with relative humidity >60%, temperature is the major driver of malaria transmission intensity. By integrating biology-driven models with statistical regression models, reliable risk maps indicating the distribution of transmission and the intensity can be produced. In a next step, we propose to integrate social and health systems factors into our modeling approach, which should provide a platform for rigorous surveillance and monitoring progress towards P

  11. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    NASA Astrophysics Data System (ADS)

    Taboada, Fernando L.

    2002-09-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive intercept devices such as radar warning, electronic support and electronic intelligence receivers. In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB toolbox to generate important types of LPI waveforms based on frequency and phase modulation. The power spectral density and the periodic ambiguity function are examined for each waveforms. These signals are then used to test a novel signal processing technique that detects the waveforms parameters and classifies the intercepted signal in various degrees of noise. The technique is based on the use of parallel filter (sub-band) arrays and higher order statistics (third-order cumulant estimator). Each sub-band signal is treated individually and is followed by the third-order estimator in order to suppress any symmetrical noise that might be present. The significance of this technique is that it separates the LPI waveforms in small frequency bands, providing a detailed time-frequency description of the unknown signal. Finally, the resulting output matrix is processed by a feature extraction routine to detect the waveforms parameters. Identification of the signal is based on the modulation parameters detected.

  12. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  13. Strategies for statistical thresholding of source localization maps in magnetoencephalography and estimating source extent.

    PubMed

    Maksymenko, Kostiantyn; Giusiano, Bernard; Roehri, Nicolas; Bénar, Christian-G; Badier, Jean-Michel

    2017-10-01

    Magnetoencephalography allows defining non-invasively the spatio-temporal activation of brain networks thanks to source localization algorithms. A major difficulty of MNE and beamforming methods, two classically used techniques, is the definition of proper thresholds that allow deciding the extent of activated cortex. We investigated two strategies for computing a threshold, taking into account the difficult multiple comparison issue. The strategies were based either on parametric statistics (Bonferroni, FDR correction) or on empirical estimates (local FDR and a custom measure based on the survival function). We found thanks to the simulations that parametric methods based on the sole estimation of H0 (Bonferroni, FDR) performed poorly, in particular in high SNR situations. This is due to the spatial leakage originating from the source localization methods, which give a 'blurred' reconstruction of the patch extension: the higher the SNR, the more this effect is visible. Adaptive methods such as local FDR or our proposed 'concavity threshold' performed better than Bonferroni or classical FDR. We present an application to real data originating from auditory stimulation in MEG. In order to estimate source extent, adaptive strategies should be preferred to parametric statistics when dealing with 'leaking' source reconstruction algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  15. Blind SNR estimation for QAM constellations based on the signal magnitude statistics

    NASA Astrophysics Data System (ADS)

    Dris, Stefanos; Spatharakis, Christos; Bakopoulos, Paraskevas; Lazarou, Ioannis; Avramopoulos, Hercules

    2013-12-01

    We present a novel non-data-aided algorithm that uses only the magnitude of the received signal for accurate estimation of the signal-to-noise ratio (SNR) in M-QAM optical coherent digital receivers. The Koay inversion method that only works with constant-modulus signals, is extended through analytically exact expressions so as to allow application to any multi-level, complex modulation scheme. Performance is evaluated via simulation for formats up to 64-QAM and is shown to be superior than the decision-directed error vector magnitude (EVM) method at low SNR, while outperforming schemes based on the method of moments at high SNR.

  16. Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis.

    PubMed

    Du, Jia; Hosseinbor, A Pasha; Chung, Moo K; Bendlin, Barbara B; Suryawanshi, Gaurav; Alexander, Andrew L; Qiu, Anqi

    2014-10-01

    We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI). We denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2013) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and the analytic form of the emsemble average propagator (EAP) reconstruction, as well as reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L(2) norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show that the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI. Finally, we show that the LDDMM-HYDI outperforms the LDDMM algorithm with diffusion tensors generated from each shell of HYDI. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights

  17. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  18. Statistics of the fractional polarization of compact radio sources in Planck maps

    NASA Astrophysics Data System (ADS)

    Bonavera, Laura; González-Nuevo, Joaquin; Argüeso, Francisco; Toffolatti, Luigi

    2017-08-01

    In this work, we apply the stacking technique to estimate the average fractional polarization from 30 to 353 GHz of a primary sample of 1560 compact sources - essentially all radio sources - detected in the 30 GHz Planck all-sky map and listed in the second version of the Planck Catalogue of Compact Sources (PCCS2). We divide our primary sample in two subsamples according to whether the sources lay (679 sources) or not (881 sources) inside the sky region defined by the Planck Galactic mask (fsky ∼ 60 per cent) and the area around the Magellanic Clouds. We find that the average fractional polarization of compact sources is approximately constant (with frequency) in both samples (with a weighted mean over all the channels of 3.08 per cent outside and 3.54 per cent inside the Planck mask). In the sky region outside the adopted mask, we also estimate the μ and σ parameters for the lognormal distribution of the fractional polarization, finding a weighted mean value over all the Planck frequency range of 1.0 for σ and 0.7 for μ (that would imply a weighted mean value for the median fractional polarization of 1.9 per cent).

  19. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Becker, T. W.; Schorlemmer, D.; Stanchits, S.; Sammis, C.; Rybacki, E.; Dresen, G.

    2012-03-01

    Seismicity clusters within fault zones can be connected to the structure, geometric complexity and size of asperities which perturb and intensify the stress field in their periphery. To gain further insight into fault mechanical processes, we study stick-slip sequences in an analog, laboratory setting. Analysis of small scale fracture processes expressed by acoustic emissions (AEs) provide the possibility to investigate how microseismicity is linked to fault heterogeneities and the occurrence of dynamic slip events. The present work connects X-ray computer tomography (CT) scans of faulted rock samples with spatial maps of b values (slope of the frequency-magnitude distribution), seismic moments and event densities. Our current experimental setup facilitates the creation of a series of stick-slips on one fault plane thus allowing us to document how individual stick-slips can change the characteristics of AE event populations in connection to the evolution of the fault structure. We found that geometric asperities identified in CT scan images were connected to regions of low b values, increased event densities and moment release over multiple stick-slip cycles. Our experiments underline several parallels between laboratory findings and studies of crustal seismicity, for example, that asperity regions in lab and field are connected to spatial b value anomalies. These regions appear to play an important role in controlling the nucleation spots of dynamic slip events and crustal earthquakes.

  20. Statistical Analysis of Very Low Frequency Electromagnetic Signal for Earthquake Precursor Anomalies

    NASA Astrophysics Data System (ADS)

    Chan, Chun-Hsiang; Chu, Tzu-How; Jiun-Huei Wu, Proty

    2017-04-01

    Among various disasters in the world, earthquake disasters always destroyed lots of properties and lives immediately; however, it is difficult to know the epicenters, magnitudes and time information beforehand. In this study, we collected very low frequency electromagnetic (VLF-EM) signal data from April 2016 to May 2016 in the Taipei station, and all earthquake events in this period were from the Central Weather Bureau (CWB) earthquake database. In order to confirm the anomalies, whether those were generated by the earthquakes or other factors, weather data were collected for signal validation before the signal processing of VLF-EM signals. This study applied two thresholds for anomaly detection, of which one was the upper threshold and the other was the lower threshold. Thus, we defined the smoothing average ± 2 standard deviations as thresholds for anomalies (C.L. = 95%). To sum up, the results showed that the anomalies we obtained were highly correlated to earthquake events in different resolution analysis, in addition, we might apply this way to do further researches between the amplitudes of the signals and the energy of earthquake events. Keyword: Very Low Frequency Electromagnetic Wave, Signal Analysis, Correlation Analysis

  1. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    NASA Astrophysics Data System (ADS)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  2. A Practical Procedure for Real-Time Functional Mapping of Eloquent Cortex Using Electrocorticographic Signals in Humans

    PubMed Central

    Brunner, Peter; Ritaccio, Anthony L.; Lynch, Timothy M.; Emrich, Joseph F.; Wilson, J. Adam; Williams, Justin C.; Aarnoutse, Erik J.; Ramsey, Nick F.; Leuthardt, Eric C.; Bischof, Horst; Schalk, Gerwin

    2009-01-01

    Functional mapping of eloquent cortex is often necessary prior to invasive brain surgery, but current techniques that derive this mapping have important limitations. In this paper, we demonstrate the first comprehensive evaluation of a rapid, robust, and practical mapping system that uses passive recordings of electrocorticographic (ECoG) signals. This mapping procedure is based on the BC12000 and SIGFRIED technologies that we have been developing over the past several years. In our study, we evaluated ten epilepsy patients from four different institutions and compared the results of our procedure to the results derived using electrical cortical stimulation (ECS) mapping. The results show that our procedure derives a functional motor cortical map in only a few minutes. They also show a substantial concurrence with the results derived using ECS mapping. Specifically, compared to ECS maps, a next-neighbor evaluation showed no false negatives, and only 0.46% and 1.10% false positives for hand and tongue maps, respectively. In summary, we demonstrate the first comprehensive evaluation of a practical and robust mapping procedure that could become a new tool tor planning or invasive brain surgeries. PMID:19366638

  3. Mapping brain injury with symmetrical-channels' EEG signal analysis--a pilot study.

    PubMed

    Li, Yi; Liu, Xiao-ping; Ling, Xian-hong; Li, Jing-qi; Yang, Wen-wei; Zhang, Dan-ke; Li, Li-hua; Yang, Yong

    2014-05-21

    A technique for detecting brain injury at the bedside has great clinical value, but conventional imaging techniques (such as computed tomography [CT] and magnetic resonance imaging) are impractical. In this study, a novel method-the symmetrical channel electroencephalogram (EEG) signal analysis-was developed for this purpose. The study population consisted of 45 traumatic brain injury patients and 10 healthy controls. EEG signals in resting and stimulus states were acquired, and approximate entropy (ApEn) and slow-wave coefficient were extracted to calculate the ratio values of ApEn and SWC for injured and uninjured areas. Statistical analyses showed that the ratio values for both ApEn and SWC between injured and uninjured brain areas differed significantly (P<0.05) for both resting and name call stimulus states. A set of criteria (range of ratio values) to determine whether a brain area is injured or uninjured was proposed and its reliability was verified by statistical analyses and CT images.

  4. A Self-Organizing Map-Based Approach to Generating Reduced-Size, Statistically Similar Climate Datasets

    NASA Astrophysics Data System (ADS)

    Cabell, R.; Delle Monache, L.; Alessandrini, S.; Rodriguez, L.

    2015-12-01

    Climate-based studies require large amounts of data in order to produce accurate and reliable results. Many of these studies have used 30-plus year data sets in order to produce stable and high-quality results, and as a result, many such data sets are available, generally in the form of global reanalyses. While the analysis of these data lead to high-fidelity results, its processing can be very computationally expensive. This computational burden prevents the utilization of these data sets for certain applications, e.g., when rapid response is needed in crisis management and disaster planning scenarios resulting from release of toxic material in the atmosphere. We have developed a methodology to reduce large climate datasets to more manageable sizes while retaining statistically similar results when used to produce ensembles of possible outcomes. We do this by employing a Self-Organizing Map (SOM) algorithm to analyze general patterns of meteorological fields over a regional domain of interest to produce a small set of "typical days" with which to generate the model ensemble. The SOM algorithm takes as input a set of vectors and generates a 2D map of representative vectors deemed most similar to the input set and to each other. Input predictors are selected that are correlated with the model output, which in our case is an Atmospheric Transport and Dispersion (T&D) model that is highly dependent on surface winds and boundary layer depth. To choose a subset of "typical days," each input day is assigned to its closest SOM map node vector and then ranked by distance. Each node vector is treated as a distribution and days are sampled from them by percentile. Using a 30-node SOM, with sampling every 20th percentile, we have been able to reduce 30 years of the Climate Forecast System Reanalysis (CFSR) data for the month of October to 150 "typical days." To estimate the skill of this approach, the "Measure of Effectiveness" (MOE) metric is used to compare area and overlap

  5. TU-C-12A-02: Development of a Multiparametric Statistical Response Map for Quantitative Imaging

    SciTech Connect

    Bosca, R; Mahajan, A; Brown, PD; Stafford, RJ; Johnson, VE; Dong, L; Jackson, EF

    2014-06-15

    Purpose: Quantitative imaging biomarkers (QIB) are becoming increasingly utilized in early phase clinical trials as a means of non-invasively assessing treatment response and associated response heterogeneity. The aim of this study was to develop a flexible multiparametric statistical framework to predict voxel-by-voxel response of several potential MRI QIBs. Methods: Patients with histologically proven glioblastomas (n=11) were treated with chemoradiation (with/without bevacizumab) and underwent one baseline and two mid-treatment (3–4wks) MRIs. Dynamic contrast-enhanced (3D FSPGR, 6.3sec/phase, 0.1 mmol/kg Gd-DTPA), dynamic susceptibility contrast (2D GRE-EPI, 1.5sec/phase, 0.2mmol/kg Gd-DTPA), and diffusion tensor (2D DW-EPI, b=0, 1200 s/mm{sup 2}, 27 directions) imaging acquisitions were obtained during each study. Mid-treatment and pre-treatment images were rigidly aligned, and regions of partial response (PR), stable disease (SD), and progressive disease (PD) were contoured in consensus by two experienced radiation oncologists. Voxels in these categories were used to train ordinal (PRstatistical framework for incorporating longitudinal multiparametric

  6. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  7. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI

    PubMed Central

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of ‘isolated’ structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics. PMID:26536598

  8. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI.

    PubMed

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of 'isolated' structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics.

  9. A method for modelling peak signal statistics on a mobile satellite transponder

    NASA Technical Reports Server (NTRS)

    Bilodeau, Andre; Lecours, Michel; Pelletier, Marcel; Delisle, Gilles Y.

    1990-01-01

    A simulation method is proposed. The simulation was developed to model the peak duration and energy content of signal peaks in a mobile communication satellite operating in a Frequency Division Multiple Access (FDMA) mode and presents an estimate of those power peaks for a system where the channels are modeled as band limited Gaussian noise, which is taken as a reasonable representation for Amplitude Commanded Single Sideband (ACSSB), Minimum Shift Keying (MSK), or Phase Shift Keying (PSK) modulated signals. The simulation results show that, under this hypothesis, the level of the signal power peaks for 10 percent, 1 percent, and 0.1 percent of the time are well described by a Rayleigh law and that their duration is extremely short and inversely proportional to the total FDM system bandwidth.

