Sample records for signals steps include

  1. System for testing properties of a network

    DOEpatents

    Rawle, Michael; Bartholomew, David B.; Soares, Marshall A.

    2009-06-16

    A method for identifying properties of a downhole electromagnetic network in a downhole tool sting, including the step of providing an electromagnetic path intermediate a first location and a second location on the electromagnetic network. The method further includes the step of providing a receiver at the second location. The receiver includes a known reference. The analog signal includes a set amplitude, a set range of frequencies, and a set rate of change between the frequencies. The method further includes the steps of sending the analog signal, and passively modifying the signal. The analog signal is sent from the first location through the electromagnetic path, and the signal is modified by the properties of the electromagnetic path. The method further includes the step of receiving a modified signal at the second location and comparing the known reference to the modified signal.

  2. Bistatic SAR: Signal Processing and Image Formation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Daniel E.; Yocky, David A.

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013more » on Kirtland Air Force Base, New Mexico.« less

  3. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, Robert E.; Yueng, Edward S.

    1989-10-17

    A method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal.

  4. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, R.E.; Yueng, E.S.

    1989-10-17

    Disclosed is a method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal. 8 figs.

  5. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, Roger W.; Wang, Poguang

    1996-01-01

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##

  6. Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2004-01-01

    A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.

  7. Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2002-01-01

    A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.

  8. A biocatalytic cascade with several output signals—towards biosensors with different levels of confidence

    PubMed Central

    Guz, Nataliia; Halámek, Jan; Rusling, James F.; Katz, Evgeny

    2014-01-01

    The biocatalytic cascade based on enzyme-catalyzed reactions activated by several biomolecular input signals and producing output signal after each reaction step was developed as an example of a logically reversible information processing system. The model system was designed to mimic the operation of concatenated AND logic gates with optically readable output signals generated at each step of the logic operation. Implications include concurrent bioanalyses and data interpretation for medical diagnostics. PMID:24748446

  9. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    NASA Technical Reports Server (NTRS)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  10. Multi-channel time-reversal receivers for multi and 1-bit implementations

    DOEpatents

    Candy, James V.; Chambers, David H.; Guidry, Brian L.; Poggio, Andrew J.; Robbins, Christopher L.

    2008-12-09

    A communication system for transmitting a signal through a channel medium comprising digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. In one embodiment a transmitter is adapted to transmit the signal, a multiplicity of receivers are adapted to receive the signal, a digitizer digitizes the signal, and a time-reversal signal processor is adapted to time-reverse the digitized signal. An embodiment of the present invention includes multi bit implementations. Another embodiment of the present invention includes 1-bit implementations. Another embodiment of the present invention includes a multiplicity of receivers used in the step of transmitting the signal through the channel medium.

  11. Methods and apparatus for analysis of chromatographic migration patterns

    DOEpatents

    Stockham, Thomas G.; Ives, Jeffrey T.

    1993-01-01

    A method and apparatus for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means.

  12. Brain computer interfaces, a review.

    PubMed

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  13. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, R.W.; Wang, P.

    1996-04-30

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

  14. Optical probe with reference fiber

    DOEpatents

    Da Silva, Luiz B [Danville, CA; Chase, Charles L [Dublin, CA

    2006-03-14

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  15. Method and apparatus for improving resolution in spectrometers processing output steps from non-ideal signal sources

    DOEpatents

    Warburton, William K.; Momayezi, Michael

    2006-06-20

    A method and apparatus for processing step-like output signals (primary signals) generated by non-ideal, for example, nominally single-pole ("N-1P ") devices. An exemplary method includes creating a set of secondary signals by directing the primary signal along a plurality of signal paths to a signal summation point, summing the secondary signals reaching the signal summation point after propagating along the signal paths to provide a summed signal, performing a filtering or delaying operation in at least one of said signal paths so that the secondary signals reaching said summing point have a defined time correlation with respect to one another, applying a set of weighting coefficients to the secondary signals propagating along said signal paths, and performing a capturing operation after any filtering or delaying operations so as to provide a weighted signal sum value as a measure of the integrated area QgT of the input signal.

  16. Methods and apparatus for analysis of chromatographic migration patterns

    DOEpatents

    Stockham, T.G.; Ives, J.T.

    1993-12-28

    A method and apparatus are presented for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means. 16 figures.

  17. Brain Computer Interfaces, a Review

    PubMed Central

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  18. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  19. A Common STEP in the Synaptic Pathology of Diverse Neuropsychiatric Disorders

    PubMed Central

    Johnson, Micah A.; Lombroso, Paul J.

    2012-01-01

    Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key neuronal signaling molecules. STEP targets include N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), as well as extracellular signal-regulated kinase (ERK) and the tyrosine kinase Fyn. STEP-mediated dephosphorylation promotes the internalization of NMDARs and AMPARs and the inactivation of ERK and Fyn. Regulation of STEP is complex, and recent work has implicated STEP dysregulation in the pathophysiology of several neuropsychiatric disorders. Both high levels and low levels of STEP are found in a diverse group of illnesses. This review focuses on the role of STEP in three disorders in which STEP levels are elevated: Alzheimer’s disease, fragile X syndrome, and schizophrenia. The presence of elevated STEP in all three of these disorders raises the intriguing possibility that cognitive deficits resulting from diverse etiologies may share a common molecular pathway. PMID:23239949

  20. Evaluation of traffic signal timing optimization methods using a stochastic and microscopic simulation program.

    DOT National Transportation Integrated Search

    2003-01-01

    This study evaluated existing traffic signal optimization programs including Synchro,TRANSYT-7F, and genetic algorithm optimization using real-world data collected in Virginia. As a first step, a microscopic simulation model, VISSIM, was extensively ...

  1. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.

    PubMed

    Pilt, Kristjan; Meigas, Kalju; Lass, Jaanus; Rosmann, Mart; Kaik, Jüri

    2007-01-01

    For applications where PPG signal AC component needs to be measured without disturbances in its shape and recorded digitally with high digitalization accuracy, the step-by-step DC component eliminator is developed. This paper describes step-by-step DC component eliminator, which is utilized with analogue comparator and operational amplifier. It allows to record PPG signal without disturbances in its shape in 24-hours PPG signal monitoring system. The experiments with PPG signal have been carried out.

  2. Method and apparatus for characterizing propagation delays of integrated circuit devices

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)

    1987-01-01

    Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.

  3. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. V. Observations in IBEX-Lo ESA Steps 1, 2, and 3

    NASA Astrophysics Data System (ADS)

    Swaczyna, Paweł; Bzowski, Maciej; Kubiak, Marzena A.; Sokół, Justyna M.; Fuselier, Stephen A.; Galli, André; Heirtzler, David; Kucharek, Harald; McComas, David J.; Möbius, Eberhard; Schwadron, Nathan A.; Wurz, P.

    2018-02-01

    Direct-sampling observations of interstellar neutral (ISN) He by the Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extend the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009–2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor’s conversion surface separately for each ESA step of the instrument. We find that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.

  4. Template-DTW based on inertial signals: Preliminary results for step characterization.

    PubMed

    Mantilla, Juan; Oudre, Laurent; Barrois, Remi; Vienne, Alienor; Ricard, Damien

    2017-07-01

    In this paper, we present a method for the creation of a library of inertial signals based on Dynamic Time Warping (DTW) for step characterization, with preliminary results in control subjects and patients with neurological diseases. Subjects performed a protocol including a 10 m straight walking, then turn back and walking for additional 10 m. The library is constructed with inertial signals (acceleration and angular velocities recorded in three directions) aligned with the DTW. Templates in the library are obtained for a specific cohort and for the different walking phases of the protocol. They are compared to the signal of a single subject by calculating a Pearson correlation coefficient. The method has been tested on a database of 864 exercises, obtained from 71 healthy controls, 24 patients with Parkinson disease and 48 patients with Radiation Induced Leukoencephalopathy (RIL). Pearson correlation classification reports a precision of about 85% for step detection. For exercise characterization the sensitivity is about 57%, 56% and 82% for Parkinson, RIL and control subjects respectively.

  5. The role of learning-related dopamine signals in addiction vulnerability.

    PubMed

    Huys, Quentin J M; Tobler, Philippe N; Hasler, Gregor; Flagel, Shelly B

    2014-01-01

    Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction. © 2014 Elsevier B.V. All rights reserved.

  6. Method and apparatus for detecting timing errors in a system oscillator

    DOEpatents

    Gliebe, Ronald J.; Kramer, William R.

    1993-01-01

    A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

  7. Molecular Steps in the Immune Signaling Pathway Evoked by Plant Elicitor Peptides: Ca2+-Dependent Protein Kinases, Nitric Oxide, and Reactive Oxygen Species Are Downstream from the Early Ca2+ Signal1[OPEN

    PubMed Central

    Ma, Yi; Zhao, Yichen; Walker, Robin K.; Berkowitz, Gerald A.

    2013-01-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca2+ elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca2+ signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca2+-dependent protein kinases (CPKs) decode the Ca2+ signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca2+ signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca2+-conducting channel in the Pep immune signaling pathway. PMID:24019427

  8. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  9. Bootstrap Signal-to-Noise Confidence Intervals: An Objective Method for Subject Exclusion and Quality Control in ERP Studies

    PubMed Central

    Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.

    2016-01-01

    Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849

  10. Using multiplex-staining to study changes in the maize leaf phosphoproteome in response to mechanical wounding

    USDA-ARS?s Scientific Manuscript database

    Mechanical wounding of 2-week old maize (Zea mays L.) leaves, one of the first steps in both pathogen infection and herbivore attack, stimulates metabolism and activates signal transduction pathways dedicated to defense and recovery. The signaling pathways include reversible protein phosphorylation...

  11. Method and apparatus for measuring response time

    DOEpatents

    Johanson, Edward W.; August, Charles

    1985-01-01

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  12. Method and apparatus for measuring response time

    DOEpatents

    Johanson, E.W.; August, C.

    1983-08-11

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  13. Comparing transformation methods for DNA microarray data

    PubMed Central

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-01-01

    Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method. PMID:15202953

  14. Comparing transformation methods for DNA microarray data.

    PubMed

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-06-17

    When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  15. Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion

    PubMed Central

    Hochreiter-Hufford, Amelia; Ravichandran, Kodi S.

    2013-01-01

    Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via “find me” signals, the recognition of corpses via “eat me” signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events “immunologically silent.” This study focuses on our understanding of these steps. PMID:23284042

  16. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.

  17. NetPath: a public resource of curated signal transduction pathways

    PubMed Central

    2010-01-01

    We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches. PMID:20067622

  18. Hardware design and implementation of fast DOA estimation method based on multicore DSP

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-10-01

    In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.

  19. Computer implemented empirical mode decomposition method, apparatus and article of manufacture

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    1999-01-01

    A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.

  20. Servomotor and Controller Having Large Dynamic Range

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott

    2007-01-01

    A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).

  1. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  2. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Ely, Donald W. (Inventor); Fussell, Ronald M. (Inventor); Halpin, Paul C. (Inventor); Blackwell-Thompson, Charlie (Inventor); Meier, Gary M. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  3. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  4. Method and apparatus for deregistering multi-filament tow and product thereof

    DOEpatents

    Lukhard, Craig R.; Potter, Jerry F.; Todd, Maurice C.

    1995-01-01

    A method and apparatus for deregistering drawn crimped nylon multifilament tow includes the steps of stretching the tow under constant controlled tension at a temperature below the glass transition temperature of the nylon. The apparatus includes means for sensing the tension of the tow between the feed and draw sections of a stretching device and producing a signal representative of the tension sensed and a controller for changing the speed of the draw section actuated by said signal.

  5. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  6. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  7. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  8. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  9. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  10. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  11. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  12. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  13. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  14. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  15. Computer implemented empirical mode decomposition method apparatus, and article of manufacture utilizing curvature extrema

    NASA Technical Reports Server (NTRS)

    Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)

    2003-01-01

    A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.

  16. Logarithmic current measurement circuit with improved accuracy and temperature stability and associated method

    DOEpatents

    Ericson, M. Nance; Rochelle, James M.

    1994-01-01

    A logarithmic current measurement circuit for operating upon an input electric signal utilizes a quad, dielectrically isolated, well-matched, monolithic bipolar transistor array. One group of circuit components within the circuit cooperate with two transistors of the array to convert the input signal logarithmically to provide a first output signal which is temperature-dependant, and another group of circuit components cooperate with the other two transistors of the array to provide a second output signal which is temperature-dependant. A divider ratios the first and second output signals to provide a resultant output signal which is independent of temperature. The method of the invention includes the operating steps performed by the measurement circuit.

  17. Therapeutic Implications for Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Neuropsychiatric Disorders

    PubMed Central

    Goebel-Goody, Susan M.; Baum, Matthew; Paspalas, Constantinos D.; Fernandez, Stephanie M.; Carty, Niki C.; Kurup, Pradeep

    2012-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-d-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn leads to inactivation of these enzymes, whereas STEP-mediated dephosphorylation of surface NMDARs and AMPARs promotes their endocytosis. Accordingly, the current model of STEP function posits that it opposes long-term potentiation and promotes long-term depression. Phosphorylation, cleavage, dimerization, ubiquitination, and local translation all converge to maintain an appropriate balance of STEP in the central nervous system. Accumulating evidence over the past decade indicates that STEP dysregulation contributes to the pathophysiology of several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, epileptogenesis, alcohol-induced memory loss, Huntington's disease, drug abuse, stroke/ischemia, and inflammatory pain. This comprehensive review discusses STEP expression and regulation and highlights how disrupted STEP function contributes to the pathophysiology of diverse neuropsychiatric disorders. PMID:22090472

  18. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    PubMed

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Methods, apparatus and system for notification of predictable memory failure

    DOEpatents

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-01-03

    A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.

  20. Stepped-frequency GPR for utility line detection using polarization-dependent scattering

    NASA Astrophysics Data System (ADS)

    Jensen, Ole K.; Gregersen, Ole G.

    2000-04-01

    A GPR for detection of buried cables and pipes is developed by Ekko Dane Production in cooperation with Aalborg University. The appearance is a 'lawn mower' model including antennas, electronics and on-line data processing. A successful result is obtained by combining dedicated hardware and signal processing. The inherent signal to clutter ratio is bad, but making measurements at many polarization angles and subsequent signal processing improves the ratio. A simple model of the polarization dependence of the scattering from the target is used. The method is improved by combining the polarization filtering with averaging over small horizontal displacements. A stepped frequency measurement system is used. The method often implies long measurement times, but this problem is overcome by development of fast RF-electronics. Standard signal processors are used for real-time data processing. Several antenna array configurations are tested and optimized for low coupling between transmitter and receiver and for a short impulse response. A large number of tests have been made for different targets, e.g. metal cables and plastic pipes filled with air or water. Tests have been made under realistic ground conditions, including sand, wet clay, pavements and grass covered soil. The results show reliable detection even when the conditions are difficult.

  1. Method for network analyzation and apparatus

    DOEpatents

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  2. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  3. Computer-controlled attenuator.

    PubMed

    Mitov, D; Grozev, Z

    1991-01-01

    Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.

  4. Laboratory Performance Evaluation Report of SEL 421 Phasor Measurement Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; faris, Anthony J.; Martin, Kenneth E.

    2007-12-01

    PNNL and BPA have been in close collaboration on laboratory performance evaluation of phasor measurement units for over ten years. A series of evaluation tests are designed to confirm accuracy and determine measurement performance under a variety of conditions that may be encountered in actual use. Ultimately the testing conducted should provide parameters that can be used to adjust all measurements to a standardized basis. These tests are performed with a standard relay test set using recorded files of precisely generated test signals. The test set provides test signals at a level and in a format suitable for input tomore » a PMU that accurately reproduces the signals in both signal amplitude and timing. Test set outputs are checked to confirm the accuracy of the output signal. The recorded signals include both current and voltage waveforms and a digital timing track used to relate the PMU measured value with the test signal. Test signals include steady-state waveforms to test amplitude, phase, and frequency accuracy, modulated signals to determine measurement and rejection bands, and step tests to determine timing and response accuracy. Additional tests are included as necessary to fully describe the PMU operation. Testing is done with a BPA phasor data concentrator (PDC) which provides communication support and monitors data input for dropouts and data errors.« less

  5. Contrast enhanced imaging with a stationary digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Puett, Connor; Calliste, Jabari; Wu, Gongting; Inscoe, Christina R.; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2017-03-01

    Digital breast tomosynthesis (DBT) captures some depth information and thereby improves the conspicuity of breast lesions, compared to standard mammography. Using contrast during DBT may also help distinguish malignant from benign sites. However, adequate visualization of the low iodine signal requires a subtraction step to remove background signal and increase lesion contrast. Additionally, attention to factors that limit contrast, including scatter, noise, and artifact, are important during the image acquisition and post-acquisition processing steps. Stationary DBT (sDBT) is an emerging technology that offers a higher spatial and temporal resolution than conventional DBT. This phantom-based study explored contrast-enhanced sDBT (CE sDBT) across a range of clinically-appropriate iodine concentrations, lesion sizes, and breast thicknesses. The protocol included an effective scatter correction method and an iterative reconstruction technique that is unique to the sDBT system. The study demonstrated the ability of this CE sDBT system to collect projection images adequate for both temporal subtraction (TS) and dual-energy subtraction (DES). Additionally, the reconstruction approach preserved the improved contrast-to-noise ratio (CNR) achieved in the subtraction step. Finally, scatter correction increased the iodine signal and CNR of iodine-containing regions in projection views and reconstructed image slices during both TS and DES. These findings support the ongoing study of sDBT as a potentially useful tool for contrast-enhanced breast imaging and also highlight the significant effect that scatter has on image quality during DBT.

  6. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    NASA Astrophysics Data System (ADS)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  7. Image reconstruction: an overview for clinicians.

    PubMed

    Hansen, Michael S; Kellman, Peter

    2015-03-01

    Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.

  8. Proline 54 trans-cis isomerization is responsible for the kinetic partitioning at the last-step photocycle of photoactive yellow protein

    PubMed Central

    Lee, Byoung-Chul; Hoff, Wouter D.

    2008-01-01

    Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP. PMID:18794212

  9. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  10. Zn2+-dependent Activation of the Trk Signaling Pathway Induces Phosphorylation of the Brain-enriched Tyrosine Phosphatase STEP

    PubMed Central

    Poddar, Ranjana; Rajagopal, Sathyanarayanan; Shuttleworth, C. William; Paul, Surojit

    2016-01-01

    Excessive release of Zn2+ in the brain is implicated in the progression of acute brain injuries. Although several signaling cascades have been reported to be involved in Zn2+-induced neurotoxicity, a potential contribution of tyrosine phosphatases in this process has not been well explored. Here we show that exposure to high concentrations of Zn2+ led to a progressive increase in phosphorylation of the striatal-enriched phosphatase (STEP), a component of the excitotoxic-signaling pathway that plays a role in neuroprotection. Zn2+-mediated phosphorylation of STEP61 at multiple sites (hyperphosphorylation) was induced by the up-regulation of brain-derived neurotropic factor (BDNF), tropomyosin receptor kinase (Trk) signaling, and activation of cAMP-dependent PKA (protein kinase A). Mutational studies further show that differential phosphorylation of STEP61 at the PKA sites, Ser-160 and Ser-221 regulates the affinity of STEP61 toward its substrates. Consistent with these findings we also show that BDNF/Trk/PKA mediated signaling is required for Zn2+-induced phosphorylation of extracellular regulated kinase 2 (ERK2), a substrate of STEP that is involved in Zn2+-dependent neurotoxicity. The strong correlation between the temporal profile of STEP61 hyperphosphorylation and ERK2 phosphorylation indicates that loss of function of STEP61 through phosphorylation is necessary for maintaining sustained ERK2 phosphorylation. This interpretation is further supported by the findings that deletion of the STEP gene led to a rapid and sustained increase in ERK2 phosphorylation within minutes of exposure to Zn2+. The study provides further insight into the mechanisms of regulation of STEP61 and also offers a molecular basis for the Zn2+-induced sustained activation of ERK2. PMID:26574547

  11. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  12. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  13. Temporomandibular joint formation requires two distinct hedgehog-dependent steps.

    PubMed

    Purcell, Patricia; Joo, Brian W; Hu, Jimmy K; Tran, Pamela V; Calicchio, Monica L; O'Connell, Daniel J; Maas, Richard L; Tabin, Clifford J

    2009-10-27

    We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk-condyle separation and provide a molecular framework for future studies of the TMJ.

  14. Temporomandibular joint formation requires two distinct hedgehog-dependent steps

    PubMed Central

    Purcell, Patricia; Joo, Brian W.; Hu, Jimmy K.; Tran, Pamela V.; Calicchio, Monica L.; O'Connell, Daniel J.; Maas, Richard L.; Tabin, Clifford J.

    2009-01-01

    We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk–condyle separation and provide a molecular framework for future studies of the TMJ. PMID:19815519

  15. Derivation of linearized transfer functions for switching-mode regulations. Phase A: Current step-up and voltage step-up converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Small-signal models are derived for the power stage of the voltage step-up (boost) and the current step-up (buck) converters. The modeling covers operation in both the continuous-mmf mode and the discontinuous-mmf mode. The power stage in the regulated current step-up converter on board the Dynamics Explorer Satellite is used as an example to illustrate the procedures in obtaining the small-signal functions characterizing a regulated converter.

  16. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  17. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    PubMed Central

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  18. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  19. Crosstalk compensation in analysis of energy storage devices

    DOEpatents

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  20. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  1. Troubleshooting of signal power supply system for Shanghai metro line 7

    NASA Astrophysics Data System (ADS)

    Lu, Kaixia; Xiao, Jie

    2018-03-01

    With the rapid development of Urban Rail Transit Signal Technology, the demand of signal power supply system for signal equipment is higher and higher. The signal intelligent power supply panel is the main component of the urban rail traffic signal power supply system. Whether the intelligent power supply panel working or not is directly related to traffic safety. The maintenance of intelligent signal power supply panel is particularly important. Line 7 of Shanghai Metro adopts PMZG Signal Intelligent Power Supply Panel, which is produced by Beijing Jinyujiaxin Polytron Technologies Inc. Maintenance of power supply system mainly includes routine maintenance and troubleshooting. This article will make clear the routine maintenance contents of PMZG Signal Intelligent Power Supply Panel, and put forward the common fault information and troubleshooting methods of PMZG Signal Intelligent Power Supply Panel. In accordance with the steps of fault handling, the faults can be eliminated in the shortest possible time, and PMZG Signal Intelligent Power Supply Panel can be quickly restored to normal working state.

  2. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  3. Design and Processing of a Novel Chaos-Based Stepped Frequency Synthesized Wideband Radar Signal.

    PubMed

    Zeng, Tao; Chang, Shaoqiang; Fan, Huayu; Liu, Quanhua

    2018-03-26

    The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely used in radar systems. However, such linear modulation signals suffer from the range-Doppler coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or frequency-coded sequence can be easily predicted by the interception receiver in the electronic countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot achieve a large time-bandwidth product. To solve such problems, we propose a novel chaos-based stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse, called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed. According to our theoretical analyses and the simulations, the proposed signal and processing method achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is able to increase the robustness against identification of the interception receiver and improve the anti-jamming performance of the radar.

  4. Secreted and Transmembrane Wnt Inhibitors and Activators

    PubMed Central

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  5. Unity PF current-source rectifier based on dynamic trilogic PWM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Wang; Boon-Teck Ooi

    1993-07-01

    One remaining step in perfecting the stand-along, unity power factor, regulated current-source PWM rectifier is to reduce cost, by bringing the 12-valve converter (consisting of three single-phase full bridges that operate with two-level or bilogic PWM) to the six-valve bridge. However, the six-valve topology requires a three-level or trilogic PWM strategy that can handle feedback signals. This feature was not available until now. The paper describes a general method of translating three-phase bilogic PWM signals to three-phase trilogic PWM signals. The method of translation retains the characteristics of the bilogic PWM, including the frequency bandwidth. Experiments show that the trilogicmore » PWM signals produced by the method can not only handle stabilizing feedback signals but also signals for active filtering.« less

  6. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  7. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    PubMed

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  8. "What Is a Step?" Differences in How a Step Is Detected among Three Popular Activity Monitors That Have Impacted Physical Activity Research.

    PubMed

    John, Dinesh; Morton, Alvin; Arguello, Diego; Lyden, Kate; Bassett, David

    2018-04-15

    (1) Background: This study compared manually-counted treadmill walking steps from the hip-worn DigiwalkerSW200 and OmronHJ720ITC, and hip and wrist-worn ActiGraph GT3X+ and GT9X; determined brand-specific acceleration amplitude (g) and/or frequency (Hz) step-detection thresholds; and quantified key features of the acceleration signal during walking. (2) Methods: Twenty participants (Age: 26.7 ± 4.9 years) performed treadmill walking between 0.89-to-1.79 m/s (2-4 mph) while wearing a hip-worn DigiwalkerSW200, OmronHJ720ITC, GT3X+ and GT9X, and a wrist-worn GT3X+ and GT9X. A DigiwalkerSW200 and OmronHJ720ITC underwent shaker testing to determine device-specific frequency and amplitude step-detection thresholds. Simulated signal testing was used to determine thresholds for the ActiGraph step algorithm. Steps during human testing were compared using bias and confidence intervals. (3) Results: The OmronHJ720ITC was most accurate during treadmill walking. Hip and wrist-worn ActiGraph outputs were significantly different from the criterion. The DigiwalkerSW200 records steps for movements with a total acceleration of ≥1.21 g. The OmronHJ720ITC detects a step when movement has an acceleration ≥0.10 g with a dominant frequency of ≥1 Hz. The step-threshold for the ActiLife algorithm is variable based on signal frequency. Acceleration signals at the hip and wrist have distinctive patterns during treadmill walking. (4) Conclusions: Three common research-grade physical activity monitors employ different step-detection strategies, which causes variability in step output.

  9. “What Is a Step?” Differences in How a Step Is Detected among Three Popular Activity Monitors That Have Impacted Physical Activity Research

    PubMed Central

    John, Dinesh; Arguello, Diego; Lyden, Kate; Bassett, David

    2018-01-01

    (1) Background: This study compared manually-counted treadmill walking steps from the hip-worn DigiwalkerSW200 and OmronHJ720ITC, and hip and wrist-worn ActiGraph GT3X+ and GT9X; determined brand-specific acceleration amplitude (g) and/or frequency (Hz) step-detection thresholds; and quantified key features of the acceleration signal during walking. (2) Methods: Twenty participants (Age: 26.7 ± 4.9 years) performed treadmill walking between 0.89-to-1.79 m/s (2–4 mph) while wearing a hip-worn DigiwalkerSW200, OmronHJ720ITC, GT3X+ and GT9X, and a wrist-worn GT3X+ and GT9X. A DigiwalkerSW200 and OmronHJ720ITC underwent shaker testing to determine device-specific frequency and amplitude step-detection thresholds. Simulated signal testing was used to determine thresholds for the ActiGraph step algorithm. Steps during human testing were compared using bias and confidence intervals. (3) Results: The OmronHJ720ITC was most accurate during treadmill walking. Hip and wrist-worn ActiGraph outputs were significantly different from the criterion. The DigiwalkerSW200 records steps for movements with a total acceleration of ≥1.21 g. The OmronHJ720ITC detects a step when movement has an acceleration ≥0.10 g with a dominant frequency of ≥1 Hz. The step-threshold for the ActiLife algorithm is variable based on signal frequency. Acceleration signals at the hip and wrist have distinctive patterns during treadmill walking. (4) Conclusions: Three common research-grade physical activity monitors employ different step-detection strategies, which causes variability in step output. PMID:29662048

  10. Parameter Estimation of Multiple Frequency-Hopping Signals with Two Sensors

    PubMed Central

    Pan, Jin; Ma, Boyuan

    2018-01-01

    This paper essentially focuses on parameter estimation of multiple wideband emitting sources with time-varying frequencies, such as two-dimensional (2-D) direction of arrival (DOA) and signal sorting, with a low-cost circular synthetic array (CSA) consisting of only two rotating sensors. Our basic idea is to decompose the received data, which is a superimposition of phase measurements from multiple sources into separated groups and separately estimate the DOA associated with each source. Motivated by joint parameter estimation, we propose to adopt the expectation maximization (EM) algorithm in this paper; our method involves two steps, namely, the expectation-step (E-step) and the maximization (M-step). In the E-step, the correspondence of each signal with its emitting source is found. Then, in the M-step, the maximum-likelihood (ML) estimates of the DOA parameters are obtained. These two steps are iteratively and alternatively executed to jointly determine the DOAs and sort multiple signals. Closed-form DOA estimation formulae are developed by ML estimation based on phase data, which also realize an optimal estimation. Directional ambiguity is also addressed by another ML estimation method based on received complex responses. The Cramer-Rao lower bound is derived for understanding the estimation accuracy and performance comparison. The verification of the proposed method is demonstrated with simulations. PMID:29617323

  11. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOEpatents

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  12. Multiple cis-acting signals, some weak by necessity, collectively direct robust transport of oskar mRNA to the oocyte.

