Sample records for significant design challenges

  1. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  2. Trajectory design for Saturnian Ocean Worlds orbiters using multidimensional Poincaré maps

    NASA Astrophysics Data System (ADS)

    Davis, Diane Craig; Phillips, Sean M.; McCarthy, Brian P.

    2018-02-01

    Missions based on low-energy orbits in the vicinity of planetary moons, such as Titan or Enceladus, involve significant end-to-end trajectory design challenges due to the gravitational effects of the distant larger primary. To address these challenges, the current investigation focuses on the visualization and use of multidimensional Poincaré maps to perform preliminary design of orbits with significant out-of-plane components, including orbits that provide polar coverage. Poincaré maps facilitate the identification of families of solutions to a given orbit problem and provide the ability to easily respond to changing inputs and requirements. A visual-based design process highlights a variety of trajectory options near Saturn's ocean worlds, including both moon-centered orbits and libration point orbits.

  3. Analysis of Challenges for Management Education in India Using Total Interpretive Structural Modelling

    ERIC Educational Resources Information Center

    Mahajan, Ritika; Agrawal, Rajat; Sharma, Vinay; Nangia, Vinay

    2016-01-01

    Purpose: The purpose of this paper is to identify challenges for management education in India and explain their nature, significance and interrelations using total interpretive structural modelling (TISM), an innovative version of Warfield's interpretive structural modelling (ISM). Design/methodology/approach: The challenges have been drawn from…

  4. Robotic Telesurgery Research

    DTIC Science & Technology

    2010-03-01

    piece of tissue. Full Mobility Manipulator Robot The primary challenge with the design of a full mobility robot is meeting the competing design...streamed through an embedded plug-in for VLC player using asf/wmv encoding with 200ms buffering. A benchtop test of the remote user interface was...encountered in ensuring quality video is being made available to the surgeon. A significant challenge has been to consistently provide high quality video

  5. Lessons learned for composite structures

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.

    1991-01-01

    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes.

  6. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  7. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.

    PubMed

    Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A

    2017-10-01

    To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Steps to Leadership Action Learning Sets: "Make It Challenging but Not Too Challenging"

    ERIC Educational Resources Information Center

    Hughes, Derek

    2010-01-01

    This paper reviews how action learning was used as part of a regional leadership development programme involving a number of public sector organisations. It explores how the sets were designed and set up and the significant challenges that this particular approach brought. A number of positive tangible outcomes were produced from the sets and…

  9. Innovative Trajectory Designs to meet Exploration Challenges

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2006-01-01

    This document is a viewgraph presentation of the conference paper. Missions incorporated into NASA's Vision for Space Exploration include many different destinations and regions; are challenging to plan; and need new and innovative trajectory design methods to enable them. By combining proven methods with chaos dynamics, exploration goals that require maximum payload mass or minimum duration can be achieved. The implementation of these innovative methods, such as weak stability boundaries, has altered NASA's approach to meet exploration challenges and is described to show how exploration goals may be met in the next decade. With knowledge that various perturbations play a significant role, the mission designer must rely on both traditional design strategies as well as these innovative methods. Over the past decades, improvements have been made that would at first glance seem dramatic. This paper provides a brief narrative on how a fundamental shift has occurred and how chaos dynamics improve the design of exploration missions with complex constraints.

  10. Institutional management of core facilities during challenging financial times.

    PubMed

    Haley, Rand

    2011-12-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  11. Market analysis of construction materials with recommendations for the future of the industry : final report, January 14, 2010.

    DOT National Transportation Integrated Search

    2010-01-14

    Due to the volatility of current highway construction commodity prices, owners, contractors, and designers are facing serious challenges in both short-term estimating and long-term planning. Among these challenges is significant uncertainty about the...

  12. Safeguards by Design Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwin, Jennifer Louise

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always bemore » as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).« less

  13. Intelligent Tutoring Systems for Literacy: Existing Technologies and Continuing Challenges

    ERIC Educational Resources Information Center

    Jacovina, Matthew E.; McNamara, Danielle S.

    2017-01-01

    In this chapter, we describe several intelligent tutoring systems (ITSs) designed to support student literacy through reading comprehension and writing instruction and practice. Although adaptive instruction can be a powerful tool in the literacy domain, developing these technologies poses significant challenges. For example, evaluating the…

  14. Sex Work Research: Methodological and Ethical Challenges

    ERIC Educational Resources Information Center

    Shaver, Frances M.

    2005-01-01

    The challenges involved in the design of ethical, nonexploitative research projects with sex workers or any other marginalized population are significant. First, the size and boundaries of the population are unknown, making it extremely difficult to get a representative sample. Second, because membership in hidden populations often involves…

  15. Employing the TPACK Framework for Researcher-Teacher Co-Design of a Mobile-Assisted Seamless Language Learning Environment

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Chai, Ching Sing; Zhang, Xujuan; King, Ronnel B.

    2015-01-01

    Integrating technologies into teaching and learning poses a significant challenge for many teachers who lack socio-techno-pedagogical know-how and time to design interventions. A possible solution is to design sound technology-enhanced learning (TEL) environments with relevant content and pedagogical tools to reduce teachers' design efforts.…

  16. Guardrails for use on historic bridges: volume 2--bridge deck overhang design.

    DOT National Transportation Integrated Search

    2016-11-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are : made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridge...

  17. The development of a questionnaire to assess the perceptions of care staff towards people with intellectual disabilities who display challenging behaviour.

    PubMed

    Williams, Ruth J; Rose, John L

    2007-06-01

    The perceptions of staff about challenging behaviour may be a key factor in designing successful behavioural interventions. There is a lack of robust psychometric instruments designed to assess staff attributions towards incidents of challenging behaviour. The aim of this research was to develop a scale based upon the self-regulation theory of illness behaviour. Two staff focus groups identified and clarified relevant constructs to be included in the Challenging Behaviour Perception Questionnaire (CBPQ), which was then completed by 51 staff. Some correlations between the CBPQ and the Attributional Style Questionnaire were found. A significant amount of the variance in the perception of challenging behaviour was explained by the subscales of the new questionnaire. In particular, episodic timeline would seem to be a promising area for further investigation.

  18. Design and manufacturing challenges of optogenetic neural interfaces: a review

    NASA Astrophysics Data System (ADS)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H.

    2017-08-01

    Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. Significance: Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.

  19. Design Research with a Focus on Learning Processes: An Overview on Achievements and Challenges

    ERIC Educational Resources Information Center

    Prediger, Susanne; Gravemeijer, Koeno; Confrey, Jere

    2015-01-01

    Design research continues to gain prominence as a significant methodology in the mathematics education research community. This overview summarizes the origins and the current state of design research practices focusing on methodological requirements and processes of theorizing. While recognizing the rich variations in the foci and scale of design…

  20. Architectural Education Adapting to Climate Challenges in Light of "Feng-Shui"

    ERIC Educational Resources Information Center

    Xu, Ping

    2016-01-01

    Weather challenges have become a significant issue for our society in recent years. Thousands of people have lost their homes and lives. Buildings designed without taking into account wind and water factors have repeatedly been destroyed during natural disasters. These problems in practice reflect the weak points in education. Our ancestors…

  1. Design of a rear anamorphic attachment for digital cinematography

    NASA Astrophysics Data System (ADS)

    Cifuentes, A.; Valles, A.

    2008-09-01

    Digital taking systems for HDTV and now for the film industry present a particularly challenging design problem for rear adapters in general. The thick 3-channel prism block in the camera provides an important challenge in the design. In this paper the design of a 1.33x rear anamorphic attachment is presented. The new design departs significantly from the traditional Bravais condition due to the thick dichroic prism block. Design strategies for non-rotationally symmetric systems and fields of view are discussed. Anamorphic images intrinsically have a lower contrast and less resolution than their rotationally symmetric counterparts, therefore proper image evaluation must be considered. The interpretation of the traditional image quality methods applied to anamorphic images is also discussed in relation to the design process. The final design has a total track less than 50 mm, maintaining the telecentricity of the digital prime lens and taking full advantage of the f/1.4 prism block.

  2. Status of Foreground and Instrument Challenges for 21cm EoR experiments - Design Strategies for SKA and HERA

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan

    2018-05-01

    Direct detection of the Epoch of Reionization (EoR) via redshifted 21 cm line of H i will reveal the nature of the first stars and galaxies as well as revolutionize our understanding of a poorly explored evolutionary phase of the Universe. Projects such as the MWA, LOFAR, and PAPER commenced in the last decade with the promise of high significance statistical detection of the EoR, but have so far only weakly constrained models owing to unforeseen challenges from bright foreground sources and instrument systematics. It is essential for next generation instruments like the HERA and SKA to have these challenges addressed. I present an analysis of these challenges - wide-field measurements, antenna beam chromaticity, reflections in the instrument, and antenna position errors - along with performance specifications and design solutions that will be critical to designing successful next-generation instruments in enabling the first detection and also in placing meaningful constraints on reionization models.

  3. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    NASA Technical Reports Server (NTRS)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  4. The Role of Curriculum in Organizational Significant Change Planning

    ERIC Educational Resources Information Center

    Chrusciel, Don

    2006-01-01

    Purpose: With significant change as an ongoing challenge, the development and use of a flexible change curriculum is identified as a success factor that will allow an organization to optimize the outcome from change transformations. Design/methodology/approach: After discussing significant change, this paper will contrast two organizations in…

  5. Image-guided tissue engineering

    PubMed Central

    Ballyns, Jeffrey J; Bonassar, Lawrence J

    2009-01-01

    Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811

  6. Approach to design neural cryptography: a generalized architecture and a heuristic rule.

    PubMed

    Mu, Nankun; Liao, Xiaofeng; Huang, Tingwen

    2013-06-01

    Neural cryptography, a type of public key exchange protocol, is widely considered as an effective method for sharing a common secret key between two neural networks on public channels. How to design neural cryptography remains a great challenge. In this paper, in order to provide an approach to solve this challenge, a generalized network architecture and a significant heuristic rule are designed. The proposed generic framework is named as tree state classification machine (TSCM), which extends and unifies the existing structures, i.e., tree parity machine (TPM) and tree committee machine (TCM). Furthermore, we carefully study and find that the heuristic rule can improve the security of TSCM-based neural cryptography. Therefore, TSCM and the heuristic rule can guide us to designing a great deal of effective neural cryptography candidates, in which it is possible to achieve the more secure instances. Significantly, in the light of TSCM and the heuristic rule, we further expound that our designed neural cryptography outperforms TPM (the most secure model at present) on security. Finally, a series of numerical simulation experiments are provided to verify validity and applicability of our results.

  7. Equity for Students with High-Incidence Disabilities in Statewide Assessments: A Technology-Based Solution

    ERIC Educational Resources Information Center

    Meyen, Ed; Poggio, John; Seok, Soonhwa; Smith, Sean

    2006-01-01

    One of the most significant challenges facing policy makers in education today is to ensure that state assessments designed to measure student performance across specified grade-level curriculum content standards will allow all students to demonstrate what they have learned. This challenge is made complex by the varied attributes of students with…

  8. A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems

    DTIC Science & Technology

    2016-03-01

    insights gleaned to DoD. The autonomy community has identified significant challenges associated with test, evaluation verification and validation of...licensure as a test, evaluation, verification , and validation (TEVV) framework that can address these challenges. IDA found that traditional...language requirements to testable (preferably machine testable) specifications • Design of architectures that treat development and verification of

  9. The challenge of restoring natural fire to wilderness

    Treesearch

    David J. Parsons

    2000-01-01

    Despite clear legislative and policy direction to preserve natural conditions in wilderness, the maintenance of fire as a natural process has proven to be a significant challenge to federal land managers. As of 1998, only 88 of the 596 designated wilderness areas in the United States, excluding Alaska, had approved fire plans that allow some natural ignitions to burn;...

  10. The aerodynamic challenges of the design and development of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.

    1985-01-01

    The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.

  11. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.

    1996-01-01

    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.

  12. Using Virtual Reality with and without Gaming Attributes for Academic Achievement

    ERIC Educational Resources Information Center

    Vogel, Jennifer J.; Greenwood-Ericksen, Adams; Cannon-Bowers, Jan; Bowers, Clint A.

    2006-01-01

    A subcategory of computer-assisted instruction (CAI), games have additional attributes such as motivation, reward, interactivity, score, and challenge. This study used a quasi-experimental design to determine if previous findings generalize to non simulation-based game designs. Researchers observed significant improvement in the overall population…

  13. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  14. Incorporating CCSDS telemetry standards and philosophy on Cassini

    NASA Technical Reports Server (NTRS)

    Day, John C.; Elson, Anne B.

    1995-01-01

    The Cassini project at the Jet Propulsion Laboratory (JPL) is implementing a spacecraft telemetry system based on the Consultative Committee for Space Data Systems (CCSDS) packet telemetry standards. Resolving the CCSDS concepts with a Ground Data System designed to handle time-division-multiplexed telemetry and also handling constraints unique to a deep-space planetary spacecraft (such as fixed downlink opportunities, small downlink rates and requirements for on-board data storage) have resulted in spacecraft and ground system design challenges. Solving these design challenges involved adapting and extending the CCSDS telemetry standards as well as changes to the spacecraft and ground system designs. The resulting spacecraft/ground system design is an example of how new ideas and philosophies can be incorporated into existing systems and design approaches without requiring significant rework. In addition, it shows that the CCSDS telemetry standards can be successfully applied to deep-space planetary spacecraft.

  15. Mapping remote and multidisciplinary learning barriers: lessons from challenge-based innovation at CERN

    NASA Astrophysics Data System (ADS)

    Jensen, Matilde Bisballe; Utriainen, Tuuli Maria; Steinert, Martin

    2018-01-01

    This paper presents the experienced difficulties of students participating in the multidisciplinary, remote collaborating engineering design course challenge-based innovation at CERN. This is with the aim to identify learning barriers and improve future learning experiences. We statistically analyse the rated differences between distinct design activities, educational background and remote vs. co-located collaboration. The analysis is based on a quantitative and qualitative questionnaire (N = 37). Our analysis found significant ranking differences between remote and co-located activities. This questions whether the remote factor might be a barrier for the originally intended learning goals. Further a correlation between analytical and converging design phases was identified. Hence, future facilitators are suggested to help students in the transition from one design phase to the next rather than only teaching methods in the individual design phases. Finally, we discuss how educators address the identified learning barriers when designing future courses including multidisciplinary or remote collaboration.

  16. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.

    PubMed

    Ashuri, Maziar; He, Qianran; Shaw, Leon L

    2016-01-07

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ∼10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (∼300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  18. Systems engineering in a joint program environment: the joint helmet-mounted cueing system

    NASA Astrophysics Data System (ADS)

    Wilkins, Donald F.

    1999-07-01

    The Joint Helmet Mounted Cueing System (JHMCS) is a design program involving two airframe companies (Boeing and Lockheed Martin), two services (USAF and USN) and four aircraft platforms: the F-22, the F-16, the F/A-18 and the F-15. Developing equipment requirements for the combined operational and environmental needs of these diverse communities is a significant challenge. In addition, the team is geographically dispersed which presented challenges in communication and coordination. This paper details the lessons learned in producing a cost-effective design within a short development schedule and makes recommendations for future development programs.

  19. Improving the evidence base in palliative care to inform practice and policy: thinking outside the box.

    PubMed

    Aoun, Samar M; Nekolaichuk, Cheryl

    2014-12-01

    The adoption of evidence-based hierarchies and research methods from other disciplines may not completely translate to complex palliative care settings. The heterogeneity of the palliative care population, complexity of clinical presentations, and fluctuating health states present significant research challenges. The aim of this narrative review was to explore the debate about the use of current evidence-based approaches for conducting research, such as randomized controlled trials and other study designs, in palliative care, and more specifically to (1) describe key myths about palliative care research; (2) highlight substantive challenges of conducting palliative care research, using case illustrations; and (3) propose specific strategies to address some of these challenges. Myths about research in palliative care revolve around evidence hierarchies, sample heterogeneity, random assignment, participant burden, and measurement issues. Challenges arise because of the complex physical, psychological, existential, and spiritual problems faced by patients, families, and service providers. These challenges can be organized according to six general domains: patient, system/organization, context/setting, study design, research team, and ethics. A number of approaches for dealing with challenges in conducting research fall into five separate domains: study design, sampling, conceptual, statistical, and measures and outcomes. Although randomized controlled trials have their place whenever possible, alternative designs may offer more feasible research protocols that can be successfully implemented in palliative care. Therefore, this article highlights "outside the box" approaches that would benefit both clinicians and researchers in the palliative care field. Ultimately, the selection of research designs is dependent on a clearly articulated research question, which drives the research process. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. Contradictions in Portfolio Careers: Work Design and Client Relations

    ERIC Educational Resources Information Center

    Fenwick, Tara J.

    2006-01-01

    Purpose: The paper aims to explore "Portfolio work", an emerging form of flexible self-employment, which has been identified as significant but under-researched. This paper also seeks to explore the challenges and benefits of portfolio work from the perspective of individuals' experiences. Design/methodology/approach: The argument draws from a…

  1. Designing Capacity Building of Educators in Open Educational Resources Integration Leads to Transformational Change

    ERIC Educational Resources Information Center

    Karunanayaka, Shironica P.; Naidu, Som

    2018-01-01

    While there is growing recognition and acceptance of Open Educational Resources (OER) and Open Educational Practices (OEP) in teaching and learning, designing for their integration remains very challenging for educators. Adopting OER and OEP in their profession requires significant changes in practitioners' pedagogical thinking and practices,…

  2. The Significance of Constructivist Classroom Practice in National Curricular Design

    ERIC Educational Resources Information Center

    Booyse, Celia; Chetty, Rajendra

    2016-01-01

    Evidence of the value of constructivist theory in the classroom is especially important for educational practice in areas of poverty and social challenge. Research was undertaken in 2010 into the application of constructivist theory on instructional design. The findings of this research are particularly relevant to the current curricular crisis in…

  3. Moving Toward SCORM Compliant Content Production at Educational Software Company: Technical and Administrative Challenges

    ERIC Educational Resources Information Center

    Kultur, Can; Oytun, Erden; Cagiltay, Kursat; Ozden, M. Yasar; Kucuk, Mehmet Emin

    2004-01-01

    The Shareable Content Object Reference Model (SCORM) aims to standardize electronic course content, its packaging and delivery. Instructional designers and e-learning material producer organizations accept SCORM?s significant impact on instructional design/delivery process, however not much known about how such standards will be implemented to…

  4. Instructors as Architects-Designing Learning Spaces for Discussion-Based Online Courses

    ERIC Educational Resources Information Center

    Wang, Yu-Mei; Chen, Derthanq Victor

    2011-01-01

    Online learning space design becomes a significant issue with the proliferation of online learning in higher education. Never before has the instructor been given such a privilege in building and molding the learning space to fulfill his/her instructional aspirations. However, enormous challenges are present to the instructor in taking advantage…

  5. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States

    EPA Science Inventory

    The database design and diverse application of NLCD 2001 pose significant challenges for accuracy assessment because numerous objectives are of interest, including accuracy of land cover, percent urban imperviousness, percent tree canopy, land-cover composition, and net change. ...