  10. Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses

    PubMed Central

    2012-01-01

    Background Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations. The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location. Results A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power

  11. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing

    PubMed Central

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E.

    2017-01-01

    There is accumulating evidence that the brain’s neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals. PMID:28575032

  12. Image informative maps for component-wise estimating parameters of signal-dependent noise

    NASA Astrophysics Data System (ADS)

    Uss, Mykhail L.; Vozel, Benoit; Lukin, Vladimir V.; Chehdi, Kacem

    2013-01-01

    We deal with the problem of blind parameter estimation of signal-dependent noise from mono-component image data. Multispectral or color images can be processed in a component-wise manner. The main results obtained rest on the assumption that the image texture and noise parameters estimation problems are interdependent. A two-dimensional fractal Brownian motion (fBm) model is used for locally describing image texture. A polynomial model is assumed for the purpose of describing the signal-dependent noise variance dependence on image intensity. Using the maximum likelihood approach, estimates of both fBm-model and noise parameters are obtained. It is demonstrated that Fisher information (FI) on noise parameters contained in an image is distributed nonuniformly over intensity coordinates (an image intensity range). It is also shown how to find the most informative intensities and the corresponding image areas for a given noisy image. The proposed estimator benefits from these detected areas to improve the estimation accuracy of signal-dependent noise parameters. Finally, the potential estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise parameters is derived, providing confidence intervals of these estimates for a given image. In the experiment, the proposed and existing state-of-the-art noise variance estimators are compared for a large image database using CRLB-based statistical efficiency criteria.

  13. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data

    NASA Astrophysics Data System (ADS)

    Liu, N. F.; Liu, Q.; Wang, L. Z.; Liang, S. L.; Wen, J. G.; Qu, Y.; Liu, S. H.

    2013-06-01

    Land-surface albedo plays a critical role in the earth's radiant energy budget studies. Satellite remote sensing provides an effective approach to acquire regional and global albedo observations. Owing to cloud coverage, seasonal snow and sensor malfunctions, spatiotemporally continuous albedo datasets are often inaccessible. The Global LAnd Surface Satellite (GLASS) project aims at providing a suite of key land surface parameter datasets with high temporal resolution and high accuracy for a global change study. The GLASS preliminary albedo datasets are global daily land-surface albedo generated by an angular bin algorithm (Qu et al., 2013). Like other products, the GLASS preliminary albedo datasets are affected by large areas of missing data; beside, sharp fluctuations exist in the time series of the GLASS preliminary albedo due to data noise and algorithm uncertainties. Based on the Bayesian theory, a statistics-based temporal filter (STF) algorithm is proposed in this paper to fill data gaps, smooth albedo time series, and generate the GLASS final albedo product. The results of the STF algorithm are smooth and gapless albedo time series, with uncertainty estimations. The performance of the STF method was tested on one tile (H25V05) and three ground stations. Results show that the STF method has greatly improved the integrity and smoothness of the GLASS final albedo product. Seasonal trends in albedo are well depicted by the GLASS final albedo product. Compared with MODerate resolution Imaging Spectroradiometer (MODIS) product, the GLASS final albedo product has a higher temporal resolution and more competence in capturing the surface albedo variations. It is recommended that the quality flag should be always checked before using the GLASS final albedo product.

  14. A Statistical Approach to Fine Mapping for the Identification of Potential Causal Variants Related to Bone Mineral Density.

    PubMed

    Greenbaum, Jonathan; Deng, Hong-Wen

    2017-08-01

    Although genomewide association studies (GWASs) have been able to successfully identify dozens of genetic loci associated with bone mineral density (BMD) and osteoporosis-related traits, very few of these loci have been confirmed to be causal. This is because in a given genetic region there may exist many trait-associated SNPs that are highly correlated. Although this correlation is useful for discovering novel associations, the high degree of linkage disequilibrium that persists throughout the genome presents a major challenge to discern which among these correlated variants has a direct effect on the trait. In this study we apply a recently developed Bayesian fine-mapping method, PAINTOR, to determine the SNPs that have the highest probability of causality for femoral neck (FNK) BMD and lumbar spine (LS) BMD. The advantage of this method is that it allows for the incorporation of information about GWAS summary statistics, linkage disequilibrium, and functional annotations to calculate a posterior probability of causality for SNPs across all loci of interest. We present a list of the top 10 candidate SNPs for each BMD trait to be followed up in future functional validation experiments. The SNPs rs2566752 (WLS) and rs436792 (ZNF621 and CTNNB1) are particularly noteworthy because they have more than 90% probability to be causal for both FNK and LS BMD. Using this statistical fine-mapping approach we expect to gain a better understanding of the genetic determinants contributing to BMD at multiple skeletal sites. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  15. A Critical Examination of the Statistic Used for Processing Speech Signals.

    ERIC Educational Resources Information Center

    Knox, Keith

    This paper assesses certain properties of human mental processes by focusing on the tactics utilized in perceiving speech signals. Topics discussed in the paper include the power spectrum approach to fluctuations and noise, with particular reference to biological structures; "l/f-like" fluctuations in speech and music and the functioning of a…

  16. Solar cycle signal in stratospheric ozone: Statistical analysis of satellite data sets and comparisons with models

    NASA Astrophysics Data System (ADS)

    Hood, Lon

    Three independent satellite ozone profile data sets with lengths extending up to 25 years are analyzed using a multiple regression statistical model. Column ozone measurements are also compared with ozone profile data during the 1992 - 2003 period when no major volcanic eruptions occurred. In addition to the standard linear trend, QBO, and solar cycle explanatory variables, we also consider the effect of including an ENSO term and an equivalent effective stratospheric chlorine (EESC) term in the statistical model. Results show that the vertical structure of the tropical ozone solar cycle response has been consistently characterized by statistically significant positive responses in the upper and lower stratosphere and by statistically insignificant responses in the middle stratosphere (about 28 - 38 km altitude). The similar vertical structure in the tropics obtained for separate time intervals (with minimum response invariably near 10 hPa) is difficult to explain by random interference from the QBO and volcanic eruptions in the statistical analysis. The observed increase in tropical total column ozone approaching the cycle 23 maximum during the late 1990s occurred primarily in the lower stratosphere below the 30 hPa level. This lower stratospheric solar cycle variation may be caused mainly by decadal changes in the upwelling branch of the meridional (Brewer-Dobson) circulation resulting from direct effects of solar UV variability on the upper and middle stratosphere. The observed vertical structure of the tropical response differs from that simulated by most models. However, several recent models have begun to yield a double-peaked structure in the tropics that is similar to that derived from observations (e.g., Austin et al., Atmos. Chem. Phys., 2007).

  17. Molecular pharmacology in a simple model system: Implicating MAP kinase and phosphoinositide signalling in bipolar disorder

    PubMed Central

    Ludtmann, Marthe H.R.; Boeckeler, Katrina; Williams, Robin S.B.

    2011-01-01

    Understanding the mechanisms of drug action has been the primary focus for pharmacological researchers, traditionally using rodent models. However, non-sentient model systems are now increasingly being used as an alternative approach to better understand drug action or targets. One of these model systems, the social amoeba Dictyostelium, enables the rapid ablation or over-expression of genes, and the subsequent use of isogenic cell culture for the analysis of cell signalling pathways in pharmacological research. The model also supports an increasingly important ethical view of research, involving the reduction, replacement and refinement of animals in biomedical research. This review outlines the use of Dictyostelium in understanding the pharmacological action of two commonly used bipolar disorder treatments (valproic acid and lithium). Both of these compounds regulate mitogen activated protein (MAP) kinase and inositol phospholipid-based signalling by unknown means. Analysis of the molecular pathways targeted by these drugs in Dictyostelium and translation of discoveries to animal systems has helped to further understand the molecular mechanisms of these bipolar disorder treatments. PMID:21093602

  18. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways

    PubMed Central

    Yong Qiao, Xiao; Nie, Ying; Xian Ma, Ya; Chen, Yan; Cheng, Ran; Yao Yinrg, Wei; Hu, Ying; Ming Xu, Wen; Zhi Xu, Liang

    2016-01-01

    Physical exercise is able to improve skeletal health. However, the mechanisms are poorly known. Irisin, a novel exercise-induced myokine, secreted by skeletal muscle in response to exercise, have been shown to mediate beneficial effects of exercise in many disorders. In the current study, we demonstrated that irisin promotes osteoblast proliferation, and increases the expression of osteoblastic transcription regulators, such as Runt-related transcription factor-2, osterix/sp7; and osteoblast differentiation markers, including alkaline phosphatase, collagen type 1 alpha-1, osteocalcin, and osteopontin in vitro. Irisin also increase ALP activity and calcium deposition in cultured osteoblast. These osteogenic effects were mediated by activating the p38 mitogen-activated protein kinase (p-p38 MAPK) and extracellular signal-regulated kinase (ERK). Inhibition of p38 MAPK by SB023580 or pERK by U0126 abolished the proliferation and up-regulatory effects of irisin on Runx2 expression and ALP activity. Together our observation suggest that irisin directly targets osteoblast, promoting osteoblast proliferation and differentiation via activating P38/ERK MAP kinase signaling cascades in vitro. Whether irisin can be utilized as the therapeutic agents for osteopenia and osteoporosis is worth to be further pursued. PMID:26738434

  19. Real time moving object detection using motor signal and depth map for robot car

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Siu, Wan-Chi

    2013-12-01

    Moving object detection from a moving camera is a fundamental task in many applications. For the moving robot car vision, the background movement is 3D motion structure in nature. In this situation, the conventional moving object detection algorithm cannot be use to handle the 3D background modeling effectively and efficiently. In this paper, a novel scheme is proposed by utilizing the motor control signal and depth map obtained from a stereo camera to model the perspective transform matrix between different frames under a moving camera. In our approach, the coordinate relationship between frames during camera moving is modeled by a perspective transform matrix which is obtained by using current motor control signals and the pixel depth value. Hence, the relationship between a static background pixel and the moving foreground corresponding to the camera motion can be related by a perspective matrix. To enhance the robustness of classification, we allowed a tolerance range during the perspective transform matrix prediction and used multi-reference frames to classify the pixel on current frame. The proposed scheme has been found to be able to detect moving objects for our moving robot car efficiently. Different from conventional approaches, our method can model the moving background in 3D structure, without online model training. More importantly, the computational complexity and memory requirement are low making it possible to implement this scheme in real-time, which is even valuable for a robot vision system.

  20. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping

    PubMed Central

    Li, Wenjun; Kornak, John; Harris, Tamara; Keyak, Joyce; Li, Caixia; Lu, Ying; Cheng, Xiaoguang; Lang, Thomas

    2009-01-01

    We identified regions inside the proximal femur that are most strongly associated with hip fracture. Bone densitometry based on such fracture-critical regions showed improved power in discriminating fracture patients from controls. Introduction Hip fractures typically occur in lateral falls, with focal mechanical failure of the sub-volumes of tissue in which the applied stress exceeds the strength. In this study, we describe a new methodology to identify proximal femoral tissue elements with highest association with hip fracture. We hypothesize that bone mineral density (BMD) measured in such sub-volumes discriminates hip fracture risk better than BMD in standard anatomic regions such as the femoral neck and trochanter. Materials and Methods We employed inter-subject registration to transform hip QCT images of 37 patients with hip fractures and 38 age-matched controls into a voxel-based statistical atlas. Within voxels, we performed t-tests between the two groups to identify the regions which differed most. We then randomly divided the 75 scans into a training set and a test set. From the training set, we derived a fracture-driven region of interest (ROI) based on association with fracture. In the test set, we measured BMD in this ROI to determine fracture discrimination efficacy using ROC analysis. Additionally, we compared the BMD distribution differences between the 29 patients with neck fractures and the 8 patients with trochanteric fractures. Results By evaluating fracture discrimination power based on ROC analysis, the fracture-driven ROI had an AUC (area under curve) of 0.92, while anatomic ROIs (including the entire proximal femur, the femoral neck, trochanter and their cortical and trabecular compartments) had AUC values between 0.78 and 0.87. We also observed that the neck fracture patients had lower BMD (p=0.014) in a small region near the femoral neck and the femoral head, and patients with trochanteric fractures had lower BMD in trochanteric regions

  1. Predicting the intensity mapping signal for multi-J CO lines

    SciTech Connect

    Mashian, Natalie; Loeb, Abraham; Sternberg, Amiel E-mail: amiel@wise.tau.ac.il

    2015-11-01

    We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR−M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ∼ 0.6 μK at z = 6 to ∼ 0.03 μK at z = 10 with brightness temperature fluctuations of Δ{sub CO}{sup 2} ∼ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc{sup −1}. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with ( T{sub CO} ) ∼ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2–20% and 10–45%, respectively, over the redshift range 4 < z < 10.

  2. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.

    PubMed

    Hsiao, Chiaowen; Liu, Mengya; Stanton, Rick; McGee, Monnie; Qian, Yu; Scheuermann, Richard H

    2016-01-01

    Flow cytometry (FCM) is a fluorescence-based single-cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap-FR, a novel method for cell population mapping across FCM samples. FlowMap-FR is based on the Friedman-Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap-FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap-FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap-FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap-FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap-FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback-Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL-distance in distinguishing equivalent from nonequivalent cell

  3. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

    NASA Astrophysics Data System (ADS)

    Keitel, David

    2016-05-01

    Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works.