    PubMed

    Ryu, Young Hee; Kenny, Andrew; Gim, Youme; Snee, Mark; Macdonald, Paul M

    2017-09-15

    Localization of mRNAs can involve multiple steps, each with its own cis -acting localization signals and transport factors. How is the transition between different steps orchestrated? We show that the initial step in localization of Drosophila oskar mRNA - transport from nurse cells to the oocyte - relies on multiple cis -acting signals. Some of these are binding sites for the translational control factor Bruno, suggesting that Bruno plays an additional role in mRNA transport. Although transport of oskar mRNA is essential and robust, the localization activity of individual transport signals is weak. Notably, increasing the strength of individual transport signals, or adding a strong transport signal, disrupts the later stages of oskar mRNA localization. We propose that the oskar transport signals are weak by necessity; their weakness facilitates transfer of the oskar mRNA from the oocyte transport machinery to the machinery for posterior localization. © 2017. Published by The Company of Biologists Ltd.

  13. Method of identifying features in indexed data

    DOEpatents

    Jarman, Kristin H [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K [Richland, WA; Wahl, Karen L [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  14. Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.

    2016-09-01

    Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.

  15. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    PubMed Central

    Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.

    2018-01-01

    The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568

  16. Compressive sensing of electrocardiogram signals by promoting sparsity on the second-order difference and by using dictionary learning.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-04-01

    A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.

  17. An approach to predict Sudden Cardiac Death (SCD) using time domain and bispectrum features from HRV signal.

    PubMed

    Houshyarifar, Vahid; Chehel Amirani, Mehdi

    2016-08-12

    In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.

  18. Interpolation algorithm for asynchronous ADC-data

    NASA Astrophysics Data System (ADS)

    Bramburger, Stefan; Zinke, Benny; Killat, Dirk

    2017-09-01

    This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT) algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

  19. Signal processing techniques for the U.S. Army Research Laboratory stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2017-05-01

    The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.

  20. Studies on the electron acceptors of photosystem two

    NASA Astrophysics Data System (ADS)

    Bowden, Simon John

    The differences in temperature dependent behaviour and microwave power saturation characteristics between the g=1.9 and g=1.8 QA -Fe2+ signals are described. The dependence of these behaviourial differences on the presence or absence of bicarbonate is emphasised. By studying the EPR signals of QA-Fe2+, Q-Fe2+, Q-Fe2+TBTQ- and the oxidised non-haem iron I have found that detergent solubilisation of BBY PS2 preparations with the detergent OGP, at pH 6.0, results in loss of bicarbonate binding. New preparations, including a dodecylmaltoside prepared CP47, CP4 3, D1, D2, cytochrome bgsg complex, are described which at pH 7.5 retain native bicarbonate binding. These preparations provide a new system for studies into the "bicarbonate effect" because bicarbonate depletion can now be achieved without displacement by another anion. The new OGP particles have been used to investigate both the split pheophytin signal and the two step redox titration phenomenon associated with this signal. The low potential step of the titration was concluded to be independent of the QA/QA- mid-point potential but was found to be linked to the ability to photoreduce pheophytin; once the low potential component, suggested here to be the fluorescence quencher QL, was reduced, pheophytin photoreduction increased. A model is described to explain the two step titration and, from analysis of the signal splitting in +/- HCO3- samples, a possible structural role for bicarbonate is proposed. I have probed the structure of the PS2 electron acceptor region with the protease trypsin. The QA, iron-semiquinone; oxidised non-haem iron and cytochrome bss, EPR signals were all found to be susceptible to trypsin damage, while oxygen evolution with ferricyanide was enhanced by protease treatment. The protective effect of calcium ions against trypsin damage was demonstrated and a possible Ca2+ binding site in the binding region identified.

  1. Highly Reconfigurable Beamformer Stimulus Generator

    NASA Astrophysics Data System (ADS)

    Vaviļina, E.; Gaigals, G.

    2018-02-01

    The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  2. Air/fuel ratio control system for internal combustion engine having rotary valve and step motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.

    A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less

  3. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  4. Remote NMR/MRI detection of laser polarized gases

    DOEpatents

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  5. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  6. Odorant Inhibition of the Olfactory Cyclic Nucleotide-gated Channel with a Native Molecular Assembly

    PubMed Central

    Chen, Tsung-Yu; Takeuchi, Hiroko; Kurahashi, Takashi

    2006-01-01

    Human olfaction comprises the opposing actions of excitation and inhibition triggered by odorant molecules. In olfactory receptor neurons, odorant molecules not only trigger a G-protein–coupled signaling cascade but also generate various mechanisms to fine tune the odorant-induced current, including a low-selective odorant inhibition of the olfactory signal. This wide-range olfactory inhibition has been suggested to be at the level of ion channels, but definitive evidence is not available. Here, we report that the cyclic nucleotide-gated (CNG) cation channel, which is a key element that converts odorant stimuli into electrical signals, is inhibited by structurally unrelated odorants, consistent with the expression of wide-range olfactory inhibition. Interestingly, the inhibitory effect was small in the homo-oligomeric CNG channel composed only of the principal channel subunit, CNGA2, but became larger in channels consisting of multiple types of subunits. However, even in the channel containing all native subunits, the potency of the suppression on the cloned CNG channel appeared to be smaller than that previously shown in native olfactory neurons. Nonetheless, our results further showed that odorant suppressions are small in native neurons if the subsequent molecular steps mediated by Ca2+ are removed. Thus, the present work also suggests that CNG channels switch on and off the olfactory signaling pathway, and that the on and off signals may both be amplified by the subsequent olfactory signaling steps. PMID:16940558

  7. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  8. An Annotated Bibliography of Patents Related to Coastal Engineering. Volume III. 1974-1976. Appendix.

    DTIC Science & Technology

    1979-11-01

    infrared detectors produce signals which are proportional to the detected reflected radia- tion at the wavelengths k, and A,. A processing channel is con...instrument including an oscillator for sup- T___ plying AC energy to a transducer. The oscillator is keyed on /I by a multvibrator which produces clock pulses... includes dams including such units when installed, and methods of damming water flow. o- 3.786.640 .MEANS AND METHOD FOR PRODUCING STEPPED CONCRETE SLOPE

  9. Spreading Sequence System for Full Connectivity Relay Network

    NASA Technical Reports Server (NTRS)

    Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)

    2018-01-01

    Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.

  10. Working With LGBT Baby Boomers and Older Adults: Factors That Signal a Welcoming Service Environment.

    PubMed

    Croghan, Catherine F; Moone, Rajean P; Olson, Andrea M

    2015-01-01

    Many providers recognize the importance of creating culturally competent services for lesbian, gay, bisexual, and transgender (LGBT) older adults. Although multiple resources list steps to make professional practices more LGBT-welcoming, these resources provide no empirical data to support their recommendations. LGBT older adults (N = 327) were asked to describe what signals that a provider is LGBT-welcoming. Six of the top 10 signals related to provider behavior and suggest the importance of staff training; the balance included display of signage and rainbow flags, use of inclusive language on forms and the presence of LGBT-identified staff. Results provide evidence-based recommendations for working with LGBT older adults.

  11. Mitigation of narrowband interferences by means of a reconfigurable stepped frequency GPR system

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Dei, Devis; Parrini, Filippo; Matera, Loredana

    2016-08-01

    This paper proposes a new technique for the mitigation of narrowband interferences by making use of an innovative stepped frequency Ground Penetrating Radar (GPR) system, based on the modulation of the integration time of the harmonic components of the signal. This can allow a good rejection of the interference signal without filtering out part of the band of the useful signal (which would involve a loss of information) and without increasing the power of the transmitted signal (which might saturate the receiver and make illegal the level of transmitted power). The price paid for this is an extension of the time needed in order to perform the measurements. We will show that this necessary drawback can be contained by making use of a prototypal reconfigurable stepped frequency GPR system.

  12. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  13. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  14. Method and apparatus for enhanced detection of toxic agents

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong

    2013-10-01

    A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.

  15. Association rule mining in the US Vaccine Adverse Event Reporting System (VAERS).

    PubMed

    Wei, Lai; Scott, John

    2015-09-01

    Spontaneous adverse event reporting systems are critical tools for monitoring the safety of licensed medical products. Commonly used signal detection algorithms identify disproportionate product-adverse event pairs and may not be sensitive to more complex potential signals. We sought to develop a computationally tractable multivariate data-mining approach to identify product-multiple adverse event associations. We describe an application of stepwise association rule mining (Step-ARM) to detect potential vaccine-symptom group associations in the US Vaccine Adverse Event Reporting System. Step-ARM identifies strong associations between one vaccine and one or more adverse events. To reduce the number of redundant association rules found by Step-ARM, we also propose a clustering method for the post-processing of association rules. In sample applications to a trivalent intradermal inactivated influenza virus vaccine and to measles, mumps, rubella, and varicella (MMRV) vaccine and in simulation studies, we find that Step-ARM can detect a variety of medically coherent potential vaccine-symptom group signals efficiently. In the MMRV example, Step-ARM appears to outperform univariate methods in detecting a known safety signal. Our approach is sensitive to potentially complex signals, which may be particularly important when monitoring novel medical countermeasure products such as pandemic influenza vaccines. The post-processing clustering algorithm improves the applicability of the approach as a screening method to identify patterns that may merit further investigation. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, Ned E.; Hively, Lee M.

    1997-01-01

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness.

  17. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Identifying artificial selection signals in the chicken genome.

    PubMed

    Ma, Yunlong; Gu, Lantao; Yang, Liubin; Sun, Chenghao; Xie, Shengsong; Fang, Chengchi; Gong, Yangzhang; Li, Shijun

    2018-01-01

    Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH), Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.

  19. The Not-So-Global Blood Oxygen Level-Dependent Signal.

    PubMed

    Billings, Jacob; Keilholz, Shella

    2018-04-01

    Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

  20. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    PubMed

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  1. TRIM25 in the Regulation of the Antiviral Innate Immunity.

    PubMed

    Martín-Vicente, María; Medrano, Luz M; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5-mitochondrial antiviral signaling protein-TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.

  2. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed Central

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-01-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930

  3. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  4. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  5. Faster embryonic segmentation through elevated Delta-Notch signalling

    PubMed Central

    Liao, Bo-Kai; Jörg, David J.; Oates, Andrew C.

    2016-01-01

    An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. Several genetic loss-of-function conditions, including the Delta-Notch intercellular signalling mutants, result in slower segmentation. Here, we generate DeltaD transgenic zebrafish lines with a range of copy numbers and correspondingly increased signalling levels, and observe faster segmentation. The highest-expressing line shows an altered oscillating gene expression wave pattern and shortened segmentation period, producing embryos with more, shorter body segments. Our results reveal surprising differences in how Notch signalling strength is quantitatively interpreted in different organ systems, and suggest a role for intercellular communication in regulating the output period of the segmentation clock by altering its spatial pattern. PMID:27302627

  6. System using data compression and hashing adapted for use for multimedia encryption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffland, Douglas R

    2011-07-12

    A system and method is disclosed for multimedia encryption. Within the system of the present invention, a data compression module receives and compresses a media signal into a compressed data stream. A data acquisition module receives and selects a set of data from the compressed data stream. And, a hashing module receives and hashes the set of data into a keyword. The method of the present invention includes the steps of compressing a media signal into a compressed data stream; selecting a set of data from the compressed data stream; and hashing the set of data into a keyword.

  7. Method and apparatus for off-gas composition sensing

    DOEpatents

    Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel

    1999-01-01

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  8. Optimal wavelength selection for noncontact reflection photoplethysmography

    NASA Astrophysics Data System (ADS)

    Corral Martinez, Luis F.; Paez, Gonzalo; Strojnik, Marija

    2011-08-01

    In this work, we obtain backscattered signals from human forehead for wavelengths from 380 to 980 nm. The results reveal bands with strong pulsatile signals that carry useful information. We describe those bands as the most suitable wavelengths in the visible and NIR regions from which heart and respiratory rate parameters can be derived using long distance non-contact reflection photoplethysmography analysis. The latter results show the feasibility of a novel technique for remotely detection of vital signs in humans. This technique, which may include morphological analysis or maps of tissue oxygenation, is a further step to real non-invasive remote monitoring of patients.

  9. Decoding the phosphorylation code in Hedgehog signal transduction

    PubMed Central

    Chen, Yongbin; Jiang, Jin

    2013-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms. PMID:23337587

  10. Identifying people from gait pattern with accelerometers

    NASA Astrophysics Data System (ADS)

    Ailisto, Heikki J.; Lindholm, Mikko; Mantyjarvi, Jani; Vildjiounaite, Elena; Makela, Satu-Marja

    2005-03-01

    Protecting portable devices is becoming more important, not only because of the value of the devices themselves, but for the value of the data in them and their capability for transactions, including m-commerce and m-banking. An unobtrusive and natural method for identifying the carrier of portable devices is presented. The method uses acceleration signals produced by sensors embedded in the portable device. When the user carries the device, the acceleration signal is compared with the stored template signal. The method consists of finding individual steps, normalizing and averaging them, aligning them with the template and computing cross-correlation, which is used as a measure of similarity. Equal Error Rate of 6.4% is achieved in tentative experiments with 36 test subjects.

  11. Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects

    PubMed Central

    Cheng, Daojun; Meng, Meng; Peng, Jian; Qian, Wenliang; Kang, Lixia; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects. PMID:25071411

  12. Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders.

    PubMed

    Pescosolido, Matthew F; Yang, Unikora; Sabbagh, Mark; Morrow, Eric M

    2012-09-01

    In this review, we outline critical molecular processes that have been implicated by discovery of genetic mutations in autism. These mechanisms need to be mapped onto the neurodevelopment step(s) gone awry that may be associated with cause in autism. Molecular mechanisms include: (i) regulation of gene expression; (ii) pre-mRNA splicing; (iii) protein localization, translation, and turnover; (iv) synaptic transmission; (v) cell signaling; (vi) the functions of cytoskeletal and scaffolding proteins; and (vii) the function of neuronal cell adhesion molecules. While the molecular mechanisms appear broad, they may converge on only one of a few steps during neurodevelopment that perturbs the structure, function, and/or plasticity of neuronal circuitry. While there are many genetic mutations involved, novel treatments may need to target only one of few developmental mechanisms.

  13. A dynamic dual role of IL-2 signaling in the two-step differentiation process of adaptive regulatory T cells.

    PubMed

    Guo, Zhiyong; Khattar, Mithun; Schroder, Paul M; Miyahara, Yoshihiro; Wang, Guohua; He, Xiaoshung; Chen, Wenhao; Stepkowski, Stanislaw M

    2013-04-01

    The molecular mechanism of the extrathymic generation of adaptive, or inducible, CD4(+)Foxp3(+) regulatory T cells (iTregs) remains incompletely defined. We show that exposure of splenic CD4(+)CD25(+)Foxp3(-) cells to IL-2, but not other common γ-chain cytokines, resulted in Stat5 phosphorylation and induced Foxp3 expression in ∼10% of the cells. Thus, IL-2/Stat5 signaling may be critical for Foxp3 induction in peripheral CD4(+)CD25(+)Foxp3(-) iTreg precursors. In this study, to further define the role of IL-2 in the formation of iTreg precursors as well as their subsequent Foxp3 expression, we designed a two-step iTreg differentiation model. During the initial "conditioning" step, CD4(+)CD25(-)Foxp3(-) naive T cells were activated by TCR stimulation. Inhibition of IL-2 signaling via Jak3-Stat5 was required during this step to generate CD4(+)CD25(+)Foxp3(-) cells containing iTreg precursors. During the subsequent Foxp3-induction step driven by cytokines, IL-2 was the most potent cytokine to induce Foxp3 expression in these iTreg precursors. This two-step method generated a large number of iTregs with relatively stable expression of Foxp3, which were able to prevent CD4(+)CD45RB(high) cell-mediated colitis in Rag1(-/-) mice. In consideration of this information, whereas initial inhibition of IL-2 signaling upon T cell priming generates iTreg precursors, subsequent activation of IL-2 signaling in these precursors induces the expression of Foxp3. These findings advance the understanding of iTreg differentiation and may facilitate the therapeutic use of iTregs in immune disorders.

  14. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    PubMed

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-07

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.

  15. Active damping of spacecraft structural appendage vibrations

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V. (Inventor)

    1990-01-01

    An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.

  16. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis.

    PubMed

    Fond, Aaron M; Ravichandran, Kodi S

    The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.

  17. Dispersion management with metamaterials

    DOEpatents

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2017-03-07

    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  18. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, N.E.; Hively, L.M.

    1997-05-06

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness. 4 figs.

  19. Method of controlling a variable geometry type turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Y.

    1988-08-23

    This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less

  20. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    PubMed

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences regarding the activity of residual masses.

  1. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  2. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  3. Characteristics of return stroke electric fields produced by lightning flashes at distances of 1 to 15 kilometers

    NASA Technical Reports Server (NTRS)

    Hopf, CH.

    1991-01-01

    Electric field derivative signals from single and multiple lightning strokes are presented. For about 25 pct. of all acquired waveforms, produced by return strokes, stepped leaders or intracloud discharges, type and distance of the signal source are known from the observations by an all sky video camera system. The analysis of the electric field derivative waveforms in the time domain shows a significant difference in the impulse width between return stroke signals and those of stepped leaders and intracloud discharges. In addition, the computed amplitude density spectrum of return stroke waveforms lies by a factor of 10 above that of stepped leaders and intracloud discharges in the frequency range from 50 to 500 kHz.

  4. Neurotrophin receptor structure and interactions.

    PubMed

    Yano, H; Chao, M V

    2000-03-01

    Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater flexibility is provided when different signaling pathways are merged through multiple receptor signaling systems. Trophic factors exemplified by NGF and its family members, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) all utilize increased tyrosine phosphorylation of cellular substrates to mediate neuronal cell survival. Actions of the NGF family of neurotrophins are not only dictated by ras activation through the Trk family of receptor tyrosine kinases, but also a survival pathway defined by phosphatidylinositol-3-kinase activity (Yao and Cooper, 1995), which gives rise to phosphoinositide intermediates that activate the serine/threonine kinase Akt/PKB (Dudek et al., 1997). Induction of the serine-threonine kinase activity is critical for cell survival, as well as cell proliferation. Hence, for many trophic factors, multiple proteins constitute a functional multisubunit receptor complex that activates ras-dependent and ras-independent intracellular signaling. The NGF receptors provide an example of bidirectional crosstalk. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced neurotrophin responsiveness leading to a survival or differentiation signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. These activities include the induction of NF kappa B (Carter et al., 1996); the hydrolysis of sphingomyelin to ceramide (Dobrowsky et al., 1995); and the pro-apoptotic functions attributed to p75. Receptors are generally drawn and viewed as isolated integral membrane proteins which span the lipid bilayer, with signal transduction proceeding in a linear step-wise fashion. There are now numerous examples which indicate that each receptor acts not only in a linear, independent manner, but can also influence the activity of other cell surface receptors, either directly or through signaling intermediates. Which step and which intermediates are utilized for crosstalk between the receptors is a critical question. For neurotrophins, their primary function in sustaining the viability of neurons is counterbalanced by a receptor mechanism to eliminate cells by an apoptotic mechanism. It is conceivable that this bidirectional system may be utilized selectively during development and in neurodegenerative diseases.

  5. Pathophysiology of Glucocorticoid Signaling.

    PubMed

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Transient digitizer with displacement current samplers

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board. 16 figs.

  7. Transient digitizer with displacement current samplers

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board.

  8. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*

    PubMed Central

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.

    2016-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  9. TRIM25 in the Regulation of the Antiviral Innate Immunity

    PubMed Central

    Martín-Vicente, María; Medrano, Luz M.; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication. PMID:29018447

  10. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  11. Semaphoring in an earless frog: the origin of a novel visual signal.

    PubMed

    Lindquist, E D; Hetherington, T E

    1998-10-01

    Social communication in anuran amphibians (frogs and toads) is mediated predominantly by acoustic signals. Unlike most anurans, the Panamanian golden frog, Atelopus zeteki, lacks a standard tympanic middle ear and appears to have augmented its communicatory repertoire to include rotational limb motions as visual signals, referred to here as semaphores. The communicatory nature of semaphoring was inferred from experimental manipulations using mirrored self-image presentations and nonresident introductions. Male frogs semaphored significantly more when presented with a mirrored self-image than with a nonreflective control. Novel encounters between resident males and nonresident frogs demonstrated that semaphores were used directionally and were displayed toward target individuals. Females semaphored frequently and this observation represents a rare case of signaling by females in a typically male-biased communicatory regime. Semaphore actions were clearly linked to a locomotory gait pattern and appear to have originated as an elaboration of a standard stepping motion.

  12. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control.

    PubMed

    Liu, Lukai; Liu, Pu; Clancy, Edward A; Scheme, Erik; Englehart

    2013-09-01

    Time and frequency domain features of the surface electromyogram (EMG) signal acquired from multiple channels have frequently been investigated for use in controlling upper-limb prostheses. A common control method is EMG-based motion classification. We propose the use of EMG signal whitening as a preprocessing step in EMG-based motion classification. Whitening decorrelates the EMG signal and has been shown to be advantageous in other EMG applications including EMG amplitude estimation and EMG-force processing. In a study of ten intact subjects and five amputees with up to 11 motion classes and ten electrode channels, we found that the coefficient of variation of time domain features (mean absolute value, average signal length and normalized zero crossing rate) was significantly reduced due to whitening. When using these features along with autoregressive power spectrum coefficients, whitening added approximately five percentage points to classification accuracy when small window lengths were considered.

  13. Signal Processing in Functional Near-Infrared Spectroscopy (fNIRS): Methodological Differences Lead to Different Statistical Results.

    PubMed

    Pfeifer, Mischa D; Scholkmann, Felix; Labruyère, Rob

    2017-01-01

    Even though research in the field of functional near-infrared spectroscopy (fNIRS) has been performed for more than 20 years, consensus on signal processing methods is still lacking. A significant knowledge gap exists between established researchers and those entering the field. One major issue regularly observed in publications from researchers new to the field is the failure to consider possible signal contamination by hemodynamic changes unrelated to neurovascular coupling (i.e., scalp blood flow and systemic blood flow). This might be due to the fact that these researchers use the signal processing methods provided by the manufacturers of their measurement device without an advanced understanding of the performed steps. The aim of the present study was to investigate how different signal processing approaches (including and excluding approaches that partially correct for the possible signal contamination) affect the results of a typical functional neuroimaging study performed with fNIRS. In particular, we evaluated one standard signal processing method provided by a commercial company and compared it to three customized approaches. We thereby investigated the influence of the chosen method on the statistical outcome of a clinical data set (task-evoked motor cortex activity). No short-channels were used in the present study and therefore two types of multi-channel corrections based on multiple long-channels were applied. The choice of the signal processing method had a considerable influence on the outcome of the study. While methods that ignored the contamination of the fNIRS signals by task-evoked physiological noise yielded several significant hemodynamic responses over the whole head, the statistical significance of these findings disappeared when accounting for part of the contamination using a multi-channel regression. We conclude that adopting signal processing methods that correct for physiological confounding effects might yield more realistic results in cases where multi-distance measurements are not possible. Furthermore, we recommend using manufacturers' standard signal processing methods only in case the user has an advanced understanding of every signal processing step performed.

  14. Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity

    PubMed Central

    Lombroso, Paul J.; Ogren, Marilee; Kurup, Pradeep; Nairn, Angus C.

    2016-01-01

    This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer’s and Parkinson’s disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity. PMID:29098072

  15. SSME propellant path leak detection real-time

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Smith, L. M.

    1994-01-01

    Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.

  16. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1999-01-01

    Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.

  17. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

    PubMed Central

    Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo

    2002-01-01

    Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652

  18. Psychoacoustic processing of test signals

    NASA Astrophysics Data System (ADS)

    Kadlec, Frantisek

    2003-10-01

    For the quantitative evaluation of electroacoustic system properties and for psychoacoustic testing it is possible to utilize harmonic signals with fixed frequency, sweeping signals, random signals or their combination. This contribution deals with the design of various test signals with emphasis on audible perception. During the digital generation of signals, some additional undesirable frequency components and noise are produced, which are dependent on signal amplitude and sampling frequency. A mathematical analysis describes the origin of this distortion. By proper selection of signal frequency and amplitude it is possible to minimize those undesirable components. An additional step is to minimize the audible perception of this signal distortion by the application of additional noise (dither). For signals intended for listening tests a dither with triangular or Gaussian probability density function was found to be most effective. Signals modified this way may be further improved by the application of noise shaping, which transposes those undesirable products into frequency regions where they are perceived less, according to psychoacoustic principles. The efficiency of individual processing steps was confirmed both by measurements and by listening tests. [Work supported by the Czech Science Foundation.

  19. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  20. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  1. Detection of ricin in food using electrochemiluminescence-based technology.

    PubMed

    Garber, Eric A E; O'Brien, Thomas W

    2008-01-01

    Ricin is a toxic ribosome inactivating protein (RIP-II) present in beans of the castor plant, Ricinus communis. Its potential as a biodefense threat has made the rapid, sensitive detection of ricin in food important to the U.S. Food and Drug Administration. Samples of juice, dairy products, soda, vegetables, bakery products, chocolate, and condiments were spiked with varying concentrations of ricin and analyzed using a 96-well format, electrochemiluminescence (ECL) immunoassay. Assay configurations included the use of a monoclonal capture antibody coupled with either a polyclonal or monoclonal detector antibody. The samples and detector antibodies were either added sequentially or in combination during the capture step. Using the polyclonal antibody, 0.04 ng/mL ricin was detected in analytical samples prepared from several beverages. By simultaneously incubating the sample with detector antibody, it was possible to decrease the assay time to a single 20 min incubation step with a limit of detection <10 ng/mL. Assays run according to this single incubation step exhibited a hook effect (decrease in signal at high concentrations of ricin), but because of the large signal-to-noise ratio associated with the ECL assay, the response remained above background and detectable. Thus, the ECL assay was uniquely suited for the screening of samples for ricin.