  6. Examining the relationships between challenge and threat cognitive appraisals and coaching behaviours in football coaches.

    PubMed

    Dixon, Martin; Turner, Martin J; Gillman, Jamie

    2017-12-01

    Previous research demonstrates that sports coaching is a stressful activity. This article investigates coaches' challenge and threat cognitive appraisals of stressful situations and their impact on coaching behaviour, using Blascovich and Mendes' (2000) biopsychosocial model as a theoretical framework. A cross-sectional correlational design was utilised to examine the relationships between irrational beliefs (Shortened general attitude and belief scale), challenge and threat appraisals (Appraisal of life events scale), and coaching behaviours (Leadership scale for sports) of 105 professional football academy coaches. Findings reveal significant positive associations between challenge appraisals and social support, and between threat appraisals and autocratic behaviour, and a significant negative association between threat appraisals and positive feedback. Results also show that higher irrational beliefs are associated with greater threat, and lesser challenge cognitive appraisals. However, no associations were revealed between irrational beliefs and challenge cognitive appraisals. Additionally, findings demonstrate a positive relationship between age and training and instruction. Results suggest that practitioners should help coaches to appraise stressful situations as a challenge to promote positive coaching behaviours.

  7. Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot

    PubMed Central

    Choudhury, Imtiaz Ahmed; Mamat, Azuddin Bin

    2014-01-01

    Robotic technologies are being employed increasingly in the treatment of lower limb disabilities. Individuals suffering from stroke and other neurological disorders often experience inadequate dorsiflexion during swing phase of the gait cycle due to dorsiflexor muscle weakness. This type of pathological gait, mostly known as drop-foot gait, has two major complications, foot-slap during loading response and toe-drag during swing. Ankle foot orthotic (AFO) devices are mostly prescribed to resolve these complications. Existing AFOs are designed with or without articulated joint with various motion control elements like springs, dampers, four-bar mechanism, series elastic actuator, and so forth. This paper examines various AFO designs for drop-foot, discusses the mechanism, and identifies limitations and remaining design challenges. Along with two commercially available AFOs some designs possess promising prospective to be used as daily-wear device. However, the design and mechanism of AFO must ensure compactness, light weight, low noise, and high efficiency. These entailments present significant engineering challenges to develop a new design with wide consumer adoption. PMID:24892102

  8. Challenges and Opportunities for Research on Same-Sex Relationships

    PubMed Central

    Umberson, Debra; Thomeer, Mieke Beth; Kroeger, Rhiannon A.; Lodge, Amy Caroline; Xu, Minle

    2014-01-01

    Research on same-sex relationships has informed policy debates and legal decisions that greatly affect American families, yet the data and methods available to scholars studying same-sex relationships have been limited. In this article the authors review current approaches to studying same-sex relationships and significant challenges for this research. After exploring how researchers have dealt with these challenges in prior studies, the authors discuss promising strategies and methods to advance future research on same-sex relationships, with particular attention given to gendered contexts and dyadic research designs, quasi-experimental designs, and a relationship biography approach. Innovation and advances in the study of same-sex relationships will further theoretical and empirical knowledge in family studies more broadly and increase understanding of different-sex as well as same-sex relationships. PMID:25598552

  9. Designing Financial Instruments for Rapid Flood Response Using Remote Sensed and Archival Hazard and Exposure Information

    NASA Astrophysics Data System (ADS)

    Lall, U.; Allaire, M.; Ceccato, P.; Haraguchi, M.; Cian, F.; Bavandi, A.

    2017-12-01

    Catastrophic floods can pose a significant challenge for response and recovery. A key bottleneck in the speed of response is the availability of funds to a country or regions finance ministry to mobilize resources. Parametric instruments, where the release of funs is tied to the exceedance of a specified index or threshold, rather than to loss verification are well suited for this purpose. However, designing and appropriate index, that is not subject to manipulation and accurately reflects the need is a challenge, especially in developing countries which have short hydroclimatic and loss records, and where rapid land use change has led to significant changes in exposure and hydrology over time. The use of long records of rainfall from climate re-analyses, flooded area and land use from remote sensing to design and benchmark a parametric index considering the uncertainty and representativeness of potential loss is explored with applications to Bangladesh and Thailand. Prospects for broader applicability and limitations are discussed.

  10. Growth Models for Students with Significant Cognitive Disabilities. Research Brief 1

    ERIC Educational Resources Information Center

    Farley, Dan; Saven, Jessica L.; Tindal, Gerald

    2013-01-01

    Alternate assessments based on alternate achievement standards (AA-AAS) are designed to measure the academic achievement of students with the most significant cognitive disabilities (SWSCDs). AA-AAS present unique measurement challenges because of the inherent need for individualization in item presentation and response, combined with expectations…

  11. Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking

    NASA Astrophysics Data System (ADS)

    Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.

    2018-02-01

    Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.

  12. Western United States Dams Challenges Faced, Options, and Opportunities

    NASA Astrophysics Data System (ADS)

    Raff, D.

    2017-12-01

    Water management in the Western United States relies significantly upon a fleet of small to very large engineered dams to store water during times of runoff and distribute that water during times of need. Much of this infrastructure is Federally owned and/or operated, and was designed and funded during the first half of the twentieth century through a complex set of repayment contracts for Federally authorized purposes addressing water supply, recreation, and hydropower, and other water management objectives. With environmental laws, namely the Endangered Species Act, and other environmental concerns taking a more active role in water resources in the mid to latter half of the twentieth century, this infrastructure is being stressed even greater than anticipated to provide authorized purposes. Additionally, weather and climate norms being experienced are certainly near the edges, if not outside, of anticipated variability in the climate and hydrology scenarios for which the infrastructure was designed. And, finally, these dams, economically designed for a lifespan of 50 - 100 years, are experiencing maintenance challenges from routine to significant. This presentation will focus on identifying some of the history and challenges facing the water infrastructure in the Western United States. Additionally, some perspectives on future paths to meet the needs of western irrigation and hydropower production will be provided.

  13. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Mayhue, L.; Huria, H.

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less

  14. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  15. Challenges Facing 3-D Audio Display Design for Multimedia

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    The challenges facing successful multimedia presentation depend largely on the expectations of the designer and end user for a given application. Perceptual limitations in distance, elevation and azimuth sound source simulation differ significantly between headphone and cross-talk cancellation loudspeaker listening and therefore must be considered. Simulation of an environmental context is desirable but the quality depends on processing resources and lack of interaction with the host acoustical environment. While techniques such as data reduction of head-related transfer functions have been used widely to improve simulation fidelity, another approach involves determining thresholds for environmental acoustic events. Psychoacoustic studies relevant to this approach are reviewed in consideration of multimedia applications

  16. Assessing Cognitive Function in Bipolar Disorder: Challenges and Recommendations for Clinical Trial Design

    PubMed Central

    Burdick, Katherine E.; Ketter, Terence A.; Goldberg, Joseph F.; Calabrese, Joseph R.

    2015-01-01

    OBJECTIVE Neurocognitive impairment in schizophrenia has been recognized for more than a century. In contrast, only recently have significant neurocognitive deficits been recognized in bipolar disorder. Converging data suggest the importance of cognitive problems in relation to quality of life in bipolar disorder, highlighting the need for treatment and prevention efforts targeting cognition in bipolar patients. Future treatment trials targeting cognitive deficits will be met with methodological challenges due to the inherent complexity and heterogeneity of the disorder, including significant diagnostic comorbidities, the episodic nature of the illness, frequent use of polypharmacy, cognitive heterogeneity, and a lack of consensus regarding measurement of cognition and outcome in bipolar patients. Guidelines for use in designing future trials are needed. PARTICIPANTS The members of the consensus panel (each of the bylined authors) were selected based upon their expertise in bipolar disorder. Dr. Burdick is a neuropsychologist who has studied cognition in this illness for 15 years; Drs. Ketter, Calabrese, and Goldberg each bring considerable expertise in the treatment of bipolar disorder both within and outside of controlled clinical trials. This consensus statement was derived from work together at scientific meetings (e.g. symposium presention at the 2014 Annual meeting of the American Society of Clinical Psychopharmacology, among others) and ongoing discussions by conference call. With the exception of the public presentations on this topic, these meetings were closed to outside participants. EVIDENCE A literature review was undertaken by the authors to identify illness-specific challenges relevant to the design and conduct of treatment trials targeting neurocognition in bipolar disorder. Expert opinion from each of the authors guided the consensus recommendations. CONSENSUS PROCESS Consensus recommendations, reached by unanimous opinion of the authors, are provided here as a preliminary guide for future trial design. Recommendations comprise exclusion of certain syndromal level comorbid diagnoses and current affective instability, restrictions on numbers and types of medications, and use of pre-screening assessment to ensure enrollment of subjects with adequate objective evidence of baseline cognitive impairment. CONCLUSIONS Clinical trials to address cognitive deficits in bipolar disorder face distinctive design challenges. As such trials move from proof-of-concept to confirmation of clinical efficacy, it will be important to incorporate distinctive design modifications to adequately address these challenges and increase the likelihood of demonstrating cognitive remediation effects. The field is now primed to address these challenges and a comprehensive effort to formalize best practice guidelines will be a critically important next step. PMID:25830456

  17. Evaluation of Warm and Cold Shaft Designs for Large Multi-megawatt Direct Drive Offshore Superconducting Wind Generators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran

    For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.

  18. Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.

    2015-01-01

    Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.

  19. Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application.

    PubMed

    Cha, Hyungyeon; Kim, Junhyeok; Lee, Yoonji; Cho, Jaephil; Park, Minjoon

    2017-12-27

    With the advent of flexible electronics, lithium-ion batteries have become a key component of high performance energy storage systems. Thus, considerable effort is made to keep up with the development of flexible lithium-ion batteries. To date, many researchers have studied newly designed batteries with flexibility, however, there are several significant challenges that need to be overcome, such as degradation of electrodes under external load, poor battery performance, and complicated cell preparation procedures. In addition, an in-depth understanding of the current challenges for flexible batteries is rarely addressed in a systematical and practical way. Herein, recent progress and current issues of flexible lithium-ion batteries in terms of battery materials and cell designs are reviewed. A critical overview of important issues and challenges for the practical application of flexible lithium-ion batteries is also provided. Finally, the strategies are discussed to overcome current limitations of the practical use of flexible lithium-based batteries, providing a direction for future research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  1. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts.

    PubMed

    Disney, Matthew D

    2013-12-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Soft-rigid interaction mechanism towards a lobster-inspired hybrid actuator

    NASA Astrophysics Data System (ADS)

    Chen, Yaohui; Wan, Fang; Wu, Tong; Song, Chaoyang

    2018-01-01

    Soft pneumatic actuators (SPAs) are intrinsically light-weight, compliant and therefore ideal to directly interact with humans and be implemented into wearable robotic devices. However, they also pose new challenges in describing and sensing their continuous deformation. In this paper, we propose a hybrid actuator design with bio-inspirations from the lobsters, which can generate reconfigurable bending movements through the internal soft chamber interacting with the external rigid shells. This design with joint and link structures enables us to exactly track its bending configurations that previously posed a significant challenge to soft robots. Analytic models are developed to illustrate the soft-rigid interaction mechanism with experimental validation. A robotic glove using hybrid actuators to assist grasping is assembled to illustrate their potentials in safe human-robot interactions. Considering all the design merits, our work presents a practical approach to the design of next-generation robots capable of achieving both good accuracy and compliance.

  3. Deep Space Control Challenges of the New Millennium

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Burdick, Garry M.

    1999-01-01

    The exploration of deep space presents a variety of significant control challenges. Long communication delays coupled with challenging new science objectives require high levels of system autonomy and increasingly demanding pointing and control capabilities. Historically, missions based on the use of a large single spacecraft have been successful and popular since the early days of NASA. However, these large spacecraft missions are currently being displaced by more frequent and more focused missions based on the use of smaller and less expensive spacecraft designs. This trend drives the need to design smart software and good algorithms which together with the miniaturization of control components will improve performance while replacing the heavier and more expensive hardware used in the past. NASA's future space exploration will also include mission types that have never been attempted before, posing significant challenges to the underlying control system. This includes controlled landing on small bodies (e.g., asteroids and comets), sample return missions (where samples are brought back from other planets), robotic exploration of planetary surfaces (e.g., intelligent rovers), high precision formation flying, and deep space optical interferometry, While the control of planetary spacecraft for traditional flyby and orbiter missions are based on well-understood methodologies, control approaches for many future missions will be fundamentally different. This paradigm shift will require completely new control system development approaches, system architectures, and much greater levels of system autonomy to meet expected performance in the presence of significant environmental disturbances, and plant uncertainties. This paper will trace the motivation for these changes and will layout the approach taken to meet the new challenges. Emerging missions will be used to explain and illustrate the need for these changes.

  4. An interfaces approach to TES ground data system processing design with the Science Investigator-led Processing System (SIPS)

    NASA Technical Reports Server (NTRS)

    Kurian, R.; Grifin, A.

    2002-01-01

    Developing production-quality software to process the large volumes of scientific data is the responsibility of the TES Ground Data System, which is being developed at the Jet Propulsion Laboratory together with support contractor Raytheon/ITSS. The large data volume and processing requirements of the TES pose significant challenges to the design.

  5. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  6. Threats to family planning services in Michigan: organizational responses to economic and political challenges.

    PubMed

    Dalton, Vanessa K; Jacobson, Peter D; Berson-Grand, Julie; Weisman, Carol S

    2005-01-01

    Title X is the only federal funding specifically for contraception and family planning services. This study identifies the threats and challenges Title X family planning organizations face in Michigan, and examines organizational responses to these challenges. We hypothesized that organizational responses to current challenges, including recent legislation, would differ between organizational types. We used a multiple case study design to examine safety net providers that received Title X funding in 2001. Cases were selected to represent economic and geographic diversity and included a mix of population densities. Key informants at each organization participated in face-to-face, semistructured interviews. Interviews collected data on current challenges, organizational planning processes, and organizational responses. All Title X organizations reported significant challenges, including rising costs, increasing need, and inadequate funding. Private organizations were more concerned about political challenges, especially recent Michigan legislation, than health departments. Organizational type was associated with the type of response. Health departments tended to close clinics or cut services, whereas private organizations recruited insured populations and increased patient fees. Based on these findings, the family planning safety net in Michigan appears to be undergoing significant change. These changes may decrease the availability of affordable family planning services in Michigan.

  7. Guardrails for use on historic bridges : volume 1--replacement strategies.

    DOT National Transportation Integrated Search

    2016-11-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are : made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridge...

  8. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.

  9. Fragment-based lead discovery: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Sun, Chaohong; Petros, Andrew M.; Hajduk, Philip J.

    2011-07-01

    Fragment-based lead discovery has undergone remarkable changes over the last 15 years. During this time, the pharmaceutical industry has changed dramatically as well, and continued evolution of the industry is assured. These changes present many challenges but also several opportunities for executing fragment-based drug design. This article will explore some of the more significant changes in the industry and how they may affect future discovery efforts related to fragment-based initiatives.

  10. Issues and Design Drivers for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Anderson, Molly

    2012-01-01

    A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.

  11. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  12. Infrared sensor and window system issues

    NASA Astrophysics Data System (ADS)

    Hargraves, Charles H., Jr.; Martin, James M.

    1992-12-01

    EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.

  13. Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.

    PubMed

    Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi

    2018-05-14

    Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  15. Virtual Bridge Design Challenge

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2013-01-01

    This design/problem-solving activity challenges students to design a replacement bridge for one that has been designated as either structurally deficient or functionally obsolete. The Aycock MS Technology/STEM Magnet Program Virtual Bridge Design Challenge is an authentic introduction to the engineering design process. It is a socially relevant…

  16. The Apollo Expericence Lessons Learned for Constellation Lunar Dust Management

    NASA Astrophysics Data System (ADS)

    Wagner, Sandra

    2006-09-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  17. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  18. The Impact of an Immersive Elective on Learners’ Understanding of Lifestyle Medicine and Its Role in Patients’ Lives

    PubMed Central

    Nemec, Eric C.

    2014-01-01

    Objective. To design an immersive, active learning, lifestyle medicine (LM) elective and evaluate its impact on a pharmacy learners’ ability to understand the challenges of implementing lifestyle changes. Design. A 3-credit elective was developed that incorporated goal setting and immersion into the realm of LM as experienced by both the patient and the practitioner. Learners were assessed via a survey instrument, formal assignments, reflections, and the Presidential Fitness Challenge. Assessment. Learners reported that their ability to initiate LM as a primary intervention within a care plan significantly increased after taking this course. They also improved their overall health. Conclusion. By identifying and implementing self-identified lifestyle modifications, learners increased confidence in their abilities to produce evidence-based outcomes for patients. Learners were able to understand the challenges of trying to change their daily habits as they undertook their own personal goals. PMID:25386019

  19. Optimal Design of MPPT Controllers for Grid Connected Photovoltaic Array System

    NASA Astrophysics Data System (ADS)

    Ebrahim, M. A.; AbdelHadi, H. A.; Mahmoud, H. M.; Saied, E. M.; Salama, M. M.

    2016-10-01

    Integrating photovoltaic (PV) plants into electric power system exhibits challenges to power system dynamic performance. These challenges stem primarily from the natural characteristics of PV plants, which differ in some respects from the conventional plants. The most significant challenge is how to extract and regulate the maximum power from the sun. This paper presents the optimal design for the most commonly used Maximum Power Point Tracking (MPPT) techniques based on Proportional Integral tuned by Particle Swarm Optimization (PI-PSO). These suggested techniques are, (1) the incremental conductance, (2) perturb and observe, (3) fractional short circuit current and (4) fractional open circuit voltage techniques. This research work provides a comprehensive comparative study with the energy availability ratio from photovoltaic panels. The simulation results proved that the proposed controllers have an impressive tracking response. The system dynamic performance improved greatly using the proposed controllers.

  20. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    NASA Technical Reports Server (NTRS)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main structure of the spacecraft as the launch vehicle's payload volume would allow when comparing mass savings verse the additional structure.

  1. Miniature rotary actuator

    NASA Technical Reports Server (NTRS)

    Fink, R. A.; Ellis, R. C.

    1996-01-01

    The trend toward smaller satellites has challenged component manufacturers to reduce the size, weight, and cost of their products while maintaining high performance. Both a new stepper motor and a new harmonic drive were developed to meet this need. The resulting actuator embodies small angle stepper technology usually reserved for larger units and incorporates an integral approach to harmonic drive design. By product simplifications, costs were significantly reduced over prior designs.

  2. A Mobile Internet Service for Self-Management of Physical Activity in People With Rheumatoid Arthritis: Challenges in Advancing the Co-Design Process During the Requirements Specification Phase

    PubMed Central

    Martin, Cathrin; H. Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla

    2015-01-01

    Background User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. Objective The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). Methods A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. Results The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants’ roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants’ alignment with the agreed goal and task. Conclusions Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants’ perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services. PMID:26381221

  3. A Mobile Internet Service for Self-Management of Physical Activity in People With Rheumatoid Arthritis: Challenges in Advancing the Co-Design Process During the Requirements Specification Phase.