  4. Different spatial frequency bands selectively signal for natural image statistics in the early visual system.

    PubMed

    Hansen, Bruce C; Johnson, Aaron P; Ellemberg, Dave

    2012-10-01

    Early visual evoked potentials (VEPs) measured in humans have recently been observed to be modulated by the image statistics of natural scene imagery. Specifically, the early VEP is dominated by a strong positivity when participants view minimally complex natural scene imagery, with the magnitude of that component being modulated by luminance contrast differences across spatial frequency (i.e., the slope of the amplitude spectrum). For scenes high in structural complexity, the early VEP is dominated by a prominent negativity that exhibits little dependency on luminance contrast. However, since natural scene imagery is broad band in terms of spatial frequency, it is not known whether the above-mentioned modulation results from a complex interaction within or between the early neural processes tuned to different bands of spatial frequency. Here, we sought to address this question by measuring early VEPs (specifically, the C1, P1, and N1 components) while human participants viewed natural scene imagery that was filtered to contain specific bands of spatial frequency information. The results show that the C1 component is largely unmodulated by the luminance statistics of natural scene imagery (being only measurable when such stimuli were made to contain high spatial frequencies). The P1 and N1, on the other hand, were observed to exhibit strong spatial frequency-dependent modulation to the luminance statistics of natural scene imagery. The results therefore suggest that the dependency of early VEPs on natural image statistics results from an interaction between the early neural processes tuned to different bands of spatial frequency.

  5. Signal statistics obtained from a LMSS experiment in Europe with the MARECS satellite

    NASA Astrophysics Data System (ADS)

    Benarroch, Ana

    1994-02-01

    A land mobile satellite system (LMSS) propagation experiment at 1.5 GHz has been carried out in Europe in the framework of ESA's PROSAT program using the MARECS satellite as the signal source. Rural, suburban and urban environments were investigated in Spain, France and Sweden in order to analyze the propagation factors responsible for degradations in LMSS. A second series of tests were performed in Spain using a locomotive as mobile platform. The results obtained show that shadowing is the main impairment in LMSS, achieving availabilities of 80-90% for the unfaded signal which decrease to 30% for the extreme cases of urban environments, dense woods, or suburban environments in low elevation angles, or railroads with a large number of tunnels.

  6. Statistical significance estimation of a signal within the GooFit framework on GPUs

    NASA Astrophysics Data System (ADS)

    Cristella, Leonardo; Di Florio, Adriano; Pompili, Alexis

    2017-03-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B+ → J/ψϕK+. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  7. The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics.

    PubMed

    Eltoft, Torbjørn

    2005-11-01

    In this paper, we introduce a new statistical distribution for modeling non-Rayleigh amplitude statistics, which we have called the Rician inverse Gaussian (RiIG) distribution. It is a mixture of the Rice distribution and the inverse Gaussian distribution. The probability density function (pdf) is given in closed form as a function of three parameters. This makes the pdf very flexible in the sense that it may be fitted to a variety of shapes, ranging from the Rayleigh-shaped pdf to a noncentral chi2-shaped pdf. The theoretical basis of the new model is quite thoroughly discussed, and we also give two iterative algorithms for estimating its parameters from data. Finally, we include some modeling examples, where we have tested the ability of the distribution to represent locale amplitude histograms of linear medical ultrasound data and single-look synthetic aperture radar data. We compare the goodness of fit of the RiIG model with that of the K model, and, in most cases, the new model turns out as a better statistical model for the data. We also include a series of log-likelihood tests to evaluate the predictive performance of the proposed model.

  8. Detection of signal transients based on wavelet and statistics for machine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhu, Z. K.; Yan, Ruqiang; Luo, Liheng; Feng, Z. H.; Kong, F. R.

    2009-05-01

    This paper presents a transient detection method that combines continuous wavelet transform (CWT) and Kolmogorov-Smirnov (K-S) test for machine fault diagnosis. According to this method, the CWT represents the signal in the time-scale plane, and the proposed "step-by-step detection" based on K-S test identifies the transient coefficients. Simulation study shows that the transient feature can be effectively identified in the time-scale plane with the K-S test. Moreover, the transients can be further transformed back into the time domain through the inverse CWT. The proposed method is then utilized in the gearbox vibration transient detection for fault diagnosis, and the results show that the transient features both expressed in the time-scale plane and re-constructed in the time domain characterize the gearbox condition and fault severity development more clearly than the original time domain signal. The proposed method is also applied to the vibration signals of cone bearings with the localized fault in the inner race, outer race and the rolling elements, respectively. The detected transients indicate not only the existence of the bearing faults, but also the information about the fault severity to a certain degree.

  9. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

    PubMed Central

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  10. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps.

    PubMed

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-07-20

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  11. Fatigue-life prediction by an order statistics treatment of acoustic-emission signals

    SciTech Connect

    Baram, J. )

    1993-09-01

    A formal relationship is shown to exist between AE amplitudes and fatigue-crack propagation rates, during low-cycle/low-stress cyclic loading, for Al-2024-T3 and Al-7075-T6 alloy sheeting. An analysis of the statistical distribution of external peak amplitudes allows predictions to be made of the number of cycles left until failure within a faint scatter interval and at good confidence level. Such analyses can be conducted nondestructively, by continuous AE monitoring of components and structures, in real time. 30 refs.

  12. Map kinase and PKC signaling pathways modulate NGF-mediated apoE transcription.

    PubMed

    Strachan-Whaley, Megan R; Reilly, Kate; Dobson, James; Kalisch, Bettina E

    2015-05-19

    The present study assessed the mechanisms by which nerve growth factor (NGF) increased the level of apolipoprotein E (apoE) in PC12 cells. NGF (50ng/mL) significantly increased apoE protein levels following 72h of treatment. Similarly NGF increased luciferase activity in cells transfected with a luciferase reporter construct containing a 500bp fragment of the apoE promoter, indicating NGF-induced apoE expression is regulated, at least in part, at the level of transcription. The non-selective nitric oxide synthase (NOS) inhibitor N(ɷ)-nitro-L-arginine methylester (L-NAME; 20mM) did not attenuate the NGF-mediated increase in luciferase activity, while the inducible NOS inhibitor s-methylisothiourea (S-MIU; 2mM) partially attenuated this action of NGF. Inhibition of MAP kinase activation with 50μM U0126 or pre-treatment with the PKC inhibitor bisindolylmaleimide 1 (BIS-1; 10μM) prevented the NGF-mediated activation of the apoE promoter. Pre-treatment with the phospholipase C (PLC) inhibitor U73122 (5μM) partially inhibited the NGF-induced increase in luciferase activity while the Akt inhibitor LY294002 (10μM) had no effect. These data suggest NGF-induced apoE transcription requires MAP kinase and PKC activation and that these TrkA signaling pathways may be modulated by NO. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway.

    PubMed Central

    Rincón, M; Enslen, H; Raingeaud, J; Recht, M; Zapton, T; Su, M S; Penix, L A; Davis, R J; Flavell, R A

    1998-01-01

    Signal transduction via MAP kinase pathways plays a key role in a variety of cellular responses, including growth factor-induced proliferation, differentiation and cell death. In mammalian cells, p38 MAP kinase can be activated by multiple stimuli, such as pro-inflammatory cytokines and environmental stress. Although p38 MAP kinase is implicated in the control of inflammatory responses, the molecular mechanisms remain unclear. Upon activation, CD4+ T cells differentiate into Th2 cells, which potentiate the humoral immune response or pro-inflammatory Th1 cells. Here, we show that pyridinyl imidazole compounds (specific inhibitors of p38 MAP kinase) block the production of interferon-gamma (IFNgamma) by Th1 cells without affecting IL-4 production by Th2 cells. These drugs also inhibit transcription driven by the IFNgamma promoter. In transgenic mice, inhibition of the p38 MAP kinase pathway by the expression of dominant-negative p38 MAP kinase results in selective impairment of Th1 responses. In contrast, activation of the p38 MAP kinase pathway by the expression of constitutivelyactivated MAP kinase kinase 6 in transgenic mice caused increased production of IFNgamma during the differentiation and activation of Th1 cells. Together, these data demonstrate that the p38 MAP kinase is relevant for Th1 cells, not Th2 cells, and that inhibition of p38 MAP kinase represents a possible site of therapeutic intervention in diseases where a predominant Th1 immune response leads to a pathological outcome. Moreover, our study provides an additional mechanism by which the p38 MAP kinase pathway controls inflammatory responses. PMID:9582275

  14. Military Vehicle Classification via Acoustic and Seismic Signals Using Statistical Learning Methods

    NASA Astrophysics Data System (ADS)

    Xiao, Hanguang; Cai, Congzhong; Chen, Yuzong

    It is a difficult and important task to classify the types of military vehicles using the acoustic and seismic signals generated by military vehicles. For improving the classification accuracy and reducing the computing time and memory size, we investigated different pre-processing technology, feature extraction and selection methods. Short Time Fourier Transform (STFT) was employed for feature extraction. Genetic Algorithms (GA) and Principal Component Analysis (PCA) were used for feature selection and extraction further. A new feature vector construction method was proposed by uniting PCA and another feature selection method. K-Nearest Neighbor Classifier (KNN) and Support Vector Machines (SVM) were used for classification. The experimental results showed the accuracies of KNN and SVM were affected obviously by the window size which was used to frame the time series of the acoustic and seismic signals. The classification results indicated the performance of SVM was superior to that of KNN. The comparison of the four feature selection and extraction methods showed the proposed method is a simple, none time-consuming, and reliable technique for feature selection and helps the classifier SVM to achieve more better results than solely using PCA, GA, or combination.

  15. Classification of normal and infarcted myocardium based on statistical analysis of high-frequency intracardiac ultrasound rf signal

    NASA Astrophysics Data System (ADS)

    Hao, Xiaohui; Bruce, Charles; Pislaru, Cristina; Greenleaf, James F.

    2002-04-01

    Myocardial structural changes caused by infarction / reperfusion may result in increased scatterer density and variation of scatterer arrangement in ultrasound imaging. Homodyned K (HD_K) distribution is employed in this paper to model the backscattered signal from both normal and reperfused infarcted myocardium and is used to characterize them. Statistical testing showed that among the Rayleigh, K, Nakagami and Homodyned K distributions, the Homodyned K distribution is the best model to describe ultrasound signal backscattered from both normal and infarcted reperfused myocardium. Using HD_K distribution, in vivo demodulated RF data (8.5MHz) from anterior myocardial wall, as imaged from both left and right ventricle at baseline and after infarction/reperfusion, were analyzed. Significant increase of scatterer density in reperfused infarcted myocardium has been found compared to the normal myocardium. We concluded that HD_K distribution has potential to distinguish reperfused infarcted myocardium from normal using high frequency ultrasound imaging, irrespective of LV or RV data acquisition.

  16. Role of p38 MAP Kinase Signal Transduction in Solid Tumors

    PubMed Central

    Pal, Mintu; Koul, Sweaty

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the main subgroups, the p38 MAP kinases, has been implicated in a wide range of complex biologic processes, such as cell proliferation, cell differentiation, cell death, cell migration, and invasion. Dysregulation of p38 MAPK levels in patients are associated with advanced stages and short survival in cancer patients (e.g., prostate, breast, bladder, liver, and lung cancer). p38 MAPK plays a dual role as a regulator of cell death, and it can either mediate cell survival or cell death depending not only on the type of stimulus but also in a cell type specific manner. In addition to modulating cell survival, an essential role of p38 MAPK in modulation of cell migration and invasion offers a distinct opportunity to target this pathway with respect to tumor metastasis. The specific function of p38 MAPK appears to depend not only on the cell type but also on the stimuli and/or the isoform that is activated. p38 MAPK signaling pathway is activated in response to diverse stimuli and mediates its function by components downstream of p38. Extrapolation of the knowledge gained from laboratory findings is essential to address the clinical significance of p38 MAPK signaling pathways. The goal of this review is to provide an overview on recent progress made in defining the functions of p38 MAPK pathways with respect to solid tumor biology and generate testable hypothesis with respect to the role of p38 MAPK as an attractive target for intervention of solid tumors. PMID:24349632

  17. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.

    PubMed

    Endo, Toshiki; Spenger, Christian; Tominaga, Teiji; Brené, Stefan; Olson, Lars

    2007-11-01

    Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb

  18. fMRI bold signal analysis using a novel nonparametric statistical method

    NASA Astrophysics Data System (ADS)

    De Mazière, Patrick A.; Van Hulle, Marc M.

    2007-03-01

    We present in this article a novel analytical method that enables the application of nonparametric rank-order statistics to fMRI data analysis, since it takes the omnipresent serial correlations (temporal autocorrelations) properly into account. Comparative simulations, using the common General Linear Model and the permutation test, confirm the validity and usefulness of our approach. Our simulations, which are performed with both synthetic and real fMRI data, show that our method requires significantly less computation time than permutation-based methods, while offering the same order of robustness and returning more information about the evoked response when combined with/compared to the results obtained with the common General Lineal Model approach.

  19. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μVrms ± 6.1 μVrms and 7.5 μVrms ± 5.9 μVrms) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  20. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling

    PubMed Central

    Findlay, Greg M.; Yan, Lijun; Procter, Julia; Mieulet, Virginie; Lamb, Richard F.

    2007-01-01

    The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3. PMID:17253963

  1. Plague Maps and Statistics

    MedlinePlus

    ... introduced into the United States in 1900, by rat–infested steamships that had sailed from affected areas, ... 1924 through 1925. Plague then spread from urban rats to rural rodent species, and became entrenched in ...

  2. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  3. Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways.

    PubMed

    Kleinman, M T; Araujo, J A; Nel, A; Sioutas, C; Campbell, A; Cong, P Q; Li, H; Bondy, S C

    2008-05-05

    In addition to evidence that inhalation of ambient particulate matter (PM) can increase cardiopulmonary morbidity and mortality, the brain may also constitute a site adversely effected by the environmental presence of airborne particulate matter. We have examined the association between exposure to PM and adverse CNS effects in apolipoprotein E knockout (ApoE-/-) mice exposed to two levels of concentrated ultrafine particulate matter in central Los Angeles. Mice were euthanized 24h after the last exposure and brain, liver, heart, lung and spleen tissues were collected and frozen for subsequent bioassays. There was clear evidence of aberrant immune activation in the brains of exposed animals as judged by a dose-related increase in nuclear translocation of two key transcription factors, NF-kappaB and AP-1. These factors are involved in the promotion of inflammation. Increased levels of glial fibrillary acidic protein (GFAP) were also found consequent to particulate inhalation suggesting that glial activation was taking place. In order to determine the mechanism by which these events occurred, levels of several MAP kinases involved in activation of these transcription factors were assayed by Western blotting. There were no significant changes in the proportion of active (phosphorylated) forms of ERK-1, IkB and p38. However, the fraction of JNK in the active form was significantly increased in animals receiving the lower concentration of concentrated ambient particles (CAPs). This suggests that the signaling pathway by which these transcription factors are activated involves the activation of JNK.