  2. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  3. Beyond signal functions in global obstetric care: Using a clinical cascade to measure emergency obstetric readiness

    PubMed Central

    Dettinger, Julia; Calkins, Kimberly; Kibore, Minnie; Gachuno, Onesmus; Walker, Dilys

    2018-01-01

    Background Globally, the rate of reduction in delivery-associated maternal and perinatal mortality has been slow compared to improvements in post-delivery mortality in children under five. Improving clinical readiness for basic obstetric emergencies is crucial for reducing facility-based maternal deaths. Emergency readiness is commonly assessed using tracers derived from the maternal signal functions model. Objective-method We compare emergency readiness using the signal functions model and a novel clinical cascade. The cascades model readiness as the proportion of facilities with resources to identify the emergency (stage 1), treat it (stage 2) and monitor-modify therapy (stage 3). Data were collected from 44 Kenyan clinics as part of an implementation trial. Findings Although most facilities (77.0%) stock maternal signal function tracer drugs, far fewer have resources to practically identify and treat emergencies. In hypertensive emergencies for example, 38.6% of facilities have resources to identify the emergency (Stage 1 readiness, including sphygmomanometer, stethoscope, urine collection device, protein test). 6.8% have the resources to treat the emergency (Stage 2, consumables (IV Kit, fluids), durable goods (IV pole) and drugs (magnesium sulfate and hydralazine). No facilities could monitor or modify therapy (Stage 3). Across five maternal emergencies, the signal functions overestimate readiness by 54.5%. A consistent, step-wise pattern of readiness loss across signal functions and care stage emerged and was profoundly consistent at 33.0%. Significance Comparing estimates from the maternal signal functions and cascades illustrates four themes. First, signal functions overestimate practical readiness by 55%. Second, the cascade’s intuitive indicators can support cross-sector health system or program planners to more precisely measure and improve emergency care. Third, adding few variables to existing readiness inventories permits step-wise modeling of readiness loss and can inform more precise interventions. Fourth, the novel aggregate readiness loss indicator provides an innovative and intuitive approach for modeling health system emergency readiness. Additional testing in diverse contexts is warranted. PMID:29474397

  4. Optimal space communications techniques. [discussion of video signals and delta modulation

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    The encoding of video signals using the Song Adaptive Delta Modulator (Song ADM) is discussed. The video signals are characterized as a sequence of pulses having arbitrary height and width. Although the ADM is suited to tracking signals having fast rise times, it was found that the DM algorithm (which permits an exponential rise for estimating an input step) results in a large overshoot and an underdamped response to the step. An overshoot suppression algorithm which significantly reduces the ringing while not affecting the rise time is presented along with formuli for the rise time and the settling time. Channel errors and their effect on the DM encoded bit stream were investigated.

  5. Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation.

    PubMed

    Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh

    2011-05-01

    This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.

  6. Method of making self-calibrated displacement measurements

    DOEpatents

    Pedersen, Herbert N.

    1977-01-01

    A method for monitoring the displacement of an object having an acoustically reflective surface at least partially submerged in an acoustically conductive medium. The reflective surface is designed to have a stepped interface responsive to an incident acoustic pulse to provide separate discrete reflected pulses to a receiving transducer. The difference in the time of flight of the reflected acoustic signals corresponds to the known step height and the time of travel of the signals to the receiving transducer provides a measure of the displacement of the object. Accordingly, the reference step length enables simultaneous calibration of each displacement measurement.

  7. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets

    PubMed Central

    Nowicka, Malgorzata; Krieg, Carsten; Weber, Lukas M.; Hartmann, Felix J.; Guglietta, Silvia; Becher, Burkhard; Levesque, Mitchell P.; Robinson, Mark D.

    2017-01-01

    High dimensional mass and flow cytometry (HDCyto) experiments have become a method of choice for high throughput interrogation and characterization of cell populations.Here, we present an R-based pipeline for differential analyses of HDCyto data, largely based on Bioconductor packages. We computationally define cell populations using FlowSOM clustering, and facilitate an optional but reproducible strategy for manual merging of algorithm-generated clusters. Our workflow offers different analysis paths, including association of cell type abundance with a phenotype or changes in signaling markers within specific subpopulations, or differential analyses of aggregated signals. Importantly, the differential analyses we show are based on regression frameworks where the HDCyto data is the response; thus, we are able to model arbitrary experimental designs, such as those with batch effects, paired designs and so on. In particular, we apply generalized linear mixed models to analyses of cell population abundance or cell-population-specific analyses of signaling markers, allowing overdispersion in cell count or aggregated signals across samples to be appropriately modeled. To support the formal statistical analyses, we encourage exploratory data analysis at every step, including quality control (e.g. multi-dimensional scaling plots), reporting of clustering results (dimensionality reduction, heatmaps with dendrograms) and differential analyses (e.g. plots of aggregated signals). PMID:28663787

  8. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

    PubMed

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.

  9. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation

    PubMed Central

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054

  10. MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.

    PubMed

    Dong, Chengdong; Jin, Yuanwei

    2013-03-01

    This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.

  11. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.

    1999-01-12

    This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.

  12. A novel method to accurately locate and count large numbers of steps by photobleaching

    PubMed Central

    Tsekouras, Konstantinos; Custer, Thomas C.; Jashnsaz, Hossein; Walter, Nils G.; Pressé, Steve

    2016-01-01

    Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. PMID:27654946

  13. NLSdb-major update for database of nuclear localization signals and nuclear export signals.

    PubMed

    Bernhofer, Michael; Goldberg, Tatyana; Wolf, Silvana; Ahmed, Mohamed; Zaugg, Julian; Boden, Mikael; Rost, Burkhard

    2018-01-04

    NLSdb is a database collecting nuclear export signals (NES) and nuclear localization signals (NLS) along with experimentally annotated nuclear and non-nuclear proteins. NES and NLS are short sequence motifs related to protein transport out of and into the nucleus. The updated NLSdb now contains 2253 NLS and introduces 398 NES. The potential sets of novel NES and NLS have been generated by a simple 'in silico mutagenesis' protocol. We started with motifs annotated by experiments. In step 1, we increased specificity such that no known non-nuclear protein matched the refined motif. In step 2, we increased the sensitivity trying to match several different families with a motif. We then iterated over steps 1 and 2. The final set of 2253 NLS motifs matched 35% of 8421 experimentally verified nuclear proteins (up from 21% for the previous version) and none of 18 278 non-nuclear proteins. We updated the web interface providing multiple options to search protein sequences for NES and NLS motifs, and to evaluate your own signal sequences. NLSdb can be accessed via Rostlab services at: https://rostlab.org/services/nlsdb/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  15. Unveiling the Biometric Potential of Finger-Based ECG Signals

    PubMed Central

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  16. Unveiling the biometric potential of finger-based ECG signals.

    PubMed

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

  17. Unsupervised pattern recognition methods in ciders profiling based on GCE voltammetric signals.

    PubMed

    Jakubowska, Małgorzata; Sordoń, Wanda; Ciepiela, Filip

    2016-07-15

    This work presents a complete methodology of distinguishing between different brands of cider and ageing degrees, based on voltammetric signals, utilizing dedicated data preprocessing procedures and unsupervised multivariate analysis. It was demonstrated that voltammograms recorded on glassy carbon electrode in Britton-Robinson buffer at pH 2 are reproducible for each brand. By application of clustering algorithms and principal component analysis visible homogenous clusters were obtained. Advanced signal processing strategy which included automatic baseline correction, interval scaling and continuous wavelet transform with dedicated mother wavelet, was a key step in the correct recognition of the objects. The results show that voltammetry combined with optimized univariate and multivariate data processing is a sufficient tool to distinguish between ciders from various brands and to evaluate their freshness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor.

    PubMed

    Ingham, R J; Holgado-Madruga, M; Siu, C; Wong, A J; Gold, M R

    1998-11-13

    Gab1 is a member of the docking/scaffolding protein family which includes IRS-1, IRS-2, c-Cbl, p130(cas), and p62(dok). These proteins contain a variety of protein-protein interaction motifs including multiple tyrosine residues that when phosphorylated can act as binding sites for Src homology 2 (SH2) domain-containing signaling proteins. We show in the RAMOS human B cell line that Gab1 is tyrosine-phosphorylated in response to B cell antigen receptor (BCR) engagement. Moreover, tyrosine phosphorylation of Gab1 correlated with the binding of several SH2-containing signaling proteins to Gab1 including Shc, Grb2, phosphatidylinositol 3-kinase, and the SHP-2 tyrosine phosphatase. Far Western analysis showed that the SH2 domains of Shc, SHP-2, and the p85 subunit of phosphatidylinositol 3-kinase could bind directly to tyrosine-phosphorylated Gab1 isolated from activated RAMOS cells. In contrast, the Grb2 SH2 domain did not bind directly to Gab1 but instead to the Shc and SHP-2 associated with Gab1. We also show that Gab1 is present in the membrane-enriched particulate fraction of RAMOS cells and that Gab1/signaling protein complexes are found in this fraction after BCR engagement. Thus, tyrosine-phosphorylated Gab1 may recruit cytosolic signaling proteins to cellular membranes where they can act on membrane-bound targets. This may be a critical step in the activation of multiple BCR signaling pathways.

  19. A Variable Step-Size Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response

    NASA Astrophysics Data System (ADS)

    Liu, Ligang; Fukumoto, Masahiro; Saiki, Sachio; Zhang, Shiyong

    2009-12-01

    Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA) is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, I; Yan, H; Yin, F

    Purpose: To assure that tumor motion is within the radiation field during high-dose and high-precision radiosurgery, real-time imaging and surrogate monitoring are employed. These methods are useful in providing real-time tumor/surrogate motion but no future information is available. In order to anticipate future tumor/surrogate motion and track target location precisely, an algorithm is developed and investigated for estimating surrogate motion multiple-steps ahead. Methods: The study utilized a one-dimensional surrogate motion signal divided into three components: (a) training component containing the primary data including the first frame to the beginning of the input subsequence; (b) input subsequence component of the surrogatemore » signal used as input to the prediction algorithm: (c) output subsequence component is the remaining signal used as the known output of the prediction algorithm for validation. The prediction algorithm consists of three major steps: (1) extracting subsequences from training component which best-match the input subsequence according to given criterion; (2) calculating weighting factors from these best-matched subsequence; (3) collecting the proceeding parts of the subsequences and combining them together with assigned weighting factors to form output. The prediction algorithm was examined for several patients, and its performance is assessed based on the correlation between prediction and known output. Results: Respiratory motion data was collected for 20 patients using the RPM system. The output subsequence is the last 50 samples (∼2 seconds) of a surrogate signal, and the input subsequence was 100 (∼3 seconds) frames prior to the output subsequence. Based on the analysis of correlation coefficient between predicted and known output subsequence, the average correlation is 0.9644±0.0394 and 0.9789±0.0239 for equal-weighting and relative-weighting strategies, respectively. Conclusion: Preliminary results indicate that the prediction algorithm is effective in estimating surrogate motion multiple-steps in advance. Relative-weighting method shows better prediction accuracy than equal-weighting method. More parameters of this algorithm are under investigation.« less

  1. Toward blind removal of unwanted sound from orchestrated music

    NASA Astrophysics Data System (ADS)

    Chang, Soo-Young; Chun, Joohwan

    2000-11-01

    The problem addressed in this paper is to removing unwanted sounds from music sound. The sound to be removed could be disturbance such as cough. We shall present some preliminary results on this problem using statistical properties of signals. Our approach consists of three steps. We first estimate the fundamental frequencies and partials given noise-corrupted music sound. This gives us the autoregressive (AR) model of the music sound. Then we filter the noise-corrupted sound using the AR parameters. The filtered signal is then subtracted from the original noise-corrupted signal to get the disturbance. Finally, the obtained disturbance is used a reference signal to eliminate the disturbance from the noise- corrupted music signal. Above three steps are carried out in a recursive manner using a sliding window or an infinitely growing window with an appropriate forgetting factor.

  2. Omniview motionless camera orientation system

    NASA Technical Reports Server (NTRS)

    Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)

    2010-01-01

    An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.

  3. Advanced methods in NDE using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.

  4. Student failures on first-year medical basic science courses and the USMLE step 1: a retrospective study over a 20-year period.

    PubMed

    Burns, E Robert; Garrett, Judy

    2015-01-01

    Correlates of achievement in the basic science years in medical school and on the Step 1 of the United States Medical Licensing Examination® (USMLE®), (Step 1) in relation to preadmission variables have been the subject of considerable study. Preadmissions variables such as the undergraduate grade point average (uGPA) and Medical College Admission Test® (MCAT®) scores, solely or in combination, have previously been found to be predictors of achievement in the basic science years and/or on the Step 1. The purposes of this retrospective study were to: (1) determine if our statistical analysis confirmed previously published relationships between preadmission variables (MCAT, uGPA, and applicant pool size), and (2) study correlates of the number of failures in five M1 courses with those preadmission variables and failures on Step 1. Statistical analysis confirmed previously published relationships between all preadmission variables. Only one course, Microscopic Anatomy, demonstrated significant correlations with all variables studied including the Step 1 failures. Physiology correlated with three of the four variables studied, but not with the Step 1 failures. Analyses such as these provide a tool by which administrators will be able to identify what courses are or are not responding in appropriate ways to changes in the preadmissions variables that signal student performance on the Step 1. © 2014 American Association of Anatomists.

  5. A Heckman selection model for the safety analysis of signalized intersections

    PubMed Central

    Wong, S. C.; Zhu, Feng; Pei, Xin; Huang, Helai; Liu, Youjun

    2017-01-01

    Purpose The objective of this paper is to provide a new method for estimating crash rate and severity simultaneously. Methods This study explores a Heckman selection model of the crash rate and severity simultaneously at different levels and a two-step procedure is used to investigate the crash rate and severity levels. The first step uses a probit regression model to determine the sample selection process, and the second step develops a multiple regression model to simultaneously evaluate the crash rate and severity for slight injury/kill or serious injury (KSI), respectively. The model uses 555 observations from 262 signalized intersections in the Hong Kong metropolitan area, integrated with information on the traffic flow, geometric road design, road environment, traffic control and any crashes that occurred during two years. Results The results of the proposed two-step Heckman selection model illustrate the necessity of different crash rates for different crash severity levels. Conclusions A comparison with the existing approaches suggests that the Heckman selection model offers an efficient and convenient alternative method for evaluating the safety performance at signalized intersections. PMID:28732050

  6. Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela

    2007-09-01

    The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.

  7. Structures of the Recurrence Plot of Heart Rate Variability Signal as a Tool for Predicting the Onset of Paroxysmal Atrial Fibrillation

    PubMed Central

    Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh

    2011-01-01

    This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666

  8. Algorithmic and heuristic processing of information by the nervous system.

    PubMed

    Restian, A

    1980-01-01

    Starting from the fact that the nervous system must discover the information it needs, the author describes the way it decodes the received message. The logical circuits of the nervous system, submitting the received signals to a process by means of which information brought is discovered step by step, participates in decoding the message. The received signals, as information, can be algorithmically or heuristically processed. Algorithmic processing is done according to precise rules, which must be fulfilled step by step. By algorithmic processing, one develops somatic and vegetative reflexes as blood pressure, heart frequency or water metabolism control. When it does not dispose of precise rules of information processing or when algorithmic processing needs a very long time, the nervous system must use heuristic processing. This is the feature that differentiates the human brain from the electronic computer that can work only according to some extremely precise rules. The human brain can work according to less precise rules because it can resort to trial and error operations, and because it works according to a form of logic. Working with superior order signals which represent the class of all inferior type signals from which they begin, the human brain need not perform all the operations that it would have to perform by superior type of signals. Therefore the brain tries to submit the received signals to intensive as possible superization. All informational processing, and especially heuristical processing, is accompanied by a certain affective color and the brain cannot operate without it. Emotions, passions and sentiments usually complete the lack of precision of the heuristical programmes. Finally, the author shows that informational and especially heuristical processes study can contribute to a better understanding of the transition from neurological to psychological activity.

  9. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  10. Numerical Study of a High Head Francis Turbine with Measurements from the Francis-99 Project

    NASA Astrophysics Data System (ADS)

    Wallimann, H.; Neubauer, R.

    2015-01-01

    For the Francis-99 project initiated by the Norwegian University of Science and Technology (NTNU, Norway) and the Luleå University of Technology (LTU, Sweden) numerical flow simulation has been performed and the results compared to experimentally obtained data. The full machine including spiral casing, stay vanes, guide vanes, runner and draft tube was simulated transient for three operating points defined by the Francis-99 organisers. Two sets of results were created with differing time steps. Additionally, a reduced domain was simulated in a stationary manner to create a complete cut along constant prototype head and constant prototype discharge. The efficiency values and shape of the curves have been investigated and compared to the experimental data. Special attention has been given to rotor stator interaction (RSI). Signals from several probes and their counterpart in the simulation have been processed to evaluate the pressure fluctuations occurring due to the RSI. The direct comparison of the hydraulic efficiency obtained by the full machine simulation compared to the experimental data showed no improvement when using a 1° time step compared to a coarser 2° time step. At the BEP the 2° time step even showed a slightly better result with an absolute deviation 1.08% compared with 1.24% for the 1° time step. At the other two operating points the simulation results were practically identical but fell short of predicting the measured values. The RSI evaluation was done using the results of the 2° time step simulation, which proved to be an adequate setting to reproduce pressure signals with peaks at the correct frequencies. The simulation results showed the highest amplitudes in the vaneless space at the BEP operating point at a location different from the probe measurements available. This implies that not only the radial distance, but the shape of the vaneless space influences the RSI.

  11. Spectral Re-Growth Reduction for CCSDS 8-D 8-PSK TCM

    NASA Technical Reports Server (NTRS)

    Borah, Deva K.

    2002-01-01

    This report presents a study on the CCSDS recommended 8-dimensional 8 PSK Trellis Coded Modulation (TCM) scheme. The important steps of the CCSDS scheme include: conversion of serial data into parallel form, differential encoding, convolutional encoding, constellation mapping, and filtering the 8-PSK symbols using the square root raised cosine (SRRC) pulses. The last step, namely the filtering of the 8 PSK symbols using SRRC pulses, significantly affects the bandwidth of the signal. If a nonlinear power amplifier is used, the SRRC filtered signal creates spectral regrowth. The purpose of this report is to investigate a technique, called the smooth phase interpolated keying (SPIK), that can provide an alternative to SRRC filtering so that good spectral as well as power efficiencies can be obtained with the CCSDS encoder. The results of this study show that the CCSDS encoder does not affect the spectral shape of the SRRC filtered signal or the SPIK signal. When a nonlinear traveling wave tube amplifier (TWTA) is used, the spectral performance of the SRRC signal degrades significantly while the spectral performance of SPIK remains unaffected. The degrading effect of a nonlinear solid state power amplifier (SSPA) on SRRC is found to be less than that due to a nonlinear TWTA. However, in both cases, the spectral performance of the SRRC modulated signal is worse than that of the SPIK signal. The bit error rate (BER) performance of the SRRC signal in a linear amplifier environment is about 2.5 dB better than that of the SPIK signal when both the receivers use algorithms of similar complexity. In a nonlinear TWTA environment, the SRRC signal requires accurate phase tracking since the TWTA introduces additional phase distortion. This problem does not arise with SPIK signal due to its constant envelope property. When a nonlinear amplifier is used, the SRRC method loses nearly 1 dB in the bit error rate performance. The SPIK signal does not lose any performance. Thus the performance gap between SRRC and SPIK reduces. The BER performance of SPIK can be improved even further by using a more optimal receiver. A similar optimal receiver for SRRC is quite complex since the amplifier distorts the pulse shape. However, this requires further investigation and is not covered in this report.

  12. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  13. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1998-01-01

    Methods and apparatus for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence.

  14. A homogeneous nucleic acid hybridization assay based on strand displacement.

    PubMed Central

    Vary, C P

    1987-01-01

    A homogeneous nucleic acid hybridization assay which is conducted in solution and requires no separation steps is described. The assay is based on the concept of strand displacement. In the strand displacement assay, an RNA "signal strand" is hybridized within a larger DNA strand termed the "probe strand", which is, in turn, complementary to the target nucleic acid of interest. Hybridization of the target nucleic acid with the probe strand ultimately results in displacement of the RNA signal strand. Strand displacement, therefore, causes conversion of the RNA from double to single-stranded form. The single-strand specificity of polynucleotide phosphorylase (EC 2.7.7.8) allows discrimination between double-helical and single-stranded forms of the RNA signal strand. As displacement proceeds, free RNA signal strands are preferentially phosphorolyzed to component nucleoside diphosphates, including adenosine diphosphate. The latter nucleotide is converted to ATP by pyruvate kinase(EC 2.7.1.40). Luciferase catalyzed bioluminescence is employed to measure the ATP generated as a result of strand displacement. Images PMID:3309890

  15. Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling

    PubMed Central

    Gabet, A-S; Coulon, S; Fricot, A; Vandekerckhove, J; Chang, Y; Ribeil, J-A; Lordier, L; Zermati, Y; Asnafi, V; Belaid, Z; Debili, N; Vainchenker, W; Varet, B; Hermine, O; Courtois, G

    2011-01-01

    Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation. PMID:21072057

  16. Instrument-independent analysis of music by means of the continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Olmo, Gabriella; Dovis, Fabio; Benotto, Paolo; Calosso, Claudio; Passaro, Pierluigi

    1999-10-01

    This paper deals with the problem of automatic recognition of music. Segments of digitized music are processed by means of a Continuous Wavelet Transform, properly chosen so as to match the spectral characteristics of the signal. In order to achieve a good time-scale representation of the signal components a novel wavelet has been designed suited to the musical signal features. particular care has been devoted towards an efficient implementation, which operates in the frequency domain, and includes proper segmentation and aliasing reduction techniques to make the analysis of long signals feasible. The method achieves very good performance in terms of both time and frequency selectivity, and can yield the estimate and the localization in time of both the fundamental frequency and the main harmonics of each tone. The analysis is used as a preprocessing step for a recognition algorithm, which we show to be almost independent on the instrument reproducing the sounds. Simulations are provided to demonstrate the effectiveness of the proposed method.

  17. Demonstrating Enzyme Activation: Calcium/Calmodulin Activation of Phosphodiesterase

    ERIC Educational Resources Information Center

    Porta, Angela R.

    2004-01-01

    Demonstrating the steps of a signal transduction cascade usually involves radioactive materials and thus precludes its use in undergraduate teaching labs. Developing labs that allow the visual demonstration of these steps without the use of radioactivity is important for allowing students hands-on methods of illustrating each step of a signal…

  18. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea

    PubMed Central

    2013-01-01

    Background The freshwater planarian Schmidtea mediterranea has emerged as a powerful model for studies of regenerative, stem cell, and germ cell biology. Whole-mount in situ hybridization (WISH) and whole-mount fluorescent in situ hybridization (FISH) are critical methods for determining gene expression patterns in planarians. While expression patterns for a number of genes have been elucidated using established protocols, determining the expression patterns for particularly low-abundance transcripts remains a challenge. Results We show here that a short bleaching step in formamide dramatically enhances signal intensity of WISH and FISH. To further improve signal sensitivity we optimized blocking conditions for multiple anti-hapten antibodies, developed a copper sulfate quenching step that virtually eliminates autofluorescence, and enhanced signal intensity through iterative rounds of tyramide signal amplification. For FISH on regenerating planarians, we employed a heat-induced antigen retrieval step that provides a better balance between permeabilization of mature tissues and preservation of regenerating tissues. We also show that azide most effectively quenches peroxidase activity between rounds of development for multicolor FISH experiments. Finally, we apply these modifications to elucidate the expression patterns of a few low-abundance transcripts. Conclusion The modifications we present here provide significant improvements in signal intensity and signal sensitivity for WISH and FISH in planarians. Additionally, these modifications might be of widespread utility for whole-mount FISH in other model organisms. PMID:23497040

  19. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification.

    PubMed

    Liu, Jia-Li; Tang, Zhi-Ling; Zhang, Jia-Qi; Chai, Ya-Qin; Zhuo, Ying; Yuan, Ruo

    2018-04-17

    The electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) are excellent on account of the high photoluminescence quantum yield. However, the poor solubility and radical instability of PAHs in the aqueous solution severely restricted further biological application. Here 9,10-diphenylanthracene (DPA) nanoblocks (NBs) with good dispersibility and stability in aqueous solution were prepared according to morphology-controlled technology employing water-soluble polymers as a protectant. Furthermore, an ECL "off-on" switch biosensor was developed based on a novel ECL ternary system with DPA NBs as luminophore, dissolved O 2 as coreactant, and Pt-Ag alloy nanoflowers as the coreaction accelerator, which achieved a high-intense initial ECL signal. Subsequently, the Fc-DNA as ECL signal quencher was assembled on the electrode surface to quench the initial ECL signal for a "signal-off" state. Meanwhile, DNA swing arm was modified on the electrode surface for one-step DNA walker amplification. Interestingly, in the presence of miRNA-141 and T7 Exo, the one-step DNA walker amplification was executed to recover a strong ECL signal as a "signal-on" state by the digestion of Fc-DNA. Thus the developed ECL "off-on" switch biosensor possesses a detection limit down to 29.5 aM for ultrasensitive detection of miRNA-141, which is expected to be applicable to the detection of miRNA in clinic tumor cells.

  20. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation

    NASA Astrophysics Data System (ADS)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.

    2018-01-01

    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  1. cGMP signalling in pre- and post-conditioning: the role of mitochondria.

    PubMed

    Costa, Alexandre D T; Pierre, Sandrine V; Cohen, Michael V; Downey, James M; Garlid, Keith D

    2008-01-15

    Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.

  2. Retinal Determination genes function along with cell-cell signals to regulate Drosophila eye development: examples of multi-layered regulation by Master Regulators

    PubMed Central

    Baker, Nicholas E.; Firth, Lucy C.

    2015-01-01

    It is thought that Retinal Determination gene products define the response made to cell-cell signals within the eye developmental field by binding to enhancers of genes that are also regulated by cell-cell signaling pathways. In Drosophila, Retinal Determination genes including Eyeless, teashirt, eyes absent, dachsous and sine oculis, are required for normal eye development and can induce ectopic eyes when mis-expressed. Characterization of the enhancers responsible for eye expression of the hedgehog, shaven, and atonal genes, as well as the dynamics of Retinal Determination gene expression themselves, now suggest a multilayered network whereby transcriptional regulation by either Retinal Determination genes or cell-cell signaling pathways can sometimes be indirect and mediated by other transcription factor intermediates. In this updated view of the interaction between extracellular information and cell intrinsic programs during development, regulation of individual genes might sometimes be several steps removed from either the Retinal Determination genes or cell-cell signaling pathways that nevertheless govern their expression. PMID:21607995

  3. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo.

    PubMed

    Gagliardi, Maria; Hernandez, Ana; McGough, Ian J; Vincent, Jean-Paul

    2014-11-15

    A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts. © 2014. Published by The Company of Biologists Ltd.

  4. Technical note: Signal resolution increase and noise reduction in a CCD digitizer.

    PubMed

    González, A; Martínez, J A; Tobarra, B

    2004-03-01

    Increasing output resolution is assumed to improve noise characteristics of a CCD digitizer. In this work, however, we have found that as the quantization step becomes lower than the analog noise (present in the signal before its conversion to digital) the noise reduction becomes significantly lower than expected. That is the case for values of sigma(an)/delta larger than 0.6, where sigma(an) is the standard deviation of the analog noise and delta is the quantization step. The procedure is applied to a commercially available CCD digitizer, and noise reduction by means of signal resolution increase is compared to that obtained by low pass filtering.

  5. A step in time: Changes in standard-frequency and time-signal broadcasts, 1 January 1972

    NASA Technical Reports Server (NTRS)

    Chi, A. R.; Fosque, H. S.