    PubMed

    Revenäs, Åsa; Martin, Cathrin; H Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla

    2015-09-17

    User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants' roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants' alignment with the agreed goal and task. Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants' perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services.

  4. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  5. Designing under Constraints: Cell Phone Case Design Challenge

    ERIC Educational Resources Information Center

    Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy

    2014-01-01

    Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…

  6. Optimal flexible sample size design with robust power.

    PubMed

    Zhang, Lanju; Cui, Lu; Yang, Bo

    2016-08-30

    It is well recognized that sample size determination is challenging because of the uncertainty on the treatment effect size. Several remedies are available in the literature. Group sequential designs start with a sample size based on a conservative (smaller) effect size and allow early stop at interim looks. Sample size re-estimation designs start with a sample size based on an optimistic (larger) effect size and allow sample size increase if the observed effect size is smaller than planned. Different opinions favoring one type over the other exist. We propose an optimal approach using an appropriate optimality criterion to select the best design among all the candidate designs. Our results show that (1) for the same type of designs, for example, group sequential designs, there is room for significant improvement through our optimization approach; (2) optimal promising zone designs appear to have no advantages over optimal group sequential designs; and (3) optimal designs with sample size re-estimation deliver the best adaptive performance. We conclude that to deal with the challenge of sample size determination due to effect size uncertainty, an optimal approach can help to select the best design that provides most robust power across the effect size range of interest. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Is the infant car seat challenge useful? A pilot study in a simulated moving vehicle.

    PubMed

    Arya, Renu; Williams, Georgina; Kilonback, Anna; Toward, Martin; Griffin, Michael; Blair, Peter S; Fleming, Peter

    2017-03-01

    The American Academy of Pediatrics recommends that preterm infants complete a predischarge 'car seat challenge' observation for cardiorespiratory compromise while in a car seat. This static challenge does not consider the more upright position in a car or the vibration of the seat when the car is moving. This pilot study was designed to assess the cardiorespiratory effects of vibration, mimicking the effect of being in a moving car, on preterm and term infants. A simulator was designed to reproduce vertical vibration similar to that in a rear-facing car seat at 30 mph. 19 healthy newborn term and 21 preterm infants, ready for hospital discharge, underwent cardiorespiratory measurements while lying flat in a cot (baseline), static in the seat (30°), simulator (40°) and during motion (vibration 40°). Median test age was 13 days (range 1-65 days) and median weight was 2.5 kg (IQR: 2.1-3.1 kg).Compared with baseline observations, only the total number of desaturations was significantly increased when infants were placed at 30° (p=0.03). At 40°, or with vibration, respiratory and heart rates increased and oxygen saturation decreased significantly. Profound desaturations <85% significantly increased during motion, regardless of gestational age. This is the first study to assess the effect of motion on infants seated in a car safety seat. Term and preterm infants showed significant signs of potentially adverse cardiorespiratory effects in the upright position at 40°, particularly with simulated motion, not identified in the standard challenge. A larger study is required to investigate the significance of these results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Robot Design Challenge: This Design Challenge Is a Mirror on the World

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    A fun design challenge that can be used in the classroom and across the grades is presented in this article. No special tools, hardware, or supplies are needed, only imagination and teamwork. It is a fun exercise that illustrates technology education principles. This design challenge is a mirror on the world, very similar to how projects are…

  9. Efficacy of two non-antibiotic therapies, oxytocin and topical liniment, against bovine staphylococcal mastitis.

    PubMed

    Knight, C H; Fitzpatrick, J L; Logue, D N; Platt, D J

    2000-03-11

    Eight cows were challenged by a single quarter intramammary infusion of a relatively low-virulence strain of Staphylococcus aureus on four occasions five weeks apart and, after each challenge, each cow received one of four treatments, according to a duplicated Latin-square design. The treatments were massage alone (negative control), massage with a proprietary liniment, oxytocin, and a single course of a proprietary intramammary antibiotic. The massage treatments were applied at every milking for three weeks, oxytocin was given for one week, and the antibiotic was given after three successive milkings. Milk samples were collected immediately before and for three weeks after each challenge, and a scoring system was used to quantify the presence of bacteria during the whole of the period. None of the treatments completely eliminated bacteria from all the cows. Relative to the negative control, the liniment had no significant effect, but both oxytocin and the antibiotic reduced the numbers of bacteria significantly and did not differ significantly in efficacy.

  10. Traffic Flow Management Wrap-Up

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  11. DESIGN AND TESTING OF SECOND GENERATION BIOREMEDIATION TECHNOLOGIES FOR CHLORINATED SOLVENT CONTAMINATED SITES

    EPA Science Inventory

    The contamination of ground water at industrial and military facilities by chlorinated solvents remains a significant environmental challenge. In the 1990's several successful demonstrations of in situ biodegradation processes, targeted for chloroethenes, occurred. While these tr...

  12. Social Learning Analytics

    ERIC Educational Resources Information Center

    Buckingham Shum, Simon; Ferguson, Rebecca

    2012-01-01

    We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…

  13. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team Lore listens in the audience as NASA Administrator Charles Bolden speaks at the event to announce the winner of the Exploration Design Challenge. Team Lore was one of the semi-finalists in the challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  14. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  15. Engineering the LISA Project: Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  16. Overcoming challenges integrating patient-generated data into the clinical EHR: lessons from the CONtrolling Disease Using Inexpensive IT--Hypertension in Diabetes (CONDUIT-HID) Project.

    PubMed

    Marquard, Jenna L; Garber, Lawrence; Saver, Barry; Amster, Brian; Kelleher, Michael; Preusse, Peggy

    2013-10-01

    The CONDUIT-HID intervention integrates patients' electronic blood pressure measurements directly into the clinical EHR using Microsoft HealthVault as an intermediary data store. The goal of this paper is to describe generalizable categories of patient and technical challenges encountered in the development and implementation of this inexpensive, commercial off-the-shelf consumer health informatics intervention, examples of challenges within each category, and how the example challenges were resolved prior to conducting an RCT of the intervention. The research team logged all challenges and mediation strategies during the technical development of the intervention, conducted home visits to observe patients using the intervention, and conducted telephone calls with patients to understand challenges they encountered. We then used these data to iteratively refine the intervention. The research team identified a variety of generalizable categories of challenges associated with patients uploading data from their homes, patients uploading data from clinics because they did not have or were not comfortable using home computers, and patients establishing the connection between HealthVault and the clinical EHR. Specific challenges within these categories arose because: (1) the research team had little control over the device and application design, (2) multiple vendors needed to coordinate their actions and design changes, (3) the intervention use cases were not anticipated by the device and application designers, (4) PHI accessed on clinic computers needed to be kept secure, (5) the research team wanted the data in the clinical EHR to be valid and reliable, (6) patients needed the ability to share only the data they wanted, and (7) the development of some EHR functionalities were new to the organization. While these challenges were varied and complex, the research team was able to successfully resolve each one prior to the start of the RCT. By identifying these generalizable categories of challenges, we aim to help others proactively search for and remedy potential challenges associated with their interventions, rather than reactively responding to problems as they arise. We posit that this approach will significantly increase the likelihood that these types of interventions will be successful. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Critical evaluation of challenges and future use of animals in experimentation for biomedical research.

    PubMed

    Singh, Vijay Pal; Pratap, Kunal; Sinha, Juhi; Desiraju, Koundinya; Bahal, Devika; Kukreti, Ritushree

    2016-12-01

    Animal experiments that are conducted worldwide contribute to significant findings and breakthroughs in the understanding of the underlying mechanisms of various diseases, bringing up appropriate clinical interventions. However, their predictive value is often low, leading to translational failure. Problems like translational failure of animal studies and poorly designed animal experiments lead to loss of animal lives and less translatable data which affect research outcomes ethically and economically. Due to increasing complexities in animal usage with changes in public perception and stringent guidelines, it is becoming difficult to use animals for conducting studies. This review deals with challenges like poor experimental design and ethical concerns and discusses key concepts like sample size, statistics in experimental design, humane endpoints, economic assessment, species difference, housing conditions, and systematic reviews and meta-analyses that are often neglected. If practiced, these strategies can refine the procedures effectively and help translate the outcomes efficiently. © The Author(s) 2016.

  18. Noise Reduction Potential of Large, Over-the-Wing Mounted, Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Indeed, the noise goal for NASA's Aeronautics Enterprise calls for technologies that will help to provide a 20 EPNdB reduction relative to today's levels by the year 2022. Further, the large fan diameters of modem, increasingly higher bypass ratio engines pose a significant packaging and aircraft installation challenge. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large, ultra high bypass ratio cycles to continue, this over-the-wing design is believed to offer noise shielding benefits to observers on the ground. This paper describes the analytical certification noise predictions of a notional, long haul, commercial quadjet transport with advanced, high bypass engines mounted above the wing.

  19. Critical evaluation of challenges and future use of animals in experimentation for biomedical research

    PubMed Central

    Singh, Vijay Pal; Pratap, Kunal; Sinha, Juhi; Desiraju, Koundinya; Bahal, Devika; Kukreti, Ritushree

    2016-01-01

    Animal experiments that are conducted worldwide contribute to significant findings and breakthroughs in the understanding of the underlying mechanisms of various diseases, bringing up appropriate clinical interventions. However, their predictive value is often low, leading to translational failure. Problems like translational failure of animal studies and poorly designed animal experiments lead to loss of animal lives and less translatable data which affect research outcomes ethically and economically. Due to increasing complexities in animal usage with changes in public perception and stringent guidelines, it is becoming difficult to use animals for conducting studies. This review deals with challenges like poor experimental design and ethical concerns and discusses key concepts like sample size, statistics in experimental design, humane endpoints, economic assessment, species difference, housing conditions, and systematic reviews and meta-analyses that are often neglected. If practiced, these strategies can refine the procedures effectively and help translate the outcomes efficiently. PMID:27694614

  20. [Systems epidemiology].

    PubMed

    Huang, T; Li, L M

    2018-05-10

    The era of medical big data, translational medicine and precision medicine brings new opportunities for the study of etiology of chronic complex diseases. How to implement evidence-based medicine, translational medicine and precision medicine are the challenges we are facing. Systems epidemiology, a new field of epidemiology, combines medical big data with system biology and examines the statistical model of disease risk, the future risk simulation and prediction using the data at molecular, cellular, population, social and ecological levels. Due to the diversity and complexity of big data sources, the development of study design and analytic methods of systems epidemiology face new challenges and opportunities. This paper summarizes the theoretical basis, concept, objectives, significances, research design and analytic methods of systems epidemiology and its application in the field of public health.

  1. Solar Probe Plus: Mission design challenges and trades

    NASA Astrophysics Data System (ADS)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept in both technical implementation and scientific returns.

  2. Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2010-01-01

    The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.

  3. Lifestyle interventions and independence for elders study: Recruitment and baseline characteristics

    USDA-ARS?s Scientific Manuscript database

    Recruitment of older adults into long-term clinical trials involving behavioral interventions is a significant challenge. The Lifestyle Interventions and Independence for Elders (LIFE) Study is a Phase 3 multicenter randomized controlled multisite trial, designed to compare the effects of a moderate...

  4. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    PubMed Central

    Harte, Richard P.; Glynn, Liam G.; Broderick, Barry J.; Rodriguez-Molinero, Alejandro; Baker, Paul M. A.; McGuiness, Bernadette; O’Sullivan, Leonard; Diaz, Marta; Quinlan, Leo R.; ÓLaighin, Gearóid

    2014-01-01

    Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications. PMID:25563225

  5. Outcomes of a Breast Health Project for Hmong Women and Men in California

    PubMed Central

    Tanjasiri, Sora Park; Valdez, Annalyn; Yu, Hongjian; Foo, Mary Anne

    2009-01-01

    Objectives. We used a community-based research approach to test a culturally based breast cancer screening program among low-income Hmong women in central and southern California. Methods. We designed a culturally informed educational program with measures at baseline and 1-year follow-up in 2 intervention cities and 1 comparison city. Measures included changes in breast cancer screening, knowledge, and attitudes. Results. Compared with women in the comparison community, women in the intervention community significantly improved their attitudes toward, and increased their knowledge and receipt of, breast cancer screenings. Odds of women in the intervention group having had a mammogram, having had a clinical breast examination, and having performed breast self-examination was 6.75, 12.16, and 20.06, respectively, compared with women in the comparison group. Conclusions. Culturally informed education materials and intervention design were effective methods in conveying the importance of maintaining and monitoring proper breast health. The strength of community collaboration in survey development and intervention design highlighted the challenges of early detection and screening programs among newer immigrants, who face significant language and cultural barriers to care, and identified promising practices to overcome these health literacy challenges. PMID:19443830

  6. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.

    PubMed

    Lu, Helen H; Spalazzi, Jeffrey P

    2009-07-01

    The emphasis in the field of orthopaedic tissue engineering is on imparting biomimetic functionality to tissue engineered bone or soft tissue grafts and enabling their translation to the clinic. A significant challenge in achieving extended graft functionality is engineering the biological fixation of these grafts with each other as well as with the host environment. Biological fixation will require re-establishment of the structure-function relationship inherent at the native soft tissue-to-bone interface on these tissue engineered grafts. To this end, strategic biomimicry must be incorporated into advanced scaffold design. To facilitate integration between distinct tissue types (e.g., bone with soft tissues such as cartilage, ligament, or tendon), a stratified or multi-phasic scaffold with distinct yet continuous tissue regions is required to pre-engineer the interface between bone and soft tissues. Using the ACL-to-bone interface as a model system, this review outlines the strategies for stratified scaffold design for interface tissue engineering, focusing on identifying the relevant design parameters derived from an understanding of the structure-function relationship inherent at the soft-to-hard tissue interface. The design approach centers on first addressing the challenge of soft tissue-to-bone integration ex vivo, and then subsequently focusing on the relatively less difficult task of bone-to-bone integration in vivo. In addition, we will review stratified scaffold design aimed at exercising spatial control over heterotypic cellular interactions, which are critical for facilitating the formation and maintenance of distinct yet continuous multi-tissue regions. Finally, potential challenges and future directions in this emerging area of advanced scaffold design will be discussed.

  7. School Building Designs: Principles and Challenges of the 21st Century.

    ERIC Educational Resources Information Center

    Chan, T. C.

    2002-01-01

    Reviews school-facility challenges and design principles described in 2000 U.S. Department of Education report on school planning and design. Describes additional school-facility design challenges and planning principles. Describes five critical facility-planning issues for the 21st Century. (Contains 14 references.) (PKP)

  8. Review of Design Aspects and Challenges of Efficient and Quiet Amphibious Aircraft

    NASA Astrophysics Data System (ADS)

    D, Rhea P. Liem Ph.

    2018-04-01

    Apart from the commercial and military aviation sectors, the general aviation (GA) sector is expected to experience a rapid growth, especially in Asia. The increasing economic activities in the region would demand for more efficient and convenient transportation, which would open door to more GA services. This development would require sufficient infrastructure supports, including airports. However, insufficient land area has often imposed limitations in airport development. As such, some areas (e.g., remote islands) are not easily accessible by air. One implication is that travels can only be done via land or water, which might prolong the travel time. This applies to business travels, with the significant increase in business and economic activities, which in turns demands for more efficient and faster mobility. In other cases, this involves some rural areas where the infrastructures are not very well-developed, and where the geographical terrains are too challenging to build a pad for vertical takeoff and landing (VTOL) air vehicles. Under such circumstances, it would be imperative to enable air travels to carry critical logistics such as medical supplies, food, and even sick patients. In this regard, we propose to develop a low-payload, low-altitude amphibious aircraft, which can takeoff and land on both water and land. Aircraft design process is a complex procedure and multidisciplinary in nature, and for amphibious aircraft design we need to consider the two takeoff and landing modes, which imposes further challenges to the design. In this paper we present two preliminary design projects, for two-seater and ten-seater aircraft. To design an efficient and quiet amphibious aircraft, we conduct some experiments on noise shielding mechanisms to reduce the propeller noise. The challenges and resulting designs are briefly discussed in this paper. Amphibious aircraft development will be very relevant to Indonesia, which is the world’s largest archipelago with thousands of islands. More efficient inter-island transportation and mobility would be crucial in the overall economic development in the country.

  9. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team Lore poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Lore was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  10. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team Aegis poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Aegis was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  11. Design optimization for cost and quality: The robust design approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  12. Fostering sustained energy behavior change and increasing energy literacy in a student housing energy challenge

    NASA Astrophysics Data System (ADS)

    Brewer, Robert Stephen

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to provide the online portion of the Kukui Cup challenge. Energy use was monitored by smart meters installed on each floor of the Hale Aloha residence halls on the University of Hawai'i at Manoa campus. In October 2011, we ran the UH Kukui Cup challenge for the over 1000 residents of the Hale Aloha towers. To evaluate the Kukui Cup challenge, I conducted three experiments: challenge participation, energy literacy, and energy use. Many residents participated in the challenge, as measured by points earned and actions completed through the challenge website. I measured the energy literacy of a random sample of Hale Aloha residents using an online energy literacy questionnaire administered before and after the challenge. I found that challenge participants' energy knowledge increased significantly compared to non-challenge participants. Positive self-reported energy behaviors increased after the challenge for both challenge participants and non-participants, leading to the possibility of passive participation by the non-challenge participants. I found that energy use varied substantially between and within lounges over time. Variations in energy use over time complicated the selection of a baseline of energy use to compare the levels during and after the challenge. The best team reduced its energy use during the challenge by 16%. However, team energy conservation did not appear to correlate to participation in the challenge, and there was no evidence of sustained energy conservation after the challenge. The problems inherent in assessing energy conservation using a baseline call into question this common practice. My research has generated several contributions, including: a demonstration of increased energy literacy as a result of the challenge, the discovery of fundamental problems with the use of baselines for assessing energy competitions, the creation of two open source software systems, and the creation of an energy literacy assessment instrument.

  13. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  14. Designing Rural School Improvement Networks: Aspirations and Actualities

    ERIC Educational Resources Information Center

    Hargreaves, Andy; Parsley, Danette; Cox, Elizabeth K.