  4. MSP Hormonal Control of the Oocyte MAP Kinase Cascade and Reactive Oxygen Species Signaling

    PubMed Central

    Yang, Youfeng; Han, Sung Min; Miller, Michael A.

    2014-01-01

    The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. PMID:20380830

  5. MSP hormonal control of the oocyte MAP kinase cascade and reactive oxygen species signaling.

    PubMed

    Yang, Youfeng; Han, Sung Min; Miller, Michael A

    2010-06-01

    The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. Published by Elsevier Inc.

  6. Analysis of effects of loading and postural demands on upper limb reaching in older adults using statistical parametric mapping.

    PubMed

    Li, Xiaotong; Santago, Anthony C; Vidt, Meghan E; Saul, Katherine R

    2016-09-06

    Continuous time-series data are frequently distilled into single values and analyzed using discrete statistical methods, underutilizing large datasets. Statistical parametric mapping (SPM) allows hypotheses over the entire spectrum, but consistency with discrete analyses of kinematic data is unclear. We applied SPM to evaluate effect of load and postural demands during reaching on thoracohumeral kinematics in older and young adults, and examined consistency between one-dimensional SPM and discrete analyses of the same dataset. We hypothesized that older adults would choose postures that bring the humerus anterior to the frontal plane (towards flexion) even for low demand tasks, and that SPM would reveal differences persisting over larger temporal portions of the reach. Ten healthy older (72.4±3.1yrs) and 16 young (22.9±2.5yrs) adults reached upward and forward with high and low loads. SPM and discrete t-tests were used to analyze group effects for elevation plane, elevation, and axial rotation joint angles and velocity. Older adults used more positive (anterior) elevation plane and less elevated postures to initiate and terminate reaching (p<0.008), with long duration differences during termination. When reaching upward, differences in elevation persisted over longer temporal periods at midreach for high loads (32-58% of reach) compared to low load (41-45%). SPM and discrete analyses were consistent, but SPM permitted clear identification of temporal periods over which differences persisted, while discrete methods allowed analysis of extracted values, like ROM. This work highlights the utility of SPM to analyze kinematics time series data, and emphasizes importance of task selection when assessing age-related changes in movement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals

    NASA Astrophysics Data System (ADS)

    Moradi, Hassan; Refai, Hazem H.; LoPresti, Peter G.; Atiquzzaman, Mohammed

    2010-02-01

    Incoherent receivers of Free Space Optical (FSO) signals have no knowledge of instantaneous channel state. Thus, the receiver requires some information about the noise and fading statistics for a maximum likelihood (ML)-based optimal detection. Using pilot-aided symbols, we develop a simple multi slot averaging (MSA) estimation technique to approximate the values of parameters required at the incoherent detector. No channel state information (CSI) is available at the receiver side and this work will not be also trying to estimate it. But the estimation of noise and fading statistics will be practically investigated. We evaluate the bit error rate (BER) performance of FSO links with MSA estimation over both Gaussian and lognormal atmospheric turbulence fading (scintillation) channels. Numerical simulation will be completed to evaluate the estimation error of the MSA estimator. We will see that at signal to noise ratio (SNR)=13dB, the performance loss of the Gaussian estimator improves from 3dB to 0.4dB when we increase the number of pilot symbols from 16 to 64. This paper also presents the hardware design of the estimator using Xilinx system generator.

  8. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper.

  9. Evaluation of graphical and statistical representation of analytical signals of spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty

    2017-09-01

    Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.

  10. Protein Logic: A Statistical Mechanical Study of Signal Integration at the Single-Molecule Level

    PubMed Central

    de Ronde, Wiet; Rein ten Wolde, Pieter; Mugler, Andrew

    2012-01-01

    Information processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model. As an example system, we focus on receptors that bind either one or two ligands, and their associated dimers. Notably, we find that a single heterodimer can realize any of the 16 possible logic gates, including the XOR gate, by variation of biochemical parameters. We then introduce what to our knowledge is a novel idea: that a set of receptors with fixed parameters can encode functionally unique logic gates simply by forming different dimeric combinations. An exhaustive search reveals that the simplest set of receptors (two single-ligand receptors and one double-ligand receptor) can realize several different groups of three unique gates, a result for which the parametric analysis of single receptors and dimers provides a clear interpretation. Both results underscore the surprising functional freedom readily available to cells at the single-protein level. PMID:23009860

  11. Protein logic: a statistical mechanical study of signal integration at the single-molecule level.

    PubMed

    de Ronde, Wiet; Rein ten Wolde, Pieter; Mugler, Andrew

    2012-09-05

    Information processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model. As an example system, we focus on receptors that bind either one or two ligands, and their associated dimers. Notably, we find that a single heterodimer can realize any of the 16 possible logic gates, including the XOR gate, by variation of biochemical parameters. We then introduce what to our knowledge is a novel idea: that a set of receptors with fixed parameters can encode functionally unique logic gates simply by forming different dimeric combinations. An exhaustive search reveals that the simplest set of receptors (two single-ligand receptors and one double-ligand receptor) can realize several different groups of three unique gates, a result for which the parametric analysis of single receptors and dimers provides a clear interpretation. Both results underscore the surprising functional freedom readily available to cells at the single-protein level. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anirban; Khondekar, Mofazzal Hossain; Bhattacharjee, Anup Kumar

    2017-09-01

    In this paper initiative has been taken to search the periodicities of linear speed of Coronal Mass Ejection in solar cycle 23. Double exponential smoothing and Discrete Wavelet Transform are being used for detrending and filtering of the CME linear speed time series. To choose the appropriate statistical methodology for the said purpose, Smoothed Pseudo Wigner-Ville distribution (SPWVD) has been used beforehand to confirm the non-stationarity of the time series. The Time-Frequency representation tool like Hilbert Huang Transform and Empirical Mode decomposition has been implemented to unearth the underneath periodicities in the non-stationary time series of the linear speed of CME. Of all the periodicities having more than 95% Confidence Level, the relevant periodicities have been segregated out using Integral peak detection algorithm. The periodicities observed are of low scale ranging from 2-159 days with some relevant periods like 4 days, 10 days, 11 days, 12 days, 13.7 days, 14.5 and 21.6 days. These short range periodicities indicate the probable origin of the CME is the active longitude and the magnetic flux network of the sun. The results also insinuate about the probable mutual influence and causality with other solar activities (like solar radio emission, Ap index, solar wind speed, etc.) owing to the similitude between their periods and CME linear speed periods. The periodicities of 4 days and 10 days indicate the possible existence of the Rossby-type waves or planetary waves in Sun.

  13. Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits

    NASA Astrophysics Data System (ADS)

    Voliotis, M.; Liverpool, T. B.

    2017-03-01

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

  14. MAPS

    Atmospheric Science Data Center

    2014-07-03

    ... Measurement of Air Pollution from Satellites (MAPS) data were collected during Space Shuttle flights in 1981, ... Facts Correlative Data  - CDIAC - Spring & Fall 1994 - Field and Aircraft Campaigns SCAR-B Block:  ...

  15. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  16. Automatic detection of motion blur in intravital video microscopy image sequences via directional statistics of log-Gabor energy maps.

    PubMed

    Ferrari, Ricardo J; Pinto, Carlos H Villa; da Silva, Bruno C Gregório; Bernardes, Danielle; Carvalho-Tavares, Juliana

    2015-02-01

    Intravital microscopy is an important experimental tool for the study of cellular and molecular mechanisms of the leukocyte-endothelial interactions in the microcirculation of various tissues and in different inflammatory conditions of in vivo specimens. However, due to the limited control over the conditions of the image acquisition, motion blur and artifacts, resulting mainly from the heartbeat and respiratory movements of the in vivo specimen, will very often be present. This problem can significantly undermine the results of either visual or computerized analysis of the acquired video images. Since only a fraction of the total number of images are usually corrupted by severe motion blur, it is necessary to have a procedure to automatically identify such images in the video for either further restoration or removal. This paper proposes a new technique for the detection of motion blur in intravital video microscopy based on directional statistics of local energy maps computed using a bank of 2D log-Gabor filters. Quantitative assessment using both artificially corrupted images and real microscopy data were conducted to test the effectiveness of the proposed method. Results showed an area under the receiver operating characteristic curve (AUC) of 0.95 (AUC = 0.95; 95 % CI 0.93-0.97) when tested on 329 video images visually ranked by four observers.

  17. Map Analysis and Spatial Statistic: Assessment of Spatial Variability of Agriculture Land Conversion at Urban Fringe Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2016-11-01

    Urban development has brought various effects, one of which was the marginalization of the agricultural sector. Agricultural land is gradually converted to other type of land uses which considered more profitable. Conversion of agricultural land cannot be avoided but it should be controlled. Early identification on spatial distribution and intensity of agricultural land conversion as well as its related factor is necessary. Objective of the research were (1) to assess the spatial variability of agricultural land conversion, (2) to identify factors that affecting the spatial variability of agricultural land conversion. Research was conducted at urban fringe area of Yogyakarta. Spatial variability of agricultural land conversion was analysed using an index called Relative Conversion Index (RCI). Combined of map analysis and spatial statistical were used to determine the center of agricultural land conversion. Simple regression analysis was used to determine the factors associated with the conversion of agricultural land. The result shows that intensity of agricultural land conversion in the study area varies spatially as well as temporally. Intensity of agricultural land conversion in the period 1993-2000, involves three categories which are high, moderate and low. In the period of 2000-2007, the intensity of agricultural land conversion involves two categories which are high and low. Spatial variability of agricultural land conversion in the study area has a significant correlation with three factors: population growth, fragmentation of agricultural land and distance of agricultural land to the city

  18. A voting-based statistical cylinder detection framework applied to fallen tree mapping in terrestrial laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2017-07-01

    This paper introduces a statistical framework for detecting cylindrical shapes in dense point clouds. We target the application of mapping fallen trees in datasets obtained through terrestrial laser scanning. This is a challenging task due to the presence of ground vegetation, standing trees, DTM artifacts, as well as the fragmentation of dead trees into non-collinear segments. Our method shares the concept of voting in parameter space with the generalized Hough transform, however two of its significant drawbacks are improved upon. First, the need to generate samples on the shape's surface is eliminated. Instead, pairs of nearby input points lying on the surface cast a vote for the cylinder's parameters based on the intrinsic geometric properties of cylindrical shapes. Second, no discretization of the parameter space is required: the voting is carried out in continuous space by means of constructing a kernel density estimator and obtaining its local maxima, using automatic, data-driven kernel bandwidth selection. Furthermore, we show how the detected cylindrical primitives can be efficiently merged to obtain object-level (entire tree) semantic information using graph-cut segmentation and a tailored dynamic algorithm for eliminating cylinder redundancy. Experiments were performed on 3 plots from the Bavarian Forest National Park, with ground truth obtained through visual inspection of the point clouds. It was found that relative to sample consensus (SAC) cylinder fitting, the proposed voting framework can improve the detection completeness by up to 10 percentage points while maintaining the correctness rate.

  19. Statistical parametric mapping demonstrates asymmetric uptake with Tc-99m ECD and Tc-99m HMPAO SPECT in normal brain

    PubMed Central

    Brinkmann, Benjamin H; Jones, David T; Stead, Matt; Kazemi, Noojan; O'Brien, Terence J; So, Elson L; Blumenfeld, Hal; Mullan, Brian P; Worrell, Gregory A

    2012-01-01

    Tc-99m ethyl cysteinate diethylester (ECD) and Tc-99m hexamethyl propylene amine oxime (HMPAO) are commonly used for single-photon emission computed tomography (SPECT) studies of a variety of neurologic disorders. Although these tracers have been very helpful in diagnosing and guiding treatment of neurologic disease, data describing the distribution and laterality of these tracers in normal resting brain are limited. Advances in quantitative functional imaging have demonstrated the value of using resting studies from control populations as a baseline to account for physiologic fluctuations in cerebral perfusion. Here, we report results from 30 resting Tc-99m ECD SPECT scans and 14 resting Tc-99m HMPAO scans of normal volunteers with no history of neurologic disease. Scans were analyzed with regions of interest and with statistical parametric mapping, with comparisons performed laterally (left vs. right), as well as for age, gender, and handedness. The results show regions of significant asymmetry in the normal controls affecting widespread areas in the cerebral hemispheres, but most marked in superior parietotemporal region and frontal lobes. The results have important implications for the use of normal control SPECT images in the evaluation of patients with neurologic disease. PMID:21934696

  20. Kinematic analysis of a drinking task in chronic hemiparetic patients using features analysis and Statistical Parametric Mapping.

    PubMed

    Santos, Gabriela Lopes; Russo, Thiago Luiz; Nieuwenhuys, Angela; Monari, Davide; Desloovere, Kaat

    2017-09-19

    To compare sitting posture and movement strategies between chronic hemiparetic and healthy subjects while performing a drinking task using Statistical Parametric Mapping (SPM) and feature analysis. Cross-sectional study. Department of Physical Therapy of University. Thirteen chronic hemiparetic and thirteen healthy individuals matched for gender and age. Not applicable. Drinking task was divided into phases: reaching, transporting the glass to mouth, transporting the glass to table, returning to initial position. SPM two-sample t test was used to compare the entire kinematic waveforms of different joint angles (trunk, scapulothoracic, humerothoracic, elbow). Joint angles at the beginning and end of the motion, movement time, peak velocity timing, trajectory deviation, normalized integrated jerk and range of motion were extracted from the motion data. Group differences for these parameters were analyzed using independent t-tests. At the static posture and beginning of the reaching phase, patients showed a shoulder position more deviated from the midline and externally rotated with increased scapula protraction, medial rotation, anterior tilting, trunk anterior flexion and inclination to the paretic side. Altered spatiotemporal variables throughout the task were found in all phases, except for the returning phase. Patients returned to a similar posture as the task onset, except for scapula, which was normalized after the reaching phase. Chronic hemiparetic subjects showed more deviations in the proximal joints during seated posture and reaching. However, the scapular movement drew nearer the healthy individuals patterns after the first phase, showing an interesting point to consider in rehabilitation programs. Copyright © 2017. Published by Elsevier Inc.