    1973-01-01

    An improved coordinated universal time (UTC) system has been adopted by the International Radio Consultative Committee. It was implemented internationally by the standard-frequency and time-broadcast stations on 1 Jan. 1972. The new UTC system eliminates the frequency offset of 300 parts in 10 to the 10th power between the old UTC and atomic time, thus making the broadcast time interval (the UTC second) constant and defined by the resonant frequency of cesium atoms. The new time scale is kept in synchronism with the rotation of the Earth within plus or minus 0.7 s by step-time adjustments of exactly 1 s, when needed. A time code has been added to the disseminated time signals to permit universal time to be obtained from the broadcasts to the nearest 0.1 s for users requiring such precision. The texts of the International Radio Consultative Committee recommendation and report to implement the new UTC system are given. The coding formats used by various standard time broadcast services to transmit the difference between the universal time (UT1) and the UTC are also given. For users' convenience, worldwide primary VLF and HF transmissions stations, frequencies, and schedules of time emissions are also included. Actual time-step adjustments made by various stations on 1 Jan. 1972, are provided for future reference.

  6. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  7. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    NASA Astrophysics Data System (ADS)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  8. Ultra low signals in ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Heller, Eric

    The extension of Scanning Tunneling Microscopy known as Ballistic Electron Emission Microscopy (BEEM) was expanded to allow useful data collection at lower signal levels than previously possible, and a critical BEEM shortcoming was discovered and quantified. As a separate effort, a new method for measuring SB-type step energies on Si(001) SA-type steps that under some circumstances is more accurate than previous methods was used and will be presented. Finally, extensive modifications to a Scanning Tunneling Microscope used for most of this research will be presented. First, it will be shown theoretically and experimentally that by amplifying the hot BEEM electrons that make up the useful BEEM signal before they are thermalized, internal gain can be applied specifically to these electrons without amplifying standard BEEM noise sources. It will be shown that BEEM with single hot electron sensitivity (approximately a factor of 1000 improvement in the minimum detectable BEEM signal) is attainable with modified commercially existing avalanche photodiodes. With this new low-signal capability, it was obvious that a new BEEM-like signal was being detected. We have discovered that photons generated by STM tunneling will create a false signal in most BEEM samples. Furthermore, we have characterized this effect which we call "STM-PC" and it will be demonstrated with Pd/SiO2/Si and Au/SiO2/Si samples that this false signal closely mimics BEEM and is easily confused for BEEM. We will discuss ways to separate real BEEM from this new effect. Separately, thermally generated kinks on A-type steps on the Si(001) surface were counted and analyzed to find the SB-type step energy. Previous work by others was extended by counting a new type of feature, the "switch" kink, to allow a more accurate determination of the energy of SB-steps in the presence of defects that can bow steps and cause non-thermal kinks. Considerable data collection along with this new extension allowed a more accurate determination of the SB-type kink energy than before and the first experimental evidence that it increases with tensile strain on the Si(001) surface. Modifications to an Omicron Variable Temperature Scanning Tunneling Microscope (VT-STM) will be presented. The VT-STM will be moved to the Electrical Engineering Department cleanroom of The Ohio State University and will allow in-situ studies of Molecular Beam Epitaxy (MBE) grown samples. Modifications, repairs, and operating procedures will be discussed for the VT-STM and supporting hardware. Last, work on Low Temperature Grown Gallium Arsenide (LTG-GaAs) will be presented. The ultimate goal of detecting mm-scale arsenic precipitates that form with annealing using BEEM was not successful. Precipitates were imaged with atomic force microscopy, but these same precipitates are not seen with BEEM under some conditions.

  9. Swallow segmentation with artificial neural networks and multi-sensor fusion.

    PubMed

    Lee, Joon; Steele, Catriona M; Chau, Tom

    2009-11-01

    Swallow segmentation is a critical precursory step to the analysis of swallowing signal characteristics. In an effort to automatically segment swallows, we investigated artificial neural networks (ANN) with information from cervical dual-axis accelerometry, submental MMG, and nasal airflow. Our objectives were (1) to investigate the relationship between segmentation performance and the number of signal sources and (2) to identify the signals or signal combinations most useful for swallow segmentation. Signals were acquired from 17 healthy adults in both discrete and continuous swallowing tasks using five stimuli. Training and test feature vectors were constructed with variances from single or multiple signals, estimated within 200 ms moving windows with 50% overlap. Corresponding binary target labels (swallow or non-swallow) were derived by manual segmentation. A separate 3-layer ANN was trained for each participant-signal combination, and all possible signal combinations were investigated. As more signal sources were included, segmentation performance improved in terms of sensitivity, specificity, accuracy, and adjusted accuracy. The combination of all four signal sources achieved the highest mean accuracy and adjusted accuracy of 88.5% and 89.6%, respectively. A-P accelerometry proved to be the most discriminatory source, while the inclusion of MMG or nasal airflow resulted in the least performance improvement. These findings suggest that an ANN, multi-sensor fusion approach to segmentation is worthy of further investigation in swallowing studies.

  10. Jasmonic acid-amino acid conjugation enzyme assays.

    PubMed

    Rowe, Martha L; Staswick, Paul E

    2013-01-01

    Jasmonic acid (JA) is activated for signaling by its conjugation to isoleucine (Ile) through an amide linkage. The Arabidopsis thaliana JASMONIC ACID RESISTANT1 (JAR1) enzyme carries out this Mg-ATP-dependent reaction in two steps, adenylation of the free carboxyl of JA, followed by condensation of the activated group to Ile. This chapter details the protocols used to detect and quantify the enzymatic activity obtained from a glutathione-S-transferase:JAR1 fusion protein produced in Escherichia coli, including an isotope exchange assay for the adenylation step and assays for the complete reaction that involve the high-performance liquid chromatography quantitation of adenosine monophosphate, a stoichiometric by-product of the reaction, and detection of the conjugation product by thin-layer chromatography or gas -chromatography/mass spectrometry.

  11. System and method for optically locating microchannel positions

    DOEpatents

    Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney

    2001-01-01

    A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.

  12. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum

    PubMed Central

    Gao, Xiaohong; Gunalan, Karthigayan; Yap, Sally Shu Lin; Preiser, Peter R.

    2013-01-01

    Invasion of erythrocytes by Plasmodium falciparum merozoites is a complex multi-step process mediated by specific interactions between host receptors and parasite ligands. Reticulocyte-binding protein homologues (RHs) and erythrocyte-binding-like (EBL) proteins are discharged from specialized organelles and used in early steps of invasion. Here we show that monoclonal antibodies against PfRH1 (an RH) block merozoite invasion by specifically inhibiting calcium signalling in the parasite, whereas invasion-inhibiting monoclonal antibodies targeting EBA175 (an EBL protein) have no effect on signalling. We further show that inhibition of this calcium signalling prevents EBA175 discharge and thereby formation of the junction between parasite and host cell. Our results indicate that PfRH1 has an initial sensing as well as signal transduction role that leads to the subsequent release of EBA175. They also provide new insights on how RH–host cell interactions lead to essential downstream signalling events in the parasite, suggesting new targets for malaria intervention. PMID:24280897

  13. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  14. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  15. The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing

    PubMed Central

    Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan

    2017-01-01

    Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014

  16. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  17. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  18. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    PubMed Central

    2010-01-01

    Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466

  19. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less

  20. Signaling Pathways Involved in the Regulation of mRNA Translation

    PubMed Central

    2018-01-01

    ABSTRACT Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus. PMID:29610153

  1. Estimation of Soil Moisture with L-band Multi-polarization Radar

    NASA Technical Reports Server (NTRS)

    Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.

    2004-01-01

    Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.

  2. Creating the Infrastructure for Rapid Application Development and Processing Response to the HIRDLS Radiance Anomaly

    NASA Astrophysics Data System (ADS)

    Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.

    2005-12-01

    The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.

  3. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development

    PubMed Central

    Jin, Lian; Qin, Qingqing; Wang, Yu; Pu, Yingying; Liu, Lifang; Wen, Xing; Ji, Shaoyi; Wu, Jianguo; Wei, Chunhong; Li, Yi

    2016-01-01

    The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis. PMID:27606959

  4. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    PubMed

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  6. The DISC Quotient

    NASA Astrophysics Data System (ADS)

    Elliott, John R.; Baxter, Stephen

    2012-09-01

    D.I.S.C: Decipherment Impact of a Signal's Content. The authors present a numerical method to characterise the significance of the receipt of a complex and potentially decipherable signal from extraterrestrial intelligence (ETI). The purpose of the scale is to facilitate the public communication of work on any such claimed signal, as such work proceeds, and to assist in its discussion and interpretation. Building on a "position" paper rationale, this paper looks at the DISC quotient proposed and develops the algorithmic steps and comprising measures that form this post detection strategy for information dissemination, based on prior work on message detection, decipherment. As argued, we require a robust and incremental strategy, to disseminate timely, accurate and meaningful information, to the scientific community and the general public, in the event we receive an "alien" signal that displays decipherable information. This post-detection strategy is to serve as a stepwise algorithm for a logical approach to information extraction and a vehicle for sequential information dissemination, to manage societal impact. The "DISC Quotient", which is based on signal analysis processing stages, includes factors based on the signal's data quantity, structure, affinity to known human languages, and likely decipherment times. Comparisons with human and other phenomena are included as a guide to assessing likely societal impact. It is submitted that the development, refinement and implementation of DISC as an integral strategy, during the complex processes involved in post detection and decipherment, is essential if we wish to minimize disruption and optimize dissemination.

  7. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks.

    PubMed

    Clarke, Daniel J B; Kuleshov, Maxim V; Schilder, Brian M; Torre, Denis; Duffy, Mary E; Keenan, Alexandra B; Lachmann, Alexander; Feldmann, Axel S; Gundersen, Gregory W; Silverstein, Moshe C; Wang, Zichen; Ma'ayan, Avi

    2018-05-25

    While gene expression data at the mRNA level can be globally and accurately measured, profiling the activity of cell signaling pathways is currently much more difficult. eXpression2Kinases (X2K) computationally predicts involvement of upstream cell signaling pathways, given a signature of differentially expressed genes. X2K first computes enrichment for transcription factors likely to regulate the expression of the differentially expressed genes. The next step of X2K connects these enriched transcription factors through known protein-protein interactions (PPIs) to construct a subnetwork. The final step performs kinase enrichment analysis on the members of the subnetwork. X2K Web is a new implementation of the original eXpression2Kinases algorithm with important enhancements. X2K Web includes many new transcription factor and kinase libraries, and PPI networks. For demonstration, thousands of gene expression signatures induced by kinase inhibitors, applied to six breast cancer cell lines, are provided for fetching directly into X2K Web. The results are displayed as interactive downloadable vector graphic network images and bar graphs. Benchmarking various settings via random permutations enabled the identification of an optimal set of parameters to be used as the default settings in X2K Web. X2K Web is freely available from http://X2K.cloud.

  8. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  9. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  10. Insulin resistance and improvements in signal transduction.

    PubMed

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  11. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  12. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG).

    PubMed

    Amezquita-Sanchez, Juan P; Adeli, Anahita; Adeli, Hojjat

    2016-05-15

    Mild cognitive impairment (MCI) is a cognitive disorder characterized by memory impairment, greater than expected by age. A new methodology is presented to identify MCI patients during a working memory task using MEG signals. The methodology consists of four steps: In step 1, the complete ensemble empirical mode decomposition (CEEMD) is used to decompose the MEG signal into a set of adaptive sub-bands according to its contained frequency information. In step 2, a nonlinear dynamics measure based on permutation entropy (PE) analysis is employed to analyze the sub-bands and detect features to be used for MCI detection. In step 3, an analysis of variation (ANOVA) is used for feature selection. In step 4, the enhanced probabilistic neural network (EPNN) classifier is applied to the selected features to distinguish between MCI and healthy patients. The usefulness and effectiveness of the proposed methodology are validated using the sensed MEG data obtained experimentally from 18 MCI and 19 control patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.

    1998-04-28

    Methods and apparatus are disclosed for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence. 76 figs.

  14. Review of current GPS methodologies for producing accurate time series and their error sources

    NASA Astrophysics Data System (ADS)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.

  15. Multipulse control of saccadic eye movements

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    We present three conclusions regarding the neural control of saccadic eye movements, resulting from comparisons between recorded movements and computer simulations. The controller signal to the muscles is probably a multipulse-step. This kind of signal drives the fastest model trajectories. Finally, multipulse signals explain differences between model and electrophysiological results.

  16. Method and apparatus for reducing spacecraft instrument induced jitter via multifrequency cancellation

    NASA Technical Reports Server (NTRS)

    Liu, Ketao (Inventor); Uetrecht, David S. (Inventor)

    2002-01-01

    A method, apparatus, article of manufacture, and a memory structure for compensating for instrument induced spacecraft jitter is disclosed. The apparatus comprises a spacecraft control processor for producing an actuator command signal, a signal generator, for producing a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and at least one spacecraft control actuator, communicatively coupled to the spacecraft control processor and the signal generator for inducing satellite motion according to the actuator command signal and the cancellation signal. The method comprises the steps of generating a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and providing the cancellation signal to a spacecraft control actuator. The apparatus comprises a storage device tangibly embodying the method steps described above.

  17. AVS on satellite

    NASA Astrophysics Data System (ADS)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  18. Alpha neurofeedback training improves SSVEP-based BCI performance.

    PubMed

    Wan, Feng; da Cruz, Janir Nuno; Nan, Wenya; Wong, Chi Man; Vai, Mang I; Rosa, Agostinho

    2016-06-01

    Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  19. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  20. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    PubMed

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  1. A novel method to accurately locate and count large numbers of steps by photobleaching.

    PubMed

    Tsekouras, Konstantinos; Custer, Thomas C; Jashnsaz, Hossein; Walter, Nils G; Pressé, Steve

    2016-11-07

    Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20-30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. © 2016 Tsekouras et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Recent advances in prostate development and links to prostatic diseases

    PubMed Central

    Powers, Ginny L.

    2013-01-01

    The prostate is a branched ductal-acinar gland that is part of the male reproductive tract. Prostate development depends upon the integration of steroid hormone signals, paracrine interactions between the stromal and epithelial tissue layers, and the actions of cell autonomous factors. Several genes and signalling pathways are known to be required for one or more steps of prostate development including epithelial budding, duct elongation, branching morphogenesis, and/or cellular differentiation. Recent progress in the field of prostate development has included the application of genome-wide technologies including serial analysis of gene expression (SAGE), expression profiling microarrays, and other large scale approaches to identify new genes and pathways that are essential for prostate development. The aggregation of experimental results into online databases by organized multi-lab projects including the Genitourinary Developmental Molecular Atlas Project (GUDMAP) has also accelerated the understanding of molecular pathways that function during prostate development and identified links between prostate anatomy and molecular signaling. Rapid progress has also recently been made in understanding the nature and role of candidate stem cells in the developing and adult prostate. This has included the identification of putative prostate stem cell markers, lineage tracing, and organ reconstitution studies. However, several issues regarding their origin, precise nature, and possible role(s) in disease remain unresolved. Nevertheless, several links between prostatic developmental mechanisms and the pathogenesis of prostatic diseases including benign prostatic hyperplasia and prostate cancer have led to recent progress on targeting developmental pathways as therapeutic strategies for these diseases. PMID:23335485

  3. Classic Nuclear Localization Signals and a Novel Nuclear Localization Motif Are Required for Nuclear Transport of Porcine Parvovirus Capsid Proteins

    PubMed Central

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra

    2014-01-01

    ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698

  4. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal.

    PubMed

    Mohebbi, Maryam; Ghassemian, Hassan

    2011-08-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of stroke. Predicting the onset of paroxysmal AF (PAF), based on noninvasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic intervention and to minimize risks for the patients. In this paper, we propose an effective PAF predictor which is based on the analysis of the RR-interval signal. This method consists of three steps: preprocessing, feature extraction and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the RR-interval signal is extracted. In the next step, the recurrence plot (RP) of the RR-interval signal is obtained and five statistically significant features are extracted to characterize the basic patterns of the RP. These features consist of the recurrence rate, length of longest diagonal segments (L(max )), average length of the diagonal lines (L(mean)), entropy, and trapping time. Recurrence quantification analysis can reveal subtle aspects of dynamics not easily appreciated by other methods and exhibits characteristic patterns which are caused by the typical dynamical behavior. In the final step, a support vector machine (SVM)-based classifier is used for PAF prediction. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database (AFPDB) which consists of both 30 min ECG recordings that end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, positive predictivity and negative predictivity were 97%, 100%, 100%, and 96%, respectively. The proposed methodology presents better results than other existing approaches.

  5. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    PubMed Central

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. Here we report that loss of STEP leads to significantly enhanced performance in hippocampal-dependent learning and memory tasks. In addition, STEP KO mice displayed greater dominance behavior, although they were normal in their motivation, motor coordination, visual acuity and social interactions. STEP KO mice displayed enhanced tyrosine phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2), the NR2B subunit of the N-methyl-D-aspartate receptor (NMDAR), Proline-rich tyrosine kinase (Pyk2), as well as an increased phosphorylation of ERK1/2 substrates. Concomitant to the increased phosphorylation of NR2B, synaptosomal expression of NR1/NR2B NMDARs was increased in STEP KO mice, as was the GluR1/GluR2 containing α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPAR), providing a potential molecular mechanism for the improved cognitive performance. The data support a role for STEP in the regulation of synaptic strengthening. The absence of STEP improves cognitive performance, and may do so by the regulation of downstream effectors necessary for synaptic transmission. PMID:21501258

  6. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  7. Genetics Home Reference: hidradenitis suppurativa

    MedlinePlus

    ... proteins, which is an important step in several chemical signaling pathways. One of these pathways, known as Notch signaling, is essential for the normal maturation and division of hair follicle cells and other types of skin cells. ...

  8. The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications

    PubMed Central

    Carty, N C; Xu, J; Kurup, P; Brouillette, J; Goebel-Goody, S M; Austin, D R; Yuan, P; Chen, G; Correa, P R; Haroutunian, V; Pittenger, C; Lombroso, P J

    2012-01-01

    Glutamatergic signaling through N-methyl-D-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP61 is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP61 levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP61 after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP61. STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP61 levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP61 and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP61 accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP61 inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ. PMID:22781170

  9. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    PubMed

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P < 10 -560 ) for FHR and 0.97 (P < 10 -560 ) for UC. On average, MSE value was 0.00 for both FHR and UC. No CTG feature was found significantly different when measured in eCTG vs. reference signals. eCTG procedure is a promising useful tool to accurately extract digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A STRUCTURAL THEORY FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS.

    ERIC Educational Resources Information Center

    WISH, MYRON

    THE PRIMARY PURPOSE OF THIS DISSERTATION IS TO DEVELOP A STRUCTURAL THEORY, ALONG FACET-THEORETIC LINES, FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS. AS STEPS IN THE DEVELOPMENT OF THIS THEORY, MODELS FOR TWO SETS OF SIGNALS ARE PROPOSED AND TESTED. THE FIRST MODEL IS FOR A SET COMPRISED OF ALL SIGNALS OF THE…

  11. Optical CAD Utilization for the Design and Testing of a LED Streetlamp.

    PubMed

    Jafrancesco, David; Mercatelli, Luca; Fontani, Daniela; Sansoni, Paola

    2017-08-24

    The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype). This work examines the various possibilities for using an optical CAD (Lambda Research TracePro ) to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  12. Signalling maps in cancer research: construction and data analysis

    PubMed Central

    Kondratova, Maria; Sompairac, Nicolas; Barillot, Emmanuel; Zinovyev, Andrei

    2018-01-01

    Abstract Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented. PMID:29688383

  13. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  14. Signalling changes to individuals who show resistance to change can reduce challenging behaviour.

    PubMed

    Bull, Leah E; Oliver, Chris; Woodcock, Kate A

    2017-03-01

    Several neurodevelopmental disorders are associated with resistance to change and challenging behaviours - including temper outbursts - that ensue following changes to routines, plans or expectations (here, collectively: expectations). Here, a change signalling intervention was tested for proof of concept and potential practical effectiveness. Twelve individuals with Prader-Willi syndrome participated in researcher- and caregiver-led pairing of a distinctive visual-verbal signal with subsequent changes to expectations. Specific expectations for a planned subset of five participants were systematically observed in minimally manipulated natural environments. Nine caregivers completed a temper outburst diary during a four week baseline period and a two week signalling evaluation period. Participants demonstrated consistently less temper outburst behaviour in the systematic observations when changes imposed to expectations were signalled, compared to when changes were not signalled. Four of the nine participants whose caregivers completed the behaviour diary demonstrated reliable reductions in temper outbursts between baseline and signalling evaluation. An active control group for the present initial evaluation of the signalling strategy using evidence from caregiver behaviour diaries was outside the scope of the present pilot study. Thus, findings cannot support the clinical efficacy of the present signalling approach. Proof of concept evidence that reliable pairing of a distinctive cue with a subsequent change to expectation can reduce associated challenging behaviour is provided. Data provide additional support for the importance of specific practical steps in further evaluations of the change signalling approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cognitive Jointly Optimal Code-Division Channelization and Routing Over Cooperative Links

    DTIC Science & Technology

    2014-04-01

    i List of Figures Fig. 1: Comparison between code-division channelization and FDM. Fig. 2: Secondary receiver SINR as a function of the iteration step...transmission percentage as a function of the number of active links under Cases rank(X′′) = 1 and > 1 (the study includes also the random code assignment...scheme); (b) Instantaneous output SINR of a primary signal against primary SINR-QoS threshold SINRthPU (thick line) and instanta- neous output SINR of

  16. NASA's Kepler Mission Discovers Its Smallest Habitable Zone Planets (Reporter Pkg)

    NASA Image and Video Library

    2013-04-18

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the 'habitable zone,' the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water. Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun. Kepler-62 and -69 systems

  17. Implementation of Wi-Fi Signal Sampling on an Android Smartphone for Indoor Positioning Systems.

    PubMed

    Liu, Hung-Huan; Liu, Chun

    2017-12-21

    Collecting and maintaining radio fingerprint for wireless indoor positioning systems involves considerable time and labor. We have proposed the quick radio fingerprint collection (QRFC) algorithm which employed the built-in accelerometer of Android smartphones to implement step detection in order to assist in collecting radio fingerprints. In the present study, we divided the algorithm into moving sampling (MS) and stepped MS (SMS), and describe the implementation of both algorithms and their comparison. Technical details and common errors concerning the use of Android smartphones to collect Wi-Fi radio beacons were surveyed and discussed. The results of signal sampling experiments performed in a hallway measuring 54 m in length showed that in terms of the amount of time required to complete collection of access point (AP) signals, static sampling (SS; a traditional procedure for collecting Wi-Fi signals) took at least 2 h, whereas MS and SMS took approximately 150 and 300 s, respectively. Notably, AP signals obtained through MS and SMS were comparable to those obtained through SS in terms of the distribution of received signal strength indicator (RSSI) and positioning accuracy. Therefore, MS and SMS are recommended instead of SS as signal sampling procedures for indoor positioning algorithms.

  18. Implementation of Wi-Fi Signal Sampling on an Android Smartphone for Indoor Positioning Systems

    PubMed Central

    Liu, Chun

    2017-01-01

    Collecting and maintaining radio fingerprint for wireless indoor positioning systems involves considerable time and labor. We have proposed the quick radio fingerprint collection (QRFC) algorithm which employed the built-in accelerometer of Android smartphones to implement step detection in order to assist in collecting radio fingerprints. In the present study, we divided the algorithm into moving sampling (MS) and stepped MS (SMS), and describe the implementation of both algorithms and their comparison. Technical details and common errors concerning the use of Android smartphones to collect Wi-Fi radio beacons were surveyed and discussed. The results of signal sampling experiments performed in a hallway measuring 54 m in length showed that in terms of the amount of time required to complete collection of access point (AP) signals, static sampling (SS; a traditional procedure for collecting Wi-Fi signals) took at least 2 h, whereas MS and SMS took approximately 150 and 300 s, respectively. Notably, AP signals obtained through MS and SMS were comparable to those obtained through SS in terms of the distribution of received signal strength indicator (RSSI) and positioning accuracy. Therefore, MS and SMS are recommended instead of SS as signal sampling procedures for indoor positioning algorithms. PMID:29267234

  19. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait

    NASA Astrophysics Data System (ADS)

    Zeb Gul, Jahan; Yang, Bong-Su; Yang, Young Jin; Chang, Dong Eui; Choi, Kyung Hyun

    2016-11-01

    Soft bots have the expedient ability of adopting intricate postures and fitting in complex shapes compared to mechanical robots. This paper presents a unique in situ UV curing three-dimensional (3D) printed multi-material tri-legged soft bot with spider mimicked multi-step dynamic forward gait using commercial bio metal filament (BMF) as an actuator. The printed soft bot can produce controllable forward motion in response to external signals. The fundamental properties of BMF, including output force, contractions at different frequencies, initial loading rate, and displacement-rate are verified. The tri-pedal soft bot CAD model is designed inspired by spider’s legged structure and its locomotion is assessed by simulating strain and displacement using finite element analysis. A customized rotational multi-head 3D printing system assisted with multiple wavelength’s curing lasers is used for in situ fabrication of tri-pedal soft-bot using two flexible materials (epoxy and polyurethane) in three layered steps. The size of tri-pedal soft-bot is 80 mm in diameter and each pedal’s width and depth is 5 mm × 5 mm respectively. The maximum forward speed achieved is 2.7 mm s-1 @ 5 Hz with input voltage of 3 V and 250 mA on a smooth surface. The fabricated tri-pedal soft bot proved its power efficiency and controllable locomotion at three input signal frequencies (1, 2, 5 Hz).

  20. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  1. Feedback regulation of TGF-β signaling.

    PubMed

    Yan, Xiaohua; Xiong, Xiangyang; Chen, Ye-Guang

    2018-01-01

    Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. An Alternative Explanation for "Step-Like" Early VLF Event

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2016-12-01

    A newly-deployed array of VLF receivers along the East Coast of the United States is ideally suited for detecting VLF scattering from lightning-induced disturbances to the lower ionosphere. The array was deployed in May 2016, and one VLF receiver was deployed only 20 km from the NAA transmitter (24.0 kHz) in Cutler, Maine. The phase of the NAA signal at this closest site varies significantly with time, due simply to the impedance match of the transmitter varying with time. Additionally, both the amplitude and phase exhibit periods of rapid shifts that could possibly explain at least some "step-like" VLF scattering events. Here, we distinguish between "step-like" VLF scattering events and other events in that "step-like" events are typically not closely associated with a detected causative lightning flash and also tend to exhibit little or no recovery to ambient conditions after the event onset. We present an analysis of VLF observations from the East Coast array that demonstrates interesting examples of step-like VLF events far from the transmitter that are associated with step-like events very close to the transmitter. We conclude that step-like VLF events should be treated with caution, unless definitively associated with a causative lightning flash and/or detected using observations of multiple transmitter signals.

  3. Striatal-enriched Tyrosine Protein Phosphatase (STEP) in the Mechanisms of Depressive Disorders.

    PubMed

    Kulikova, Elizabeth; Kulikov, Alexander

    2017-08-30

    Striatal-enriched tyrosine protein phosphatase (STEP) is expressed mainly in the brain. Its dysregulation is associated with Alzheimer's and Huntington's diseases, schizophrenia, fragile X syndrome, drug abuse and stroke/ischemia. However, an association between STEP and depressive disorders is still obscure. The review discusses the theoretical foundations and experimental facts concerning possible relationship between STEP dysregulation and depression risk. STEP dephosphorylates and inactivates several key neuronal signaling proteins such as extracellular signal-regulating kinase 1 and 2 (ERK1/2), stress activated protein kinases p38, the Src family tyrosine kinases Fyn, Pyk2, NMDA and AMPA glutamate receptors. The inactivation of these proteins decreases the expression of brain derived neurotrophic factor (BDNF) necessary for neurogenesis and neuronal survival. The deficit of BDNF results in progressive degeneration of neurons in the hippocampus and cortex and increases depression risk. At the same time, a STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), increases BDNF expression in the hippocampus and attenuated the depressivelike behavior in mice. Thus, STEP is involved in the mechanism of depressive disorders and it is a promising molecular target for atypical antidepressant drugs of new generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal

    NASA Astrophysics Data System (ADS)

    Satheeskumaran, S.; Sabrigiriraj, M.