    2015-01-01

    Rural school educators are often isolated and have few opportunities to learn from neighboring schools or colleagues. This is an especially daunting challenge for low-performing rural schools faced with implementing significant reform efforts (e.g., turnaround approaches, educator effectiveness systems, college- and career-ready standards and…

  15. Attracting Preservice Teachers to Remote Locations

    ERIC Educational Resources Information Center

    Young, Kenneth D.; Grainger, Peter; James, Dennis

    2018-01-01

    Teaching in rural/remote regions poses many challenges to teachers and is identified as a priority research area by the state government. Despite initiatives by the Queensland state government and university providers to solve the issue through various incentives designed to attract teachers, the problem remains significant. This research…

  16. Effects of 7.5% CO2 challenge in generalized anxiety disorder.

    PubMed

    Seddon, Kate; Morris, Kelly; Bailey, Jayne; Potokar, John; Rich, Ann; Wilson, Sue; Bettica, Paolo; Nutt, David J

    2011-01-01

    We have previously developed a putative model of generalized anxiety disorder in healthy volunteers using a 20-minute 7.5% carbon dioxide (CO(2)) inhalation challenge. The aim of this study was to validate the 7.5% CO(2) paradigm by assessing its effects in patients with generalized anxiety disorder in a test-retest design. Twelve medication-free generalized anxiety disorder patients attended our lab for two study days. On each study day placebo (compressed air) and 7.5% CO(2) mixture were randomly administered over 20 min, at least 30 min apart, in a single blind, randomized, placebo-controlled cross-over design. Subjective ratings, cardiovascular measures and cortisol levels were collected throughout. CO(2) challenge significantly increased ratings for anxiety and other subjective symptoms associated with generalized anxiety disorder, compared with air. It also significantly increased systolic blood pressure on day 2, indicating increased autonomic arousal. There was no change between the two test days in mean anxiety rating scores, and there also appeared to be a correlation for individual scores on a number of the subjective measures. In conclusion, 20 min of 7.5% CO(2) gas inhalation increases anxiety responses in patients with generalized anxiety disorder, and this is reliable over time.

  17. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  18. Aerocapture for manned Mars missions - Status and challenges

    NASA Astrophysics Data System (ADS)

    Walberg, Gerald D.

    1991-08-01

    The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.

  19. Challenging body weight: evidence from a community-based intervention on weight, behaviour and motivation.

    PubMed

    Blais, Louise T; Mack, Diane E; Wilson, Philip M; Blanchard, Chris M

    2017-08-01

    The objective of this study was to examine the effectiveness of a 12 week weight loss intervention within a commercial fitness centre on body weight, moderate to vigorous physical activity (MVPA), dietary intake, and behavioural regulations for exercise and healthy eating. Using a quasi-experimental design, the intervention group received weekly coaching sessions and bi-weekly seminars designed to increase MVPA and improve dietary intake. Outcome variables were assessed at three time points over a six month period. Results showed a significant interaction for body weight (p = .04) and dietary changes (p < .05) following the weight loss challenge but were not maintained across the six month period. Changes in behavioural regulations favoured the intervention condition. Results imply that a 12 week weight loss challenge within a commercial fitness centre may be effective at prompting short-term weight loss and support the internalization of behavioural regulations specific to healthy eating and exercise.

  20. Current status and challenges for automotive battery production technologies

    NASA Astrophysics Data System (ADS)

    Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus

    2018-04-01

    Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.

  1. Issues in life support and human factors in crew rescue from the ISS

    NASA Technical Reports Server (NTRS)

    Smart, K.

    2001-01-01

    The design and development of crew emergency response systems, particularly to provide an unplanned emergency return to Earth, requires an understanding of crew performance challenges in space. The combined effects of psychological and physiological adaptation during long-duration missions will have a significant effect on crew performance in the unpredictable and potentially life-threatening conditions of an emergency return to Earth. It is therefore important that the systems to be developed for emergency egress address these challenges through an integrated program to produce optimum productivity and safety in times of utmost stress. Fundamental to the success of the CRV is the Environmental Control and Life Support System (ECLSS), which provides the necessary conditions for the crew to survive their return mission in a shirtsleeve environment. This article will discuss the many issues in the design of an ECLSS system for CRV and place it in the context of the human performance challenges of the mission.

  2. Aerocapture for manned Mars missions - Status and challenges

    NASA Technical Reports Server (NTRS)

    Walberg, Gerald D.

    1991-01-01

    The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.

  3. Assessment of immigrant certified nursing assistants' communication when responding to standardized care challenges.

    PubMed

    Massey, Meredith; Roter, Debra L

    2016-01-01

    Certified nursing assistants (CNAs) provide 80% of the hands-on care in US nursing homes; a significant portion of this work is performed by immigrants with limited English fluency. This study is designed to assess immigrant CNA's communication behavior in response to a series of virtual simulated care challenges. A convenience sample of 31 immigrant CNAs verbally responded to 9 care challenges embedded in an interactive computer platform. The responses were coded with the Roter Interaction Analysis System (RIAS), CNA instructors rated response quality and spoken English was rated. CNA communication behaviors varied across care challenges and a broad repertoire of communication was used; 69% of response content was characterized as psychosocial. Communication elements (both instrumental and psychosocial) were significant predictors of response quality for 5 of 9 scenarios. Overall these variables explained between 13% and 36% of the adjusted variance in quality ratings. Immigrant CNAs responded to common care challenges using a variety of communication strategies despite fluency deficits. Virtual simulation-based observation is a feasible, acceptable and low cost method of communication assessment with implications for supervision, training and evaluation of a para-professional workforce. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA

    PubMed Central

    Kang, Shih-Ting; Hsieh, Yi-Shan; Feng, Chi-Ting; Chen, Yu-Ting; Yang, Pok Eric; Chen, Wei-Ming

    2018-01-01

    MicroRNAs (miRNAs) are 18–25 nucleotides (nt) of highly conserved, noncoding RNAs involved in gene regulation. Because of miRNAs’ short length, the design of miRNA primers for PCR amplification remains a significant challenge. Adding to the challenge are miRNAs similar in sequence and miRNA family members that often only differ in sequences by 1 nt. Here, we describe a novel empirical-based method, miPrimer, which greatly reduces primer dimerization and increases primer specificity by factoring various intrinsic primer properties and employing four primer design strategies. The resulting primer pairs displayed an acceptable qPCR efficiency of between 90% and 110%. When tested on miRNA families, miPrimer-designed primers are capable of discriminating among members of miRNA families, as validated by qPCR assays using Quark Biosciences’ platform. Of the 120 miRNA primer pairs tested, 95.6% and 93.3% were successful in amplifying specifically non-family and family miRNA members, respectively, after only one design trial. In summary, miPrimer provides a cost-effective and valuable tool for designing miRNA primers. PMID:29208706

  5. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  6. Transforming patient experience: health web science meets medicine 2.0.

    PubMed

    McHattie, Lynn-Sayers; Cumming, Grant; French, Tara

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London.

  7. Transforming Patient Experience: Health Web Science Meets Medicine 2.0

    PubMed Central

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London. PMID:25075246

  8. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  9. iPad Learning Ecosystem: Developing Challenge-Based Learning Using Design Thinking

    ERIC Educational Resources Information Center

    Marin, Catalina; Hargis, Jace; Cavanaugh, Cathy

    2013-01-01

    In order to maximize college English language students' learning, product development, 21st Century skills and engagement with real world meaningful challenges, a course was designed to integrate Challenge Based Learning (CBL) and iPad mobile learning technology. This article describes the course design, which was grounded in design thinking, and…

  10. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team Titan Shielding Systems poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Titan Shielding Systems was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  11. Meso and micro level workforce challenges in psychiatric rehabilitation.

    PubMed

    Reifels, Lennart; Pirkis, Jane

    2012-01-01

    Results of an exploratory study are presented which examined workforce challenges in Australia's most established psychiatric rehabilitation sector. The study had the two-fold aim of investigating workforce challenges at an organizational ("meso") level and at the level of direct-service workers' daily practice ("micro"). Data from 23 key informant interviews conducted with service managers and long-serving staff were analyzed through basic descriptive and thematic analyses. Organizations faced significant annual staff turnover (25.6%), specific staff supply shortages, and challenges in recruiting staff with adequate experience and longevity to match the complexity of client issues. Workers equally encountered challenges in this increasingly complex and rapidly changing field of work. CONCLUSIONS & IMPLICATIONS FOR PRACTICE: Workforce strategies designed to attract/retain experienced staff can improve workforce cohesiveness and sustainability, as can training and support activities aimed at equipping staff to reflect on and operate in dynamic and changing work environments.

  12. Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology.

    PubMed

    Verma, Mukesh

    2017-04-01

    This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from "omics" studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments.

  13. Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology

    PubMed Central

    2016-01-01

    This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from “omics” studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments. PMID:27121074

  14. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    PubMed

    Hart, Bryan E; Lee, Sunhee

    2016-12-01

    Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  15. Tire Changes, Fresh Air, and Yellow Flags: Challenges in Predictive Analytics for Professional Racing.

    PubMed

    Tulabandhula, Theja; Rudin, Cynthia

    2014-06-01

    Our goal is to design a prediction and decision system for real-time use during a professional car race. In designing a knowledge discovery process for racing, we faced several challenges that were overcome only when domain knowledge of racing was carefully infused within statistical modeling techniques. In this article, we describe how we leveraged expert knowledge of the domain to produce a real-time decision system for tire changes within a race. Our forecasts have the potential to impact how racing teams can optimize strategy by making tire-change decisions to benefit their rank position. Our work significantly expands previous research on sports analytics, as it is the only work on analytical methods for within-race prediction and decision making for professional car racing.

  16. Current Events and the International Relations Curriculum: Instructional Strategies.

    ERIC Educational Resources Information Center

    Chernotsky, Harry I.

    One of the most significant challenges confronting college instructors who teach international politics survey courses is the coverage of current events issues and how to stimulate student interest about the issues. This paper describes two techniques, a current events sweepstakes and a Great Decisions roundtable, designed to infuse current events…

  17. Understanding and Developing Academic and Behavioral Interventions for Students with Bipolar Disorder

    ERIC Educational Resources Information Center

    Killu, Kim; Crundwell, R. Marc A.

    2008-01-01

    Despite significant advances in practices for effectively designing and delivering instruction for students with disabilities, educators continue to face challenges addressing the needs of students with emotional and behavioral disorders. Little information is available for educators on accommodations and modifications that would serve the needs…

  18. Designing Effective MOOCs

    ERIC Educational Resources Information Center

    Conole, Gráinne

    2015-01-01

    Massive open online courses (MOOCs) have expanded significantly in recent years and are challenging traditional educational fee-paying offerings. The advantages of MOOCs are cited as the fact that they are free, that they enable participants to be part of a global community of peers and to have the experience of learning through social media and…

  19. Evaluation Study Design--A Pluralist Approach to Evidence

    ERIC Educational Resources Information Center

    Fives, Allyn; Canavan, John; Dolan, Pat

    2017-01-01

    There is significant controversy over what counts as evidence in the evaluation of social interventions. It is increasingly common to use methodological criteria to rank evidence types in a hierarchy, with Randomised Controlled Trials (RCTs) at or near the highest level. Because of numerous challenges to a hierarchical approach, this article…

  20. Engagement and Kindness in Digitally Mediated Learning with Teachers

    ERIC Educational Resources Information Center

    Cramp, Andy; Lamond, Catherine

    2016-01-01

    This paper explores the significance of designing online learning led by the principle of direct and meaningful participant engagement. It considers the notion of kindness as a crucial value contributing to pedagogy and the development of meaningful learning relationships. The paper challenges the "delivery" approach to online learning,…

  1. Improving Education in Confucian Countries through Analysis of Organizational Challenges, Leadership, and Responsibilities

    ERIC Educational Resources Information Center

    Schenck, Andrew D.

    2015-01-01

    While common philosophical foundations influence instruction and leadership in East Asian nations, variable historical factors also significantly impact education within these countries. The current study was designed to holistically examine educational systems in different Confucian contexts, so that contemporary issues and necessary reforms may…

  2. Competitive Strategies and Financial Performance of Small Colleges

    ERIC Educational Resources Information Center

    Barron, Thomas A., Jr.

    2017-01-01

    Many institutions of higher education are facing significant financial challenges, resulting in diminished economic viability and, in the worst cases, the threat of closure (Moody's Investor Services, 2015). The study was designed to explore the effectiveness of competitive strategies for small colleges in terms of financial performance. Five…

  3. The challenge of wilderness stewardship

    Treesearch

    David J. Parsons; David N. Cole

    2003-01-01

    The 1964 Wilderness Act and subsequent wilderness legislation have resulted in the designation of over 106 million acres of the United States as wilderness. Charged with the responsibility of protecting a significant portion of federal lands as wilderness, the federal land management agencies with responsibility for wilderness stewardship (Bureau of Land Management,...

  4. Image acquisition system using on sensor compressed sampling technique

    NASA Astrophysics Data System (ADS)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  5. Challenges of NDE simulation tool validation, optimization, and utilization for composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter

    2016-02-01

    Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.

  6. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Pictured are all Semi-finalist teams in the Exploration Design Challenge. NASA Administrator, Charles Bolden and Lockheed Martin CEO, Marillyn Hewson announced the winner of the Exploration Design Challenge at the USA Science and Engineering Festival on April 25, 2014. The goal of the challenge was for students to research and design ways to protect astronauts from space radiation. The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  7. Overcoming the Challenges Inherent in Conducting Design Research in Mental Health Settings: Lessons from St. Joseph's Healthcare, Hamilton's Pre and Post-Occupancy Evaluation.

    PubMed

    Ahern, Catherine; McKinnon, Margaret C; Bieling, Peter J; McNeely, Heather; Langstaff, Karen

    2016-01-01

    Conducting high-quality design research in a mental health setting presents significant challenges, limiting the availability of high-quality evidence to support design decisions for built environments. Here, we outline key approaches to overcoming these challenges. In conducting a rigorous post-occupancy evaluation of a newly built mental health and addictions facility, St. Joseph's Healthcare, Hamilton, we identified a number of systematic barriers associated with conducting design research in mental health settings. Our approach to overcoming these barriers relied heavily upon (i) selecting established measures and methods with demonstrated efficacy in a mental health context, (ii) navigating institutional protocols designed to protect vulnerable members of this population, and (iii) designing innovative data collection strategies to increase participation in research by individuals with mental illness. Each of these approaches drew heavily on the expert knowledge of mental health settings and the experiences with mental health, facilities management, and research of a research team that was well integrated within the parent institution. Engaging multiple stakeholders (e.g., care providers, patients, ethics board, and hospital administrators) contributed their trust and support of the research. Traditionally, post-occupancy evaluation researchers are independent of the facilities they research, yet this is not an effective approach in mental health settings. We found that, in working toward solutions to the three obstacles we described, having team members who were well "networked" within the parent institution was necessary. This approach can turn "gatekeepers" into champions for patients' engagement in the research, which is essential in generating high-quality evidence. © The Author(s) 2015.

  8. A conceptual review of the cultural significance of `Takhtah Table'

    NASA Astrophysics Data System (ADS)

    Abdo, Fatema M.; Ibrahim, Fuziah

    2017-10-01

    There exists nowadays a growing awareness about the development of cultural objects. The impact of such development on the identity of nations and global design platforms is significant. Diminishing barriers among societies has helped to spread creative ideas. Recognizing the direction of designs is supposed to develop the lifestyle of nations, cultures, and identities through interior design spaces and their elements such as furniture. The first step to a sustainable creativity goes through an identification stage that upholds the satisfaction of products' users. Through the identification stage, furniture designers encounter some challenges that are mostly related to the cultural significance of an object before starting to develop that object, especially within the context of a different approach. This paper presents the concept of the cultural significance of objects. It also highlights and illustrates the relations between cultural levels and types of meanings that can be reflected by certain objects. This paper provides information guidelines about cultural objects in a form that helps designers continue the development of the nation's creativity. `Takhtah Table' has been presented as a sample of cultural objects, which needs to be maintained in Sana'a City in Yemen.

  9. Interference Alignment With Partial CSI Feedback in MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-04-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. However, most existing IA designs require full channel state information (CSI) at the transmitters, which would lead to significant CSI signaling overhead. There are two techniques, namely CSI quantization and CSI feedback filtering, to reduce the CSI feedback overhead. In this paper, we consider IA processing with CSI feedback filtering in MIMO cellular networks. We introduce a novel metric, namely the feedback dimension, to quantify the first order CSI feedback cost associated with the CSI feedback filtering. The CSI feedback filtering poses several important challenges in IA processing. First, there is a hidden partial CSI knowledge constraint in IA precoder design which cannot be handled using conventional IA design methodology. Furthermore, existing results on the feasibility conditions of IA cannot be applied due to the partial CSI knowledge. Finally, it is very challenging to find out how much CSI feedback is actually needed to support IA processing. We shall address the above challenges and propose a new IA feasibility condition under partial CSIT knowledge in MIMO cellular networks. Based on this, we consider the CSI feedback profile design subject to the degrees of freedom requirements, and we derive closed-form trade-off results between the CSI feedback cost and IA performance in MIMO cellular networks.

  10. Nebulized isotonic saline versus water following a laryngeal desiccation challenge in classically trained sopranos.

    PubMed

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Muntz, Faye; Houtz, Daniel R; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie

    2010-12-01

    To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. In a double-blind, within-subject crossover design, 34 sopranos breathed dry air (relative humidity < 1%) transorally for 15 min and then nebulized 3 mL of IS or SW, or experienced a no-treatment control condition over 3 consecutive weeks. PPE and PTP were measured every 15 min from baseline through 2 hr postdesiccation. PPE increased significantly following the laryngeal desiccation challenge in all 3 treatment conditions (p < .01). After nebulization, PPE returned to baseline for the IS condition only. For the SW and control conditions, PPE remained above baseline during the 2 hr after desiccation. No statistically significant changes in PTP following laryngeal desiccation were observed, although values for the IS condition remained below baseline for nearly 2 hr after nebulization. PPE and PTP were not significantly correlated. Following a laryngeal surface dehydration challenge, classically trained sopranos reported increased vocal effort that persisted for at least 2 hr. Compared with SW, nebulized IS showed promise as an effective way to remediate the adverse, self-perceived effects of laryngeal desiccation.

  11. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics.

  13. 78 FR 19799 - United States Mint Kids' Baseball Coin Design Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... DEPARTMENT OF THE TREASURY United States Mint United States Mint Kids' Baseball Coin Design Challenge ACTION: Notification of the Opening of the United States Mint Kids' Baseball Coin Design Challenge on April 11, 2013. SUMMARY: The United States Mint announces the opening of a national kids' baseball...

  14. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Baumgartner, Matthew P.; Evans, David A.

    2018-01-01

    Two of the major ongoing challenges in computational drug discovery are predicting the binding pose and affinity of a compound to a protein. The Drug Design Data Resource Grand Challenge 2 was developed to address these problems and to drive development of new methods. The challenge provided the 2D structures of compounds for which the organizers help blinded data in the form of 35 X-ray crystal structures and 102 binding affinity measurements and challenged participants to predict the binding pose and affinity of the compounds. We tested a number of pose prediction methods as part of the challenge; we found that docking methods that incorporate protein flexibility (Induced Fit Docking) outperformed methods that treated the protein as rigid. We also found that using binding pose metadynamics, a molecular dynamics based method, to score docked poses provided the best predictions of our methods with an average RMSD of 2.01 Å. We tested both structure-based (e.g. docking) and ligand-based methods (e.g. QSAR) in the affinity prediction portion of the competition. We found that our structure-based methods based on docking with Smina (Spearman ρ = 0.614), performed slightly better than our ligand-based methods (ρ = 0.543), and had equivalent performance with the other top methods in the competition. Despite the overall good performance of our methods in comparison to other participants in the challenge, there exists significant room for improvement especially in cases such as these where protein flexibility plays such a large role.