  1. Processes affecting Aedes aegypti (Diptera: Culicidae) infestation and abundance: inference through statistical modeling and risk maps in northern Argentina.

    PubMed

    Garelli, F M; Espinosa, M O; Gürtler, R E

    2012-05-01

    Understanding the processes that affect Aedes aegypti (L.) (Diptera: Culicidae) may serve as a starting point to create and/or improve vector control strategies. For this purpose, we performed statistical modeling of three entomological surveys conducted in Clorinda City, northern Argentina. Previous 'basic' models of presence or absence of larvae and/or pupae (infestation) and the number of pupae in infested containers (productivity), mainly based on physical characteristics of containers, were expanded to include variables selected a priori reflecting water use practices, vector-related context factors, the history of chemical control, and climate. Model selection was performed using Akaike's Information Criterion. In total, 5,431 water-holding containers were inspected and 12,369 Ae. aegypti pupae collected from 963 positive containers. Large tanks were the most productive container type. Variables reflecting every putative process considered, except for history of chemical control, were selected in the best models obtained for infestation and productivity. The associations found were very strong, particularly in the case of infestation. Water use practices and vector-related context factors were the most important ones, as evidenced by their impact on Akaike's Information Criterion scores of the infestation model. Risk maps based on empirical data and model predictions showed a heterogeneous distribution of entomological risk. An integrated vector control strategy is recommended, aiming at community participation for healthier water use practices and targeting large tanks for key elements such as lid status, water addition frequency and water use.

  2. Using ultrasound backscattering signals and Nakagami statistical distribution to assess regional cataract hardness.

    PubMed

    Caixinha, Miguel; Jesus, Danilo A; Velte, Elena; Santos, Mário J; Santos, Jaime B

    2014-12-01

    This study aims to analyze the protein aggregates spatial distribution for different cataract degrees, and correlate this information with the lens acoustical parameters and by this way, assess the cataract regional hardness. Different cataract degrees were induced ex vivo in porcine lenses. A 25 MHz ultrasonic transducer was used to obtain the acoustical parameters (velocity, attenuation, and backscattering signals). B-scan and Nakagami images were constructed. Also, lenses with different cataract degrees were sliced in two regions (nucleus and cortex), for fibers and collagen detection. A significant increase with cataract formation was found for the velocity, attenuation, and brightness intensity of the B-scan images and Nakagami m parameter ( ). The acoustical parameters showed a good to moderate correlation with the m parameter for the different stages of cataract formation. A strong correlation was found between the protein aggregates in the cortex and the m parameter. Lenses without cataract are characterized using a classification and regression tree, by a mean brightness intensity ≤0.351, a variance of the B-scan brightness intensity ≤0.070, a velocity ≤1625 m/s, and an attenuation ≤0.415 dB/mm·MHz (sensitivity: 100% and specificity: 72.6%). To characterize different cataract degrees, the m parameter should be considered. Initial stages of cataract are characterized by a mean brightness intensity >0.351 and a variance of the m parameter >0.110. Advanced stages of cataract are characterized by a mean brightness intensity >0.351, a variance of the m parameter ≤0.110, and a mean m parameter >0.374. For initial and advanced stages of cataract, a sensitivity of 78.4% and a specificity of 86.5% are obtained.

  3. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength

    PubMed Central

    Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei

    2015-01-01

    Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274

  4. Regional patterns of cropland and pasture burning: Statistical separation of signals from remote sensing products

    NASA Astrophysics Data System (ADS)

    Rabin, S. S.; Pacala, S. W.; Magi, B. I.; Shevliakova, E.

    2013-12-01

    The use of fire in agriculture--to manage crop residues and pastoral grasses, and for clearing land--has consequences worldwide for air quality, human health, and climate. Airborne particulate matter from such burning aggravates respiratory ailments and can influence regional precipitation, while associated greenhouse gases and aerosols affect global climate. Little research, however, has focused on understanding patterns of cropland and pasture fire use with an eye towards simulation at global scales. Previous work by these authors showed that the separate seasonal trends of agricultural and non-agricultural fire could be extracted from large-scale fire observation and land use datasets. This study builds on that research, describing the derivation and application of a statistical method to estimate both the seasonality and amount of cropland, pasture, and other fire based on observations from satellite-based remote sensing products. We demonstrate that our approach is flexible enough to allow the incorporation of alternative high-quality observations of fire and/or land use that might be available only for certain regions. Results for a number of large regions around the world show that these two kinds of agricultural fire often differ in their extent and seasonality from each other and from burning on other land in ways that reflect known management practices. For example, we find that pasture in north-central sub-Saharan Africa tends to burn earlier than non-agricultural land; this can be attributed to pastoralists preventively burning their land early in the dry season so as to avoid severe, uncontrolled burns under more dangerous fire conditions later. Both the timing and extent of agricultural fires prove to be regionally specific; our method allows these geographically distinct patterns to be fully appreciated. The local and global differences in seasonality and amount of fire between different land-use types suggest that dynamic global vegetation models

  5. Map of Pseudo-F-statistics of seismic noise parameters as an indicator of current seismic danger in Japan

    NASA Astrophysics Data System (ADS)

    Lyubushin, Alexey

    2016-04-01

    The problem of estimate of current seismic danger based on monitoring of seismic noise properties from broadband seismic network F-net in Japan (84 stations) is considered. Variations of the following seismic noise parameters are analyzed: multifractal singularity spectrum support width, generalized Hurst exponent, minimum Hölder-Lipschitz exponent and minimum normalized entropy of squared orthogonal wavelet coefficients. These parameters are estimated within adjacent time windows of the length 1 day for seismic noise waveforms from each station. Calculating daily median values of these parameters by all stations provides 4-dimensional time series which describes integral properties of the seismic noise in the region covered by the network. Cluster analysis is applied to the sequence of clouds of 4-dimensional vectors within moving time window of the length 365 days with mutual shift 3 days starting from the beginning of 1997 up to the current time. The purpose of the cluster analysis is to find the best number of clusters (BNC) from probe numbers which are varying from 1 up to the maximum value 40. The BNC is found from the maximum of pseudo-F-statistics (PFS). A 2D map could be created which presents dependence of PFS on the tested probe number of clusters and the right-hand end of moving time window which is rather similar to usual spectral time-frequency diagrams. In the paper [1] it was shown that the BNC before Tohoku mega-earthquake on March 11, 2011, has strongly chaotic regime with jumps from minimum up to maximum values in the time interval 1 year before the event and this time intervals was characterized by high PFS values. The PFS-map is proposed as the method for extracting time intervals with high current seismic danger. The next danger time interval after Tohoku mega-EQ began at the end of 2012 and was finished at the middle of 2013. Starting from middle of 2015 the high PFS values and chaotic regime of BNC variations were returned. This could be

  6. Mapping malaria risk among children in Côte d'Ivoire using Bayesian geo-statistical models.

    PubMed

    Raso, Giovanna; Schur, Nadine; Utzinger, Jürg; Koudou, Benjamin G; Tchicaya, Emile S; Rohner, Fabian; N'goran, Eliézer K; Silué, Kigbafori D; Matthys, Barbara; Assi, Serge; Tanner, Marcel; Vounatsou, Penelope

    2012-05-09

    In Côte d'Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d'Ivoire at high spatial resolution. Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d'Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d'Ivoire, including uncertainty. Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. The malaria risk map at high spatial resolution gives an

  7. Combination of computer simulations and experimental measurements as the training dataset for statistical estimation of epicardial activation maps from venous catheter recordings.

    PubMed

    Cunedioğlu, Uğur; Yilmaz, Bülent

    2009-03-01

    One of the epicardial mapping techniques requires the insertion of multiple multi-electrode catheters into the coronary vessels. The recordings from the intracoronary catheters reflect the electrical activity on the nearby epicardial sites; however, most of epicardial surface is still inaccessible. In order to overcome this limited access problem, a method called the linear least squares estimation was proposed for the reconstruction of high-resolution maps using sparse measurements. In this technique, the relationship between catheter measurements and the remaining sites on the epicardium is created from previously obtained high-resolution maps (training dataset). Even though open-chest surgery is still a relatively frequent occurrence, an additional burden on the patient to obtain epicardial maps might impose an important risk on the patient. In this study, we hypothesize that epicardial maps created from computer simulations might be used in combination with the experimental data. In order to test this hypothesis, we used high-resolution epicardial activation maps acquired from 13 experiments performed on canine hearts that were stimulated via unipolar pacing from sites distributed all over the epicardium. We investigated the feasibility of the Aliev-Panfilov model that generated focal epicardial arrhythmias on Auckland heart. We started the simulations from the sites that corresponded to the pacing sites on the experimental geometry after a registration procedure between the experimental and simulation geometries. We then compared the simulation results with the corresponding experimental activation maps. Finally, we included simulated activation maps alone (100%) and in combination (simulated maps constituted 90%, 75%, 50%, 25%, 10%, and 0% of the training dataset) with experimental maps in the training set, performed the statistical estimation, and obtained the error statistics. The mean correlation coefficient (CC) between the simulated epicardial activation

  8. Comparison of Observing Modes for Statistical Estimation of the 21 cm Signal from the Epoch of Reionisation

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.

    2014-07-01

    Noise considerations for experiments that aim to statistically estimate the 21 cm signal from high redshift neutral hydrogen during the Epoch of Reionisation (EoR) using interferometric data are typically computed assuming a tracked observation, where the telescope pointing centre and instrument phase centre are the same over the observation. Current low frequency interferometers use aperture arrays of fixed dipoles, which are steered electronically on the sky, and have different properties to mechanically-steered single apertures, such as reduced sensitivity away from zenith, and discrete pointing positions on the sky. These properties encourage the use of two additional observing modes: (1) zenith drift, where the pointing centre remains fixed at the zenith, and the phase centre tracks the sky, and (2) drift + shift, a hybrid mode where the telescope uses discrete pointing centres, and the sky drifts during each fixed pointing. These three observing modes view the sky differently, and therefore yield different uncertainties in the power spectrum according to the balance of radiometric noise and cosmic variance. The coherence of measurements made by the instrument in these modes dictates the optimal reduction in thermal noise by combination of coherent modes, and the reduction in cosmic variance by combination of incoherent modes (views of different patches of the sky). Along with calibration and instrument stability considerations, the balance between these noise components provides one measure for the utility of these three modes for measuring a statistical signature of the EoR signal. We provide a general framework for estimating the uncertainty in the power spectrum for a given observing mode, telescope beam shape, and interferometer antenna distribution. We then apply this framework to the Murchison Widefield Array (MWA) using an analysis of the two-dimensional (2D) and one-dimensional (1D) power spectra for 900 hours of observing. We demonstrate that zenith

  9. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  10. Center of pressure and center of mass behavior during gait initiation on inclined surfaces: A statistical parametric mapping analysis.

    PubMed

    Vieira, Marcus Fraga; de Brito, Ademir Alves; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa

    2017-02-27

    This study analyzed gait initiation (GI) on inclined surfaces with 68 young adult subjects of both sexes. Ground reaction forces and moments were collected using two AMTI force platforms, of which one was in a horizontal position and the other was inclined by 8% in relation to the horizontal plane. Departing from a standing position, each participant executed three trials in the following conditions: horizontal position (HOR), inclined position at ankle dorsi-flexion (UP), and inclined position at ankle plantar-flexion (DOWN). Statistical parametric mapping analysis was performed over the entire center of pressure (COP) and center of mass (COM) time series. COP excursion did not show significant differences in the medial-lateral (ML) direction in both inclined conditions, but it was greater in the anterior-posterior (AP) direction for both inclined conditions. COP velocities are smaller in discrete portions of GI for the UP and DOWN conditions. COM displacement was greater in the ML direction during anticipatory postural adjustments (APA) in the UP condition, and COM moves faster in the ML direction during APA in the UP condition but slower at the end of GI for both the UP and the DOWN conditions. The COP-COM vector showed a greater angle in the DOWN condition. We observed changes for COP and COM in GI in both the UP and the DOWN conditions, with the latter showing changes for a great extent of the task. Both the UP and the DOWN conditions showed increased COM displacement and velocity. The predominant characteristic during GI on inclined surfaces, including APA, appears to be the displacement of the COM.

  11. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    NASA Astrophysics Data System (ADS)

    Powell, M. A.; Rawlinson, K. S.

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  12. High-Resolution fMRI Maps of Cortical Activation in Nonhuman Primates: Correlation with Intrinsic Signal Optical Images

    PubMed Central

    Roe, Anna W.; Chen, Li Min

    2009-01-01

    One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338

  13. Statistical Evaluation of Efficiency and Possibility of Earthquake Predictions with Gravity Field Variation and its Analytic Signal in Western China

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Jiang, Changsheng; Zhuang, Jiancang

    2016-01-01

    This paper aimed at assessing gravity variations as precursors for earthquake prediction in the Tibet (Xizang)-Qinghai-Xinjiang-Sichuan Region, western China. We here take a statistical approach to evaluate efficiency and possibility of earthquake prediction. We used the most recent spatiotemporal gravity field variation datasets of 2002-2008 for the region that were provided by the Crustal Movement Observation Network of China (CMONC). The datasets were space sparse and time discrete. In 2007-2010, 13 earthquakes (> M s 6.0) occurred in the region. The observed gravity variations have a statistical correlation with the occurrence of these earthquakes through the Molchan error diagram tests that lead to alarms over a good fraction of space-time. The results show that the prediction efficiency of amplitude of analytic signal of gravity variations is better than seismicity rate model and THD and absolute value of gravity variation, implying that gravity variations before earthquake may include precursory information of future large earthquakes.

  14. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  15. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  16. The Arabidopsis MAP kinase kinase 7: A crosstalk point between Auxin signaling and defense responses?

    USDA-ARS?s Scientific Manuscript database

    Plant-pathogen interaction induces a complex host response that coordinates various signaling pathways through multiple signal molecules. Besides the well-documented signal molecules salicylic acid (SA), ethylene and jasmonic acid, auxin is emerging as an important player in this response. We recent...

  17. On Item Mappings and Statistical Rules for Selecting Binary Items for Criterion-Referenced Interpretation and Bookmark Standard Settings.