    2016-06-01

    Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.

  5. Analysis of interference of QPSK and QDPSK modulation signals by mathematical

    NASA Astrophysics Data System (ADS)

    Li, Dairuo; Xu, Kai

    2017-03-01

    In today's society, with the rapid development and extensive application of the information technology of the network central station and the integrated information system technology, information plays an important role in the military communication, mastering the information right to the competition Important role, how to protect one's own security, smooth access to and transmission of information, and to maximize the elimination of interference has become an important issue at home and abroad. QPSK modulation and its improved QPSK modulation as the mainstream signal modulation, the most widely used. In this paper, the principle of QPSK and QDPSK modulation and demodulation are introduced in this paper. Then, how to interfere with QPSK modulation signal is analyzed, and the interference of QPSK modulation signal is simulated by Matlab scripting program, which can be used in the next step. And to study the next step of anti-jamming measures provided the basis and preparatory work.

  6. VLSI processors for signal detection in SETI

    NASA Technical Reports Server (NTRS)

    Duluk, J. F.; Linscott, I. R.; Peterson, A. M.; Burr, J.; Ekroot, B.; Twicken, J.

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  7. VLSI processors for signal detection in SETI.

    PubMed

    Duluk, J F; Linscott, I R; Peterson, A M; Burr, J; Ekroot, B; Twicken, J

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  8. Structural Biology and Evolution of the TGF-β Family

    PubMed Central

    Hinck, Andrew P.; Mueller, Thomas D.; Springer, Timothy A.

    2017-01-01

    We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo. PMID:27638177

  9. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  10. The use of SESK as a trend parameter for localized bearing fault diagnosis in induction machines.

    PubMed

    Saidi, Lotfi; Ben Ali, Jaouher; Benbouzid, Mohamed; Bechhoefer, Eric

    2016-07-01

    A critical work of bearing fault diagnosis is locating the optimum frequency band that contains faulty bearing signal, which is usually buried in the noise background. Now, envelope analysis is commonly used to obtain the bearing defect harmonics from the envelope signal spectrum analysis and has shown fine results in identifying incipient failures occurring in the different parts of a bearing. However, the main step in implementing envelope analysis is to determine a frequency band that contains faulty bearing signal component with the highest signal noise level. Conventionally, the choice of the band is made by manual spectrum comparison via identifying the resonance frequency where the largest change occurred. In this paper, we present a squared envelope based spectral kurtosis method to determine optimum envelope analysis parameters including the filtering band and center frequency through a short time Fourier transform. We have verified the potential of the spectral kurtosis diagnostic strategy in performance improvements for single-defect diagnosis using real laboratory-collected vibration data sets. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review.

    PubMed

    Kamran, Muhammad A; Mannan, Malik M Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized.

  12. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review

    PubMed Central

    Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  13. Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish

    PubMed Central

    Bisgrove, Brent W; Su, Yi-Chu

    2017-01-01

    Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. PMID:29140249

  14. Noise characteristics of the Escherichia coli rotary motor

    PubMed Central

    2011-01-01

    Background The chemotaxis pathway in the bacterium Escherichia coli allows cells to detect changes in external ligand concentration (e.g. nutrients). The pathway regulates the flagellated rotary motors and hence the cells' swimming behaviour, steering them towards more favourable environments. While the molecular components are well characterised, the motor behaviour measured by tethered cell experiments has been difficult to interpret. Results We study the effects of sensing and signalling noise on the motor behaviour. Specifically, we consider fluctuations stemming from ligand concentration, receptor switching between their signalling states, adaptation, modification of proteins by phosphorylation, and motor switching between its two rotational states. We develop a model which includes all signalling steps in the pathway, and discuss a simplified version, which captures the essential features of the full model. We find that the noise characteristics of the motor contain signatures from all these processes, albeit with varying magnitudes. Conclusions Our analysis allows us to address how cell-to-cell variation affects motor behaviour and the question of optimal pathway design. A similar comprehensive analysis can be applied to other two-component signalling pathways. PMID:21951560

  15. E3 ubiquitin ligases: key regulators of hormone signaling in plants.

    PubMed

    Kelley, Dior

    2018-03-07

    Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. While E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary.

    PubMed

    Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J

    2011-06-01

    Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.

  17. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.

    PubMed

    Koller, Jeffrey R; Remy, C David; Ferris, Daniel P

    2018-05-25

    Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not. The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user's soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment. We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller. We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects. Subjects were able to be less engaged on a muscle level when using a controller driven by mechanically intrinsic signals than when using a controller driven by neural signals, but this had no affect on their metabolic work rate. These results suggest that the type of controller (neural vs. mechanical) is likely to affect how individuals use robotic exoskeletons for therapeutic rehabilitation or human performance augmentation.

  18. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.

    PubMed

    Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.

  19. MEG Source Imaging Method using Fast L1 Minimum-norm and its Applications to Signals with Brain Noise and Human Resting-state Source Amplitude Images

    PubMed Central

    Huang, Ming-Xiong; Huang, Charles W.; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L.; Baker, Dewleen G.; Song, Tao; Harrington, Deborah L.; Theilmann, Rebecca J.; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M.; Edgar, J. Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T.; Drake, Angela; Lee, Roland R.

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL’s performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL’s performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer’s problems of signal leaking and distorted source time-courses. PMID:24055704

  20. Highly Sensitive Immunoassay Based on Controlled Rehydration of Patterned Reagents in a 2-Dimensional Paper Network

    PubMed Central

    2015-01-01

    We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058

  1. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  2. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  3. Prevalence of LuxR- and LuxI-type quorum sensing circuits in members of the Populus deltoides microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Amy L; Lappala, Colin; Morlen, Ryan

    2013-01-01

    We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus 25 deltoides. There is a large bank of bacterial isolates from P. deltoides and there are 44 draft 26 genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand 27 the roles of bacterial communication and plant-bacterial signaling in P. deltoides we focused on 28 the prevalence of acyl-homoserine lactone (AHL) quorum sensing signal production and 29 reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for 30 AHL production using a broad-spectrum bioassay that responds tomore » many but not all AHLs, and 31 we queried the available genome sequences of microbiome isolates for homologs of AHL 32 synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. 33 Positive isolates included -, - and -Proteobacteria. Members of the luxI family of AHL 34 synthases were identified in 18 of 39 Proteobacteria genomes including genomes of some 35 isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, 36 that include AHL-responsive factors, were more abundant than luxI homologs. There were 72 in 37 the 39 Proteobacteria genomes. Some of the luxR homologs appear to be members of a 38 subfamily of LuxRs that respond to as yet unknown plant signals rather than bacterial AHLs. 39 Apparently, there is a substantial capacity for AHL cell-to-cell communication in Proteobacteria 40 of the P. deltoides microbiota and there are also Proteobacteria with LuxR homologs of the type 41 hypothesized to respond to plant signals or cues.« less

  4. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  5. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    PubMed

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Passive in-vehicle driver breath alcohol detection using advanced sensor signal acquisition and fusion.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Allalou, Amin; Pettersson, Håkan

    2017-05-29

    The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually. The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO 2 ) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO 2 . In the present investigation, alcohol and CO 2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO 2 and alcohol. From the statistical data, the accuracy of breath alcohol estimation and timing related to initial driver routines (door opening, taking a seat, door closure, buckling up, etc.) can be estimated. The investigation confirmed the feasibility of passive driver breath alcohol detection using our present system. Trade-offs between timing and sensor signal resolution requirements will become critical. Further improvement of sensor resolution and system ruggedness is required before the results can be industrialized. It is concluded that a further important step toward completely passive detection of driver breath alcohol has been taken. If required, the sniffer function with alcohol detection capability can be combined with a subsequent highly accurate breath test to confirm the driver's legal status using the same sensor device. The study is relevant to crash avoidance, in particular driver monitoring systems and driver-vehicle interface design.

  7. User’s Manual for the Ride Motion Simulator

    DTIC Science & Technology

    1989-08-01

    1800 psi). Step 16. Pressurize the system by moving the main pressure switch to "ON." Wait for the roll, pitch, and yaw error signals to go to "Zero...Carefully, help the test subject dismount. Step 41. Flip the main pressure switch on the hydraulic control panel to "OFF." This will block hydraulic...1.13, thus lowering the seat. Release the "Low Limit Override" switch. Step 5. Dismount the test subject. Step 6. Move the main pressure switch to the

  8. Safety Assessment of TACOM’s Ride Motion Simulator

    DTIC Science & Technology

    1990-01-24

    level (1300 to 1800 psi). 24 Step 16. Pressurize the system by moving the main pressure switch to "ON." Wait for the roll, pitch, and yaw error signals...the appropriate seat/shoulder/safety belts and harnesses. Carefully, help the test subject dismount. Step 41. Flip the main pressure switch on the...Dismount the test subject. Step 6. Move the main pressure switch to the "OFF" position. This will block any hydraulic flow to the system. Step 7. Move the

  9. On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael

    2008-01-01

    The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.

  10. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution

    PubMed Central

    Paget, Mark S.

    2015-01-01

    Sigma factors are multi-domain subunits of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. This review focuses on the structure and function of the major sigma-70 class that includes the housekeeping sigma factor (Group 1) that directs the bulk of transcription during active growth, and structurally-related alternative sigma factors (Groups 2–4) that control a wide variety of adaptive responses such as morphological development and the management of stress. A recurring theme in sigma factor control is their sequestration by anti-sigma factors that occlude their RNAP-binding determinants. Sigma factors are then released through a wide variety of mechanisms, often involving branched signal transduction pathways that allow the integration of distinct signals. Three major strategies for sigma release are discussed: regulated proteolysis, partner-switching, and direct sensing by the anti-sigma factor. PMID:26131973

  11. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology.

    PubMed

    Data-Franco, João; Singh, Ajeet; Popovic, Dina; Ashton, Melanie; Berk, Michael; Vieta, Eduard; Figueira, M L; Dean, Olivia M

    2017-01-04

    Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CNK1: A New Component in the Control of Insulin Signaling | Center for Cancer Research

    Cancer.gov

    The control of insulin release after a meal to mediate blood-glucose levels is an essential step in energy regulation. An external signal activates molecular pathways within the cell to control this process.

  13. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  14. The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles

    PubMed Central

    Deady, Lylah D; Li, Wei

    2017-01-01

    Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. PMID:29256860

  15. Fibroblast growth factors and their receptors in cancer.

    PubMed

    Wesche, Jørgen; Haglund, Kaisa; Haugsten, Ellen Margrethe

    2011-07-15

    FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.

  16. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  17. Research for diagnosing electronic control fault of astronomical telescope's armature winding by step signal

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Yang, Shihai; Gu, Bozhong

    2016-10-01

    This paper puts forward a electronic fault diagnose method focusing on large-diameter astronomical telescope's armature winding, and ascertains if it is the resistance or inductance which is out of order. When it comes to armature winding's electronic fault, give the angular position a step signal, and compare the outputs of five models of normal, larger-resistance, smaller-resistance, larger-inductance and smaller-inductance, so we can position the fault. Firstly, we ascertain the transfer function of the angular position to the armature voltage, to analysis the output of armature voltage when the angular position's input is step signal. Secondly, ascertain the different armature currents' characteristics after armature voltage pass through different armature models. Finally, basing on the characteristics, we design two strategies of resistance and inductance separately. The author use MATLAB/Simulink function to model and emulate with the hardware parameters of the 2.5m-caliber telescope, which China and France developed cooperatively for Russia. Meanwhile, the author add a white noise disturbance to the armature voltage, the result shows its feasibility under a certain sized disturbance.

  18. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  19. Self-calibration for lensless color microscopy.

    PubMed

    Flasseur, Olivier; Fournier, Corinne; Verrier, Nicolas; Denis, Loïc; Jolivet, Frédéric; Cazier, Anthony; Lépine, Thierry

    2017-05-01

    Lensless color microscopy (also called in-line digital color holography) is a recent quantitative 3D imaging method used in several areas including biomedical imaging and microfluidics. By targeting cost-effective and compact designs, the wavelength of the low-end sources used is known only imprecisely, in particular because of their dependence on temperature and power supply voltage. This imprecision is the source of biases during the reconstruction step. An additional source of error is the crosstalk phenomenon, i.e., the mixture in color sensors of signals originating from different color channels. We propose to use a parametric inverse problem approach to achieve self-calibration of a digital color holographic setup. This process provides an estimation of the central wavelengths and crosstalk. We show that taking the crosstalk phenomenon into account in the reconstruction step improves its accuracy.

  20. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    PubMed

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  1. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation.

    PubMed

    Feng, Nianhua; Han, Qin; Li, Jing; Wang, Shihua; Li, Hongling; Yao, Xinglei; Zhao, Robert Chunhua

    2014-03-01

    Neural stem cells (NSCs) are ideal candidates in stem cell-based therapy for neurodegenerative diseases. However, it is unfeasible to get enough quantity of NSCs for clinical application. Generation of NSCs from human adipose-derived mesenchymal stem cells (hAD-MSCs) will provide a solution to this problem. Currently, the differentiation of hAD-MSCs into highly purified NSCs with biological functions is rarely reported. In our study, we established a three-step NSC-inducing protocol, in which hAD-MSCs were induced to generate NSCs with high purity after sequentially cultured in the pre-inducing medium (Step1), the N2B27 medium (Step2), and the N2B27 medium supplement with basic fibroblast growth factor and epidermal growth factor (Step3). These hAD-MSC-derived NSCs (adNSCs) can form neurospheres and highly express Sox1, Pax6, Nestin, and Vimentin; the proportion was 96.1% ± 1.3%, 96.8% ± 1.7%, 96.2% ± 1.3%, and 97.2% ± 2.5%, respectively, as detected by flow cytometry. These adNSCs can further differentiate into astrocytes, oligodendrocytes, and functional neurons, which were able to generate tetrodotoxin-sensitive sodium current. Additionally, we found that the neural differentiation of hAD-MSCs were significantly suppressed by Sox1 interference, and what's more, Step1 was a key step for the following induction, probably because it was associated with the initiation and nuclear translocation of Sox1, an important transcriptional factor for neural development. Finally, we observed that bone morphogenetic protein signal was inhibited, and Wnt/β-catenin signal was activated during inducing process, and both signals were related with Sox1 expression. In conclusion, we successfully established a three-step inducing protocol to derive NSCs from hAD-MSCs with high purity by Sox1 activation. These findings might enable to acquire enough autologous transplantable NSCs for the therapy of neurodegenerative diseases in clinic.

  2. Retrieval of atmospheric backscatter and extinction profiles with the aladin airborne demonstrator (A2D)

    NASA Astrophysics Data System (ADS)

    Geiss, Alexander; Marksteiner, Uwe; Lux, Oliver; Lemmerz, Christian; Reitebuch, Oliver; Kanitz, Thomas; Straume-Lindner, Anne Grete

    2018-04-01

    By the end of 2017, the European Space Agency (ESA) will launch the Atmospheric laser Doppler instrument (ALADIN), a direct detection Doppler wind lidar operating at 355 nm. An important tool for the validation and optimization of ALADIN's hardware and data processors for wind retrievals with real atmospheric signals is the ALADIN airborne demonstrator A2D. In order to be able to validate and test aerosol retrieval algorithms from ALADIN, an algorithm for the retrieval of atmospheric backscatter and extinction profiles from A2D is necessary. The A2D is utilizing a direct detection scheme by using a dual Fabry-Pérot interferometer to measure molecular Rayleigh signals and a Fizeau interferometer to measure aerosol Mie returns. Signals are captured by accumulation charge coupled devices (ACCD). These specifications make different steps in the signal preprocessing necessary. In this paper, the required steps to retrieve aerosol optical products, i. e. particle backscatter coefficient βp, particle extinction coefficient αp and lidar ratio Sp from A2D raw signals are described.

  3. Alpha neurofeedback training improves SSVEP-based BCI performance

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Nuno da Cruz, Janir; Nan, Wenya; Wong, Chi Man; Vai, Mang I.; Rosa, Agostinho

    2016-06-01

    Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user’s SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. Approach. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with ‘low’ performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. Main results. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. Significance. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects’ performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  4. Using diurnal temperature signals to infer vertical groundwater-surface water exchange

    USGS Publications Warehouse

    Irvine, Dylan J.; Briggs, Martin A.; Lautz, Laura K.; Gordon, Ryan P.; McKenzie, Jeffrey M.; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.

  5. A comparison study: image-based vs signal-based retrospective gating on microCT

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Salmon, Phil L.; Laperre, Kjell; Sasov, Alexander

    2017-09-01

    Retrospective gating on animal studies with microCT has gained popularity in recent years. Previously, we use ECG signals for cardiac gating and breathing airflow or video signals of abdominal motion for respiratory gating. This method is adequate and works well for most applications. However, through the years, researchers have noticed some pitfalls in the method. For example, the additional signal acquisition step may increase failure rate in practice. X-Ray image-based gating, on the other hand, does not require any extra step in the scanning. Therefore we investigate imagebased gating techniques. This paper presents a comparison study of the image-based versus signal-based approach to retrospective gating. The two application areas we have studied are respiratory and cardiac imaging for both rats and mice. Image-based respiratory gating on microCT is relatively straightforward and has been done by several other researchers and groups. This method retrieves an intensity curve of a region of interest (ROI) placed in the lung area on all projections. From scans on our systems based on step-and-shoot scanning mode, we confirm that this method is very effective. A detailed comparison between image-based and signal-based gating methods is given. For cardiac gating, breathing motion is not negligible and has to be dealt with. Another difficulty in cardiac gating is the relatively smaller amplitude of cardiac movements comparing to the respirational movements, and the higher heart rate. Higher heart rate requires high speed image acquisition. We have been working on our systems to improve the acquisition speed. A dual gating technique has been developed to achieve adequate cardiac imaging.

  6. STriatal-Enriched protein tyrosine Phosphatase (STEP) Regulates the PTPα/Fyn Signaling Pathway

    PubMed Central

    Xu, Jian; Kurup, Pradeep; Foscue, Ethan; Lombroso, Paul J.

    2015-01-01

    The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr420) or inhibit (Tyr531) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr531 and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr420 and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr789. Dephosphorylation of Tyr789 prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction of STEP61 activity increased the phosphorylation of PTPα at Tyr789, as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by ethanol administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by ethanol leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. PMID:25951993

  7. The principles of quantification applied to in vivo proton MR spectroscopy.

    PubMed

    Helms, Gunther

    2008-08-01

    Following the identification of metabolite signals in the in vivo MR spectrum, quantification is the procedure to estimate numerical values of their concentrations. The two essential steps are discussed in detail: analysis by fitting a model of prior knowledge, that is, the decomposition of the spectrum into the signals of singular metabolites; then, normalization of these signals to yield concentration estimates. Special attention is given to using the in vivo water signal as internal reference.

  8. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  9. 35-45 Giga Hertz Transceiver System for Phase and Magnitude Detection

    NASA Technical Reports Server (NTRS)

    Beni, Aman Aflaki

    2007-01-01

    Nondestructive evaluation (NDE) is the science and practice of examining an object in a way that the object's usefulness is not adversely affected. Different types of NDE methods exist but this thesis is based on microwave and millimeter wave NDE using imaging techniques. Microwave NDE is based on illuminating the object under test with a microwave signal and studying the various properties of the reflected signal from the object. This reflected signal contains some information about the inner structure of the object under test. This information may be contained in several parameters including the phase and magnitude of the reflected signal. The goal of this project is to design and build a Q-band coherent transceiver that is capable of measuring the reflected signal's phase and magnitude so that an image of the object under test may be reconstructed. From the several techniques that can be used to construct an image of the object under test, techniques of interest to this work include synthetic aperture focusing technique (SAFT) and microwave holography. The transceiver system should have the ability to sweep a large portion of Q-band frequency range in small frequency steps as quick as possible while the detected phase and magnitude of the reflected signal is very accurate. Several different designs were studied and the final schematic diagram of the transceiver system was determined. One of the most important modules that was designed, implemented and tested in the laboratory was an accurate phase/magnitude detector circuit. The compared results of the scans using the transceiver system and vector network analyzer (VNA) showed that this transceiver system has a great potential to replace a VNA for the purpose of microwave and millimeter wave imaging.

  10. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex

    PubMed Central

    2013-01-01

    Background Candidate genes associated with idiopathic forms of autism overlap with other disorders including fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP) and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9) of individuals with autism. Methods In the current study we have investigated expression of four targets of FMRP and mGluR5 signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age (children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults on medications (n = 6) vs. total adults (n = 12)). Results There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect of anticonvulsant use on STEP 46 kDa/β-actin and a potential effect on homer 1/NSE, in BA9 of adults with autism. However, no other significant confound effects were observed in this study. Conclusions Our findings provide further evidence of abnormalities in FMRP and mGluR5 signaling partners in brains of individuals with autism and open the door to potential targeted treatments which could help ameliorate the symptoms of autism. PMID:23803181

  11. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  12. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  13. Fiber tractography using machine learning.

    PubMed

    Neher, Peter F; Côté, Marc-Alexandre; Houde, Jean-Christophe; Descoteaux, Maxime; Maier-Hein, Klaus H

    2017-09-01

    We present a fiber tractography approach based on a random forest classification and voting process, guiding each step of the streamline progression by directly processing raw diffusion-weighted signal intensities. For comparison to the state-of-the-art, i.e. tractography pipelines that rely on mathematical modeling, we performed a quantitative and qualitative evaluation with multiple phantom and in vivo experiments, including a comparison to the 96 submissions of the ISMRM tractography challenge 2015. The results demonstrate the vast potential of machine learning for fiber tractography. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development of a fluorescence in situ hybridization protocol for the identification of micro-organisms associated with wastewater particles and flocs.

    PubMed

    Ormeci, Banu; Linden, Karl G

    2008-11-01

    Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content making it difficult to differentiate a probe-conferred signal from naturally fluorescing particles with reasonable certainty. Furthermore, some of the FISH steps involve harsh treatment of samples, and are likely to disrupt the floc structure. This study developed a FISH protocol for studying micro-organisms that are associated with particles and flocs. The results indicate that choice of a proper fluorochrome and labeling technique is a key step in reducing the background fluorescence and non-specific binding, and increasing the intensity of the probe signal. Compared to other fluorochromes tested, CY3 worked very well and enabled the observation of particles and debris in red and probe signal from microbes in yellow. Fixation, hybridization, and washing steps disturbed the floc structure and particle-microbe association. Modifications to these steps were necessary, and were achieved by replacing centrifugation with filtration and employment of nylon filters. Microscope slides generated excellent quality images, but polycarbonate membrane filters performed better in preserving the floc structure.

  15. Manual on performance of traffic signal systems: assessment of operations and maintenance.

    DOT National Transportation Integrated Search

    2017-05-01

    The annual evaluation of traffic signal systems on an agency level can be of great importance for identifying problems, self-assessment, budgeting, creating the strategy for future steps, etc. The most famous similar effort of this type is the Nation...

  16. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals

    NASA Astrophysics Data System (ADS)

    Azami, Hamed; Escudero, Javier

    2017-01-01

    Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.

  17. Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import

    PubMed Central

    Banci, Lucia; Bertini, Ivano; Cefaro, Chiara; Cenacchi, Lucia; Ciofi-Baffoni, Simone; Felli, Isabella Caterina; Gallo, Angelo; Gonnelli, Leonardo; Luchinat, Enrico; Sideris, Dionisia; Tokatlidis, Kostas

    2010-01-01

    Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation. PMID:21059946

  18. Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds.

    PubMed

    Makanae, Aki; Satoh, Akira

    2018-01-01

    Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.

  19. Electrical immunosensor based on a submicron-gap interdigitated electrode and gold enhancement.

    PubMed

    Ahn, Junhyoung; Lee, Tae Han; Li, Taihua; Heo, Kwang; Hong, Seunghun; Ko, Jeongheon; Kim, Yongsam; Shin, Yong-Beom; Kim, Min-Gon

    2011-08-15

    We demonstrated that the detection of human interleukin 5 (IL5) with a higher sensitivity than the enzyme-linked immunosorbent assay (ELISA) was possible using mass-producible submicron-gap interdigitated electrodes (IDEs) combined with signal amplification by a gold nanoparticle (AuNP) and gold enhancement. IDEs, facing comb-shape electrodes, can act as simple and miniaturized devices for immunoassay. An IDE with a gap size of 400nm was fabricated by a stepper photolithography process and was applied for the immunoassay of human IL5. A biotinylated anti-human IL5 was immobilized on the streptavidin-modified IDE, and biotin-bovine serum albumin (BSA) and BSA were added sequentially to reduce non-specific binding between the streptavidin-immobilized IDE surface and other proteins. The immunoassay procedure included three main steps: the reaction of human IL5 to form antigen-antibody complexes, the binding of AuNP conjugation with an antibody against human IL5 for the sandwich immunoassay, and gold enhancement for electrical signal amplification. The measurement of electrical current at each step showed that the gold enhancement step was very critical in detection of the concentration of human IL5. Analysis by scanning electron microscope (SEM) showed that close to 1μm particles were formed from 10nm AuNP by the gold enhancement reaction using gold ions and hydroxylamine. Under optimized conditions, human IL5 could be analyzed at 1pgmL(-1) with a wide dynamic range (from 10(-3) to 100ngmL(-1) concentrations). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Crossover assessment of cardiolocomotor synchronization during running.

    PubMed

    Cerqueira, Lucenildo Silva; D'Affonsêca Netto, Aluizio; Mello, Roger Gomes Tavares; Nadal, Jurandir

    2017-02-01

    This study aimed at testing the hypothesis that positive cardiolocomotor coordination (CLC) measure occurs by chance during a running task where the heart rate (HR) is approximated to the step frequency (StepF). The electrocardiogram and electromyogram from the right gastrocnemius lateralis muscle were continuously recorded from ten healthy young men running at a paced rhythm of 152 step/min, to monitor HR and StepF. CLC was evaluated by phase synchrograms and the index of conditional probability (iCP). Results were validated with surrogate data and a crossover approach, where the HR of one subject was related to the StepF of another one, and comparisons were made combining subjects two by two. Six subjects showed synchrogram structures and high iCP values (≥0.8), suggesting the occurrence of physiological entrainment, when the HR reached the SF range. In crossover analysis, phase synchrograms and iCP presented similar behavior of original data when the HR from one subject was close enough to the SF from another one. Significant iCP values in 46 of 90 comparisons (51%) were observed, including all cases crossing signals among the six positive cases. Synchrogram and iCP tools currently employed for measuring CLC are not appropriate because they indicate the occurrence of this phenomenon even among subjects who ran on different days and times of each other.

  1. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve uncontrolled growth.