  16. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  17. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  18. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.

    PubMed

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-21

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  19. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-01

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  20. The Extended Mission Rover (EMR)

    NASA Technical Reports Server (NTRS)

    Shields, W.; Halecki, Anthony; Chung, Manh; Clarke, Ken; Frankle, Kevin; Kassemkhani, Fariba; Kuhlhoff, John; Lenzini, Josh; Lobdell, David; Morgan, Sam

    1992-01-01

    A key component in ensuring America's status as a leader in the global community is its active pursuit of space exploration. On the twentieth anniversary of Apollo 11, President George Bush challenged the nation to place a man on the moon permanently and to conduct human exploration of Mars in the 21st century. The students of the FAMU/FSU College of Engineering hope to make a significant contribution to this challenge, America's Space Exploration Initiative (SEI), with their participation in the NASA/USRA Advanced Design Program. The project selected by the 1991/1992 Aerospace Design group is the design of an Extended Mission Rover (EMR) for use on the lunar surface. This vehicle will serve as a mobile base to provide future astronauts with a 'shirt-sleeve' living and working environment. Some of the proposed missions are planetary surface exploration, construction and maintenance, hardware setup, and in situ resource experimentation. This vehicle will be put into use in the 2010-2030 time frame.

  1. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  2. A Novel Device Addressing Design Challenges for Passive Fluid Phase Separations Aboard Spacecraft

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Thomas, E. A.; Graf, J. C.

    2009-07-01

    Capillary solutions have long existed for the control of liquid inventories in spacecraft fluid systems such as liquid propellants, cryogens and thermal fluids for temperature control. Such large length scale, `low-gravity,' capillary systems exploit container geometry and fluid properties—primarily wetting—to passively locate or transport fluids to desired positions for a variety of purposes. Such methods have only been confidently established if the wetting conditions are known and favorable. In this paper, several of the significant challenges for `capillary solutions' to low-gravity multiphase fluids management aboard spacecraft are briefly reviewed in light of applications common to life support systems that emphasize the impact of the widely varying wetting properties typical of aqueous systems. A restrictive though no less typifying example of passive phase separation in a urine collection system is highlighted that identifies key design considerations potentially met by predominately capillary solutions. Sample results from novel scale model prototype testing aboard a NASA low-g aircraft are presented that support the various design considerations.

  3. Boeing electronic flight bag

    NASA Astrophysics Data System (ADS)

    Trujillo, Eddie J.; Ellersick, Steven D.

    2006-05-01

    The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.

  4. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting.

    PubMed

    Zhou, Min; Bao, Jian; Xu, Yang; Zhang, Jiajia; Xie, Junfeng; Guan, Meili; Wang, Chengliang; Wen, Liaoyong; Lei, Yong; Xie, Yi

    2014-07-22

    BiVO4 has been regarded as a promising material for photoelectrochemical water splitting, but it suffers from a major challenge on charge collection and utilization. In order to meet this challenge, we design a nanoengineered three-dimensional (3D) ordered macro-mesoporous architecture (a kind of inverse opal) of Mo:BiVO4 through a controllable colloidal crystal template method with the help of a sandwich solution infiltration method and adjustable post-heating time. Within expectation, a superior photocurrent density is achieved in return for this design. This enhancement originates primarily from effective charge collection and utilization according to the analysis of electrochemical impedance spectroscopy and so on. All the results highlight the great significance of the 3D ordered macro-mesoporous architecture as a promising photoelectrode model for the application in solar conversion. The cooperating amplification effects of nanoengineering from composition regulation and morphology innovation are helpful for creating more purpose-designed photoelectrodes with highly efficient performance.

  5. Competency-based education: programme design and challenges to implementation.

    PubMed

    Gruppen, Larry D; Burkhardt, John C; Fitzgerald, James T; Funnell, Martha; Haftel, Hilary M; Lypson, Monica L; Mullan, Patricia B; Santen, Sally A; Sheets, Kent J; Stalburg, Caren M; Vasquez, John A

    2016-05-01

    Competency-based education (CBE) has been widely cited as an educational framework for medical students and residents, and provides a framework for designing educational programmes that reflect four critical features: a focus on outcomes, an emphasis on abilities, a reduction of emphasis on time-based training, and promotion of learner centredness. Each of these features has implications and potential challenges for implementing CBE. As an experiment in CBE programme design and implementation, the University of Michigan Master of Health Professions Education (UM-MHPE) degree programme was examined for lessons to be learned when putting CBE into practice. The UM-MHPE identifies 12 educational competencies and 20 educational entrustable professional activities (EPAs) that serve as the vehicle for both learning and assessment. The programme also defines distinct roles of faculty members as assessors, mentors and subject-matter experts focused on highly individualised learning plans adapted to each learner. Early experience with implementing the UM-MHPE indicates that EPAs and competencies can provide a viable alternative to traditional courses and a vehicle for rigorous assessment. A high level of individualisation is feasible but carries with it significant costs and makes intentional community building essential. Most significantly, abandoning a time-based framework is a difficult innovation to implement in a university structure that is predicated on time-based education. © 2016 John Wiley & Sons Ltd.

  6. Kris Gutiérrez: designing with and for diversity in the learning sciences

    NASA Astrophysics Data System (ADS)

    Jurow, A. Susan

    2016-03-01

    This article reviews the significance of the theoretical and practical contributions of Kris Gutiérrez to research on science education. Gutierrez's ideas about design and equity have inspired scholars to investigate how to leverage learners' everyday practices to make meaningful connections to disciplinary-based knowledge and skills. Her work has provided valuable direction on how to engage the challenges of organizing for more equitable futures through critical understanding of cultural diversity as a resource for transformative learning.

  7. Options for Parallelizing a Planning and Scheduling Algorithm

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.

    2011-01-01

    Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.

  8. Higher Education for Sustainable Development in China

    ERIC Educational Resources Information Center

    Niu, Dongjie; Jiang, Dahe; Li, Fengting

    2010-01-01

    Purpose: The purpose of this paper is to analyse the significance of developments across Chinese higher education in the field of education and learning for sustainable development (SD) and to assess the relative impact of these initiatives. Design/methodology/approach: This is a review of policy and practice to examine developments, challenges,…

  9. Life Skills at a Tribal College: A Culturally Relevant Educational Intervention

    ERIC Educational Resources Information Center

    Keith, Jill F.; Stastny, Sherri N.; Agnew, Wanda; Brunt, Ardith; Aune, Pat

    2017-01-01

    American Indians, Alaska Natives, and Native Hawaiians (AI/AN/NH) experience the lowest rates of college retention and significant barriers to graduation. In addition, AI/AN/NH individuals face health challenges that include higher rates of obesity, overweight, and type 2 diabetes. We designed a culturally relevant life skills curriculum based on…

  10. Implementation Fidelity: The Experience of the Adolescent Substance Abuse Prevention Study

    ERIC Educational Resources Information Center

    Sloboda, Zili; Stephens, Peggy; Pyakuryal, Amod; Teasdale, Brent; Stephens, Richard C.; Hawthorne, Richard D.; Marquette, Jesse; Williams, Joseph E.

    2009-01-01

    While researchers have developed more effective programs and strategies to prevent the initiation of substance use and increasingly communities are delivering these interventions, determining the degree to which they are delivered as they were designed remains a significant research challenge. In the past several years, more attention has been…

  11. An Expanded Model of Careers Professional Identity: Time for Change?

    ERIC Educational Resources Information Center

    Hughes, Deirdre

    2013-01-01

    The careers profession is challenged significantly by government, employers and potential consumers to articulate its added value to society. Neoliberal discourses such as privatisation, deregulation, flexicurity and a self-help culture are impacting upon arrangements for the design and delivery of all-age careers provision across the UK. In this…

  12. Using Consumer Input to Tailor Evidence-Based Parenting Interventions to the Needs of Grandparents

    ERIC Educational Resources Information Center

    Kirby, James N.; Sanders, Matthew R.

    2012-01-01

    Grandparents provide a significant amount of child care to their grandchildren. However, there is limited research investigating whether grandparents would view a parenting program developed specifically for them as useful. Our study adopted a consumer focused perspective to program design and examined the challenges encountered by grandparents in…

  13. Building Systems for Evaluation of Teachers Poses Challenge

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2011-01-01

    Rounding the corner on the design of new teacher-evaluation plans, states and districts are beginning to wrestle with the significant technical and logistical hurdles for transforming their blueprints into reality. In the coming months, more states--especially those that won grants through the $4 billion federal Race to the Top initiative--are…

  14. The Use of Computer Technology in Designing Appropriate Test Accommodations for English Language Learners

    ERIC Educational Resources Information Center

    Abedi, Jamal

    2014-01-01

    Among the several forms of accommodations used in the assessment of English language learners (ELLs), language-based accommodations are the most effective in making assessments linguistically accessible to these students. However, there are significant challenges associated with the implementation of many of these accommodations. This article…

  15. Understanding the dispensary workflow at the Birmingham Free Clinic: a proposed framework for an informatics intervention.

    PubMed

    Fisher, Arielle M; Herbert, Mary I; Douglas, Gerald P

    2016-02-19

    The Birmingham Free Clinic (BFC) in Pittsburgh, Pennsylvania, USA is a free, walk-in clinic that serves medically uninsured populations through the use of volunteer health care providers and an on-site medication dispensary. The introduction of an electronic medical record (EMR) has improved several aspects of clinic workflow. However, pharmacists' tasks involving medication management and dispensing have become more challenging since EMR implementation due to its inability to support workflows between the medical and pharmaceutical services. To inform the design of a systematic intervention, we conducted a needs assessment study to identify workflow challenges and process inefficiencies in the dispensary. We used contextual inquiry to document the dispensary workflow and facilitate identification of critical aspects of intervention design specific to the user. Pharmacists were observed according to contextual inquiry guidelines. Graphical models were produced to aid data and process visualization. We created a list of themes describing workflow challenges and asked the pharmacists to rank them in order of significance to narrow the scope of intervention design. Three pharmacists were observed at the BFC. Observer notes were documented and analyzed to produce 13 themes outlining the primary challenges pharmacists encounter during dispensation at the BFC. The dispensary workflow is labor intensive, redundant, and inefficient when integrated with the clinical service. Observations identified inefficiencies that may benefit from the introduction of informatics interventions including: medication labeling, insufficient process notification, triple documentation, and inventory control. We propose a system for Prescription Management and General Inventory Control (RxMAGIC). RxMAGIC is a framework designed to mitigate workflow challenges and improve the processes of medication management and inventory control. While RxMAGIC is described in the context of the BFC dispensary, we believe it will be generalizable to pharmacies in other low-resource settings, both domestically and internationally.

  16. Library outreach: overcoming health literacy challenges*

    PubMed Central

    Parker, Ruth; Kreps, Gary L.

    2005-01-01

    Objective: This paper examines the powerful influences of consumer health literacy on access to and use of relevant health information. Method: The paper describes how widespread problems with health literacy significantly limit effective dissemination of relevant health information in society, especially to many vulnerable populations where health literacy challenges are especially pervasive. Results: The paper examines strengths and weaknesses of different programs for addressing health literacy problems, including educational programs, message design programs, and strategic communication training and intervention programs. Implications: The paper evaluates strategies that can be implemented throughout the modern health care system to address problems of health literacy by improving health information access, processing, and understanding. It concludes by examining several strategies that libraries can adopt to overcome many health literacy challenges. PMID:16239962

  17. Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Becker, Kurt

    2010-01-01

    The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…

  18. Whatever Floats Your Boat: A Design Challenge

    ERIC Educational Resources Information Center

    Kornoelje, Joanne; Roman, Harry T.

    2012-01-01

    This article presents a simple design challenge, based on the PBS program "Design Squad's" "Watercraft" activity that will prove engaging to most technology and engineering students. In this floating boat challenge, students are to build a boat that can float and support 25 pennies for at least 10 seconds--without leaking, sinking, or tipping…

  19. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    NASA Astrophysics Data System (ADS)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  20. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  1. Design and development of reactive injectable and settable polymeric biomaterials.

    PubMed

    Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2013-12-01

    Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  2. Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry.

    PubMed

    Arachchige, Indika U; Armatas, Gerasimos S; Biswas, Kanishka; Subrahmanyam, Kota S; Latturner, Susan; Malliakas, Christos D; Manos, Manolis J; Oh, Youngtak; Polychronopoulou, Kyriaki; P Poudeu, Pierre F; Trikalitis, Pantelis N; Zhang, Qichun; Zhao, Li-Dong; Peter, Sebastian C

    2017-07-17

    Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.

  3. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team ARES poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team ARES was the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winning team was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  4. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: An Earth Modeling System Software Framework Strawman Design that Integrates Cactus and UCLA/UCB Distributed Data Broker

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.

  5. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    After announcing that Team ARES won the Exploration Design Challenge, NASA Administrator, Charles Bolden and CEO, Marillyn Hewson invite the team up to the stage to receive their award. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.Team ARES's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  6. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Astronaut Rex Walheim spoke at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival takes place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  7. Improving Gram stain proficiency in hospital and satellite laboratories that do not have microbiology.

    PubMed

    Guarner, Jeannette; Street, Cassandra; Matlock, Margaret; Cole, Lisa; Brierre, Francoise

    2017-03-01

    Consolidation of laboratories has left many hospitals and satellite laboratories with minimal microbiologic testing. In many hospitals and satellite laboratories, Gram stains on primary specimens are still performed despite difficultly in maintaining proficiency. To maintain Gram stain proficiency at a community 450-bed hospital with an active emergency room we designed bimonthly challenges that require reporting Gram staining and morphology of different organisms. The challenges consist of five specimens prepared by the reference microbiology laboratory from cultures and primary specimens. Twenty to 23 medical laboratory scientists participate reading the challenges. Results from the challenges are discussed with each medical laboratory scientists. In addition, printed images from the challenges are presented at huddle to add microbiology knowledge. On the first three challenges, Gram staining was read correctly in 71%-77% of the time while morphology 53%-66%. In the last six challenges correct answers for Gram stain were 77%-99% while morphology 73%-96%. We observed statistically significant improvement when reading Gram stains by providing frequent challenges to medical laboratory scientists. The clinical importance of Gram stain results is emphasized during huddle presentations increasing knowledge and motivation to perform the test for patients.

  8. The ways and means of fragment-based drug design.

    PubMed

    Doak, Bradley C; Norton, Raymond S; Scanlon, Martin J

    2016-11-01

    Fragment-based drug design (FBDD) has emerged as a mainstream approach for the rapid and efficient identification of building blocks that can be used to develop high-affinity ligands against protein targets. One of the strengths of FBDD is the relative ease and low cost of the primary screen to identify fragments that bind. However, the fragments that emerge from primary screens often have low affinities, with K D values in the high μM to mM range, and a significant challenge for FBDD is to develop the initial fragments into more potent ligands. Successful fragment elaboration often requires co-structures of the fragments bound to their target proteins, as well as a range of biophysical and biochemical assays to track potency and efficacy. These challenges have led to the development of specific chemical strategies for the elaboration of weakly-binding fragments into more potent "hits" and lead compounds. In this article we review different approaches that have been employed to meet these challenges and describe some of the strategies that have resulted in several fragment-derived compounds entering clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Green ergonomics: challenges and opportunities.

    PubMed

    Hanson, Margaret A

    2013-01-01

    Addressing the causes and consequences of environmental degradation presents significant challenges for humankind. This paper considers what ergonomics/human factors (E/HF) professionals can contribute to understanding and tackling some of the issues that arise through the movement towards a more environmentally sustainable economy. These issues are considered in relation to work in green industries (specifically, sustainable energy production, recycling and organic food production), and there is a need to ensure that these jobs are safe and healthy; the design of products and systems that are 'environmentally friendly' to facilitate their acceptability and use and how E/HF professionals can contribute to understanding and promoting behavioural change relating to environmental choices. The activities of some international organisations in this area are identified and the potential for E/HF involvement is considered. The implications for the E/HF profession are discussed. This paper considers how ergonomics/human factors professionals can contribute to the movement towards more sustainable and 'environmentally friendly' design and work. Potential challenges and opportunities are discussed in relation to jobs in green industries, products and systems and behaviour change.

  10. Accurate de novo design of hyperstable constrained peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D.

    Covalently-crosslinked peptides present attractive opportunities for developing new therapeutics. Lying between small molecule and protein therapeutics in size, natural crosslinked peptides play critical roles in signaling, virulence and immunity. Engineering novel peptides with precise control over their three-dimensional structures is a significant challenge. Here we describe the development of computational methods for de novo design of conformationally-restricted peptides, and the use of these methods to design hyperstable disulfide-stabilized miniproteins, heterochiral peptides, and N-C cyclic peptides. Experimentally-determined X-ray and NMR structures for 12 of the designs are nearly identical to the computational models. The computational design methods and stable scaffolds providemore » the basis for a new generation of peptide-based drugs.« less

  11. Innovating urinary catheter design: An introduction to the engineering challenge.

    PubMed

    Murphy, Cathy

    2018-05-01

    Every day, people around the world rely on intermittent and indwelling urinary catheters to manage bladder dysfunction, but the potential or actual harm caused by these devices is well-recognised. Current catheter designs can cause urinary tract infection and septicaemia, bladder and urethral trauma and indwelling devices frequently become blocked. Furthermore, the devices can severely disrupt users' lives, limiting their daily activities and can be costly to manage for healthcare providers. Despite this, little significant design innovation has taken place in the last 80 years. In this article current catheter designs and their limitations are reviewed, common catheter-associated problems are outlined and areas of design ripe for improvement proposed. The potential to relieve the individual and economic burden of catheter use is high.

  12. Distributive Distillation Enabled by Microchannel Process Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Ravi

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation formore » new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.« less

  13. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less

  14. The Perennial and the Particular Challenges of Design Education

    ERIC Educational Resources Information Center

    Ruecker, Stan

    2012-01-01

    Education in design shares with other disciplines a number of perennial challenges, including the need to transfer human culture, the choice of what parts of human culture to transfer and the decision as to what approaches work best in accomplishing that transfer. Design education also faces particular challenges, which are shared with only a few…

  15. Nanomedicine applications in orthopedic medicine: state of the art

    PubMed Central

    Mazaheri, Mozhdeh; Eslahi, Niloofar; Ordikhani, Farideh; Tamjid, Elnaz; Simchi, Abdolreza

    2015-01-01

    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges. PMID:26451110

  16. Nanomedicine applications in orthopedic medicine: state of the art.

    PubMed

    Mazaheri, Mozhdeh; Eslahi, Niloofar; Ordikhani, Farideh; Tamjid, Elnaz; Simchi, Abdolreza

    2015-01-01

    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.

  17. Grand challenges in space synthetic biology

    PubMed Central

    Montague, Michael G.; Cumbers, John; Hogan, John A.