    ERIC Educational Resources Information Center

    Huyhn, Huynh

    Item mappings are widely used in educational assessment for applications such as test administration (through test form assembly and computer assisted testing) and for criterion-referenced (CR) interpretation of test scores or scale anchoring. Item mappings are also used to construct ordered item booklets in the CTB/McGraw Hill Bookmark standard…

  18. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae

    PubMed Central

    Rios-Anjos, Rafaela Maria; Camandona, Vittoria de Lima; Bleicher, Lucas

    2017-01-01

    In Saccharomyces cerevisiae mitochondrial dysfunction induces retrograde signaling, a pathway of communication from mitochondria to the nucleus that promotes a metabolic remodeling to ensure sufficient biosynthetic precursors for replication. Rtg2p is a positive modulator of this pathway that is also required for cellular longevity. This protein belongs to the ASKHA superfamily, and contains a putative N-terminal ATP-binding domain, but there is no detailed structural and functional map of the residues in this domain that accounts for their contribution to retrograde signaling and aging. Here we use Decomposition of Residue Correlation Networks and site-directed mutagenesis to identify Rtg2p structural determinants of retrograde signaling and longevity. We found that most of the residues involved in retrograde signaling surround the ATP-binding loops, and that Rtg2p N-terminus is divided in three regions whose mutants have different aging phenotypes. We also identified E137, D158 and S163 as possible residues involved in stabilization of ATP at the active site. The mutants shown here may be used to map other Rtg2p activities that crosstalk to other pathways of the cell related to genomic stability and aging. PMID:28472157

  19. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae.

    PubMed

    Rios-Anjos, Rafaela Maria; Camandona, Vittoria de Lima; Bleicher, Lucas; Ferreira-Junior, Jose Ribamar

    2017-01-01

    In Saccharomyces cerevisiae mitochondrial dysfunction induces retrograde signaling, a pathway of communication from mitochondria to the nucleus that promotes a metabolic remodeling to ensure sufficient biosynthetic precursors for replication. Rtg2p is a positive modulator of this pathway that is also required for cellular longevity. This protein belongs to the ASKHA superfamily, and contains a putative N-terminal ATP-binding domain, but there is no detailed structural and functional map of the residues in this domain that accounts for their contribution to retrograde signaling and aging. Here we use Decomposition of Residue Correlation Networks and site-directed mutagenesis to identify Rtg2p structural determinants of retrograde signaling and longevity. We found that most of the residues involved in retrograde signaling surround the ATP-binding loops, and that Rtg2p N-terminus is divided in three regions whose mutants have different aging phenotypes. We also identified E137, D158 and S163 as possible residues involved in stabilization of ATP at the active site. The mutants shown here may be used to map other Rtg2p activities that crosstalk to other pathways of the cell related to genomic stability and aging.

  20. Glucose Metabolic Profile by Visual Assessment Combined with Statistical Parametric Mapping Analysis in Pediatric Patients with Epilepsy.

    PubMed

    Zhu, Yuankai; Feng, Jianhua; Wu, Shuang; Hou, Haifeng; Ji, Jianfeng; Zhang, Kai; Chen, Qing; Chen, Lin; Cheng, Haiying; Gao, Liuyan; Chen, Zexin; Zhang, Hong; Tian, Mei

    2017-08-01

    PET with (18)F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using (18)F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent (18)F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. (18)F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of (18)F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency (P < 0.01) but negatively correlated with the time since last seizure (P < 0.01) in patients with abnormal glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism (P = 0.001) and with hypermetabolism (P = 0.005). For patients with either hypometabolism (P < 0.01) or hypermetabolism (P = 0.209), higher |AI| values were found in those with drug resistance than with seizure remission. In the post-1-y follow-up PET studies, a significant change of |AI| (%) was found in patients with clinical improvement compared with those with persistence or progression (P < 0.01). Conclusion:(18)F-FDG PET imaging with visual assessment combined with SPM analysis could provide cerebral glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic

  1. On the optimality of the MAP estimation loop for carrier phase tracking BPSK and QPSK signals

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1979-01-01

    Starting with MAP estimation theory as a basis for optimally estimating carrier phase of BPSK and QPSK modulations, it is shown in this paper that the closed loop phase trackers, which are motivated by this approach, are indeed closed loop optimum in the minimum mean-square phase tracking jitter sense. The corresponding squaring loss performance of these so-called MAP estimation loops is compared with that of more practical implementations wherein the hyperbolic tangent nonlinearity is approximated by simpler functions.

  2. Human pre-B cell receptor signal transduction: evidence for distinct roles of PI3kinase and MAP-kinase signalling pathways

    PubMed Central

    Anbazhagan, Kolandaswamy; Rabbind Singh, Amrathlal; Isabelle, Piec; Stella, Ibata; Céline, Alleaume-De Martel; Bissac, Eliane; Bertrand, Brassart; Rémy, Nyga; Naomi, Taylor; Vincent, Fuentes; Rochette, Jacques; Lassoued, Kaïss

    2013-01-01

    Pre-BCR acts as a critical checkpoint in B cell development. However, its signalling cascade still remains indistinctly characterised in human. We investigated pre-BCR signalling pathway to examine its regulation in normal primary pre-B lymphocytes and pre-B cell lines. In cell lines, early signalling events occurring after pre-BCR stimulation include phosphorylation of Lyn, Blk and Syk together with ZAP70, Btk, Vav, PLC-γ2 and various adaptor proteins, such as BLNK, LAB, LAT and SLP-76. Further downstream, these molecules induced activation of the PI3K/AKT and MAP-kinase resulting in an augmentation of canonical NF-κB pathways and cFos/AP1 activation. PI3K and MAPK exerted opposing effects on the pre-BCR-induced activation of the canonical NF-κB and c-Fos/AP1 pathways. Immediate nuclear export of FoxO3A and delayed import of IRF4 were additional events observed after pre-BCR crosslinking in primary cells. Pre-BCR-induced down-regulation of Rag1, Rag2, E2A and Pax5 transcripts occurred in a PI3K-dependent manner. Finally we bring evidence that pre-BCR stimulation or co stimulation with CD19 enhances cell cycle signal. PMID:25400915

  3. Human pre-B cell receptor signal transduction: evidence for distinct roles of PI3kinase and MAP-kinase signalling pathways.

    PubMed

    Anbazhagan, Kolandaswamy; Rabbind Singh, Amrathlal; Isabelle, Piec; Stella, Ibata; Céline, Alleaume-De Martel; Bissac, Eliane; Bertrand, Brassart; Rémy, Nyga; Naomi, Taylor; Vincent, Fuentes; Rochette, Jacques; Lassoued, Kaïss

    2013-10-01

    Pre-BCR acts as a critical checkpoint in B cell development. However, its signalling cascade still remains indistinctly characterised in human. We investigated pre-BCR signalling pathway to examine its regulation in normal primary pre-B lymphocytes and pre-B cell lines. In cell lines, early signalling events occurring after pre-BCR stimulation include phosphorylation of Lyn, Blk and Syk together with ZAP70, Btk, Vav, PLC-γ2 and various adaptor proteins, such as BLNK, LAB, LAT and SLP-76. Further downstream, these molecules induced activation of the PI3K/AKT and MAP-kinase resulting in an augmentation of canonical NF-κB pathways and cFos/AP1 activation. PI3K and MAPK exerted opposing effects on the pre-BCR-induced activation of the canonical NF-κB and c-Fos/AP1 pathways. Immediate nuclear export of FoxO3A and delayed import of IRF4 were additional events observed after pre-BCR crosslinking in primary cells. Pre-BCR-induced down-regulation of Rag1, Rag2, E2A and Pax5 transcripts occurred in a PI3K-dependent manner. Finally we bring evidence that pre-BCR stimulation or co stimulation with CD19 enhances cell cycle signal.

  4. Statistical descriptions of river networks form a framework for hydrology and geomorphology. A river network can be mapped to a time series via a Harris walk. We explore the effect of topographic controls and active network dynamics on statistics by time series. We identify the statistical significance of branching ratios and other characteristics.

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Schumer, R.

    2016-12-01

    The flux of water, sediment, nutrients and energy in a basin is a function of the river network topology. Theoretically, statistical descriptions of river networks should form a framework for predictions in hydrology, ecology, and geomorphology. However, the utility of Tokunaga self-similarity and other scaling metrics have yet to be exploited in this manner. While study of statistical properties of river networks is still maturing, statistics of time series are well understood. We explore the effect of topographic controls and active network contraction/expansion dynamics on network statistics by mapping networks to time series and exploiting known properties of the latter. A river network can be mapped to a time series via a Harris walk, where steps in the time series are marked by direction changes as a walker circumnavigates the entire flowing network. Using these relationships, we identify the statistical significance of branching ratios and other network characteristics.

  5. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans.

    PubMed

    Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim

    2013-01-01

    Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11(ΔN467)) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11(ΔN467)-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase.

  6. Activation of the Cph1-Dependent MAP Kinase Signaling Pathway Induces White-Opaque Switching in Candida albicans

    PubMed Central

    Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim

    2013-01-01

    Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492

  7. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data.

    PubMed

    Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi

    2017-03-05

    To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R(2)  = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 000:000-000, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Mapping Neuronal Activation and the Influence of Adrenergic Signaling during Contextual Memory Retrieval

    ERIC Educational Resources Information Center

    Zhang, Wei-Ping; Guzowski, John F.; Thomas, Steven A.

    2005-01-01

    We recently described a critical role for adrenergic signaling in the hippocampus during contextual and spatial memory retrieval. To determine which neurons are activated by contextual memory retrieval and its sequelae in the presence and absence of adrenergic signaling, transcriptional imaging for the immediate-early gene "Arc" was used in…

  9. Decision support system for ultrasound inspection of fiber metal laminates using statistical signal processing and neural networks.

    PubMed

    Simas Filho, Eduardo F; Souza, Yure N; Lopes, Juliana L S; Farias, Cláudia T T; Albuquerque, Maria C S

    2013-08-01

    The growth of the aerospace industry has motivated the development of alternative materials. The fiber-metal laminate composites (FML) may replace the monolithic aluminum alloys in aircrafts structure as they present some advantages, such as higher stiffness, lower density and longer lifetime. However, a great variety of deformation modes can lead to failures in these composites and the degradation mechanisms are hard to detect in early stages through regular ultrasonic inspection. This paper aims at the automatic detection of defects (such as fiber fracture and delamination) in fiber-metal laminates composites through ultrasonic testing in the immersion pulse-echo configuration. For this, a neural network based decision support system was designed. The preprocessing stage (feature extraction) comprises Fourier transform and statistical signal processing techniques (Principal Component Analysis and Independent Component Analysis) aiming at extracting discriminant information and reduce redundancy in the set of features. Through the proposed system, classification efficiencies of ~99% were achieved and the misclassification of signatures corresponding to defects was almost eliminated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Noncosmological signal contributions to the COBE DMR anisotropy maps. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hinshaw, G.; Banday, A.; Kogut, A.; Wright, E. L.; Loewenstein, K.; Cheng, E. S.

    1993-01-01

    We examine the COBE Differential Microwave Radiometer (DMR) data for evidence of noncosmological source contributions. The DMR maps are cross-correlated with maps of rich clusters, extragalactic IRAS sources, HEAO 1 A-2 X-ray emission, and 5 GHz radio sources. We limit the rms contributions from these sources on a 7 deg angular scale to less than 10 micro-K (95 percent confidence level) in the DMR maps, although the LMC probably contributes about 50 micro-K to a limited region of the sky. Thus, our previous interpretation that the fluctuations in the COBE DMR data are most likely due to cosmic fluctuations at the surface of last scattering remains intact. The Comptonization parameter for hot electrons traced by rich clusters is limited to delta(y) less than 2 x 10 exp -6 (95 percent confidence level) averaged over the 7 deg DMR beam.

  11. Noncosmological Signal Contributions to the COBE DMR 4 Year Sky Maps

    NASA Astrophysics Data System (ADS)

    Banday, A. J.; Gorski, K. M.; Bennett, C. L.; Hinshaw, G.; Kogut, A.; Smoot, G. F.

    1996-09-01

    We limit the possible contributions from noncosmological sources to the COBE Differential Microwave Radiometer (DMR) 4 year sky maps. The DMR data are cross-correlated with maps of rich clusters, extragalactic IRAS sources, HEAO 1 A-2 X-ray emission, and 5 GHz radio sources using a Fourier space technique. There is no evidence of significant contamination by such sources at an rms level of ~8 mu K [95% confidence level (c.l.) at 7 deg resolution] in the most sensitive 53 GHz sky map. This level is consistent with previous limits set by analysis of earlier DMR data and by simple extrapolations from existing source models. We place a limit on the rms Comptonization parameter averaged over the high-latitude sky of delta y < 1 x 10-6 (95% c.l.). Extragalactic sources have an insignificant effect on the cosmic microwave background power spectrum parameterizations determined from the DMR data.

  12. Mapping Type IV Secretion Signals on the Primase Encoded by the Broad-Host-Range Plasmid R1162 (RSF1010).

    PubMed

    Meyer, Richard

    2015-10-01

    The plasmid R1162 (RSF1010) encodes a primase essential for its replication. This primase makes up the C-terminal part of MobA, a multifunctional protein with the relaxase as a separate N-terminal domain. The primase is also translated separately as the protein RepB'. Here, we map two signals for type IV secretion onto the recently solved structure of RepB'. One signal is located internally within RepB' and consists of a long α-helix and an adjacent disordered region rich in arginines. The second signal is made up of the same α-helix and a second, arginine-rich region at the C-terminal end of the protein. Successive arginine-to-alanine substitutions revealed that either signal can be utilized by the type IV secretion complex of the plasmid R751. The internal signal also enables conjugal transfer when linked to the relaxase part of MobA. Both signals are similar to those previously identified for type IV secretion substrates in the Vir system of Agrobacterium tumefaciens. Moreover, the C-terminal arginine-rich segment of RepB' has been shown to be secreted by Vir. However, with R751, the signals require MobB, an R1162-encoded accessory protein active in conjugal transfer. The results of two-hybrid assays revealed that MobB interacts, via its membrane-associated domain, with the R751 plasmid coupling protein TraG. In addition, MobB interacts with a region of MobA just outside the RepB' domain. Therefore, MobB is likely an adaptor that is essential for recognition of the primase-associated signals by the R751 secretion machinery. For most plasmids, type IV secretion is an intrinsic part of the mechanism for conjugal transfer. Protein relaxases, bound to the 5' end of the transferring strand, are mobilized into recipient cells by the type IV pathway. In this work, we identify and characterize two signals for secretion in the primase domain of MobA, the relaxase of the IncQ plasmid R1162 (RSF1010). We also show that the adaptor protein MobB is required for engagement

  13. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.