  2. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve

  3. Audiovisual integration increases the intentional step synchronization of side-by-side walkers.

    PubMed

    Noy, Dominic; Mouta, Sandra; Lamas, Joao; Basso, Daniel; Silva, Carlos; Santos, Jorge A

    2017-12-01

    When people walk side-by-side, they often synchronize their steps. To achieve this, individuals might cross-modally match audiovisual signals from the movements of the partner and kinesthetic, cutaneous, visual and auditory signals from their own movements. Because signals from different sensory systems are processed with noise and asynchronously, the challenge of the CNS is to derive the best estimate based on this conflicting information. This is currently thought to be done by a mechanism operating as a Maximum Likelihood Estimator (MLE). The present work investigated whether audiovisual signals from the partner are integrated according to MLE in order to synchronize steps during walking. Three experiments were conducted in which the sensory cues from a walking partner were virtually simulated. In Experiment 1 seven participants were instructed to synchronize with human-sized Point Light Walkers and/or footstep sounds. Results revealed highest synchronization performance with auditory and audiovisual cues. This was quantified by the time to achieve synchronization and by synchronization variability. However, this auditory dominance effect might have been due to artifacts of the setup. Therefore, in Experiment 2 human-sized virtual mannequins were implemented. Also, audiovisual stimuli were rendered in real-time and thus were synchronous and co-localized. All four participants synchronized best with audiovisual cues. For three of the four participants results point toward their optimal integration consistent with the MLE model. Experiment 3 yielded performance decrements for all three participants when the cues were incongruent. Overall, these findings suggest that individuals might optimally integrate audiovisual cues to synchronize steps during side-by-side walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting the effect of urban noise on the active space of avian vocal signals.

    PubMed

    Parris, Kirsten M; McCarthy, Michael A

    2013-10-01

    Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.

  5. Src-family Tyrosine Kinases in Oogenesis, Oocyte Maturation, and Fertilization: An Evolutionary Perspective

    PubMed Central

    Kinsey, William H.

    2015-01-01

    The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family -mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health. PMID:25030759

  6. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  7. Separation of phospholipids in microfluidic chip device: application to high-throughput screening assays for lipid-modifying enzymes.

    PubMed

    Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally

    2003-03-01

    Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.

  8. Sphingolipid Signaling and Hematopoietic Malignancies: To the Rheostat and Beyond

    PubMed Central

    Loh, Kenneth C.; Baldwin, Dianna; Saba, Julie D.

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation, and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the “sphingolipid rheostat.” There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies. PMID:21707493

  9. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    PubMed Central

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  10. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    PubMed

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  11. Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    PubMed Central

    Peyrodie, Laurent; Szurhaj, William; Bolo, Nicolas; Pinti, Antonio; Gallois, Philippe

    2014-01-01

    Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP) method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA) method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings. PMID:25298967

  12. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    PubMed

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  13. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  14. Monoacylglycerol signalling and ABHD6 in health and disease.

    PubMed

    Poursharifi, Pegah; Madiraju, Sri Ramachandra Murthy; Prentki, Marc

    2017-09-01

    Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications. © 2017 John Wiley & Sons Ltd.

  15. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    DOE PAGES

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...

    2016-03-09

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less

  16. Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina

    PubMed Central

    Fyk-Kolodziej, Bozena; Cohn, Jesse

    2014-01-01

    In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376

  17. Cellular death, reactive oxygen species (ROS) and diabetic complications.

    PubMed

    Volpe, Caroline Maria Oliveira; Villar-Delfino, Pedro Henrique; Dos Anjos, Paula Martins Ferreira; Nogueira-Machado, José Augusto

    2018-01-25

    Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the "dangerous metabolic route in diabetes". The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested-or suggested and proposed-for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death-with all of these conditions being a problem in diabetes.

  18. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications.

    PubMed

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E; Vishwanath, Karthik

    2015-08-12

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.

  19. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications

    PubMed Central

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E.; Vishwanath, Karthik

    2015-01-01

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications. PMID:26274961

  20. Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes.

    PubMed

    Medina, C B; Ravichandran, K S

    2016-06-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of 'find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment.

  1. Do not let death do us part: ‘find-me' signals in communication between dying cells and the phagocytes

    PubMed Central

    Medina, C B; Ravichandran, K S

    2016-01-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of ‘find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment. PMID:26891690

  2. Amyloplast movement and gravityperception in Arabidopsis endoderm

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Saito, T.; Morita, M. T.

    Gravitropism of higher plant is a growth response regulating the orientation of organs elongation, which includes four sequential steps, the perception of gravistimulus, transduction of the physical stimulus to chemical signal, transmission of the signal, and differential cell elongation depending on the signal. To elucidate the molecular mechanism of these steps, we have isolated a number of Arabidopsis mutants with abnormal shoot gravitropic response. zig (zigzag)/sgr4(shoot gravitropism 4) shows little gravitropism in their shoots. Besides, their inflorescence stems elongate in a zigzag-fashion to bend at each node. ZIG encodes a SNARE, AtVTI11. sgr3 with reduced gravitropic response in inflorescence stems had a missense mutation in other SNARE, AtVAM3. These two SNAREs make a complex in the shoot endoderm cells that are gravity-sensing cells, suggesting that the vesicle transport from trans-Golgi network (TGN) to prevacuolar compartment (PVC) and/or vacuole is involved in gravitropism. Abnormal vesicular/vacuolar structures were observed in several tissues of both mutants. Moreover, SGR2 encodes phospholipase A1-like protein that resides in the vacuolar membrane. Endodermis-specific expression of these genes could complement gravitropism in each mutant. In addition, amyloplasts thought to be statoliths localized abnormally in their endoderm cells. These results strongly suggest that formation and function of vacuole in the endoderm cells are important for amyloplasts sedimentation, which is involved in the early process of shoot gravitropism. To reveal this, we constructed vertical stage microscope system to visualize the behavior of amyloplasts and vacuolar membrane in living endodermal cells. We hope to discuss the mechanism of gravity perception after showing their movements.

  3. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  4. Mechanotransduction and the functional response of bone to mechanical strain

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Turner, C. H.

    1995-01-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.

  5. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes.

    PubMed

    Fonseca, M E; Marcellino, L H; Gander, E

    1996-04-05

    A rapid and sensitive dot-blot hybridization assay using in vitro-transcribed digoxigenin-labelled RNA probes (riboprobes) was developed aiming at detection of citrus exocortis viroid (CEVd) in crude sap of infected Citrus medica plants. The protocol includes a very quick and simple preparation of RNA extracts from samples using a denaturation step with formaldehyde. From our results, the employment of this step is highly recommended because the hybridization signals in formaldehyde-denatured samples were significantly stronger when compared with that of extracts without formaldehyde treatment. The assay was found to be sensitive enough to detect 0.1 ng of purified CEVd RNA and was able to detect viroid in 0.2 mg of symptomatic Citrus medica leaves. The use of riboprobes also allowed hybridization under high temperature conditions, avoiding non-specific background.

  6. The role of Myc-induced protein synthesis in cancer

    PubMed Central

    Ruggero, Davide

    2009-01-01

    Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis towards the multi-step process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery. PMID:19934336

  7. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    PubMed

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  8. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    NASA Astrophysics Data System (ADS)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve. Nevertheless, these models are used to study the characteristics of the measured signals occurring at edges of different step height compared to signals occurring at plateaus. Moreover, a special calibration sample with continuous step height variation was developed to reduce the impact of unknown sample properties. We analyzed the signals in both, the spatial and the spatial frequency domain, and found systematic signal changes that will be discussed. As a consequence, these simulations will help to interpret measurement results appropriately and to improve them by proper parameter settings and calibration and finally to increase the edge detection accuracy.

  9. Simple models for complex natural surfaces - A strategy for the hyperspectral era of remote sensing

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.; Gillespie, Alan R.

    1989-01-01

    A two-step strategy for analyzing multispectral images is described. In the first step, the analyst decomposes the signal from each pixel (as expressed by the radiance or reflectance values in each channel) into components that are contributed by spectrally distinct materials on the ground, and those that are due to atmospheric effects, instrumental effects, and other factors, such as illumination. In the second step, the isolated signals from the materials on the ground are selectively edited, and recombined to form various unit maps that are interpretable within the framework of field units. The approach has been tested on multispectral images of a variety of natural land surfaces ranging from hyperarid deserts to tropical rain forests. Data were analyzed from Landsat MSS (multispectral scanner) and TM (Thematic Mapper), the airborne NS001 TM simulator, Viking Lander and Orbiter, AIS, and AVRIS (Airborne Visible and Infrared Imaging Spectrometer).

  10. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  11. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis

    PubMed Central

    Bosada, Fernanda M.; Devasthali, Vidusha; Jones, Kimberly A.; Stankunas, Kryn

    2016-01-01

    Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects. PMID:26893350

  12. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    USDA-ARS?s Scientific Manuscript database

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  13. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    PubMed

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/

  14. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    PubMed Central

    2012-01-01

    Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/ PMID:22574658

  15. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism.

    PubMed

    Stockley, Peter G; Twarock, Reidun; Bakker, Saskia E; Barker, Amy M; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J; Pearson, Arwen R; Phillips, Simon E V; Ranson, Neil A; Tuma, Roman

    2013-03-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.

  16. The parallel-antiparallel signal difference in double-wave-vector diffusion-weighted MR at short mixing times: A phase evolution perspective

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2011-01-01

    Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.

  17. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    PubMed

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.

  18. Photodamage: all signs lead to actinic keratosis and early squamous cell carcinoma.

    PubMed

    Wei, Jerry; Kok, Lai Fong; Byrne, Scott N; Halliday, Gary M

    2015-01-01

    Ultraviolet (UV) radiation is likely to drive the initiation and progression of skin cancer from actinic keratosis to squamous cell carcinoma. Signs of photodamage occur at multiple steps. UV radiation damages many cellular constituents, including lipids, proteins and DNA, all of which are likely to contribute to UV-induced skin cancer. Two biological events culminating from photodamage are mutations in the genes critical to the control of cell division, differentiation and invasion and immunosuppression. DNA photodamage, if unrepaired prior to cell division, can result in the incorporation of an incorrect nucleotide into newly synthesised DNA. Mutations in critical genes contribute to carcinogenesis. Photodamage to proteins such as those involved in DNA repair or proteins or lipids involved in cellular signalling can interfere with this repair process and contribute to mutagenesis. Mutations in key genes, including TP53, BRM, PTCH1, and HRAS, contribute to skin carcinogenesis. UV also damages immunity. Photodamage to DNA and signalling lipids as well as other molecular changes are detrimental to the key cells that regulate immunity. Photodamaged dendritic cells and altered responses by mast cells lead to the activation of T and B regulatory cells that suppress immunity to the protein products of UV-mutated genes. This stops the immune response from its protective function of destroying mutated cells, enabling the transformed cells to progress to skin cancer. UV appears to play a pivotal role at each of these steps, and therefore, signs of photodamage point to the development of skin cancer. © 2015 S. Karger AG, Basel.

  19. Time‐resolved detection of stimulus/task‐related networks, via clustering of transient intersubject synchronization

    PubMed Central

    Macaluso, Emiliano

    2015-01-01

    Abstract Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time‐series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time‐series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task‐dependent changes of connectivity). We present a fully data‐driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time‐windows was used to identify if/when any area showed stimulus/task‐related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time‐series (stimulus/task‐related networks). Finally, for each network, a second clustering step grouped together all the time‐windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task‐related activity at specific time‐points during the fMRI time‐series. We label these configurations: “brain modes” (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli. Hum Brain Mapp 36:3404–3425, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26095530

  20. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells.

    PubMed

    Thankamony, Sai P; Sackstein, Robert

    2011-02-08

    According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.

  1. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.c

    Accumulating evidence suggests that peroxynitrite (ONOO{sup -}) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor beta subunit (IRbeta), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRbeta andmore » IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.« less

  3. Signal-activated phospholipase regulation of leukocyte chemotaxis.

    PubMed

    Cathcart, Martha K

    2009-04-01

    Signal-activated phospholipases are a recent focus of the rapidly growing field of lipid signaling. The extent of their impact on the pathways regulating diverse cell functions is beginning to be appreciated. A critical step in inflammation is the attraction of leukocytes to injured or diseased tissue. Chemotaxis of leukocytes, a requisite process for monocyte and neutrophil extravasation from the blood into tissues, is a critical step for initiating and maintaining inflammation in both acute and chronic settings. Recent studies have identified new important and required roles for two signal-activated phospholipases A2 (PLA2) in regulating chemotaxis. The two intracellular phospholipases, cPLA2alpha (Group IVA) and iPLA2beta (Group VIA), act in parallel to provide distinct lipid mediators at different intracellular sites that are both required for leukocytes to migrate toward the chemokine monocyte chemoattractant protein-1. This review will summarize the separate roles of these phospholipases as well as what is currently known about the influence of two other classes of intracellular signal-activated phospholipases, phospholipase C and phospholipase D, in regulating chemotaxis in eukaryotic cells, but particularly in human monocytes. The contributions of these phospholipases to chemotaxis both in vitro and in vivo will be highlighted.

  4. An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue.

    PubMed

    Salameh, Samer; Nouel, Dominique; Flores, Cecilia; Hoops, Daniel

    2018-01-01

    Netrin-1, an axon guidance protein, is difficult to detect using immunohistochemistry. We performed a multi-step, blinded, and controlled protocol optimization procedure to establish an efficient and effective fluorescent immunohistochemistry protocol for characterizing Netrin-1 expression. Coronal mouse brain sections were used to test numerous antigen retrieval methods and combinations thereof in order to optimize the stain quality of a commercially available Netrin-1 antibody. Stain quality was evaluated by experienced neuroanatomists for two criteria: signal intensity and signal-to-noise ratio. After five rounds of testing protocol variants, we established a modified immunohistochemistry protocol that produced a Netrin-1 signal with good signal intensity and a high signal-to-noise ratio. The key protocol modifications are as follows: •Use phosphate buffer (PB) as the blocking solution solvent.•Use 1% sodium dodecyl sulfate (SDS) treatment for antigen retrieval. The original protocol was optimized for use with the Netrin-1 antibody produced by Novus Biologicals. However, we subsequently further modified the protocol to work with the antibody produced by Abcam. The Abcam protocol uses PBS as the blocking solution solvent and adds a citrate buffer antigen retrieval step.

  5. Improvement of the Laser-Induced Breakdown Spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions

    NASA Astrophysics Data System (ADS)

    Sládková, Lucia; Prochazka, David; Pořízka, Pavel; Škarková, Pavlína; Remešová, Michaela; Hrdlička, Aleš; Novotný, Karel; Čelko, Ladislav; Kaiser, Jozef

    2017-01-01

    In this work we studied the effect of vacuum (low pressure) conditions on the behavior of laser-induced plasma (LIP) created on a sample surface covered with silver nanoparticles (Ag-NPs), i.e. Nanoparticles-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) experiment in a vacuum. The focus was put on the step by step optimization of the measurement parameters, such as energy of the laser pulse, temporally resolved detection, ambient pressure, and different content of Ag-NPs applied on the sample surface. The measurement parameters were optimized in order to achieve the greatest enhancement represented as the signal-to-noise ratio (SNR) of NELIBS signal to the SNR of LIBS signal. The presence of NPs involved in the ablation process enhances LIP intensity; hence the improvement in the analytical sensitivity was yielded. A leaded brass standard was analyzed with the emphasis on the signal enhancement of Pb traces. We gained enhancement by a factor of four. Although the low pressure had no significant influence on the LIP signal enhancement compared to that under ambient conditions, the SNR values were noticeably improved with the implementation of the NPs.

  6. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  7. SNAP Assay Technology.

    PubMed

    O'Connor, Thomas P

    2015-12-01

    The most widely used immunoassay configuration is the enzyme-linked immunosorbent assay (ELISA) because the procedure produces highly sensitive and specific results and generally is easy to use. By definition, ELISAs are immunoassays used to detect a substance (typically an antigen or antibody) in which an enzyme is attached (conjugated) to one of the reactants and an enzymatic reaction is used to amplify the signal if the substance is present. Optimized ELISAs include several steps that are performed in sequence using a defined protocol that typically includes application of sample and an enzyme-conjugated antibody or antigen to an immobilized reagent, followed by wash and enzyme reaction steps. The SNAP assay is an in-clinic device that performs each of the ELISA steps in a timed sequential fashion with little consumer interface. The components and mechanical mechanism of the assay device are described. Detailed descriptions of features of the assay, which minimize nonspecific binding and enhance the ability to read results from weak-positive samples, are given. Basic principles used in assays with fundamentally different reaction mechanisms, namely, antigen-detection, antibody-detection, and competitive assays are given. Applications of ELISA technology, which led to the development of several multianalyte SNAP tests capable of testing for up to 6 analytes using a single-sample and a single-SNAP device are described. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Acute changes associated with electrode insertion measured with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Boretsky, Adam; Agrawal, Anant; Welle, Cristin G.

    2016-03-01

    Despite advances in functional neural imaging, penetrating microelectrodes provide the most direct interface for the extraction of neural signals from the nervous system and are a critical component of many high degree-of-freedom braincomputer interface devices. Electrode insertion is a traumatic event that elicits a complex neuroinflammatory response. In this investigation we applied optical coherence microscopy (OCM), particularly optical coherence angiography (OCA), to characterize the immediate tissue response during microelectrode insertion. Microelectrodes of varying dimension and footprint (one-, two-, and four-shank) were inserted into mouse motor cortex beneath a window after craniotomy surgery. The microelectrodes were inserted in 3-4 steps at 15-20°, with approximately 250 μm linear insertion distance for each step. Before insertion and between each step, OCM datasets were collected, including for quantitative capillary velocimetry. A cohort of control animals without microelectrode insertion was also imaged over a similar time period (2-3 hours). Mechanical tissue deformation was observed in all the experimental animals. The quantitative angiography results varied across animals, and were not correlated with device dimensions. In some cases, localized flow drop-out was observed in a small region surrounding the electrode, while in other instances a global disruption in flow occurred, perhaps as a result of large vessel compression caused by mechanical pressure. OCM is a tool that can be used in various neurophotonics applications, including quantification of the neuroinflammatory response to penetrating electrode insertion.

  9. Operational NDT simulator, towards human factors integration in simulated probability of detection

    NASA Astrophysics Data System (ADS)

    Rodat, Damien; Guibert, Frank; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    In the aeronautic industry, the performance demonstration of Non-Destructive Testing (NDT) procedures relies on Probability Of Detection (POD) analyses. This statistical approach measures the ability of the procedure to detect a flaw with regard to one of its characteristic dimensions. The inspection chain is evaluated as a whole, including equipment configuration, probe effciency but also operator manipulations. Traditionally, a POD study requires an expensive campaign during which several operators apply the procedure on a large set of representative samples. Recently, new perspectives for the POD estimation have been introduced using NDT simulation to generate data. However, these approaches do not offer straightforward solutions to take the operator into account. The simulation of human factors, including cognitive aspects, often raises questions. To address these diffculties, we propose a concept of operational NDT simulator [1]. This work presents the first steps in the implementation of such simulator for ultrasound phased array inspection of composite parts containing Flat Bottom Holes (FBHs). The final system will look like a classical ultrasound testing equipment with a single exception: the displayed signals will be synthesized. Our hardware (ultrasound acquisition card, 3D position tracker) and software (position analysis, inspection scenario, synchronization, simulations) environments are developed as a bench to test the meta-modeling techniques able to provide fast-simulated realistic ultra-sound signals. The results presented here are obtained by on-the-fly merging of real and simulated signals. They confirm the feasibility of our approach: the replacement of real signals by purely simulated ones has been unnoticed by operators. We believe this simulator is a great prospect for POD evaluation including human factors, and may also find applications for training or procedure set-up.

  10. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  11. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  12. Design and Implementation of Multi-Input Adaptive Signal Extractions.

    DTIC Science & Technology

    1982-09-01

    deflected gradient) algorithm requiring only N+ l multiplications per adaptation step. Additional quantization is introduced to eliminate all multiplications...noise cancellation for intermittent-signal applications," IEEE Trans. Information Theory, Vol. IT-26. Nov. 1980, pp. 746-750. 1-2 J. Kazakoff and W. A...cancellation," Proc. IEEE, July 1981, Vol. 69, pp. 846-847. *I-10 P. L . Kelly and W. A. Gardner, "Pilot-Directed Adaptive Signal Extraction," Dept. of

  13. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOEpatents

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  14. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOEpatents

    Andrews, Lowell B.

    1998-01-01

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  15. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved inmore » tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.« less

  17. Microbial whole‐cell arrays

    PubMed Central

    Elad, Tal; Lee, Jin Hyung; Belkin, Shimshon; Gu, Man Bock

    2008-01-01

    Summary The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips. PMID:21261831

  18. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  19. Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Milikh, G. M.; Najmi, A. C.; Mahmoudian, A.; Bernhardt, P. A.; Briczinski, S.; Siefring, C. L.; Yampolski, Y.; Alexander, K.; Sopin, A.; Zalizovski, A.; Chiang, K.; Psiaki, M. L.; Morton, Y.; Taylor, S.; Papadopoulos, K.

    2014-12-01

    We report the results of a set of experiments conducted during the HAARP June 2014 campaign, whose objective was to study the development of artificial ionospheric turbulence. During the experiments, the heating frequency was stepped up and down near the 4th gyroharmonic, and the power of the heating HF radiation was varied. Our diagnostics included: measurements of phase-derived Slant Total Electron Content using the L1/L2 signals from PRN 25 GPS satellite received at HAARP; measurements of Stimulated Electromagnetic Emission (SEE) conducted 15 km away from the HAARP site; detection of the HAARP HF radiation at Vernadsky station located in Antarctica ~15.6 Mm from HAARP; ionograms from HAARP's digisonde and reflectance data from Kodiak radar. Our observations showed: a distinct correlation between the broad upshifted maximum detected by the SEE and strong suppression of the HF signals detected at Vernadsky station; drift velocity of the ionospheric irregularities causing HF scattering detected at Vernadsky station corresponds to that measured by the Kodiak radar; the intensity of the scattered radar signals by Kodiak correlates with the amplitude of downshifted maximum observed by the SEE.

  20. Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange.

    PubMed

    Irvine, Dylan J; Briggs, Martin A; Lautz, Laura K; Gordon, Ryan P; McKenzie, Jeffrey M; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer. © 2016, National Ground Water Association.

  1. Hormonal control of implantation.

    PubMed

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different frommore » those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.« less

  3. Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks

    NASA Astrophysics Data System (ADS)

    Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind

    Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.

  4. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  5. Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera.

    PubMed

    Nazzi, Francesco; Le Conte, Yves

    2016-01-01

    Varroa destructor is the most important ectoparasite of Apis mellifera. This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. V. destructor is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of V. destructor is a prerequisite for creating strategies to sustainably manage the parasite.

  6. Digital methods of recording color television images on film tape

    NASA Astrophysics Data System (ADS)

    Krivitskaya, R. Y.; Semenov, V. M.

    1985-04-01

    Three methods are now available for recording color television images on film tape, directly or after appropriate finish of signal processing. Conventional recording of images from the screens of three kinescopes with synthetic crystal face plates is still most effective for high fidelity. This method was improved by digital preprocessing of brightness color-difference signal. Frame-by-frame storage of these signals in the memory in digital form is followed by gamma and aperture correction and electronic correction of crossover distortions in the color layers of the film with fixing in accordance with specific emulsion procedures. The newer method of recording color television images with line arrays of light-emitting diodes involves dichromic superposing mirrors and a movable scanning mirror. This method allows the use of standard movie cameras, simplifies interlacing-to-linewise conversion and the mechanical equipment, and lengthens exposure time while it shortens recording time. The latest image transform method requires an audio-video recorder, a memory disk, a digital computer, and a decoder. The 9-step procedure includes preprocessing the total color television signal with reduction of noise level and time errors, followed by frame frequency conversion and setting the number of lines. The total signal is then resolved into its brightness and color-difference components and phase errors and image blurring are also reduced. After extraction of R,G,B signals and colorimetric matching of TV camera and film tape, the simultaneous R,B, B signals are converted from interlacing to sequential triades of color-quotient frames with linewise scanning at triple frequency. Color-quotient signals are recorded with an electron beam on a smoothly moving black-and-white film tape under vacuum. While digital techniques improve the signal quality and simplify the control of processes, not requiring stabilization of circuits, image processing is still analog.

  7. The impact of the conversion of incandescent bulbs to the LED light source in traffic signals in Houston : a step toward sustainable control devices.

    DOT National Transportation Integrated Search

    2015-06-01

    With the slowing of the American economy since 2008, it has become imperative that municipalities : identify areas in which costs can be reduced while still providing needed services to its constituents. The : use of traffic signals equipped with lig...

  8. Audio-guided audiovisual data segmentation, indexing, and retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1998-12-01

    While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.

  9. Prospective evaluation of a high multiplexing real-time polymerase chain reaction array for the rapid identification and characterization of bacteria causative of nosocomial pneumonia from clinical specimens: a proof-of-concept study.

    PubMed

    Roisin, S; Huang, T-D; de Mendonça, R; Nonhoff, C; Bogaerts, P; Hites, M; Delaere, B; Hamels, S; de Longueville, F; Glupczynski, Y; Denis, O

    2018-01-01

    The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.

  10. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy

    PubMed Central

    Kötting, Carsten; Kallenbach, Angela; Suveyzdis, Yan; Wittinghofer, Alfred; Gerwert, Klaus

    2008-01-01

    Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved “arginine finger” of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras·RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling “off” to the signaling “on” state with a rate of 3 s−1. The next step is the movement of the “arginine finger” into the active site of Ras with a rate of k2 = 0.8 s−1. Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound Pi intermediate forms. The switch-I reversal to the “off” state, the release of Pi, and the movement of arginine back into an aqueous environment is observed simultaneously with k3 = 0.1 s−1, the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the “arginine finger” movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a Pi-intermediate. PMID:18434546

  11. Technology platform development for targeted plasma metabolites in human heart failure.

    PubMed

    Chan, Cy X'avia; Khan, Anjum A; Choi, Jh Howard; Ng, Cm Dominic; Cadeiras, Martin; Deng, Mario; Ping, Peipei

    2013-01-01

    Heart failure is a multifactorial disease associated with staggeringly high morbidity and motility. Recently, alterations of multiple metabolites have been implicated in heart failure; however, the lack of an effective technology platform to assess these metabolites has limited our understanding on how they contribute to this disease phenotype. We have successfully developed a new workflow combining specific sample preparation with tandem mass spectrometry that enables us to extract most of the targeted metabolites. 19 metabolites were chosen ascribing to their biological relevance to heart failure, including extracellular matrix remodeling, inflammation, insulin resistance, renal dysfunction, and cardioprotection against ischemic injury. In this report, we systematically engineered, optimized and refined a protocol applicable to human plasma samples; this study contributes to the methodology development with respect to deproteinization, incubation, reconstitution, and detection with mass spectrometry. The deproteinization step was optimized with 20% methanol/ethanol at a plasma:solvent ratio of 1:3. Subsequently, an incubation step was implemented which remarkably enhanced the metabolite signals and the number of metabolite peaks detected by mass spectrometry in both positive and negative modes. With respect to the step of reconstitution, 0.1% formic acid was designated as the reconstitution solvent vs. 6.5 mM ammonium bicarbonate, based on the comparable number of metabolite peaks detected in both solvents, and yet the signal detected in the former was higher. By adapting this finalized protocol, we were able to retrieve 13 out of 19 targeted metabolites from human plasma. We have successfully devised a simple albeit effective workflow for the targeted plasma metabolites relevant to human heart failure. This will be employed in tandem with high throughput liquid chromatography mass spectrometry platform to validate and characterize these potential metabolic biomarkers for diagnostic and therapeutic development of heart failure patients.