    2015-01-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  18. Engineering Innovations for Exploration Challenges

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2010-01-01

    This slide presentation reviews some of the engineering innovations requirements for the challenges of space exploration which NASA has and will be involved in. It reviews some significant successes in space transportation, exploration and science accomplished during 2009, and it reviews some of the places that are available for exploration in the near term and the specific missions that NASA has assigned to Marshall. It also reviews the project lifecycle management model, that is designed to reduce undefined, but known, risks. It also demonstrates the sustainable long-term program of block upgrades that contribute to long-term success of programs.

  19. BNL 56 MHz HOM damper prototype fabrication at JLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, N.; McIntyre, G.; Daly, E. F.

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  20. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  1. Human recognition in a video network

    NASA Astrophysics Data System (ADS)

    Bhanu, Bir

    2009-10-01

    Video networks is an emerging interdisciplinary field with significant and exciting scientific and technological challenges. It has great promise in solving many real-world problems and enabling a broad range of applications, including smart homes, video surveillance, environment and traffic monitoring, elderly care, intelligent environments, and entertainment in public and private spaces. This paper provides an overview of the design of a wireless video network as an experimental environment, camera selection, hand-off and control, anomaly detection. It addresses challenging questions for individual identification using gait and face at a distance and present new techniques and their comparison for robust identification.

  2. A platform for evolving intelligently interactive adversaries.

    PubMed

    Fogel, David B; Hays, Timothy J; Johnson, Douglas R

    2006-07-01

    Entertainment software developers face significant challenges in designing games with broad appeal. One of the challenges concerns creating nonplayer (computer-controlled) characters that can adapt their behavior in light of the current and prospective situation, possibly emulating human behaviors. This adaptation should be inherently novel, unrepeatable, yet within the bounds of realism. Evolutionary algorithms provide a suitable method for generating such behaviors. This paper provides background on the entertainment software industry, and details a prior and current effort to create a platform for evolving nonplayer characters with genetic and behavioral traits within a World War I combat flight simulator.

  3. Using mixed methods research designs in health psychology: an illustrated discussion from a pragmatist perspective.

    PubMed

    Bishop, Felicity L

    2015-02-01

    To outline some of the challenges of mixed methods research and illustrate how they can be addressed in health psychology research. This study critically reflects on the author's previously published mixed methods research and discusses the philosophical and technical challenges of mixed methods, grounding the discussion in a brief review of methodological literature. Mixed methods research is characterized as having philosophical and technical challenges; the former can be addressed by drawing on pragmatism, the latter by considering formal mixed methods research designs proposed in a number of design typologies. There are important differences among the design typologies which provide diverse examples of designs that health psychologists can adapt for their own mixed methods research. There are also similarities; in particular, many typologies explicitly orient to the technical challenges of deciding on the respective timing of qualitative and quantitative methods and the relative emphasis placed on each method. Characteristics, strengths, and limitations of different sequential and concurrent designs are identified by reviewing five mixed methods projects each conducted for a different purpose. Adapting formal mixed methods designs can help health psychologists address the technical challenges of mixed methods research and identify the approach that best fits the research questions and purpose. This does not obfuscate the need to address philosophical challenges of mixing qualitative and quantitative methods. Statement of contribution What is already known on this subject? Mixed methods research poses philosophical and technical challenges. Pragmatism in a popular approach to the philosophical challenges while diverse typologies of mixed methods designs can help address the technical challenges. Examples of mixed methods research can be hard to locate when component studies from mixed methods projects are published separately. What does this study add? Critical reflections on the author's previously published mixed methods research illustrate how a range of different mixed methods designs can be adapted and applied to address health psychology research questions. The philosophical and technical challenges of mixed methods research should be considered together and in relation to the broader purpose of the research. © 2014 The British Psychological Society.

  4. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    NASA Administrator, Charles Bolden and Lockheed Martin CEO, Marillyn Hewson announce the winner of the Exploration Design Challenge at the USA Science and Engineering Festival on April 25, 2014. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  5. The effects of presession manipulations on automatically maintained challenging behavior and task responding.

    PubMed

    Chung, Yi-Chieh; Cannella-Malone, Helen I

    2010-11-01

    This study examined the effects of presession exposure to attention, response blocking, attention with response blocking, and noninteraction conditions on subsequent engagement in automatically maintained challenging behavior and correct responding in four individuals with significant intellectual disabilities. Following a functional analysis, the effects of the four presession conditions were examined using multielement designs. Results varied across the 4 participants (e.g., presession noninteraction acted as an abolishing operation for 2 participants, but as an establishing operation for the other 2 participants). As such, both the results replicated and contradicted previous research examining the effects of motivating operations on automatically maintained challenging behavior. Although the results varied across participants, at least one condition resulting in a decrease in challenging behavior and an increase in correct responding were identified for each participant. These findings suggested that presession manipulations resulted in decreases in subsequent automatically maintained challenging behavior and simultaneous increases in correct responding might need to be individually identified when the maintaining contingencies cannot be identified.

  6. System Risk Assessment and Allocation in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.

  7. Design of smart sensing components for volcano monitoring

    USGS Publications Warehouse

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  8. Flexible twist for pitch control in a high altitude long endurance aircraft with nonlinear response

    NASA Astrophysics Data System (ADS)

    Bond, Vanessa L.

    Information dominance is the key motivator for employing high-altitude long-endurance (HALE) aircraft to provide continuous coverage in the theaters of operation. A joined-wing configuration of such a craft gives the advantage of a platform for higher resolution sensors. Design challenges emerge with structural flexibility that arise from a long-endurance aircraft design. The goal of this research was to demonstrate that scaling the nonlinear response of a full-scale finite element model was possible if the model was aeroelastically and "nonlinearly" scaled. The research within this dissertation showed that using the first three modes and the first bucking modes was not sufficient for proper scaling. In addition to analytical scaling several experiments were accomplished to understand and overcome design challenges of HALE aircraft. One such challenge is combated by eliminating pitch control surfaces and replacing them with an aft-wing twist concept. This design option was physically realized through wind tunnel measurement of forces, moments and pressures on a subscale experimental model. This design and experiment demonstrated that pitch control with aft-wing twist is feasible. Another challenge is predicting the nonlinear response of long-endurance aircraft. This was addressed by experimental validation of modeling nonlinear response on a subscale experimental model. It is important to be able to scale nonlinear behavior in this type of craft due to its highly flexible nature. The validation accomplished during this experiment on a subscale model will reduce technical risk for full-scale development of such pioneering craft. It is also important to experimentally reproduce the air loads following the wing as it deforms. Nonlinearities can be attributed to these follower forces that might otherwise be overlooked. This was found to be a significant influence in HALE aircraft to include the case study of the FEM and experimental models herein.

  9. Designing the Instructional Interface.

    ERIC Educational Resources Information Center

    Lohr, L. L.

    2000-01-01

    Designing the instructional interface is a challenging endeavor requiring knowledge and skills in instructional and visual design, psychology, human-factors, ergonomic research, computer science, and editorial design. This paper describes the instructional interface, the challenges of its development, and an instructional systems approach to its…

  10. An Overview of the Thermal Challenges of Designing Microgravity Furnaces

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    2001-01-01

    Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.

  11. Use of empirically supported interventions for psychopathology: can the participatory approach move us beyond the research-to-practice gap?

    PubMed

    Becker, Carolyn Black; Stice, Eric; Shaw, Heather; Woda, Susan

    2009-04-01

    Dissemination, or distribution, of empirically supported interventions (ESIs) for psychopathology remains a significant challenge. This paper reviews the principles of community-partnership research (CPR) and explores why CPR might improve distribution of psychological ESIs. Benefits of CPR include building trust, pooling resources and knowledge, and better serving a community by directly involving its members in the design and implementation of research. In addition, after establishing a community's trust using CPR, researchers are likely to be better positioned to partner with communities in the further distribution of ESIs via community networks. This paper reviews the case of dissonance-based eating disorder prevention interventions to provide an example of how CPR can facilitate the adoption and distribution of an ESI by a community, in this case, sororities. CPR also presents a number of challenges, however, because it is time consuming and does not always align with funding mechanisms and research designs used in randomized controlled trials. Further, CPR does not necessarily solve the challenge of training providers, though it may help with problem solving. Ultimately, we suggest that the benefits of CPR far outweigh the challenges, and hope that more researchers will adopt these practices so that more individuals can benefit from empirically supported psychological interventions.

  12. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    NASA Astrophysics Data System (ADS)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  13. Paving the Path for Human Space Exploration: The Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hansen, Lauri

    2016-01-01

    Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.

  14. Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout.

    PubMed

    Pinedo-Gil, Julia; Martín-Diana, Ana Belén; Bertotto, Daniela; Sanz-Calvo, Miguel Ángel; Jover-Cerdá, Miguel; Tomás-Vidal, Ana

    2018-06-01

    This study evaluates the effects of red beet (RB) and betaine on rainbow trout submitted to an acute stress challenge. A control diet was compared with four experimental diets in which red beet (14 and 28%) and betaine (0.9 and 1.63%) were incorporated in different concentrations according to a factorial design. Cortisol in plasma and fin, glucose and lactate plasma levels, and malondialdehide (MDA) in muscle were all measured before the stress challenge and 30 min and 6 and 12 h after the stress challenge as parameters to determine the diet effects. RB and betaine had no effect on cortisol, glucose, and MDA basal levels. However, lactate basal levels were significantly lower on fish fed with RB and betaine. Thirty minutes after the stress challenge, there was a significant increase in plasma and fin cortisol, glucose and lactate concentrations, although fish fed with diets containing RB and betaine showed significantly higher plasma cortisol values. MDA values of fish fed with 14% RB and 0.9% betaine were significantly higher than MDA values from fish fed with 28% RB and 1.63% betaine. After 6 and 12 h, plasma and fin cortisol and lactate levels recovered in a similar trend. Glucose plasma levels recovered in almost all groups 12 h after the stress. Also, MDA values recovered basal levels after 6 and 12 h. RB and betaine did not enhance the tolerance to the stress challenge compared to the control group, although the presence of these ingredients had no negative effect on any of the stress indicators.

  15. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  16. Efficacy of a post-secondary environmental science education program on the attitude toward science of a group of Mississippi National Guard Youth ChalleNGe Program students

    NASA Astrophysics Data System (ADS)

    Smith, William Bradford, Jr.

    The National Guard Youth ChalleNGe Program (ChalleNGe) is a 17 month quasi-military training program authorized by Congress in the 1993 Defense Authorization Bill designed to improve life skills, education levels, and employment potential of 16--18 year old youth who drop out of high school. ChalleNGe is currently operational in 27 states/territories with the focus of this study on the Mississippi National Guard Program operated at Camp Shelby, Mississippi. During the five month residential portion of the program students are guided through an eight step process designed to meet the goals of improving life skills, education levels, and employment potential while ultimately leading to completion of high school equivalency credentials followed by a 12 month mentoring phase to encourage and track progress toward goals. The purpose of this study was to investigate the attitude toward science of a group of students enrolled in the ChalleNGe Program at Camp Shelby (ChalleNGe). The GED test is administered approximately two months into the residential phase of the program. While the program boasts an overall GED pass rate of nearly 80%, approximately 30--35% of students successfully complete the initial offering of the GED. As high school graduates, these students are offered college courses through William Carey College in Hattiesburg, Mississippi. Twenty four students elected to take the Introduction to Environmental Science course and formed the experimental group while 24 other students who passed the GED comprised the control group. Each group was administered the Scientific Attitude Inventory II, a 40 statement instrument with Likert Scale responses, as a pretest. Paired samples t-tests indicated no significant difference in attitude toward science between the experimental and control groups on the pretest. Following the two week Introduction to Environmental Science course for the experimental group, both groups were post tested. As predicted, the attitude toward science of the experimental group was significantly higher than that of the control group. Further investigation into correlation between the length of time students were away from the traditional school prior to starting ChalleNGe, the number of science classes previously taken, and reading scores on the Test of Adult Basic Education revealed no significant relationship. Responses provided by students to each of these three factors was significantly different between the experimental and control groups. In summary, attitude toward science can be positively impacted by short term interventions such as the environmental science course described herein. While the positive impact on attitude toward science caused by this course was the desired outcome of this project, appropriate emphasis should be placed on prevention of dropouts and the accompanying social issues.

  17. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; hide

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  18. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  19. Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities.

    PubMed

    Ramanujan, Devarajan; Bernstein, William Z; Chandrasegaran, Senthil K; Ramani, Karthik

    2017-01-01

    The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.

  20. Flat H Frangible Joint Evolution

    NASA Technical Reports Server (NTRS)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same three-dimensional envelope as current designs as well as meet structural loads requirements. There is increased mass associated with the redundant design, and the goal is to minimize the weight impact as much as possible. These requirements presented significant challenges, both technically and financially; these challenges will be explored in this paper. Perhaps greater than the technical issues confronted during this design process, were the financial considerations. These were a significant part of the story of this design and development plan. Insufficient financial and labor resources were formidable barriers to completing this project. Nevertheless, JSC personnel successfully conducted several test series at JSC with very useful results. The many lessons learned drove design improvements, performance efficiency, and increased functional reliability. This paper examines the significant technical and financial challenges that these requirements posed to the project team. It discusses the evolution of the SFT frangible joint design, including optimization, testing, and successful partnering of the Johnson Space Center (JSC) engineering and JSC safety organizations, to enhance the flight safety margin for America's next generation of human-rated space vehicles.

  1. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Mark Geyer, Orion Program Manager, spoke at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival takes place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  2. Increasing Charter School Accountability through Interventions and Closures: A Guide For State Policymakers

    ERIC Educational Resources Information Center

    Gustafson, Joey; Keller, Eric; LaVallee, Robert E.; Stewart, Nichole H.

    2010-01-01

    A basic premise of charter school reform in public education is offering more autonomy in the use of funds and the design of curriculum in exchange for greater accountability in academic and financial outcomes. This premise poses a significant policy challenge for state policymakers to establish an appropriate level of regulation; charter schools…

  3. Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical

    ERIC Educational Resources Information Center

    Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P.

    2008-01-01

    An open-ended laboratory practical has been developed that challenges students to evaluate when different purification techniques are appropriate. In contrast to most lab practicals, the overall grade includes an evaluation of spectral analysis as well as writing skills. However, a significant portion of the grade lies in successful execution of a…

  4. The Power and Challenge of Facilitating Reframing: Applications in Teaching Negotiation

    ERIC Educational Resources Information Center

    Cannon, Mark D.

    2017-01-01

    Reframing is the ability to identify and significantly change assumptions or perspectives. It is a powerful skill but can be difficult to learn and apply. This article presents two experiential exercises for teaching reframing in negotiations: the Rental Home case and the Multiplex Saw case. These exercises are designed to produce frame-shifting…

  5. "I Don't Come out with Big Words like Other People": Interviewing Adolescents as Part of Communication Profiling

    ERIC Educational Resources Information Center

    Spencer, Sarah; Clegg, Judy; Stackhouse, Joy

    2010-01-01

    Assessing adolescent language skills poses significant challenges due to the subtle nature of language proficiency at this age, along with the high linguistic demands both academically and socially. As with young children, the current range of language assessments designed specifically for adolescents mostly includes standardized tests. This…

  6. Next Steps in Network Time Synchronization For Navy Shipboard Applications

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements

  7. A practical approach for comparing management strategies in complex forest ecosystems using meta-modelling toolkits

    Treesearch

    Andrew Fall; B. Sturtevant; M.-J. Fortin; M. Papaik; F. Doyon; D. Morgan; K. Berninger; C. Messier

    2010-01-01

    The complexity and multi-scaled nature of forests poses significant challenges to understanding and management. Models can provide useful insights into process and their interactions, and implications of alternative management options. Most models, particularly scientific models, focus on a relatively small set of processes and are designed to operate within a...

  8. User Interface Preferences in the Design of a Camera-Based Navigation and Wayfinding Aid

    ERIC Educational Resources Information Center

    Arditi, Aries; Tian, YingLi

    2013-01-01

    Introduction: Development of a sensing device that can provide a sufficient perceptual substrate for persons with visual impairments to orient themselves and travel confidently has been a persistent rehabilitation technology goal, with the user interface posing a significant challenge. In the study presented here, we enlist the advice and ideas of…

  9. "Bill Is Now Singing": Joint Engagement and the Emergence of Social Communication of Three Young Children with Autism

    ERIC Educational Resources Information Center

    Vaiouli, Potheini; Grimmet, Kharon; Ruich, Lawrence J.

    2015-01-01

    Young children with autism spectrum disorder meet significant challenges in joint attention skills and in social communication. A child-centered, improvisational, music therapy intervention model was implemented to promote engagement in three young children with autism in a kindergarten classroom. A multiple baseline design compared the children's…

  10. Enhancing Academic Instruction for Adolescent English Language Learners with or at Risk for Learning Disabilities

    ERIC Educational Resources Information Center

    Haager, Diane; Osipova, Anna V.

    2017-01-01

    An increasing number of children worldwide attend schools where the language of instruction does not match their native language, presenting significant challenges with learning the content and vocabulary of academic content areas (e.g., social studies, science). In the U.S., these students are designated as English language learners…

  11. Multiple Perspectives of Conceptual Change in Science and the Challenges Ahead

    ERIC Educational Resources Information Center

    Treagust, David F.; Duit, Reinders

    2009-01-01

    Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. Conceptual change can be interpreted from different individual perspectives or from multiple perspectives. In…

  12. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Lockheed Martin CEO Marillyn Hewson spoke at the Orion exhibit at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  13. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    NASA Administrator Charles Bolden spoke at the Orion exhibit at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  14. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  15. A survey of snake-inspired robot designs.

    PubMed

    Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K

    2009-06-01

    Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice.

  16. Multigenerational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior Health (MICEHAB): An Investigation of a Long Duration, Partial Gravity, Autonomous Rodent Colony

    NASA Technical Reports Server (NTRS)

    Rodgers, Erica M.; Simon, Matthew A.; Antol, Jeffrey; Chai, Patrick R.; Jones, Christopher A.; Klovstad, Jordan J.; Neilan, James H.; Stillwagen, Frederic H.; Williams, Phillip A.; Bednara, Michael; hide

    2015-01-01

    The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions.