    PubMed

    Scholl, Joep H G; van Puijenbroek, Eugène P

    2016-12-01

    In pharmacovigilance, the commonly used disproportionality analysis (DPA) in statistical signal detection is known to have its limitations. The aim of this study was to investigate the value of the time to onset (TTO) of ADRs in addition to DPA. We performed a pilot study using individual case safety reports (ICSRs) for three drugs (Cervarix®, nitrofurantoin and simvastatin) from the Lareb spontaneous reporting database. TTO distributions for drug - ADR associations were compared to other ADRs for the same drug and to other drugs for the same ADR using two-sample Anderson-Darling testing. Statistically significant associations were considered true positive (TP) signals if the association was present in the official product information of the drug. Sensitivity and specificity for the TTO method were compared with the DPA method. As a measure of disproportionality, the reporting odds ratio (ROR) was used. In general, sensitivity was lower, and specificity was higher for the TTO method compared to DPA. The TTO method showed similar sensitivity for all three drugs, whereas specificity was lower for Cervarix®. Eight additional TP signals were found using the TTO method compared to DPA. Our study shows that statistical signal detection based on the TTO alone resulted in a limited number of additional signals compared to DPA. We therefore conclude that the TTO method is of limited value for full database statistical screening in our setting. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. The Design and Use of an Optical Mapping System for the Study of Intracardiac Electrical Signaling

    PubMed Central

    Shrivastav, Maneesh; Ghai, Megan B; Singal, Ashish; Iaizzo, Paul A

    2012-01-01

    Fluorescent optical mapping of electrically active cardiac tissues provides a unique method to examine the excitation wave dynamics of underlying action potentials. Such mapping can be viewed as a bridge between cellular level and organ systems physiology, e.g., by facilitating the development of advanced theoretical concepts of arrhythmia. We present the design and use of a high-speed, high-resolution optical mapping system composed entirely of "off the shelf" components. The electrical design integrates a 256 element photodiode array with a 16 bit data acquisition system. Proper grounding and shielding at various stages of the design reduce electromagnetic interference. Our mechanical design provides flexibility in terms of mounting positions and applications (use for whole heart or tissue preparations), while maintaining precise alignment between all optical components. The system software incorporates a user friendly graphical user interface, e.g., spatially recorded action potentials can be represented as intensity graphs or in strip chart format. Thus, this system is capable of displaying cardiac action potentials with high spatiotemporal resolution. Results from cardiac action potential mapping with intact mouse hearts are provided. It should be noted that this system could be readily configured to study isolated myocardial biopsies (e.g., isolated ventricular trabeculae). We describe the details of a versatile, user-friendly system that could be employed for a magnitude of study protocols. PMID:22912535

  15. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease

    PubMed Central

    Shen, Meng-Ru; Chou, Cheng-Yang; Browning, Joseph A; Wilkins, Robert J; Ellory, J Clive

    2001-01-01

    This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl− channel. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl− channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  16. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease.

    PubMed

    Shen, M R; Chou, C Y; Browning, J A; Wilkins, R J; Ellory, J C

    2001-12-01

    1. This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. 2. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. 3. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl- channel. 4. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl- channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. 5. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. 6. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells.

  17. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    NASA Astrophysics Data System (ADS)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  18. Arkansas StreamStats: a U.S. Geological Survey web map application for basin characteristics and streamflow statistics

    USGS Publications Warehouse

    Pugh, Aaron L.

    2014-01-01

    Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.

  19. Non extensive statistical physics applied in fracture-induced electric signals during triaxial deformation of Carrara marble

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during the deformation process as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that in a dry non-piezoelectric rock under simulated crustal pressure conditions, a measurable electric current (nA) is generated within the stressed sample. The current is detected only in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation and support the idea of a universal electrification mechanism related to deformation. Confining pressure conditions of our slow strain rate (10-6 s-1) experiments range from the purely brittle regime (10 MPa) to the semi-brittle transition (30-100MPa) where cataclastic flow is the dominant deformation mechanism. Electric current is generated under all confining pressures,implying the existence of a current-producing mechanism during both microfracture and frictional sliding. Some differences are seen in the current evolution between these two regimes, possibly related to crack localisation. In all cases, the measured electric current exhibits episodes of strong fluctuations over short timescales; calm periods punctuated by bursts of strong activity. For the analysis, we adopt an entropy-based statistical physics approach (Tsallis, 1988), particularly suited to the study of fracture related phenomena. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5 s) can be well described by a q-Gaussian distribution of a form similar to that which describes turbulent flows. This approach yields different entropic

  20. A statistically valid method for using FIA plots to guide spectral class rejection in producing stratification maps

    Treesearch

    Michael L. Hoppus; Andrew J. Lister

    2002-01-01

    A Landsat TM classification method (iterative guided spectral class rejection) produced a forest cover map of southern West Virginia that provided the stratification layer for producing estimates of timberland area from Forest Service FIA ground plots using a stratified sampling technique. These same high quality and expensive FIA ground plots provided ground reference...

  1. Global map of oxytocin/vasopressin-like neuropeptide signalling in insects

    PubMed Central

    Liutkeviciute, Zita; Koehbach, Johannes; Eder, Thomas; Gil-Mansilla, Esther; Gruber, Christian W.

    2016-01-01

    Oxytocin and vasopressin mediate a range of physiological functions that are important for osmoregulation, reproduction, social behaviour, memory and learning. The origin of this signalling system is thought to date back ~600 million years. Oxytocin/vasopressin-like peptides have been identified in several invertebrate species and they appear to be functionally related across the entire animal kingdom. There is little information available about the biology of this peptide G protein-coupled receptor signalling system in insects. Recently over 200 insect genome/transcriptome datasets were released allowing investigation of the molecular structure and phylogenetic distribution of the insect oxytocin/vasopressin orthologue – inotocin peptides and their receptors. The signalling system is present in early arthropods and representatives of some early-diverging lineages. However, Trichoptera, Lepidoptera, Siphonaptera, Mecoptera and Diptera, lack the presence of inotocin genes, which suggests the peptide-receptor system was probably lost in their common ancestor ~280 million-years-ago. In addition we detected several losses of the inotocin signalling system in Hemiptera (white flies, scale insects and aphids), and the complete absence in spiders (Chelicerata). This unique insight into evolutionarily patterns and sequence diversity of neuroendocrine hormones will provide opportunities to elucidate the physiology of the inotocin signalling system in one of the largest group of animals. PMID:27958372

  2. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    NASA Technical Reports Server (NTRS)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  3. Mapping of NRAGE domains reveals clues to cell viability in BMP signaling

    PubMed Central

    Rochira, Jennifer A.; Cowling, Rebecca A.; Himmelfarb, Joshua S.; Adams, Tamara L.

    2011-01-01

    Bone morphogenetic signaling (BMP) is a key pathway during neurogenesis and depends on many downstream intermediators to carry out its signaling. One such signaling pathway utilizes neurotrophin receptor-interacting MAGE protein (NRAGE), a member of the melanoma-associated antigen (MAGE) family, to upregulate p38 mitogen activated protein kinase (p38MAPK) in response to cellular stress and activate caspases which are critical in leading cells to death. NRAGE consists of two conserved MAGE homology domains separated by a unique hexapeptide repeat domain. Although we have previously implicated NRAGE in inducing apoptosis in neural progenitors and P19 cells, a model system for neural progenitors, its domains have yet to be explored in determining which one may be responsible for setting up the signaling for apoptosis. Here, we overexpressed a series of deletion mutations in P19 cells to show that only those with at least half of the repeat domain, activated p38MAPK and underwent apoptosis offering intriguing incite into NRAGE’s contribution in BMP apoptotic signaling. PMID:19937275

  4. Mapping of NRAGE domains reveals clues to cell viability in BMP signaling.

    PubMed

    Rochira, Jennifer A; Cowling, Rebecca A; Himmelfarb, Joshua S; Adams, Tamara L; Verdi, Joseph M

    2010-01-01

    Bone morphogenetic signaling (BMP) is a key pathway during neurogenesis and depends on many downstream intermediators to carry out its signaling. One such signaling pathway utilizes neurotrophin receptor-interacting MAGE protein (NRAGE), a member of the melanoma-associated antigen (MAGE) family, to upregulate p38 mitogen activated protein kinase (p38(MAPK)) in response to cellular stress and activate caspases which are critical in leading cells to death. NRAGE consists of two conserved MAGE homology domains separated by a unique hexapeptide repeat domain. Although we have previously implicated NRAGE in inducing apoptosis in neural progenitors and P19 cells, a model system for neural progenitors, its domains have yet to be explored in determining which one may be responsible for setting up the signaling for apoptosis. Here, we overexpressed a series of deletion mutations in P19 cells to show that only those with at least half of the repeat domain, activated p38(MAPK) and underwent apoptosis offering intriguing incite into NRAGE's contribution in BMP apoptotic signaling.

  5. Global map of oxytocin/vasopressin-like neuropeptide signalling in insects.

    PubMed

    Liutkeviciute, Zita; Koehbach, Johannes; Eder, Thomas; Gil-Mansilla, Esther; Gruber, Christian W

    2016-12-13

    Oxytocin and vasopressin mediate a range of physiological functions that are important for osmoregulation, reproduction, social behaviour, memory and learning. The origin of this signalling system is thought to date back ~600 million years. Oxytocin/vasopressin-like peptides have been identified in several invertebrate species and they appear to be functionally related across the entire animal kingdom. There is little information available about the biology of this peptide G protein-coupled receptor signalling system in insects. Recently over 200 insect genome/transcriptome datasets were released allowing investigation of the molecular structure and phylogenetic distribution of the insect oxytocin/vasopressin orthologue - inotocin peptides and their receptors. The signalling system is present in early arthropods and representatives of some early-diverging lineages. However, Trichoptera, Lepidoptera, Siphonaptera, Mecoptera and Diptera, lack the presence of inotocin genes, which suggests the peptide-receptor system was probably lost in their common ancestor ~280 million-years-ago. In addition we detected several losses of the inotocin signalling system in Hemiptera (white flies, scale insects and aphids), and the complete absence in spiders (Chelicerata). This unique insight into evolutionarily patterns and sequence diversity of neuroendocrine hormones will provide opportunities to elucidate the physiology of the inotocin signalling system in one of the largest group of animals.

  6. Signal analysis for genome-wide maps of histone modifications measured by ChIP-seq.

    PubMed

    Beck, Dominik; Brandl, Miriam B; Boelen, Lies; Unnikrishnan, Ashwin; Pimanda, John E; Wong, Jason W H

    2012-04-15

    Chromatin structure, including post-translational modifications of histones, regulates gene expression, alternative splicing and cell identity. ChIP-seq is an increasingly used assay to study chromatin function. However, tools for downstream bioinformatics analysis are limited and are only based on the evaluation of signal intensities. We reasoned that new methods taking into account other signal characteristics such as peak shape, location and frequencies might reveal new insights into chromatin function, particularly in situation where differences in read intensities are subtle. We introduced an analysis pipeline, based on linear predictive coding (LPC), which allows the capture and comparison of ChIP-seq histone profiles. First, we show that the modeled signal profiles distinguish differentially expressed genes with comparable accuracy to signal intensities. The method was robust against parameter variations and performed well up to a signal-to-noise ratio of 0.55. Additionally, we show that LPC profiles of activating and repressive histone marks cluster into distinct groups and can be used to predict their function. http://www.cancerresearch.unsw.edu.au/crcweb.nsf/page/LPCHP A Matlab implementation along with usage instructions and an example input file are available from: http://www.cancerresearch.unsw.edu.au/crcweb.nsf/page/LPCHP.

  7. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    NASA Technical Reports Server (NTRS)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  8. Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalık region, NW Turkey

    NASA Astrophysics Data System (ADS)

    Akgün, Aykut; Türk, Necdet

    2011-09-01

    Erosion is one of the most important natural hazard phenomena in the world, and it poses a significant threat to Turkey in terms of land degredation and desertification. To cope with this problem, we must determine which areas are erosion-prone. Many studies have been carried out and different models and methods have been used to this end. In this study, we used a logistic regression to prepare an erosion susceptibility map for the Ayvalık region in Balıkesir (NW Turkey). The following were our assessment parameters: weathering grades of rocks, slope gradient, structural lineament density, drainage density, land cover, stream power index (SPI) and profile curvature. These were processed by Idrisi Kilimanjaro GIS software. We used logistic regression analysis to relate predictor variables to the occurrence or non-occurrence of gully erosion sites within geographic cells, and then we used this relationship to produce a probability map for future erosion sites. The results indicate that lineament density, weathering grades of rocks and drainage density are the most important variables governing erosion susceptibility. Other variables, such as land cover and slope gradient, were revealed as secondary important variables. Highly weathered basalt, andesite, basaltic andesite and lacustrine sediments were the units most susceptible to erosion. In order to calculate the prediction accuracy of the erosion susceptibility map generated, we compared it with the map showing the gully erosion areas. On the basis of this comparison, the area under curvature (AUC) value was found to be 0.81. This result suggests that the erosion susceptibility map we generated is accurate.