  12. Integrated Solution for Physical Activity Monitoring Based on Mobile Phone and PC.

    PubMed

    Lee, Mi Hee; Kim, Jungchae; Jee, Sun Ha; Yoo, Sun Kook

    2011-03-01

    This study is part of the ongoing development of treatment methods for metabolic syndrome (MS) project, which involves monitoring daily physical activity. In this study, we have focused on detecting walking activity from subjects which includes many other physical activities such as standing, sitting, lying, walking, running, and falling. Specially, we implemented an integrated solution for various physical activities monitoring using a mobile phone and PC. We put the iPod touch has built in a tri-axial accelerometer on the waist of the subjects, and measured change in acceleration signal according to change in ambulatory movement and physical activities. First, we developed of programs that are aware of step counts, velocity of walking, energy consumptions, and metabolic equivalents based on iPod. Second, we have developed the activity recognition program based on PC. iPod synchronization with PC to transmit measured data using iPhoneBrowser program. Using the implemented system, we analyzed change in acceleration signal according to the change of six activity patterns. We compared results of the step counting algorithm with different positions. The mean accuracy across these tests was 99.6 ± 0.61%, 99.1 ± 0.87% (right waist location, right pants pocket). Moreover, six activities recognition was performed using Fuzzy c means classification algorithm recognized over 98% accuracy. In addition we developed of programs that synchronization of data between PC and iPod for long-term physical activity monitoring. This study will provide evidence on using mobile phone and PC for monitoring various activities in everyday life. The next step in our system will be addition of a standard value of various physical activities in everyday life such as household duties and a health guideline how to select and plan exercise considering one's physical characteristics and condition.

  13. Single-step CE for miniaturized and easy-to-use system.

    PubMed

    Ono, Koichi; Kaneda, Shohei; Fujii, Teruo

    2013-03-01

    We developed a novel single-step capillary electrophoresis (SSCE) scheme for miniaturized and easy to use system by using a microchannel chip, which was made from the hydrophilic material polymethyl methacrylate (PMMA), equipped with a capillary stop valve. Taking the surface tension property of liquids into consideration, the capillary effect was used to introduce liquids and control capillary stop valves in a partial barrier structure in the wall of the microchannel. Through the combined action of stop valves and air vents, both sample plug formation for electrophoresis and sample injection into a separation channel were successfully performed in a single step. To optimize SSCE, different stop valve structures were evaluated using actual microchannel chips and the finite element method with the level set method. A partial barrier structure at the bottom of the channel functioned efficiently as a stop valve. The stability of stop valve was confirmed by a shock test, which was performed by dropping the microchannel chip to a floor. Sample plug deformation could be reduced by minimizing the size of the side partial barrier. By dissolving hydroxyl ethyl cellulose and using it as the sample solution, the EOF and adsorption of the sample into the PMMA microchannel were successfully reduced. Using this method, a 100-bp DNA ladder was concentrated; good separation was observed within 1 min. At a separation length of 5 mm, the signal was approximately 20-fold higher than a signal of original sample solution by field-amplified sample stacking effect. All operations, including liquid introduction and sample separation, can be completed within 2 min by using the SSCE scheme. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    PubMed

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  15. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors

    PubMed Central

    Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.

    2013-01-01

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969

  16. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  17. Control-based method to identify underlying delays of a nonlinear dynamical system.

    PubMed

    Yu, Dongchuan; Frasca, Mattia; Liu, Fang

    2008-10-01

    We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.

  18. Enhancements of Bayesian Blocks; Application to Large Light Curve Databases

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2015-01-01

    Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).

  19. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation

    PubMed Central

    Vincent, Heather A.; Ziehr, Benjamin; Moorman, Nathaniel J.

    2016-01-01

    mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells. PMID:27089357

  20. Serial data correlator/code translator

    NASA Technical Reports Server (NTRS)

    Morgan, L. E. (Inventor)

    1982-01-01

    A system for analyzing asynchronous signals containing bits of information for ensuring the validity of said signals, by sampling each bit of information a plurality of times, and feeding the sampled pieces of bits of information into a sequence controlled is described. The sequence controller has a plurality of maps or programs through which the sampled pieces of bits are stepped so as to identify the particular bit of information and determine the validity and phase of the bit. The step in which the sequence controller is clocked is controlled by a storage register. A data decoder decodes the information fed out of the storage register and feeds such information to shift registers for storage.

  1. Method for triggering an action

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.; Moon, Justin; Koehler, Roger O.

    2006-10-17

    A method for triggering an action of at least one downhole device on a downhole network integrated into a downhole tool string synchronized to an event comprises determining latency, sending a latency adjusted signal, and performing the action. The latency is determined between a control device and the at least one downhole device. The latency adjusted signal for triggering an action is sent to the downhole device. The action is performed downhole synchronized to the event. A preferred method for determining latency comprises the steps: a control device sends a first signal to the downhole device; after receiving the signal, the downhole device sends a response signal to the control device; and the control device analyzes the time from sending the signal to receiving the response signal.

  2. In vitro V(D)J recombination: signal joint formation.

    PubMed

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  3. The effect of Chinese Jinzhida recipe on the hippocampus in a rat model of diabetes-associated cognitive decline

    PubMed Central

    2013-01-01

    Background To investigate the effects of treatment with Multi component Chinese Medicine Jinzhida (JZD) on behavioral deficits in diabetes-associated cognitive decline (DACD) rats and verify our hypothesis that JZD treatment improves cognitive function by suppressing the endoplasmic reticulum stress (ERS) and improving insulin signaling transduction in the rats’ hippocampus. Methods A rat model of type 2 diabetes mellitus (T2DM) was established using high fat diet and streptozotocin (30 mg/kg, ip). Insulin sensitivity was evaluated by the oral glucose tolerance test and the insulin tolerance test. After 7 weeks, the T2DM rats were treated with JZD. The step-down test and Morris water maze were used to evaluate behavior in T2DM rats after 5 weeks of treatment with JZD. Levels of phosphorylated proteins involved in the ERS and in insulin signaling transduction pathways were assessed by Western blot for T2DM rats’ hippocampus. Results Compared to healthy control rats, T2DM rats initially showed insulin resistance and had declines in acquisition and retrieval processes in the step-down test and in spatial memory in the Morris water maze after 12 weeks. Performance on both the step-down test and Morris water maze tasks improved after JZD treatment. In T2DM rats, the ERS was activated, and then inhibited the insulin signal transduction pathways through the Jun NH2-terminal kinases (JNK) mediated. JZD treatment suppressed the ERS, increased insulin signal transduction, and improved insulin resistance in the rats’ hippocampus. Conclusions Treatment with JZD improved cognitive function in the T2DM rat model. The possible mechanism for DACD was related with ERS inducing the insulin signal transduction dysfunction in T2DM rats’ hippocampus. The JZD could reduce ERS and improve insulin signal transduction and insulin resistance in T2DM rats’ hippocampus and as a result improved the cognitive function. PMID:23829668

  4. Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer.

    PubMed

    Johnstone, Cameron N; Chand, Ashwini; Putoczki, Tracy L; Ernst, Matthias

    2015-10-01

    Interleukin (IL)-11 is a member of the IL-6 family of cytokines that is defined by the shared use of the GP130 signal transducing receptor subunit. In addition of its long recognized activities as a hemopoietic growth factor, IL-11 has an emerging role in epithelial cancer biology. Through the activation of the GP130-Janus kinase signaling cascade and associated transcription factor STAT3, IL-11 can confer many of the tumor intrinsic 'hallmark' capabilities to neoplastic cells, if they express the ligand-specific IL-11Rα receptor subunit. Accordingly, IL-11 signaling has recently been identified as a rate-limiting step for the growth tumors arising from the mucosa of the gastrointestinal tract. However, there is less appreciation for a potential role of IL-11 to support breast cancer progression, apart from its well documented capacity to facilitate bone metastasis. Here we review evidence that IL-11 expression in breast cancer correlates with poor disease outcome and discuss some of the molecular mechanisms that are likely to underpin these observations. These include the capacity of IL-11 to stimulate survival and proliferation of cancer cells alongside angiogenesis of the primary tumor and of metastatic progenies at distant organs. We review current strategies to interfere with IL-11 signaling and advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors.

    PubMed

    Bryceson, Yenan T; Ljunggren, Hans-Gustaf; Long, Eric O

    2009-09-24

    Natural killer (NK) cells provide innate control of infected and neoplastic cells. Multiple receptors have been implicated in natural cytotoxicity, but their individual contribution remains unclear. Here, we studied the activation of primary, resting human NK cells by Drosophila cells expressing ligands for receptors NKG2D, DNAM-1, 2B4, CD2, and LFA-1. Each receptor was capable of inducing inside-out signals for LFA-1, promoting adhesion, but none induced degranulation. Rather, release of cytolytic granules required synergistic activation through coengagement of receptors, shown here for NKG2D and 2B4. Although engagement of NKG2D and 2B4 was not sufficient for strong target cell lysis, collective engagement of LFA-1, NKG2D, and 2B4 defined a minimal requirement for natural cytotoxicity. Remarkably, inside-out signaling induced by each one of these receptors, including LFA-1, was inhibited by receptor CD94/NKG2A binding to HLA-E. Strong inside-out signals induced by the combination of NKG2D and 2B4 or by CD16 could overcome CD94/NKG2A inhibition. In contrast, degranulation induced by these receptors was still subject to inhibition by CD94/NKG2A. These results reveal multiple layers in the activation pathway for natural cytotoxicity and that steps as distinct as inside-out signaling to LFA-1 and signals for granule release are sensitive to inhibition by CD94/NKG2A.

  6. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B.

    PubMed

    Lalioti, Vasiliki; Hernandez-Tiedra, Sonia; Sandoval, Ignacio V

    2014-08-01

    In the liver, the P-type ATPase and membrane pump ATP7B plays a crucial role in Cu(+) donation to cuproenzymes and in the elimination of excess Cu(+). ATP7B is endowed with a COOH-cytoplasmic (DE)XXXLL-type traffic signal. We find that accessory (Lys -3, Trp -2, Ser -1 and Leu +2) and canonical (D -4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu(+)-regulated cycling of ATP7B between the trans-Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu(+) at the TGN. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Method and Apparatus for Non-Invasive Measurement of Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring intracranial pressure. In one embodiment, the method comprises the steps of generating an information signal that comprises components (e.g., pulsatile changes and slow changes) that are related to intracranial pressure and blood pressure, generating a reference signal comprising pulsatile components that are solely related to blood pressure, processing the information and reference signals to determine the pulsatile components of the information signal that have generally the same phase as the pulsatile components of the reference signal, and removing from the information signal the pulsatile components determined to have generally the same phase as the pulsatile components of the reference signal so as to provide a data signal having components wherein substantially all of the components are related to intracranial pressure.

  8. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  9. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  10. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance☆

    PubMed Central

    Maciag, Anna E.; Holland, Ryan J.; Robert Cheng, Y.-S.; Rodriguez, Luis G.; Saavedra, Joseph E.; Anderson, Lucy M.; Keefer, Larry K.

    2013-01-01

    JS-K is a nitric oxide (NO)-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH) via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion) spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action. PMID:24024144

  11. Good pharmacovigilance practices: technology enabled.

    PubMed

    Nelson, Robert C; Palsulich, Bruce; Gogolak, Victor

    2002-01-01

    The assessment of spontaneous reports is most effective it is conducted within a defined and rigorous process. The framework for good pharmacovigilance process (GPVP) is proposed as a subset of good postmarketing surveillance process (GPMSP), a functional structure for both a public health and corporate risk management strategy. GPVP has good practices that implement each step within a defined process. These practices are designed to efficiently and effectively detect and alert the drug safety professional to new and potentially important information on drug-associated adverse reactions. These practices are enabled by applied technology designed specifically for the review and assessment of spontaneous reports. Specific practices include rules-based triage, active query prompts for severe organ insults, contextual single case evaluation, statistical proportionality and correlational checks, case-series analyses, and templates for signal work-up and interpretation. These practices and the overall GPVP are supported by state-of-the-art web-based systems with powerful analytical engines, workflow and audit trials to allow validated systems support for valid drug safety signalling efforts. It is also important to understand that a process has a defined set of steps and any one cannot stand independently. Specifically, advanced use of technical alerting methods in isolation can mislead and allow one to misunderstand priorities and relative value. In the end, pharmacovigilance is a clinical art and a component process to the science of pharmacoepidemiology and risk management.

  12. Control of cell behaviour through nanovibrational stimulation: nanokicking

    NASA Astrophysics Data System (ADS)

    Robertson, Shaun N.; Campsie, Paul; Childs, Peter G.; Madsen, Fiona; Donnelly, Hannah; Henriquez, Fiona L.; Mackay, William G.; Salmerón-Sánchez, Manuel; Tsimbouri, Monica P.; Williams, Craig; Dalby, Matthew J.; Reid, Stuart

    2018-05-01

    Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or `nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  13. Control of cell behaviour through nanovibrational stimulation: nanokicking.

    PubMed

    Robertson, Shaun N; Campsie, Paul; Childs, Peter G; Madsen, Fiona; Donnelly, Hannah; Henriquez, Fiona L; Mackay, William G; Salmerón-Sánchez, Manuel; Tsimbouri, Monica P; Williams, Craig; Dalby, Matthew J; Reid, Stuart

    2018-05-28

    Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  14. Targeting Signaling to YAP for the Therapy of NF2

    DTIC Science & Technology

    2016-12-01

    at any step of our newly identified pathway, and to test the preclinical efficacy of lead compounds in xenograft models of NF2. During this grant...Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. The Journal of Biological Chemistry. 2015. 290(32):19387-401.

  15. Education and Signaling: Evidence from a Highly Competitive Labor Market

    ERIC Educational Resources Information Center

    Heywood, John S.; Wei, Xiangdong

    2004-01-01

    This paper directly tests for differences in returns to education between the employed and self-employed in Hong Kong. Using a step-function, we find significantly smaller returns for the self-employed, suggesting that in the highly competitive labor market of Hong Kong education plays a signaling role. This pattern persists for both genders, when…

  16. Fixed and Data Adaptive Kernels in Cohen’s Class of Time-Frequency Distributions

    DTIC Science & Technology

    1992-09-01

    translated into its associated analytic signal by using the techniques discussed in Chapter Four. 1. Wigner - Ville Distribution function PS = wvd (data,winlen...step,begin,theend) % PS = wvd (data,winlen,step,begin,theend) % ’wvd.ml returns the Wigner - Ville time-frequency distribution % for the input data...12 IV. FIXED KERNEL DISTRIBUTIONS .................................................................. 19 A. WIGNER - VILLE DISTRIBUTION

  17. Let's talk it over : interagency cooperation facilities success : a case study : the New York, New Jersey, Connecticut metropolitan area TRANSMIT operational test : ensuring integration of intelligent transportation systems products and services

    DOT National Transportation Integrated Search

    1989-01-01

    This manual provides basic background information and step-by-step procedures for conducting traffic conflict surveys at signalized and unsignalized intersections. The manual was prepared as a training aid and reference source for persons who are ass...

  18. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.

    PubMed

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Michaelian, Kirk H

    2017-04-01

    The determination of small absorption coefficients of trace gases in the atmosphere constitutes a challenge for analytical air contaminant measurements, especially in the presence of strongly absorbing backgrounds. A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) method was developed to suppress the coherent external noise and spurious photoacoustic (PA) signals caused by strongly absorbing backgrounds. The infrared absorption spectra of acetylene (C2H2) and local air were used to verify the performance of the step-scan DFTIR-PAS method. A linear amplitude response to C2H2 concentrations from 100 to 5000 ppmv was observed, leading to a theoretical detection limit of 5 ppmv. The differential mode was capable of eliminating the coherent noise and dominant background gas signals, thereby revealing the presence of the otherwise hidden C2H2 weak absorption. Thus, the step-scan DFTIR-PAS modality was demonstrated to be an effective approach for monitoring weakly absorbing gases with absorption bands overlapped by strongly absorbing background species.

  19. Pressure modulation of Ras-membrane interactions and intervesicle transfer.

    PubMed

    Kapoor, Shobhna; Werkmüller, Alexander; Goody, Roger S; Waldmann, Herbert; Winter, Roland

    2013-04-24

    Proteins attached to the plasma membrane frequently encounter mechanical stresses, including high hydrostatic pressure (HHP) stress. Signaling pathways involving membrane-associated small GTPases (e.g., Ras) have been identified as critical loci for pressure perturbation. However, the impact of mechanical stimuli on biological outputs is still largely terra incognita. The present study explores the effect of HHP on the membrane association, dissociation, and intervesicle transfer process of N-Ras by using a FRET-based assay to obtain the kinetic parameters and volumetric properties along the reaction path of these processes. Notably, membrane association is fostered upon pressurization. Conversely, depending on the nature and lateral organization of the lipid membrane, acceleration or retardation is observed for the dissociation step. In addition, HHP can be inferred as a positive regulator of N-Ras clustering, in particular in heterogeneous membranes. The susceptibility of membrane interaction to pressure raises the idea of a role of lipidated signaling molecules as mechanosensors, transducing mechanical stimuli to chemical signals by regulating their membrane binding and dissociation. Finally, our results provide first insights into the influence of pressure on membrane-associated Ras-controlled signaling events in organisms living under extreme environmental conditions such as those that are encountered in the deep sea and sub-seafloor environments, where pressures reach the kilobar (100 MPa) range.

  20. START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries.

    PubMed

    Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y

    2017-09-22

    A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.

  1. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling.

    PubMed

    Thorn, Stephanie R; Giesy, Sarah L; Myers, Martin G; Boisclair, Yves R

    2010-08-01

    Mice lacking leptin (ob/ob) or its full-length receptor (db/db) are obese and reproductively incompetent. Fertility, pregnancy, and lactation are restored, respectively, in ob/ob mice treated with leptin through mating, d 6.5 post coitum, and pregnancy. Therefore, leptin signaling is needed for lactation, but the timing of its action and the affected mammary process remain unknown. To address this issue, we used s/s mice lacking only leptin-dependent signal transducer and activator of transcription (STAT)3 signaling. These mice share many features with db/db mice, including obesity, but differ by retaining sufficient activity of the hypothalamic-pituitary-ovarian axis to support reproduction. The s/s mammary epithelium was normal at 3 wk of age but failed to expand through the mammary fat pad (MFP) during the subsequent pubertal period. Ductal growth failure was not corrected by estrogen therapy and did not relate to inadequate IGF-I production by the MFP or to the need for epithelial or stromal leptin-STAT3 signaling. Ductal growth failure coincided with adipocyte hypertrophy and increased MFP production of leptin, TNFalpha, and IL6. These cytokines, however, were unable to inhibit the proliferation of a collection of mouse mammary epithelial cell lines. In conclusion, the very first step of postnatal mammary development fails in s/s mice despite sufficient estrogen IGF-I and an hypothalamic-pituitary-ovarian axis capable of supporting reproduction. This failure is not caused by mammary loss of leptin-dependent STAT3 signaling or by the development of inflammation. These data imply the existence of an unknown mechanism whereby leptin-dependent STAT3 signaling and obesity alter mammary ductal development.

  2. Step-By-Step Instructions for Retina Recordings with Perforated Multi Electrode Arrays

    PubMed Central

    Idrees, Saad; Mutter, Marion; Benkner, Boris; Münch, Thomas A.

    2014-01-01

    Multi-electrode arrays are a state-of-the-art tool in electrophysiology, also in retina research. The output cells of the retina, the retinal ganglion cells, form a monolayer in many species and are well accessible due to their proximity to the inner retinal surface. This structure has allowed the use of multi-electrode arrays for high-throughput, parallel recordings of retinal responses to presented visual stimuli, and has led to significant new insights into retinal organization and function. However, using conventional arrays where electrodes are embedded into a glass or ceramic plate can be associated with three main problems: (1) low signal-to-noise ratio due to poor contact between electrodes and tissue, especially in the case of strongly curved retinas from small animals, e.g. rodents; (2) insufficient oxygen and nutrient supply to cells located on the bottom of the recording chamber; and (3) displacement of the tissue during recordings. Perforated multi-electrode arrays (pMEAs) have been found to alleviate all three issues in brain slice recordings. Over the last years, we have been using such perforated arrays to study light evoked activity in the retinas of various species including mouse, pig, and human. In this article, we provide detailed step-by-step instructions for the use of perforated MEAs to record visual responses from the retina, including spike recordings from retinal ganglion cells and in vitro electroretinograms (ERG). In addition, we provide in-depth technical and methodological troubleshooting information, and show example recordings of good quality as well as examples for the various problems which might be encountered. While our description is based on the specific equipment we use in our own lab, it may also prove useful when establishing retinal MEA recordings with other equipment. PMID:25165854

  3. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V; Coffee, K; Gard, E

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less

  4. Nitrocellulose-bound antigen repeatedly used for the affinity purification of specific polyclonal antibodies for screening DNA expression libraries.

    PubMed

    Robinson, P A; Anderton, B H; Loviny, T L

    1988-04-06

    We present a simple, efficient and rapid method for affinity-purifying antibodies from a relatively crude antiserum in quantities large enough to screen a DNA expression library. The method presents a very convenient way to remove crossreacting or contaminating antibody specificities. The affinity matrix, antigen non-covalently bound to nitrocellulose, is prepared by the electrophoretic separation of antigen by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, followed by the transfer of antigen to nitrocellulose. The matrix can be used repeatedly. A brief wash with 6 M guanidine hydrochloride is included between steps to remove residual antibodies which bind with high affinity to nitrocellulose-bound antigen. Various buffer solutions were assessed as antibody/antigen-dissociating agents. Glycine/HCl buffer, pH 2.5, appeared to be the most efficient in our hands, although a number of other less efficient dissociating reagents, including 4.5 M magnesium chloride, pH 7.5, 6 M urea, pH 7, and 0.05 M diethylamine, pH 11.5, also could be used; these may be the elution conditions of choice for other antibody/antigen combinations. The use of affinity-purified antibody solutions instead of the corresponding antisera gave increased signal-to-noise ratios with the detection systems that are commonly used to identify positive signals in screening expression libraries. Protein A- and goat anti-rabbit-alkaline phosphatase conjugates gave the most sensitive signals.

  5. Determination of low-frequency normal modes and structure coefficients using optimal sequence stacking method and autoregressive method in frequency domain

    NASA Astrophysics Data System (ADS)

    Majstorovic, J.; Rosat, S.; Lambotte, S.; Rogister, Y. J. G.

    2017-12-01

    Although there are numerous studies about 3D density Earth model, building an accurate one is still an engaging challenge. One procedure to refine global 3D Earth density models is based on unambiguous measurements of Earth's normal mode eigenfrequencies. To have unbiased eigenfrequency measurements one needs to deal with a variety of time records quality and especially different noise sources, while standard approaches usually include signal processing methods such as Fourier transform. Here we present estimate of complex eigenfrequencies and structure coefficients for several modes below 1 mHz (0S2, 2S1, etc.). Our analysis is performed in three steps. The first step includes the use of stacking methods to enhance specific modes of interest above the observed noise level. Out of three trials the optimal sequence estimation turned out to be the foremost compared to the spherical harmonic stacking method and receiver strip method. In the second step we apply an autoregressive method in the frequency domain to estimate complex eigenfrequencies of target modes. In the third step we apply the phasor walkout method to test and confirm our eigenfrequencies. Before conducting an analysis of time records, we evaluate how the station distribution and noise levels impact the estimate of eigenfrequencies and structure coefficients by using synthetic seismograms calculated for a 3D realistic Earth model, which includes Earth's ellipticity and lateral heterogeneity. Synthetic seismograms are computed by means of normal mode summation using self-coupling and cross-coupling of modes up to 1 mHz. Eventually, the methods tested on synthetic data are applied to long-period seismometer and superconducting gravimeter data recorded after six mega-earthquakes of magnitude greater than 8.3. Hence, we propose new estimates of structure coefficients dependent on the density variations.

  6. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  7. Artifact removal from EEG data with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  8. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  9. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  10. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves.

    PubMed

    van Velzen, Marit H N; Loeve, Arjo J; Niehof, Sjoerd P; Mik, Egbert G

    2017-11-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW shape. PPG signals are sensitive to artefacts. Coughing or movement of the subject can affect PW shapes that much that the PWs become unsuitable for further analysis. The aim of this study was to develop an algorithm that automatically and objectively eliminates unsuitable PWs. In order to develop a proper algorithm for eliminating unsuitable PWs, a literature study was conducted. Next, a '7Step PW-Filter' algorithm was developed that applies seven criteria to determine whether a PW matches the characteristics required to allow PTT calculation. To validate whether the '7Step PW-Filter' eliminates only and all unsuitable PWs, its elimination results were compared to the outcome of manual elimination of unsuitable PWs. The '7Step PW-Filter' had a sensitivity of 96.3% and a specificity of 99.3%. The overall accuracy of the '7Step PW-Filter' for detection of unsuitable PWs was 99.3%. Compared to manual elimination, using the '7Step PW-Filter' reduces PW elimination times from hours to minutes and helps to increase the validity, reliability and reproducibility of PTT data.

  11. Optimal design of neural stimulation current waveforms.

    PubMed

    Halpern, Mark

    2009-01-01

    This paper contains results on the design of electrical signals for delivering charge through electrodes to achieve neural stimulation. A generalization of the usual constant current stimulation phase to a stepped current waveform is presented. The electrode current design is then formulated as the calculation of the current step sizes to minimize the peak electrode voltage while delivering a specified charge in a given number of time steps. This design problem can be formulated as a finite linear program, or alternatively by using techniques for discrete-time linear system design.

  12. On conductivity changes in shocked potassium chloride

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Townsend, D.; Braithwaite, M.

    2005-06-01

    A previous work has reported that shock loading of ionic crystals produces an induced polarization and changes in electrical conductivity. However, previous measurements recorded an integrated electrical signal comprising the induced electrical field and that due to current flow. For this reason a differential system was designed to separate these effects that was adapted from that used in the investigation of the conductivity of hydrogen under shock. The measurement removes voltages produced in the shock-induced electrical field, allowing determination of those resulting from resistance changes. Although the mechanical response of potassium chloride to shock has been studied extensively, the electrical response is less studied. Here, experiments are reported in which it is shocked to various stresses in order to observe conductivity changes. The range of stresses induced includes several mechanical thresholds, including the elastic-plastic transition, the B1:B2 phase transformation, and the overdriving of the shock faster than the elastic wave. The behavior observed when single crystal and targets pressed from granular material (to close to full density) are shocked around each of these thresholds is presented. The effects of loading to a particular stress in a single step or in multiple steps are discussed.

  13. Step-control of electromechanical systems

    DOEpatents

    Lewis, Robert N.

    1979-01-01

    The response of an automatic control system to a general input signal is improved by applying a test input signal, observing the response to the test input signal and determining correctional constants necessary to provide a modified input signal to be added to the input to the system. A method is disclosed for determining correctional constants. The modified input signal, when applied in conjunction with an operating signal, provides a total system output exhibiting an improved response. This method is applicable to open-loop or closed-loop control systems. The method is also applicable to unstable systems, thus allowing controlled shut-down before dangerous or destructive response is achieved and to systems whose characteristics vary with time, thus resulting in improved adaptive systems.

  14. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    PubMed

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  15. Flow structure measurement by beam scan type LDV

    NASA Astrophysics Data System (ADS)

    Hino, M.; Nadaoka, K.; Kobayashi, T.; Hironaga, K.; Muramoto, T.

    1987-05-01

    A new type of laser Doppler velocimeter called SLV (Scan-Type Laser-Doppier Velocimeter) which can measure the velocity field almost continuously and simultaneously has been developed and tested. The principle of the apparatus is to traverse the focal point of split laser beams by reflecting them with a rotating polygon mirror or an oscillating mirror which is driven (and controlled) by a stepping motor and to receive the scattered Doppler signals by a photomultiplier by focusing them through a cylindrical lens. The signals from the photomultiplier and the driving pulse of the stepping motor were transmitted to a persona] computer and processed on-line. Experiments on the oscillatory boundary layer, Kármán vortices, and vortex rings were carried out to check the performance.