  17. Studies on Nanoparticle Based Avian Influenza Vaccines to Present Immunogenic Epitopes of the Virus with Concentration on Ectodomain of Matrix 2 (M2e) Protein

    NASA Astrophysics Data System (ADS)

    Babapoor Dighaleh, Sankhiros

    2011-12-01

    Avian influenza is an infectious disease of avian species caused by type A influenza viruses with a significant economic impact on the poultry industry. Vaccination is the main prevention strategy in many countries worldwide. However, available vaccines elicit antibodies against two major surface protein of the virus hemagglutinin (HA) and neuraminidase (NA), where they constantly change by point mutations. Influenza viruses can also easily undergo gene reassortment. Therefore, to protect chickens against new strain of avian influenza virus, as well as control and prevent virus spread among farms, new vaccines needed to be designed which is a tedious, time consuming and expensive. Recently, conserved regions of the influenza genome have been evaluated as possible universal vaccines to eliminate constant vaccine updates based on circulating virus. In this study, peptide nanotechnology was used to generate vaccine nanoparticles that carry the highly conserved external domain of matrix 2 protein (M2e). These nanoparticles presented M2e in monomeric or tetrameric forms, designated as PSC-M2e-CH and BNSC-M2eN-CH. respectively. First, to demonstrate immunogenicity of these nanoparticles, we measured anti-M2e antibody in chickens, particularly when a high dose was applied. Prior to vaccination-challenge study, the challenge dose were determined by oculonasal inoculation of 10 6 EID50 or 107.7 EID50 of low pathogenicity AI virus HSN2 followed by measuring cloacal and tracheal virus shedding. A biphasic virus shedding pattern was observed with two peaks of virus shedding at days 4 and 8 for both tracheal and cloacal swabs. The chickens infected with 107.7 EID50 had significant virus shedding as compared with 106 EID50. Based on results of mentioned studies, a vaccination-challenge study was conducted by using 75mug of each vaccine construct per inoculation (with and without adjuvant) and higher dose of virus for challenge. BN5C-M2e-CH with adjuvant significantly reduced the tracheal virus shedding compared with the positive challenge control and offered significant protection by expediting clearance of the virus in infected chickens. Reduction in cloacal virus shedding was not significant because cloacal shedding is low by nature. These results demonstrate that nanoparticles are a promising platform for immunogenic epitope delivery and M2e is a promising vaccine candidate against low pathogenicity avian influenza (LPAI) viruses.

  18. The NDCX-II engineering design

    NASA Astrophysics Data System (ADS)

    Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  19. Thinking Style Diversity and Collaborative Design Learning

    NASA Astrophysics Data System (ADS)

    Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco

    The paper explores the impact of structured learning experiences that were designed to challenge students’ ways of thinking and promote creativity. The aim was to develop the ability of students, coming from different engineering disciplines and characterized by particular thinking style profiles, to collaboratively work on a project-based learning experience in an educational environment. Three project-based learning experiences were structured using critical thinking methods to stimulate creativity. Pre and post-survey data using a specially modified thinking style inventory for 202 design students indicated a thinking style profile of preferences with a focus on exploring and questioning. Statistically significant results showed students successfully developed empathy and openness to multiple perspectives.

  20. User-Centered Design of a Tablet Waiting Room Tool for Complex Patients to Prioritize Discussion Topics for Primary Care Visits.

    PubMed

    Lyles, Courtney R; Altschuler, Andrea; Chawla, Neetu; Kowalski, Christine; McQuillan, Deanna; Bayliss, Elizabeth; Heisler, Michele; Grant, Richard W

    2016-09-14

    Complex patients with multiple chronic conditions often face significant challenges communicating and coordinating with their primary care physicians. These challenges are exacerbated by the limited time allotted to primary care visits. Our aim was to employ a user-centered design process to create a tablet tool for use by patients for visit discussion prioritization. We employed user-centered design methods to create a tablet-based waiting room tool that enables complex patients to identify and set discussion topic priorities for their primary care visit. In an iterative design process, we completed one-on-one interviews with 40 patients and their 17 primary care providers, followed by three design sessions with a 12-patient group. We audiorecorded and transcribed all discussions and categorized major themes. In addition, we met with 15 key health communication, education, and technology leaders within our health system to further review the design and plan for broader implementation of the tool. In this paper, we present the significant changes made to the tablet tool at each phase of this design work. Patient feedback emphasized the need to make the tablet tool accessible for patients who lacked technical proficiency and to reduce the quantity and complexity of text presentation. Both patients and their providers identified specific content choices based on their personal experiences (eg, the ability to raise private or sensitive concerns) and recommended targeting new patients. Stakeholder groups provided essential input on the need to augment text with video and to create different versions of the videos to match sex and race/ethnicity of the actors with patients. User-centered design in collaboration with patients, providers, and key health stakeholders led to marked evolution in the initial content, layout, and target audience for a tablet waiting room tool intended to assist complex patients with setting visit discussion priorities.

  1. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  2. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction.

    PubMed

    Rivera, Daniel E; Pew, Michael D; Collins, Linda M

    2007-05-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.

  3. Using Engineering Control Principles to Inform the Design of Adaptive Interventions: A Conceptual Introduction

    PubMed Central

    Rivera, Daniel E.; Pew, Michael D.; Collins, Linda M.

    2007-01-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice. PMID:17169503

  4. Two challenges in embedded systems design: predictability and robustness.

    PubMed

    Henzinger, Thomas A

    2008-10-28

    I discuss two main challenges in embedded systems design: the challenge to build predictable systems, and that to build robust systems. I suggest how predictability can be formalized as a form of determinism, and robustness as a form of continuity.

  5. Teaching Strategies to Promote Concept Learning by Design Challenges

    ERIC Educational Resources Information Center

    Van Breukelen, Dave; Van Meel, Adrianus; De Vries, Marc

    2017-01-01

    Background: This study is the second study of a design-based research, organised around four studies, that aims to improve student learning, teaching skills and teacher training concerning the design-based learning approach called Learning by Design (LBD). Purpose: LBD uses the context of design challenges to learn, among other things, science.…

  6. Classifications, applications, and design challenges of drones: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Abdelkefi, A.

    2017-05-01

    Nowadays, there is a growing need for flying drones with diverse capabilities for both civilian and military applications. There is also a significant interest in the development of novel drones which can autonomously fly in different environments and locations and can perform various missions. In the past decade, the broad spectrum of applications of these drones has received most attention which led to the invention of various types of drones with different sizes and weights. In this review paper, we identify a novel classification of flying drones that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined applications. Design and fabrication challenges of micro drones, existing methods for increasing their endurance, and various navigation and control approaches are discussed in details. Limitations of the existing drones, proposed solutions for the next generation of drones, and recommendations are also presented and discussed.

  7. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  8. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.

  9. Rational design of high-yield and superior-quality rice.

    PubMed

    Zeng, Dali; Tian, Zhixi; Rao, Yuchun; Dong, Guojun; Yang, Yaolong; Huang, Lichao; Leng, Yujia; Xu, Jie; Sun, Chuan; Zhang, Guangheng; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Hu, Xingming; Guo, Longbiao; Xiong, Guosheng; Wang, Yonghong; Li, Jiayang; Qian, Qian

    2017-03-20

    Rice (Oryza sativa L.) is a staple food for more than half of the world's population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 2030 1 . The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the China's leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.

  10. Final Report - Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jagat

    2017-03-22

    Lithium Ion Battery (LIB) technology’s potential to enable a commercially viable high energy density is the key to a lower $/Wh, thereby a low cost battery. The design of a LIB with high energy, high power, safety and long life is a challenge that requires cell design from the ground up and synergy between all components. 3M Company (3M), the Recipient, led by its Principal Investigator, Jagat Singh, pursued this challenging task of a LIB by ‘teaming’ key commercial businesses [General Motors (GM), Umicore and Iontensity] and labs [Army Research Laboratory (ARL) and Lawrence Berkley National Laboratory (LBNL)]. The technologymore » from each team member was complimentary and a close working relationship spanning the value chain drove productivity.The completion of this project is a significant step towards more energy efficient and environmentally friendly vehicles, making America less dependent on imported oil.« less

  11. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  12. Influence of Compulsivity of Drug Abuse on Dopaminergic Modulation of Attentional Bias in Stimulant Dependence

    PubMed Central

    Ersche, Karen D.; Bullmore, Edward T.; Craig, Kevin J.; Shabbir, Shaila S.; Abbott, Sanja; Müller, Ulrich; Ooi, Cinly; Suckling, John; Barnes, Anna; Sahakian, Barbara J.; Merlo-Pich, Emilio V.; Robbins, Trevor W.

    2013-01-01

    Context There are no effective pharmacotherapies for stimulant dependence but there are many plausible targets for development of novel therapeutics. We hypothesized that dopamine-related targets are relevant for treatment of stimulant dependence, and there will likely be individual differences in response to dopaminergic challenges. Objective To measure behavioral and brain functional markers of drug-related attentional bias in stimulant-dependent individuals studied repeatedly after short-term dosing with dopamine D2/D3 receptor antagonist and agonist challenges. Design Randomized, double-blind, placebo-controlled, parallel-groups, crossover design using pharmacological functional magnetic resonance imaging. Setting Clinical research unit (GlaxoSmithKline) and local community in Cambridge, England. Participants Stimulant-dependent individuals (n=18) and healthy volunteers (n=18). Interventions Amisulpride (400 mg), pramipexole dihydrochloride (0.5 mg), or placebo were administered in counterbalanced order at each of 3 repeated testing sessions. Main Outcome Measures Attentional bias for stimulant-related words was measured during functional magnetic resonance imaging by a drug-word Stroop paradigm; trait impulsivity and compulsivity of dependence were assessed at baseline by questionnaire. Results Drug users demonstrated significant attentional bias for drug-related words, which was correlated with greater activation of the left prefrontal and right cerebellar cortex. Attentional bias was greater in people with highly compulsive patterns of stimulant abuse; the effects of dopaminergic challenges on attentional interference and related frontocerebellar activation were different between high- and low-compulsivity subgroups. Conclusions Greater attentional bias for and greater prefrontal activation by stimulant-related words constitute a candidate neurocognitive marker for dependence. Individual differences in compulsivity of stimulant dependence had significant effects on attentional bias, its brain functional representation, and its short-term modulation by dopaminergic challenges. PMID:20530013

  13. Design Optimization of a Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Jones, Scott M.; Gray, Justin S.

    2014-01-01

    NASA's Rotary Wing Project is investigating technologies that will enable the development of revolutionary civil tilt rotor aircraft. Previous studies have shown that for large tilt rotor aircraft to be viable, the rotor speeds need to be slowed significantly during the cruise portion of the flight. This requirement to slow the rotors during cruise presents an interesting challenge to the propulsion system designer as efficient engine performance must be achieved at two drastically different operating conditions. One potential solution to this challenge is to use a transmission with multiple gear ratios and shift to the appropriate ratio during flight. This solution will require a large transmission that is likely to be maintenance intensive and will require a complex shifting procedure to maintain power to the rotors at all times. An alternative solution is to use a fixed gear ratio transmission and require the power turbine to operate efficiently over the entire speed range. This concept is referred to as a variable-speed power-turbine (VSPT) and is the focus of the current study. This paper explores the design of a variable speed power turbine for civil tilt rotor applications using design optimization techniques applied to NASA's new meanline tool, the Object-Oriented Turbomachinery Analysis Code (OTAC).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G.H. Neilson, Donald Rej, and M. Viola

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative fusion energy confinement device developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) under contract from the US Department of Energy. The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves in significant cost overruns through all phases of the project (i.e. design, R&D, fabrication and assembly). The project was subsequently cancelled by the DOE in 2008. Although the project was not completed,more » several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future state-of-the art machines and other devices.« less

  15. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    NASA Technical Reports Server (NTRS)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  16. Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  17. Update on the status of the ITER ECE diagnostic design

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.

    2017-07-01

    Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.

  18. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  19. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  20. De Novo Computational Design of Retro-Aldol Enzymes

    PubMed Central

    Jiang, Lin; Althoff, Eric A.; Clemente, Fernando R.; Doyle, Lindsey; Röthlisberger, Daniela; Zanghellini, Alexandre; Gallaher, Jasmine L.; Betker, Jamie L.; Tanaka, Fujie; Barbas, Carlos F.; Hilvert, Donald; Houk, Kendall N.; Stoddard, Barry L.; Baker, David

    2012-01-01

    The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model. PMID:18323453

  1. Redesigning a risk-management process for tracking injuries.

    PubMed

    Wenzel, G R

    1998-01-01

    The changing responsibilities of registered nurses are challenging even the most dedicated professionals. To survive within her newly-defined roles, one nurse used a total quality improvement model to understand, analyze, and improve a medical center's system for tracking inpatient injuries. This process led to the drafting of an original software design that implemented a nursing informatics tracking system. It has resulted in significant savings of time and money and has far surpassed the accuracy, efficiency, and scope of the previous method. This article presents an overview of the design process.

  2. Teaching Sustainable Design Using BIM and Project-Based Energy Simulations

    ERIC Educational Resources Information Center

    Shen, Zhigang; Jensen, Wayne; Wentz, Timothy; Fischer, Bruce

    2012-01-01

    The cross-disciplinary nature of energy-efficient building design has created many challenges for architecture, engineering and construction instructors. One of the technical challenges in teaching sustainable building design is enabling students to quantitatively understand how different building designs affect a building's energy performance.…

  3. Use of a design challenge to develop postural support devices for intermediate wheelchair users

    PubMed Central

    Tanuku, Deepti; Moller, Nathaniel C.

    2017-01-01

    The provision of an appropriate wheelchair, one that provides proper fit and postural support, promotes wheelchair users’ physical health and quality of life. Many wheelchair users have postural difficulties, requiring supplemental postural support devices for added trunk support. However, in many low- and middle-income settings, postural support devices are inaccessible, inappropriate or unaffordable. This article describes the use of the design challenge model, informed by a design thinking approach, to catalyse the development of an affordable, simple and robust postural support device for low- and middle-income countries. The article also illustrates how not-for-profit organisations can utilise design thinking and, in particular, the design challenge model to successfully support the development of innovative solutions to product or process challenges. PMID:28936418

  4. Exploring the Impact of a Dual Occupancy Neonatal Intensive Care Unit on Staff Workflow, Activity, and Their Perceptions.

    PubMed

    Broom, Margaret; Kecskes, Zsuzsoka; Kildea, Sue; Gardner, Anne

    2018-01-01

    In 2012, a tertiary neonatal intensive care unit (NICU) transitioned from an open plan (OP) to a dual occupancy (DO) NICU. The DO design aimed to provide a developmental appropriate, family-centered environment for neonates and their families. During planning, staff questioned the impact DO would have on staff workflow and activity. To explore the impact of changing from an OP to a DO NICU, a prospective longitudinal study was undertaken from 2011 to 2014, using observational, time and motion, and surveys methods. Main outcome measures included distance walked by staff, minutes of staff activity, and staff perceptions of the DO design. Results highlighted no significant difference in the distances clinical nurses walked nor time spent providing direct clinical care, whereas technical support staff walked further than other staff in both designs. Staff perceived the DO design created a developmentally appropriate, family-centered environment that facilitated communication and collaboration between staff and families. Staff described the main challenges of the DO design such as effective staff communication, gaining educational opportunities, and the isolation of staff and families compared to the OP design. Our study provides new evidence that DO provides an improved developmentally environment and has similar positive benefits to single-family room for neonates and families. Such design may reduce the larger floor plan's impact on staff walking distance and work practices. Challenges of staff transition can be minimized by planning and leadership throughout the development and move to a new design.

  5. Configuration selection for a 450-passenger ultraefficient 2020 aircraft

    NASA Astrophysics Data System (ADS)

    Paulus, D.; Salmon, T.; Mohr, B.; Roessler, C.; Petersson, Ӧ.; Stroscher, F.; Baier, H.; Hornung, M.

    2013-12-01

    This paper describes the configuration selection process in the FP7 project ACFA (Active Control for Flexible Aircraft) 2020 in view of the Advisory Council for Aeronautics Research in Europe (ACARE) aims. The design process challenges and the comparison of a blended wing body (BWB) aircraft with a wide body carry-through wing box (CWB) configuration are described in detail. Furthermore, the interactions between the conceptual design and structural design using multidisciplinary design optimization (MDO) to rapidly generate and adapt structural models to design changes and provide early feedback of mass and center of gravity values for these nontraditional configurations are discussed. Comparison of the two concepts determined that the developed all-lifting BWB airframe has the potential for a significant reduced fuel consumption compared to the CWB.

  6. Validation of housekeeping genes as internal controls for studying biomarkers of endocrine-disrupting chemicals in disk abalone by real-time PCR.

    PubMed

    Wan, Qiang; Whang, Ilson; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2011-04-01

    Our experiments were designed to identify suitable housekeeping genes (HKGs) in disk abalone as internal controls to quantify biomarker expression following endocrine disrupting chemicals (EDCs). Relative expression levels of twelve candidate HKGs were examined by real-time reverse transcription PCR (qRT-PCR) in gill and hepatopancreas of abalone following a 7-day challenge with either tributyltin chloride (TBT) or 17β-estradiol (E2). The expression levels of several conventional HKGs, such as 18s rRNA, glyceraldehyde-3-phosphate dehydrogenase and β-actin, were significantly altered by the challenges, indicating that they might not be suitable internal controls. Instead, the geNorm analysis pinpointed ribosomal protein L-5/ elongation factor 1 and ribosomal protein L-5/ succinate dehydrogenase as the most stable HKGs under TBT and E2 challenges, respectively. Moreover, these three HKGs also showed the highest stabilities overall amongst different tissues, genders and EDC challenges. The expression of a biomarker gene, cytochrome P450 4B (CYP4), was also investigated and exhibited a significant increase after the challenges. Importantly, when unsuitable HKGs were used for normalization, the influence of two EDCs on CYP4 expression was imprecisely overestimated or underestimated, which strongly emphasized the importance of selecting appropriately validated HKGs as internal controls in biomarker studies. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  8. An exploration into study design for biomarker identification: issues and recommendations.

    PubMed

    Hall, Jacqueline A; Brown, Robert; Paul, Jim

    2007-01-01

    Genomic profiling produces large amounts of data and a challenge remains in identifying relevant biological processes associated with clinical outcome. Many candidate biomarkers have been identified but few have been successfully validated and make an impact clinically. This review focuses on some of the study design issues encountered in data mining for biomarker identification with illustrations of how study design may influence the final results. This includes issues of clinical endpoint use and selection, power, statistical, biological and clinical significance. We give particular attention to study design for the application of supervised clustering methods for identification of gene networks associated with clinical outcome and provide recommendations for future work to increase the success of identification of clinically relevant biomarkers.

  9. Design considerations for medical devices in the home environment.

    PubMed

    Kaufman-Rivi, Diana; Collins-Mitchell, Janette; Jetley, Raoul

    2010-01-01

    Patient demographics, economic forces, and technological advancements contribute to the rise in home care services. Advanced medical devices and equipment originally designed for use by trained personnel in hospitals and clinics are increasingly migrating into the home. Unlike the clinical setting, the home is an uncontrolled environment with additional hazards. The compatibility of the device with the recipient's knowledge, abilities, lifestyle, and home environment plays a significant role in their therapy and rehabilitation. The advent of new device technologies such as wireless devices and interoperability of systems lends a new and complex perspective for medical device use in the home that must also be addressed. Adequately assessing and matching the patient and their caregiver with the appropriate device technology while considering the suitability of the home environment for device operation and maintenance is a challenge that relies on good human factors principles. There is a need to address these challenges in the growing home care sector In this article, the authors take a look at some important considerations and design issues for medical devices used in the home care environment.