  9. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    DTIC Science & Technology

    2002-09-01

    Resulting Plots for Different LPI Radar Signals (1) FMCW Table 9 shows a FMCW signal with carrier frequency equal to 1 KHz, sampling frequency equal to...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Detection and Classification of LPI Radar Signals using Parallel Filter...In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB® toolbox to generate

  10. Maps of context-dependent putative regulatory regions and genomic signal interactions.

    PubMed

    Diamanti, Klev; Umer, Husen M; Kruczyk, Marcin; Dąbrowski, Michał J; Cavalli, Marco; Wadelius, Claes; Komorowski, Jan

    2016-11-02

    Gene transcription is regulated mainly by transcription factors (TFs). ENCODE and Roadmap Epigenomics provide global binding profiles of TFs, which can be used to identify regulatory regions. To this end we implemented a method to systematically construct cell-type and species-specific maps of regulatory regions and TF-TF interactions. We illustrated the approach by developing maps for five human cell-lines and two other species. We detected ∼144k putative regulatory regions among the human cell-lines, with the majority of them being ∼300 bp. We found ∼20k putative regulatory elements in the ENCODE heterochromatic domains suggesting a large regulatory potential in the regions presumed transcriptionally silent. Among the most significant TF interactions identified in the heterochromatic regions were CTCF and the cohesin complex, which is in agreement with previous reports. Finally, we investigated the enrichment of the obtained putative regulatory regions in the 3D chromatin domains. More than 90% of the regions were discovered in the 3D contacting domains. We found a significant enrichment of GWAS SNPs in the putative regulatory regions. These significant enrichments provide evidence that the regulatory regions play a crucial role in the genomic structural stability. Additionally, we generated maps of putative regulatory regions for prostate and colorectal cancer human cell-lines.

  11. Maps of context-dependent putative regulatory regions and genomic signal interactions

    PubMed Central

    Diamanti, Klev; Umer, Husen M.; Kruczyk, Marcin; Dąbrowski, Michał J.; Cavalli, Marco; Wadelius, Claes; Komorowski, Jan

    2016-01-01

    Gene transcription is regulated mainly by transcription factors (TFs). ENCODE and Roadmap Epigenomics provide global binding profiles of TFs, which can be used to identify regulatory regions. To this end we implemented a method to systematically construct cell-type and species-specific maps of regulatory regions and TF–TF interactions. We illustrated the approach by developing maps for five human cell-lines and two other species. We detected ∼144k putative regulatory regions among the human cell-lines, with the majority of them being ∼300 bp. We found ∼20k putative regulatory elements in the ENCODE heterochromatic domains suggesting a large regulatory potential in the regions presumed transcriptionally silent. Among the most significant TF interactions identified in the heterochromatic regions were CTCF and the cohesin complex, which is in agreement with previous reports. Finally, we investigated the enrichment of the obtained putative regulatory regions in the 3D chromatin domains. More than 90% of the regions were discovered in the 3D contacting domains. We found a significant enrichment of GWAS SNPs in the putative regulatory regions. These significant enrichments provide evidence that the regulatory regions play a crucial role in the genomic structural stability. Additionally, we generated maps of putative regulatory regions for prostate and colorectal cancer human cell-lines. PMID:27625394

  12. Two-step intermediate fine mapping with likelihood ratio test statistics: applications to Problems 2 and 3 data of GAW15.

    PubMed

    Sinha, Ritwik; Luo, Yuqun

    2007-01-01

    Construction of precise confidence sets of disease gene locations after initial identification of linked regions can improve the efficiency of the ensuing fine mapping effort. We took the confidence set inference, a framework proposed and implemented using the Mean test statistic (CSI-Mean) and improved the efficiency substantially by using a likelihood ratio test statistic (CSI-MLS). The CSI framework requires knowledge of some disease-model-related parameters. In the absence of prior knowledge of these parameters, a two-step procedure may be employed: 1) the parameters are estimated using a coarse map of markers; 2) CSI-Mean or CSI-MLS are applied to construct the confidence sets of the disease gene locations using a finer map of markers, assuming the estimates from Step 1 for the required parameters. In this article we show that the advantages of CSI-MLS over CSI-Mean, previously demonstrated when the required parameters are known, are preserved in this two-step procedure, using both the simulated and real data contributed to Problems 2 and 3 of Genetic Analysis Workshop 15. In addition, our result suggests that microsatellite data, when available, should be used in Step 1. Also explored in detail is the effect of the absence of parental genotypes on the performance of CSI-MLS.

  13. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  14. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  15. Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and Bayesian neural networks: an example from IODP 323 site

    NASA Astrophysics Data System (ADS)

    Karmakar, Mampi; Maiti, Saumen; Singh, Amrita; Ojha, Maheswar; Maity, Bhabani Sankar

    2017-07-01

    Modeling and classification of the subsurface lithology is very important to understand the evolution of the earth system. However, precise classification and mapping of lithology using a single framework are difficult due to the complexity and the nonlinearity of the problem driven by limited core sample information. Here, we implement a joint approach by combining the unsupervised and the supervised methods in a single framework for better classification and mapping of rock types. In the unsupervised method, we use the principal component analysis (PCA), K-means cluster analysis (K-means), dendrogram analysis, Fuzzy C-means (FCM) cluster analysis and self-organizing map (SOM). In the supervised method, we use the Bayesian neural networks (BNN) optimized by the Hybrid Monte Carlo (HMC) (BNN-HMC) and the scaled conjugate gradient (SCG) (BNN-SCG) techniques. We use P-wave velocity, density, neutron porosity, resistivity and gamma ray logs of the well U1343E of the Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. While the SOM algorithm allows us to visualize the clustering results in spatial domain, the combined classification schemes (supervised and unsupervised) uncover the different patterns of lithology such of as clayey-silt, diatom-silt and silty-clay from an un-cored section of the drilled hole. In addition, the BNN approach is capable of estimating uncertainty in the predictive modeling of three types of rocks over the entire lithology section at site U1343. Alternate succession of clayey-silt, diatom-silt and silty-clay may be representative of crustal inhomogeneity in general and thus could be a basis for detail study related to the productivity of methane gas in the oceans worldwide. Moreover, at the 530 m depth down below seafloor (DSF), the transition from Pliocene to Pleistocene could be linked to lithological alternation between the clayey-silt and the diatom-silt. The present results could provide the basis for

  16. Enhanced magnetic flux density mapping using coherent steady state equilibrium signal in MREIT

    SciTech Connect

    Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong; Woo, Eung Je; Lee, Mun Bae; Kwon, Oh In

    2016-03-15

    Measuring the z-component of magnetic flux density B = (B{sub x}, B{sub y}, B{sub z}) induced by transversally injected current, magnetic resonance electrical impedance tomography (MREIT) aims to visualize electrical property (current density and/or conductivity distribution) in a three-dimensional imaging object. For practical implementations of MREIT technique, it is critical to reduce injection of current pulse within safety requirements. With the goal of minimizing the noise level in measured B{sub z} data, we propose a new method to enhance the measure B{sub z} data using steady-state coherent gradient multi-echo (SSC-GME) MR pulse sequence combining with injection current nonlinear encoding (ICNE) method in MREIT, where the ICNE technique injects current during a readout gradient to maximize the signal intensity of phase signal including B{sub z}. The total phase offset in SSC-GME includes additional magnetic flux density due to the injected current, which is different from the phase signal for the conventional spoiled MR pulse sequence. We decompose the magnetization precession phase from the total phase offset including B{sub z} and optimize B{sub z} data using the steady-state equilibrium signal. Results from a real phantom experiment including different kinds of anomalies demonstrated that the proposed method enhanced B{sub z} comparing to a conventional spoiled pulse sequence.

  17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

    PubMed

    Hill, N Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin

    2012-06-26

    methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform and the SIGFRIED method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. PREREQUISITES AND PLANNING: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient's brain, and on relevant factors of the patient's history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure. In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research

  18. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon(')s entropy, statistical index, and weighting factor models.

    PubMed

    Khosravi, Khabat; Pourghasemi, Hamid Reza; Chapi, Kamran; Bahri, Masoumeh

    2016-12-01

    Flooding is a very common worldwide natural hazard causing large-scale casualties every year; Iran is not immune to this thread as well. Comprehensive flood susceptibility mapping is very important to reduce losses of lives and properties. Thus, the aim of this study is to map susceptibility to flooding by different bivariate statistical methods including Shannon's entropy (SE), statistical index (SI), and weighting factor (Wf). In this regard, model performance evaluation is also carried out in Haraz Watershed, Mazandaran Province, Iran. In the first step, 211 flood locations were identified by the documentary sources and field inventories, of which 70% (151 positions) were used for flood susceptibility modeling and 30% (60 positions) for evaluation and verification of the model. In the second step, ten influential factors in flooding were chosen, namely slope angle, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, rainfall, geology, land use, and normalized difference vegetation index (NDVI). In the next step, flood susceptibility maps were prepared by these four methods in ArcGIS. As the last step, receiver operating characteristic (ROC) curve was drawn and the area under the curve (AUC) was calculated for quantitative assessment of each model. The results showed that the best model to estimate the susceptibility to flooding in Haraz Watershed was SI model with the prediction and success rates of 99.71 and 98.72%, respectively, followed by Wf and SE models with the AUC values of 98.1 and 96.57% for the success rate, and 97.6 and 92.42% for the prediction rate, respectively. In the SI and Wf models, the highest and lowest important parameters were the distance from river and geology. Flood susceptibility maps are informative for managers and decision makers in Haraz Watershed in order to contemplate measures to reduce human and financial losses.

  19. Mapping transverse capillary flow speed using time-varying OCT speckle signals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2016-03-01

    We present an optical coherence tomography (OCT) based method for mapping transverse red blood cell (RBC) flow speed at capillary. This OCT velocimetry utilizes a quantitative laser speckle temporal contrast analysis that estimates reliable speckle decorrelation time from the observed speckle contrast, which is related to microcirculatory flow velocity. For capillary speed measurement, we employ a home-built 1.3 µm MHz swept-source OCT (SS-OCT) system that can acquire OCT B-frames at a rate of 1.7 kHz. From the multiple B-frames obtained at the same location, intensity profiles with time-varying OCT speckle contrast are extracted at single capillaries using a capillary binary mask and then the transverse flow speed is calculated by adapting the profiles to the speckle contrast analytic model. Finally, a 3D speed map can be achieved for OCT volume imaging. To validate this method, we perform a systematic study using both phantom and in vivo rodent models. Result shows that our method is effective to measure transverse capillary flow speed.

  20. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    PubMed Central

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  1. Swath Mapping of the New Jersey and Northern California Margins and Statistical Characterization of the Shelf and Slope Bathymetry

    DTIC Science & Technology

    1997-09-30

    Contours are in meters. Illuminati on is from the top of the image. Center of image is at ap proximately 39•25’ N, 73•oo·w. Figure 1 b. Conditional simulation of above image, using statistical model derived from the data.

  2. Role played by Disabled-2 in albumin induced MAP Kinase signalling

    SciTech Connect

    Diwakar, Ramaswamy Pearson, Alexander L.; Colville-Nash, Paul; Baines, Deborah L.; Dockrell, Mark E.C.

    2008-02-15

    Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGF{beta}-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundance in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGF{beta}-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGF{beta}-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.

  3. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling.

    PubMed

    Enokizono, Yoshiaki; Kumeta, Hiroyuki; Funami, Kenji; Horiuchi, Masataka; Sarmiento, Joy; Yamashita, Kazuo; Standley, Daron M; Matsumoto, Misako; Seya, Tsukasa; Inagaki, Fuyuhiko

    2013-12-03

    Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling.

  4. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling

    PubMed Central

    Enokizono, Yoshiaki; Kumeta, Hiroyuki; Funami, Kenji; Horiuchi, Masataka; Sarmiento, Joy; Yamashita, Kazuo; Standley, Daron M.; Matsumoto, Misako; Seya, Tsukasa; Inagaki, Fuyuhiko

    2013-01-01

    Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling. PMID:24255114

  5. Fine-mapping of lipid regions in global populations discovers ethnic-specific signals and refines previously identified lipid loci.

    PubMed

    Zubair, Niha; Graff, Mariaelisa; Luis Ambite, Jose; Bush, William S; Kichaev, Gleb; Lu, Yingchang; Manichaikul, Ani; Sheu, Wayne H-H; Absher, Devin; Assimes, Themistocles L; Bielinski, Suzette J; Bottinger, Erwin P; Buzkova, Petra; Chuang, Lee-Ming; Chung, Ren-Hua; Cochran, Barbara; Dumitrescu, Logan; Gottesman, Omri; Haessler, Jeffrey W; Haiman, Christopher; Heiss, Gerardo; Hsiung, Chao A; Hung, Yi-Jen; Hwu, Chii-Min; Juang, Jyh-Ming J; Le Marchand, Loic; Lee, I-Te; Lee, Wen-Jane; Lin, Li-An; Lin, Danyu; Lin, Shih-Yi; Mackey, Rachel H; Martin, Lisa W; Pasaniuc, Bogdan; Peters, Ulrike; Predazzi, Irene; Quertermous, Thomas; Reiner, Alex P; Robinson, Jennifer; Rotter, Jerome I; Ryckman, Kelli K; Schreiner, Pamela J; Stahl, Eli; Tao, Ran; Tsai, Michael Y; Waite, Lindsay L; Wang, Tzung-Dau; Buyske, Steven; Ida Chen, Yii-Der; Cheng, Iona; Crawford, Dana C; Loos, Ruth J F; Rich, Stephen S; Fornage, Myriam; North, Kari E; Kooperberg, Charles; Carty, Cara L

    2016-12-15

    Genome-wide association studies have identified over 150 loci associated with lipid traits, however, no large-scale studies exist for Hispanics and other minority populations. Additionally, the genetic architecture of lipid-influencing loci remains largely unknown. We performed one of the most racially/ethnically diverse fine-mapping genetic studies of HDL-C, LDL-C, and triglycerides to-date using SNPs on the MetaboChip array on 54,119 individuals: 21,304 African Americans, 19,829 Hispanic Americans, 12,456 Asians, and 530 American Indians. The majority of signals found in these groups generalize to European Americans. While we uncovered signals unique to racial/ethnic populations, we also observed systematically consistent lipid associations across these groups. In African Americans, we identified three novel signals associated with HDL-C (LPL, APOA5, LCAT) and two associated with LDL-C (ABCG8, DHODH). In addition, using this population, we refined the location for 16 out of the 58 known MetaboChip lipid loci. These results can guide tailored screening efforts, reveal population-specific responses to lipid-lowering medications, and aid in the development of new targeted drug therapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway

    PubMed Central

    Duhamel, Stéphanie; Girondel, Charlotte; Dorn, Jonas F.; Tanguay, Pierre-Luc; Voisin, Laure; Smits, Ron; Maddox, Paul S.; Meloche, Sylvain

    2016-01-01

    ABSTRACT Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCFFbxw7 ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-RasV12. Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-RasV12 on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.