  16. Approximated affine projection algorithm for feedback cancellation in hearing aids.

    PubMed

    Lee, Sangmin; Kim, In-Young; Park, Young-Cheol

    2007-09-01

    We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.

  17. Design of a lock-amplifier circuit

    NASA Astrophysics Data System (ADS)

    Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.

    2017-01-01

    The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.

  18. High-efficiency (6 + 1) × 1 pump-signal combiner based on low-deformation and high-precision alignment fabrication

    NASA Astrophysics Data System (ADS)

    Zou, Shuzhen; Chen, Han; Yu, Haijuan; Sun, Jing; Zhao, Pengfei; Lin, Xuechun

    2017-12-01

    We demonstrate a new method for fabricating a (6 + 1) × 1 pump-signal combiner based on the reduction of signal fiber diameter by corrosion. This method avoids the mismatch loss of the splice between the signal fiber and the output fiber caused by the signal fiber taper processing. The optimum radius of the corroded signal fiber was calculated according to the analysis of the influence of the cladding thickness on the laser propagating in the fiber core. Besides, we also developed a two-step splicing method to complete the high-precision alignment between the signal fiber core and the output fiber core. A high-efficiency (6 + 1) × 1 pump-signal combiner was produced with an average pump power transmission efficiency of 98.0% and a signal power transmission efficiency of 97.7%, which is well suitable for application to high-power fiber laser system.

  19. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayani, Gunawan

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less

  20. Aqueous NMR Signal Enhancement by Reversible Exchange in a Single Step Using Water-Soluble Catalysts

    PubMed Central

    2016-01-01

    Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approach, synthesis of a novel di-iridium complex precursor where the cyclooctadiene (COD) rings have been replaced by CODDA (1,2-dihydroxy-3,7-cyclooctadiene) leads to the creation of a catalyst [IrCl(CODDA)IMes] that can be dissolved and activated in water—enabling aqueous SABRE in a single step, without need for either an organic cosolvent or solvent removal followed by aqueous reconstitution. The potential utility of the CODDA catalyst for aqueous SABRE is demonstrated with the ∼(−)32-fold enhancement of 1H signals of pyridine in water with only 1 atm of parahydrogen. PMID:27350846

  1. The analysis and interpretation of very-long-period seismic signals on volcanoes

    NASA Astrophysics Data System (ADS)

    Sindija, Dinko; Neuberg, Jurgen; Smith, Patrick

    2017-04-01

    The study of very long period (VLP) seismic signals became possible with the widespread use of broadband instruments. VLP seismic signals are caused by transients of pressure in the volcanic edifice and have periods ranging from several seconds to several minutes. For the VLP events recorded in March 2012 and 2014 at Soufriere Hills Volcano, Montserrat, we model the ground displacement using several source time functions: a step function using Richards growth equation, Küpper wavelet, and a damped sine wave to which an instrument response is then applied. This way we get a synthetic velocity seismogram which is directly comparable to the data. After the full vector field of ground displacement is determined, we model the source mechanism to determine the relationship between the source mechanism and the observed VLP waveforms. Emphasis of the research is on how different VLP waveforms are related to the volcano environment and the instrumentation used and on the processing steps in this low frequency band to get most out of broadband instruments.

  2. A combined approach for weak fault signature extraction of rolling element bearing using Hilbert envelop and zero frequency resonator

    NASA Astrophysics Data System (ADS)

    Kumar, Keshav; Shukla, Sumitra; Singh, Sachin Kumar

    2018-04-01

    Periodic impulses arise due to localised defects in rolling element bearing. At the early stage of defects, the weak impulses are immersed in strong machinery vibration. This paper proposes a combined approach based upon Hilbert envelop and zero frequency resonator for the detection of the weak periodic impulses. In the first step, the strength of impulses is increased by taking normalised Hilbert envelop of the signal. It also helps in better localization of these impulses on time axis. In the second step, Hilbert envelope of the signal is passed through the zero frequency resonator for the exact localization of the periodic impulses. Spectrum of the resonator output gives peak at the fault frequency. Simulated noisy signal with periodic impulses is used to explain the working of the algorithm. The proposed technique is verified with experimental data also. A comparison of the proposed method with Hilbert-Haung transform (HHT) based method is presented to establish the effectiveness of the proposed method.

  3. Design of High Quality Chemical XOR Gates with Noise Reduction.

    PubMed

    Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir

    2017-07-05

    We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOEpatents

    Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  5. Targeting Signaling to YAP for the Therapy of NF2

    DTIC Science & Technology

    2016-12-01

    any step of our newly identified pathway, and to test the preclinical efficacy of lead compounds in xenograft models of NF2. During this grant, we have...Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. The Journal of Biological Chemistry. 2015. 290(32):19387-401.

  6. T-phase and tsunami pressure waveforms recorded by near-source IMS water-column hydrophone triplets during the 2015 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Haralabus, G.; Zampolli, M.; Özel, N. M.

    2016-12-01

    Underwater acoustic signal waveforms recorded during the 2015 Chile earthquake (Mw 8.3) by the hydrophones of hydroacoustic station HA03, located at the Juan Fernandez Islands, are analyzed. HA03 is part of the Comprehensive Nuclear-Test-Ban Treaty International Monitoring System. The interest in the particular data set stems from the fact that HA03 is located only approximately 700 km SW from the epicenter of the earthquake. This makes it possible to study aspects of the signal associated with the tsunamigenic earthquake, which would be more difficult to detect had the hydrophones been located far from the source. The analysis shows that the direction of arrival of the T phase can be estimated by means of a three-step preprocessing technique which circumvents spatial aliasing caused by the hydrophone spacing, the latter being large compared to the wavelength. Following this preprocessing step, standard frequency-wave number analysis (F-K analysis) can accurately estimate back azimuth and slowness of T-phase signals. The data analysis also shows that the dispersive tsunami signals can be identified by the water-column hydrophones at the time when the tsunami surface gravity wave reaches the station.

  7. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis

    PubMed Central

    Matsui, Takaaki; Thitamadee, Siripong; Murata, Tomoko; Kakinuma, Hisaya; Nabetani, Takuji; Hirabayashi, Yoshio; Hirate, Yoshikazu; Okamoto, Hitoshi; Bessho, Yasumasa

    2011-01-01

    The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left–right asymmetric body plan in zebrafish, is generated from a cluster of ∼20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left–right asymmetric body plan. PMID:21628557

  8. Enhancing weak transient signals in SEVIRI false color imagery: Application to dust source detection in southern Africa

    NASA Astrophysics Data System (ADS)

    Murray, J. E.; Brindley, H. E.; Bryant, R. G.; Russell, J. E.; Jenkins, K. F.; Washington, R.

    2016-09-01

    A method is described to significantly enhance the signature of dust events using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with either (a) low levels of dust emission or (b) dust emissions with high salt or low quartz content. Different channel combinations, of the differenced data from the steps above, are then rendered in false color imagery for the purpose of improved identification of dust source locations and activity. We have applied this clear-sky difference (CSD) algorithm over three (globally significant) source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case study analyses indicate three notable advantages associated with the CSD approach over established image rendering methods: (i) an improved ability to detect dust plumes, (ii) the observation of source activation earlier in the diurnal cycle, and (iii) an improved ability to resolve and pinpoint dust plume source locations.

  9. Mechanisms of Action of Uncaria rhynchophylla Ethanolic Extract for Its Vasodilatory Effects.

    PubMed

    Loh, Yean Chun; Ch'ng, Yung Sing; Tan, Chu Shan; Ahmad, Mariam; Asmawi, Mohd Zaini; Yam, Mun Fei

    2017-09-01

    Uncaria rhynchophylla is one of the major components included in Traditional Chinese Medicine prescriptions for hypertensive treatment. Previous studies have suggested that U. rhynchophylla might contain vasodilation-mediating active compounds, especially indole alkaloids. Hence, this study was carried out to determine the vasodilatory effects of U. rhynchophylla, which was extracted by different solvents. The most effective extract was then further studied for its signaling mechanism pathways. The authenticity of U. rhynchophylla was assured by using modernized tri-step Fourier transform infrared (FTIR), including conventional 1D FTIR, second derivative scanning combined with 2D-correlated IR spectroscopy. Results obtained proved that the fingerprint of U. rhynchophylla used was identical to the atlas. Isolated aortic rings from male Sprague-Dawley rats were preconstricted with phenylephrine (PE) followed by cumulative addition of U. rhynchophylla extracts. The signaling mechanism pathways were studied by incubation with different receptor antagonists before the PE precontraction. In conclusion, the 95% ethanolic U. rhynchophylla extract (GT100) was found to be most effective with an EC 50 value of 0.028 ± 0.002 mg/mL and an R max value of 101.30% ± 2.82%. The signaling mechanism pathways employed for exerting its vasodilatory effects included nitric oxide/soluble guanylyl cylcase/cyclic guanosine monophosphate (NO/sGC/cGMP) and PGI 2 (endothelium-derived relaxing factors), G protein-coupled M 3 - and β 2 receptors, regulation of membrane potential through voltage-operated calcium channel, intracellular Ca 2+ released from inositol triphosphate receptor (IP 3 R), and all potassium channels except the K ca channel.

  10. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  11. Differentiating signals to make biological sense - A guide through databases for MS-based non-targeted metabolomics.

    PubMed

    Gil de la Fuente, Alberto; Grace Armitage, Emily; Otero, Abraham; Barbas, Coral; Godzien, Joanna

    2017-09-01

    Metabolite identification is one of the most challenging steps in metabolomics studies and reflects one of the greatest bottlenecks in the entire workflow. The success of this step determines the success of the entire research, therefore the quality at which annotations are given requires special attention. A variety of tools and resources are available to aid metabolite identification or annotation, offering different and often complementary functionalities. In preparation for this article, almost 50 databases were reviewed, from which 17 were selected for discussion, chosen for their online ESI-MS functionality. The general characteristics and functions of each database is discussed in turn, considering the advantages and limitations of each along with recommendations for optimal use of each tool, as derived from experiences encountered at the Centre for Metabolomics and Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering their utility in non-targeted metabolomics, including aspects such as identifier assignment, structural assignment and interpretation of results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oncology meets immunology: the cancer-immunity cycle.

    PubMed

    Chen, Daniel S; Mellman, Ira

    2013-07-25

    The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Exploring the Arabidopsis proteome: influence of protein solubilization buffers on proteome coverage.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  14. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    PubMed Central

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins. PMID:25561235

  15. Identification of a novel structure in heparin generated by potassium permanganate oxidation

    PubMed Central

    Beccati, Daniela; Roy, Sucharita; Yu, Fei; Gunay, Nur Sibel; Capila, Ishan; Lech, Miroslaw; Linhardt, Robert J.; Venkataraman, Ganesh

    2012-01-01

    The worldwide heparin contamination crisis in 2008 led health authorities to take fundamental steps to better control heparin manufacture, including implementing appropriate analytical and bio-analytical methods to ensure production and release of high quality heparin sodium product. Consequently, there is an increased interest in the identification and structural elucidation of unusually modified structures that may be present in heparin. Our study focuses on the structural elucidation of species that give rise to a signal observed at 2.10 ppm in the N-acetyl region of the 1H NMR spectrum of some pharmaceutical grade heparin preparations. Structural elucidation experiments were carried out using homonuclear (COSY, TOSCY and NOESY) and heteronuclear (HSQC, HSQC-DEPT, HMQC-COSY, HSQC-TOCSY, and HMBC) 2D NMR spectroscopy on both heparin as well as heparin-like model compounds. Our results identify a novel type of oxidative modification of the heparin chain that results from a specific step in the manufacturing process used to prepare heparin. PMID:25147414

  16. Spacecraft with gradual acceleration of solar panels

    NASA Technical Reports Server (NTRS)

    Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)

    1996-01-01

    A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.

  17. Arm motion coupling during locomotion-like actions: An experimental study and a dynamic model

    PubMed Central

    Shapkova, E.Yu; Terekhov, A.V.; Latash, M.L.

    2010-01-01

    We studied the coordination of arm movements in standing persons who performed an out-of-phase arm-swinging task while stepping in place or while standing. The subjects were instructed to stop one of the arms in response to an auditory signal while trying to keep the rest of the movement pattern unchanged. A significant increase was observed in the amplitude of the arm that continued swinging under both the stepping and standing conditions. This increase was similar between the right and left arms. A dynamic model was developed including two coupled non-linear van der Pol oscillators. We assumed that stopping an arm did not eliminate the coupling but introduced a new constraint. Within the model, superposition of two factors, a command to stop the ongoing movement of one arm and the coupling between the two oscillators, has been able to account for the observed effects. The model makes predictions for future experiments. PMID:21628725

  18. STEPPING - Smartphone-Based Portable Pedestrian Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Lukianto, C.; Sternberg, H.

    2011-12-01

    Many current smartphones are fitted with GPS receivers, which, in combination with a map application form a pedestrian navigation system for outdoor purposes. However, once an area with insufficient satellite signal coverage is entered, these navigation systems cease to function. For indoor positioning, there are already several solutions available which are usually based on measured distances to reference points. These solutions can achieve resolutions as low as the sub-millimetre range depending on the complexity of the set-up. STEPPING project, developed at HCU Hamburg Germany aims at designing an indoor navigation system consisting of a small inertial navigation system and a new, robust sensor fusion algorithm running on a current smartphone. As this system is theoretically able to integrate any available positioning method, it is independent of a particular method and can thus be realized on a smartphone without affecting user mobility. Potential applications include --but are not limited to: Large trade fairs, airports, parking decks and shopping malls, as well as ambient assisted living scenarios.

  19. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  20. Protein detection using biobarcodes.

    PubMed

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  1. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.

    PubMed

    Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun

    2017-09-01

    Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.

  2. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    DOEpatents

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  3. An Advanced simulation Code for Modeling Inductive Output Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing currentmore » density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.« less

  4. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  5. High-order above-threshold ionization beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  6. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  7. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  8. Sector-Based Detection for Hands-Free Speech Enhancement in Cars

    NASA Astrophysics Data System (ADS)

    Lathoud, Guillaume; Bourgeois, Julien; Freudenberger, Jürgen

    2006-12-01

    Adaptation control of beamforming interference cancellation techniques is investigated for in-car speech acquisition. Two efficient adaptation control methods are proposed that avoid target cancellation. The "implicit" method varies the step-size continuously, based on the filtered output signal. The "explicit" method decides in a binary manner whether to adapt or not, based on a novel estimate of target and interference energies. It estimates the average delay-sum power within a volume of space, for the same cost as the classical delay-sum. Experiments on real in-car data validate both methods, including a case with[InlineEquation not available: see fulltext.] km/h background road noise.

  9. Computer control of a microgravity mammalian cell bioreactor

    NASA Technical Reports Server (NTRS)

    Hall, William A.

    1987-01-01

    The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.

  10. Automatic protein structure solution from weak X-ray data

    NASA Astrophysics Data System (ADS)

    Skubák, Pavol; Pannu, Navraj S.

    2013-11-01

    Determining new protein structures from X-ray diffraction data at low resolution or with a weak anomalous signal is a difficult and often an impossible task. Here we propose a multivariate algorithm that simultaneously combines the structure determination steps. In tests on over 140 real data sets from the protein data bank, we show that this combined approach can automatically build models where current algorithms fail, including an anisotropically diffracting 3.88 Å RNA polymerase II data set. The method seamlessly automates the process, is ideal for non-specialists and provides a mathematical framework for successfully combining various sources of information in image processing.

  11. Efficient algorithms for a class of partitioning problems

    NASA Technical Reports Server (NTRS)

    Iqbal, M. Ashraf; Bokhari, Shahid H.

    1990-01-01

    The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.

  12. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  13. New Insights of Epithelial-Mesenchymal Transition in Cancer Metastasis

    PubMed Central

    Wu, Yadi; Zhou, Binhua P.

    2009-01-01

    Epithelial-mesenchymal transition (EMT) is a key step during embryonic morphogenesis, heart development, chronic degenerative fibrosis, and cancer metastasis. Several distinct traits have been conveyed by EMT, including cell motility, invasiveness, resistance to apoptosis, and some properties of stem cells. Many signal pathways have contributed to the induction of EMT, such as transforming growth factor-β, Wnt, Hedgehog, Notch, and nuclear factor κB. Over the last few years, increasing evidence has shown that EMT plays an essential role in tumor progression and metastasis. Understanding the molecular mechanism of EMT has a great effect in unraveling the metastatic cascade and may lead to novel interventions for metastatic disease. PMID:18604456

  14. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies

    PubMed Central

    Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita

    2015-01-01

    Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923

  15. Fast fluorescence techniques for crystallography beamlines

    PubMed Central

    Stepanov, Sergey; Hilgart, Mark; Yoder, Derek W.; Makarov, Oleg; Becker, Michael; Sanishvili, Ruslan; Ogata, Craig M.; Venugopalan, Nagarajan; Aragão, David; Caffrey, Martin; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples. PMID:21808424

  16. Detecting and Cataloging Global Explosive Volcanism Using the IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Green, D. N.; LE Pichon, A.; Fee, D.; Shearer, P. M.; Mialle, P.; Ceranna, L.

    2015-12-01

    Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. These eruptions can also inject large volumes of ash into heavily travelled aviation corridors, thus posing a significant societal and economic hazard. Detecting and counting the global occurrence of explosive volcanism helps with progress toward several goals in earth sciences and has direct applications in volcanic hazard mitigation. This project aims to build a quantitative catalog of global explosive volcanic activity using the International Monitoring System (IMS) infrasound network. We are developing methodologies to search systematically through IMS infrasound array detection bulletins to identify signals of volcanic origin. We combine infrasound signal association and source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent infrasound signals in a global grid. When volcanic signals are identified, we extract metrics such as location, origin time, acoustic intensity, signal duration, and frequency content, compiling the results into a catalog. We are testing and validating our method on several well-known case studies, including the 2009 eruption of Sarychev Peak, Kuriles, the 2010 eruption of Eyjafjallajökull, Iceland, and the 2015 eruption of Calbuco, Chile. This work represents a step toward the goal of integrating IMS data products into global volcanic eruption early warning and notification systems. Additionally, a better characterization of volcanic signal detection helps improve understanding of operational event detection, discrimination, and association capabilities of the IMS network.

  17. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  18. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  19. Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.

    2016-06-01

    The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.

  20. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  1. Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph.

    PubMed

    Lee, Seung Min; Kim, Ko Keun; Park, Kwang Suk

    2008-01-01

    Capacitive coupled Electrocardiography (ECG) is introduced as non-invasive measurement technology for ubiquitous health care and appliance are spread out widely. Although it has many merits, however, capacitive coupled ECG is very weak for motion artifacts for its non-skin-contact property. There are many studies for artifact problems which treats all artifact signals below 0.8Hz. In our capacitive coupled ECG measurement system, artifacts exist not only below 0.8Hz but also over than 10Hz. Therefore, artifact noise removal algorithm using wavelet method is tested to reject artifact-wandered signal from measured signals. It is observed that using power calculation each decimation step, artifact-wandered signal is removed as low frequency artifacts as high frequency artifacts. Although some original ECG signal is removed with artifact signal, we could level the signal quality for long term measure which shows the best quality ECG signals as we can get.

  2. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    Savorani, F.; Tomasi, G.; Engelsen, S. B.

    2010-02-01

    The increasing scientific and industrial interest towards metabonomics takes advantage from the high qualitative and quantitative information level of nuclear magnetic resonance (NMR) spectroscopy. However, several chemical and physical factors can affect the absolute and the relative position of an NMR signal and it is not always possible or desirable to eliminate these effects a priori. To remove misalignment of NMR signals a posteriori, several algorithms have been proposed in the literature. The icoshift program presented here is an open source and highly efficient program designed for solving signal alignment problems in metabonomic NMR data analysis. The icoshift algorithm is based on correlation shifting of spectral intervals and employs an FFT engine that aligns all spectra simultaneously. The algorithm is demonstrated to be faster than similar methods found in the literature making full-resolution alignment of large datasets feasible and thus avoiding down-sampling steps such as binning. The algorithm uses missing values as a filling alternative in order to avoid spectral artifacts at the segment boundaries. The algorithm is made open source and the Matlab code including documentation can be downloaded from www.models.life.ku.dk.

  3. Hydrogen incorporation in high hole density GaN:Mg

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  4. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  5. Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum

    PubMed Central

    Ansari, Salim; Troelenberg, Nicole; Dao, Van Anh; Richter, Tobias; Klingler, Martin

    2018-01-01

    The distinction of anterior versus posterior is a crucial first step in animal embryogenesis. In the fly Drosophila, this axis is established by morphogenetic gradients contributed by the mother that regulate zygotic target genes. This principle has been considered to hold true for insects in general but is fundamentally different from vertebrates, where zygotic genes and Wnt signaling are required. We investigated symmetry breaking in the beetle Tribolium castaneum, which among insects represents the more ancestral short-germ embryogenesis. We found that maternal Tc-germ cell-less is required for anterior localization of maternal Tc-axin, which represses Wnt signaling and promotes expression of anterior zygotic genes. Both RNAi targeting Tc-germ cell-less or double RNAi knocking down the zygotic genes Tc-homeobrain and Tc-zen1 led to the formation of a second growth zone at the anterior, which resulted in double-abdomen phenotypes. Conversely, interfering with two posterior factors, Tc-caudal and Wnt, caused double-anterior phenotypes. These findings reveal that maternal and zygotic mechanisms, including Wnt signaling, are required for establishing embryo polarity and induce the segmentation clock in a short-germ insect. PMID:29432152

  6. Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness.

    PubMed

    Mattick, John S A; Kamisoglu, Kubra; Ierapetritou, Marianthi G; Androulakis, Ioannis P; Berthiaume, Francois

    2013-01-01

    The changes that occur in mammalian systems following trauma and sepsis, termed systemic inflammatory response syndrome, elicit major changes in carbohydrate, protein, and energy metabolism. When these events persist for too long they result in a severe depletion of lean body mass, multiple organ dysfunction, and eventually death. Nutritional supplementation has been investigated to offset the severe loss of protein, and recent evidence suggests that diets enriched in branched-chain amino acids (BCAAs) may be especially beneficial. BCAAs are metabolized in two major steps that are differentially expressed in muscle and liver. In muscle, BCAAs are reversibly transaminated to the corresponding α-keto acids. For the complete degradation of BCAAs, the α-keto acids must travel to the liver to undergo oxidation. The liver, in contrast to muscle, does not significantly express the branched-chain aminotransferase. Thus, BCAA degradation is under the joint control of both liver and muscle. Recent evidence suggests that in liver, BCAAs may perform signaling functions, more specifically via activation of mTOR (mammalian target of rapamycin) signaling pathway, influencing a wide variety of metabolic and synthetic functions, including protein translation, insulin signaling, and oxidative stress following severe injury and infection. However, understanding of the system-wide effects of BCAAs that integrate both metabolic and signaling aspects is currently lacking. Further investigation in this respect will help rationalize the design and optimization of nutritional supplements containing BCAAs for critically ill patients. Copyright © 2013 Wiley Periodicals, Inc.

  7. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  8. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  9. Signal conditioning units for vibration measurement in HUMS

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Liu, Tingting; Yu, Zirong; Chen, Lijuan; Huang, Xinjie

    2018-03-01

    A signal conditioning units for vibration measurement in HUMS is proposed in the paper. Due to the frequency of vibrations caused by components in helicopter are different, two steps amplifier and programmable anti-aliasing filter are designed to meet the measurement of different types of helicopter. Vibration signals are converted into measurable electrical signals combing with ICP driver firstly. Then pre-amplifier and programmable gain amplifier is applied to magnify the weak electrical signals. In addition, programmable anti-aliasing filter is utilized to filter the interference of noise. The units were tested using function signal generator and oscilloscope. The experimental results have demonstrated the effectiveness of our proposed method in quantitatively and qualitatively. The method presented in this paper can meet the measurement requirement for different types of helicopter.

  10. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection.

    PubMed

    O'Hara, Samantha D; Garcea, Robert L

    2016-11-01

    Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.

  11. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  12. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  13. LYSO-based precision timing detectors with SiPM readout

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Hassanshahi, M. H.; Griffioen, M.; Mao, J.; Mangu, A.; Peña, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2018-07-01

    Particle detectors based on scintillation light are particularly well suited for precision timing applications with resolutions of a few 10's of ps. The large primary signal and the initial rise time of the scintillation light result in very favorable signal-to-noise conditions with fast signals. In this paper we describe timing studies using a LYSO-based sampling calorimeter with wavelength-shifting capillary light extraction and silicon photomultipliers as photosensors. We study the contributions of various steps of the signal generation to the total time resolution, and demonstrate its feasibility as a radiation-hard technology for calorimeters at high intensity hadron colliders.

  14. Effects of intensity on muscle-specific voluntary electromechanical delay and relaxation electromechanical delay.

    PubMed

    Smith, Cory M; Housh, Terry J; Hill, Ethan C; Keller, Josh L; Johnson, Glen O; Schmidt, Richard J

    2018-06-01

    The purposes of this study were to examine: 1) the potential muscle-specific differences in voluntary electromechanical delay (EMD) and relaxation electromechanical delay (R-EMD), and 2) the effects of intensity on EMD and R-EMD during step incremental isometric muscle actions from 10 to 100% maximal voluntary isometric contraction (MVIC). EMD and R-EMD measures were calculated from the simultaneous assessments of electromyography, mechanomyography, and force production from the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) during step isometric muscle actions. There were no differences between the VL, VM, and RF for the voluntary EMD E-M (onsets of the electromyographic to mechanomyographic signals), EMD M-F (onsets the mechanomyographic to force production), or EMD E-F (onsets of the electromyographic signal to force production) as well as R-EMD E-M (cessation of electromyographic to mechanomyographic signal), R-EMD M-F (cessation of mechanomyographic signal to force cessation), or R-EMD E-F (cessation of electromyorgraphic signal to force cessation) at any intensity. There were decreases in all EMD and R-EMD measures with increases in intensity. The relative contributions from EMD E-M and EMD M-F to EMD E-F as well as R-EMD E-M and R-EMD M-F to R-EMD E-F remained similar across all intensities. The superficial muscles of the quadriceps femoris shared similar EMD and R-EMD measurements.

  15. MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS

    DOEpatents

    Cooke-Yarborough, E.H.

    1960-12-01

    A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

  16. Direction Finding With Mutually Orthogonal Antennas

    DTIC Science & Technology

    2011-03-24

    information of these waves must be estimated. The third step, referred to as geolocation , attempts to use the bearing information from step two...DF is distinct from, but related to, the geolocation problem. In DF we seek to answer, “where did that signal come from?” The geolocation problem...Sensor Technology Division) contracted a major aeronautical systems development company to research a DF and geolocation system for UAVs. The system

  17. Fine Pointing of Military Spacecraft

    DTIC Science & Technology

    2007-03-01

    estimate is high. But feedback controls are attempting to fix the attitude at the next time step with error based on the previous time step without using ...52 a. Stability Analysis Consider not using the reference trajectory in the feedback signal. The previous stability proof (Refs.[43],[46]) are no... robust steering law and quaternion feedback control [52]. TASS2 has center-of-gravity offset disturbance that must be countered by the three CMG

  18. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis.

    PubMed

    Shahin, Victor

    2017-08-01

    Apoptosis is a programmed cell death playing key roles in physiology and pathophysiology of multi cellular organisms. Its nuclear manifestation requires transmission of the death signals across the nuclear pore complexes (NPCs). In strategic sequential steps apoptotic factors disrupt NPCs structure, integrity and barrier ultimately leading to nuclear breakdown. The present review reflects on these steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  20. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

Top