  10. Challenges and Advances in Validating Enzyme Design Proposals: The Case of the Kemp Eliminase Catalysis†

    PubMed Central

    Frushicheva, Maria P.; Cao, Jie; Warshel, Arieh

    2011-01-01

    One of the fundamental challenges in biotechnology and biochemistry is the ability to design effective enzymes. Despite recent progress, most of the advances on this front have been made by placing the reacting fragments in the proper places, rather than by optimizing the preorganization of the environment, which is the key factor in enzyme catalysis. Thus, rational improvement of the preorganization would require approaches capable of evaluating reliably the actual catalytic effect. This work considers the catalytic effects in different Kemp eliminases as a benchmark for a computer aided enzyme design. It is shown that the empirical valence bond provides a powerful screening tool, with significant advantage over current alternative strategies. The insights provided by the empirical valence bond calculations are discussed emphasizing the ability to analyze the difference between the linear free energy relationships obtained in solution to those found in the enzymes. We also point out the trade off between reliability and speed of the calculations and try to determine what it takes to obtain reliable computer aided screening. PMID:21443179

  11. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.

    PubMed

    Frushicheva, Maria P; Cao, Jie; Warshel, Arieh

    2011-05-10

    One of the fundamental challenges in biotechnology and biochemistry is the ability to design effective enzymes. Despite recent progress, most of the advances on this front have been made by placing the reacting fragments in the proper places, rather than by optimizing the preorganization of the environment, which is the key factor in enzyme catalysis. Thus, rational improvement of the preorganization would require approaches capable of evaluating reliably the actual catalytic effect. This work considers the catalytic effects in different Kemp eliminases as a benchmark for a computer-aided enzyme design. It is shown that the empirical valence bond provides a powerful screening tool, with significant advantages over current alternative strategies. The insights provided by the empirical valence bond calculations are discussed with an emphasis on the ability to analyze the difference between the linear free energy relationships obtained in solution and those found in the enzymes. We also point out the trade-off between the reliability and speed of the calculations and try to determine what it takes to realize reliable computer-aided screening.

  12. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Yakovenko, Oleksandr; Jones, Steven J. M.

    2018-01-01

    We report the implementation of molecular modeling approaches developed as a part of the 2016 Grand Challenge 2, the blinded competition of computer aided drug design technologies held by the D3R Drug Design Data Resource (https://drugdesigndata.org/). The challenge was focused on the ligands of the farnesoid X receptor (FXR), a highly flexible nuclear receptor of the cholesterol derivative chenodeoxycholic acid. FXR is considered an important therapeutic target for metabolic, inflammatory, bowel and obesity related diseases (Expert Opin Drug Metab Toxicol 4:523-532, 2015), but in the context of this competition it is also interesting due to the significant ligand-induced conformational changes displayed by the protein. To deal with these conformational changes we employed multiple simulations of molecular dynamics (MD). Our MD-based protocols were top-ranked in estimating the free energy of binding of the ligands and FXR protein. Our approach was ranked second in the prediction of the binding poses where we also combined MD with molecular docking and artificial neural networks. Our approach showed mediocre results for high-throughput scoring of interactions.

  13. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  14. Recent advances in nerve tissue engineering.

    PubMed

    Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M

    2014-04-01

    Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.

  15. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  16. Lessons Learned: Community Solar for Municipal Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report outlines the work that STAT has completed, discusses the range of approaches utilities are taking, and highlights several challenges municipal utilities face in deciding whether and how to pursue community solar. As this report shows, there is no 'silver bullet' in terms of municipal utility community solar design or implementation - programs vary significantly and are highly dependent on localized contexts.

  17. Contemporary Practices in Southern Baptist Church Music: A Collective Case Study of Worship, Ministry Design and Music Education

    ERIC Educational Resources Information Center

    Gillis, Leslie Myers

    2013-01-01

    The widespread popular music-based modern worship movement begun in the 1960's brought the styles and sounds of popular music into worship as churches sought to increase cultural connection in their worship. The worship transformation brought significant challenges. Church musicians trained in traditional skills had to adapt and incorporate skills…

  18. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (molossidae).

    PubMed

    Jung, Kirsten; Molinari, Jesús; Kalko, Elisabeth K V

    2014-01-01

    Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.

  19. Driving Factors for the Evolution of Species-Specific Echolocation Call Design in New World Free-Tailed Bats (Molossidae)

    PubMed Central

    Jung, Kirsten; Molinari, Jesús

    2014-01-01

    Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats. PMID:24454833

  20. An emotional processing writing intervention and heart rate variability: the role of emotional approach.

    PubMed

    Seeley, Saren H; Yanez, Betina; Stanton, Annette L; Hoyt, Michael A

    2017-08-01

    Expressing and understanding one's own emotional responses to negative events, particularly those that challenge the attainment of important life goals, is thought to confer physiological benefit. Individual preferences and/or abilities in approaching emotions might condition the efficacy of interventions designed to encourage written emotional processing (EP). This study examines the physiological impact (as indexed by heart rate variability (HRV)) of an emotional processing writing (EPW) task as well as the moderating influence of a dispositional preference for coping through emotional approach (EP and emotional expression (EE)), in response to a laboratory stress task designed to challenge an important life goal. Participants (n = 98) were randomly assigned to either EPW or fact control writing (FCW) following the stress task. Regression analyses revealed a significant dispositional EP by condition interaction, such that high EP participants in the EPW condition demonstrated higher HRV after writing compared to low EP participants. No significant main effects of condition or EE coping were observed. These findings suggest that EPW interventions may be best suited for those with preference or ability to process emotions related to a stressor or might require adaptation for those who less often cope through emotional approach.

  1. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  2. Women Connect! Strengthening communications to meet sexual and reproductive health challenges.

    PubMed

    Pillsbury, Barbara; Mayer, Doe

    2005-06-01

    Women's nongovernmental organizations (NGOs) have significant comparative advantage for addressing sexual and reproductive health challenges facing women and families. This article describes an initiative to assist women's NGOs in developing greater skills using media and information communication technology for communicating women's health messages. Participating women's groups in Africa undertook innovative media projects--radio broadcasts on human immunodeficiency virus (HIV) and family planning, an antiviolence campaign, media campaigns on avoiding teen pregnancy--and designed websites, established Internet cafés, and downloaded health information from the Internet. Lessons learned offer guidance for collaboration with women's NGOs everywhere to strengthen communication for addressing critical sexual and reproductive health issues.

  3. Finding a balance: health promotion challenges of military women.

    PubMed

    Agazio, Janice Griffin; Buckley, Kathleen M

    2010-09-01

    In this study, we explored what may determine, or predict, United States military women's health promotion behaviors. Using a descriptive correlational design grounded in Pender's Health Promotion model, 491 military women completed instruments measuring their demographic variables, perception of health, definition of health, self-efficacy, and interpersonal influences to determine the significant factors affecting participation in health promotion activities. The outcome indicated that self-efficacy and interpersonal influences were the most influential in determining health promotion. This research illuminates some of the challenges working women face in meeting health promotion activities and how best to support their ability to participate in healthy behaviors.

  4. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  5. Lessons Learned from Applying Design Thinking in a NASA Rapid Design Study in Aeronautics

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria; Bakula, Casey; Castner, Raymond

    2017-01-01

    In late 2015, NASA's Aeronautics Research Mission Directorate (ARMD) funded an experiment in rapid design and rapid teaming to explore new approaches to solving challenging design problems in aeronautics in an effort to cultivate and foster innovation. This report summarizes several lessons learned from the rapid design portion of the study. This effort entailed learning and applying design thinking, a human-centered design approach, to complete the conceptual design for an open-ended design challenge within six months. The design challenge focused on creating a capability to advance experimental testing of autonomous aeronautics systems, an area of great interest to NASA, the US government as a whole, and an entire ecosystem of users and developers around the globe. A team of nine civil servant researchers from three of NASA's aeronautics field centers with backgrounds in several disciplines was assembled and rapidly trained in design thinking under the guidance of the innovation and design firm IDEO. The design thinking process, while used extensively outside the aerospace industry, is less common and even counter to many practices within the aerospace industry. In this report, several contrasts between common aerospace research and development practices and design thinking are discussed, drawing upon the lessons learned from the NASA rapid design study. The lessons discussed included working towards a design solution without a set of detailed design requirements, which may not be practical or even feasible for management to ascertain for complex, challenging problems. This approach allowed for the possibility of redesigning the original problem statement to better meet the needs of the users. Another lesson learned was to approach problems holistically from the perspective of the needs of individuals that may be affected by advances in topic area instead of purely from a technological feasibility viewpoint. The interdisciplinary nature of the design team also provided valuable experience by allowing team members from different technological backgrounds to work side-by-side instead of dividing into smaller teams, as is frequently done in traditional multidisciplinary design. The team also learned how to work with qualitative data obtained primarily through the 70-plus interviews that were conducted over the course of this project, which was a sharp contrast to using quantitative data with regards to identifying, capturing, analyzing, storing, and recalling the data. When identifying potential interviewees who may have useful contributions to the design subject area, the team found great value in talking to non-traditional users and potential beneficiaries of autonomous aeronautics systems whose impact on the aeronautics autonomy ecosystem is growing swiftly. Finally, the team benefitted from using "sacrificial prototyping," which is a method of rapidly prototyping draft concepts and ideas with the intent of enabling potential users to provide significant feedback early in the design process. This contrasts the more common approach of using expensive prototypes that focus on demonstrating technical feasibility. The unique design approach and lessons learned by the team throughout this process culminated in a final design concept that was quite different than what the team originally assumed would be the design concept initially. A summary of the more usercentered final design concept is also provided.

  6. Characterising Extrinsic Challenges Linked to the Design and Implementation of Inquiry-Based Practical Work

    NASA Astrophysics Data System (ADS)

    Akuma, Fru Vitalis; Callaghan, Ronel

    2017-11-01

    Inquiry-based science education has been incorporated in science curricula internationally. In this regard, however, many teachers encounter challenges. The challenges have been characterised into those linked to the personal characteristics of these teachers (intrinsic challenges) and others associated with contextual factors (extrinsic challenges). However, this level of characterisation is inadequate in terms of appreciating the complexity of the challenges, tracking of their development, and discovering knowledge within specific categories. Against this background, the purpose of the research presented here was to characterise extrinsic challenges linked to the design and implementation of inquiry-based practical work. In order to do so, we used a conceptual framework of teaching challenges based on Bronfenbrenner's ecological theory of human development. The data gathered using a multi-method case study of practical work in two South African high schools, was analysed by combining the data-driven inductive approach and the deductive a priori template of codes approach in thematic analysis. On this basis, the extrinsic challenges linked to the design and implementation of inquiry-based practical work that participants are confronted with, were found to consist of macrosystem challenges (such as a restrictive curriculum) and microsystem challenges. At the latter level, the challenges are material-related (e.g., lack of science education equipment and materials) or non-material-related (such as time constraints and the lack of access to interactive computer simulations). We have discussed the theory-, practice- and research-based implications of these results in relation to the design and implementation of inquiry-based practical work in South Africa and internationally.

  7. 77 FR 64521 - Announcement of Requirements and Registration for “Health Design Challenge”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... it with visuals and a better layout. Innovators will be invited to submit their best designs for a... a sample CCD. Challenge entrants will submit a design that: [ssquf] Improves the visual layout and... Design Challenge'' AGENCY: Office of the National Coordinator for Health Information Technology, HHS...

  8. Assessing the Design and Development of Hybrid Linked Learning Professional Development Programs for Teachers: Challenges and Successes

    ERIC Educational Resources Information Center

    Erener, Eren

    2017-01-01

    This study informs instructional designers, all stakeholders in higher education and K-12, of the successes and challenges associated with designing and developing online/hybrid Linked Learning courses. The study examines via surveys and interviews the perspectives of instructional designers, subject matter experts, students, and course…

  9. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Sponsors of all of the semi-finalist teams in the Exploration Design Challenge pose for a group photo with the teams. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)

  10. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Sponsors of Team ARES pose for a group photo with the winning high school team in the Exploration Design Challenge. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)

  11. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    NASA’s Administrator, Charles Bolden speaks with the winning high school team in the Exploration Design Challenge prior to the award ceremony. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)

  12. 2002 Controls Design Challenge

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Vetter, T. K.; Wells, S. R.

    2002-01-01

    This document is intended to provide the specifications and requirements for a flight control system design challenge. The response to the challenge will involve documenting whether the particular design has met the stated requirements through analysis and computer simulation. The response should be written in the general format of a technical publication with corresponding length limits, e.g., an approximate maximum length of 45 units, with each full-size figure and double-spaced typewritten page constituting one unit.

  13. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  14. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  15. Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT).

    PubMed

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; He, Jie; Ma, Xin Yu; Kpundeh, Mathew D; Xu, Pao

    2015-06-01

    This study investigated effects of dietary Aloe vera on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Five groups were designed including a basal diet (control) and 100% A. vera powder incorporated in fish feed at 0.5% 1%, 2%, and 4%/kg feed, which were administered for 8 weeks. Fish fed 0.5%, 1%, and 2% A. vera supplemented diet significantly improved (p < 0.05) weight gain, absolute growth rate and specific growth rate. Feed intake significantly increased in fish fed with A. vera diet at 1% and 2%/kg feed. Feed efficiency ratio, feed conversion ratio, and hepatosomatic index were significantly enhanced in 4% A. vera supplemented fish over unsupplemented ones (p < 0.05). Several haemato-biochemical indices were examined before and after fish were challenged with S. iniae pathogen containing 7.7 × 10(6) CFU cells mL(-1). A. vera supplemented fish showed a significant increase (p < 0.05) in red blood cells, hematocrits (Hb), hemoglobin (Hb), white blood cells (WBC), neutrophils, monocytes, eosinophils, serum total protein, glucose and cortisol after challenge when compared to unsupplemented ones. Meanwhile, 4% A. vera supplemented fish showed a decrease (p < 0.05) in RBC, Hb, Ht, WBC, and mean corpuscular hemoglobin (MCH) after challenge compared to unsupplemented ones and other supplemented ones. In addition, lower mean corpuscular volume values (MCV) (p < 0.05) were observed in fish fed with A. vera diet at 2% and 4% A. vera/kg feed than those fed unsupplemented diet. Unchallenged fish fed 0.5%, 1%, and 2% A. vera showed significantly higher values (p < 0.05) of mean corpuscular hemoglobin concentration (MCHC) than those fed unsupplemented diet and 4% A. vera supplemented diet. There was a significant increase (p < 0.05) in the neutrophil to lymphocyte ratio (N/L) within experimental groups after challenge; N/L ratio in A. vera unsupplemented fish and those supplemented with A. vera diet at 1%/kg feed increased significantly (p < 0.05) throughout challenge period; while those fed 4% A. vera supplemented diet maintained higher values at all experimental stages among groups. There was a significant correlation (p < 0.05, r = 0.53) between N/L ratio and glucose concentration, 96 h after challenge. Aloe had no significant effect (p > 0.05) on the survival of the fish when compared to the control; no mortality was recorded in challenge trial. Overall, our results indicated that dietary aloe supplementation could improve growth, feed utilization, and haemato-biochemical parameters of cultured tilapia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Early detection of sporadic pancreatic cancer: summative review.

    PubMed

    Chari, Suresh T; Kelly, Kimberly; Hollingsworth, Michael A; Thayer, Sarah P; Ahlquist, David A; Andersen, Dana K; Batra, Surinder K; Brentnall, Teresa A; Canto, Marcia; Cleeter, Deborah F; Firpo, Matthew A; Gambhir, Sanjiv Sam; Go, Vay Liang W; Hines, O Joe; Kenner, Barbara J; Klimstra, David S; Lerch, Markus M; Levy, Michael J; Maitra, Anirban; Mulvihill, Sean J; Petersen, Gloria M; Rhim, Andrew D; Simeone, Diane M; Srivastava, Sudhir; Tanaka, Masao; Vinik, Aaron I; Wong, David

    2015-07-01

    Pancreatic cancer (PC) is estimated to become the second leading cause of cancer death in the United States by 2020. Early detection is the key to improving survival in PC. Addressing this urgent need, the Kenner Family Research Fund conducted the inaugural Early Detection of Sporadic Pancreatic Cancer Summit Conference in 2014 in conjunction with the 45th Anniversary Meeting of the American Pancreatic Association and Japan Pancreas Society. This seminal convening of international representatives from science, practice, and clinical research was designed to facilitate challenging interdisciplinary conversations to generate innovative ideas leading to the creation of a defined collaborative strategic pathway for the future of the field. An in-depth summary of current efforts in the field, analysis of gaps in specific areas of expertise, and challenges that exist in early detection is presented within distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. In addition, an overview of efforts in familial PC is presented in an addendum to this article. It is clear from the summit deliberations that only strategically designed collaboration among investigators, institutions, and funders will lead to significant progress in early detection of sporadic PC.

  17. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  18. Early Detection of Sporadic Pancreatic Cancer

    PubMed Central

    Chari, Suresh T.; Kelly, Kimberly; Hollingsworth, Michael A.; Thayer, Sarah P.; Ahlquist, David A.; Andersen, Dana K.; Batra, Surinder K.; Brentnall, Teresa A.; Canto, Marcia; Cleeter, Deborah F.; Firpo, Matthew A.; Gambhir, Sanjiv Sam; Go, Vay Liang W.; Hines, O. Joe; Kenner, Barbara J.; Klimstra, David S.; Lerch, Markus M.; Levy, Michael J.; Maitra, Anirban; Mulvihill, Sean J.; Petersen, Gloria M.; Rhim, Andrew D.; Simeone, Diane M.; Srivastava, Sudhir; Tanaka, Masao; Vinik, Aaron I.; Wong, David

    2015-01-01

    Abstract Pancreatic cancer (PC) is estimated to become the second leading cause of cancer death in the United States by 2020. Early detection is the key to improving survival in PC. Addressing this urgent need, the Kenner Family Research Fund conducted the inaugural Early Detection of Sporadic Pancreatic Cancer Summit Conference in 2014 in conjunction with the 45th Anniversary Meeting of the American Pancreatic Association and Japan Pancreas Society. This seminal convening of international representatives from science, practice, and clinical research was designed to facilitate challenging interdisciplinary conversations to generate innovative ideas leading to the creation of a defined collaborative strategic pathway for the future of the field. An in-depth summary of current efforts in the field, analysis of gaps in specific areas of expertise, and challenges that exist in early detection is presented within distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. In addition, an overview of efforts in familial PC is presented in an addendum to this article. It is clear from the summit deliberations that only strategically designed collaboration among investigators, institutions, and funders will lead to significant progress in early detection of sporadic PC. PMID:25931254

  19. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.

    PubMed

    Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments.

  20. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    PubMed Central

    Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  1. Triggering Events for the First Space Settlement

    NASA Astrophysics Data System (ADS)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    We know where humankind is now in its limited ability to venture into space, and we can envision technologies that include routine space flight and large human populations in space; the challenge is to figure out how to get from where we are now to what we can envision. Although the technical challenges of space infrastructure development will be significant, the factors most responsible for preventing us from surmounting those challenges are politics and economics. Various rationales have been proposed by other authors and are summarized, with assessments of the hurdles involved in each. In an effort to make Space Settlement Design Competitions for high school students as realistic as possible, the co-authors developed a compelling rationale for building the first community in space and the infrastructure required to support it, which passes the tests of economic necessity and political appeal.

  2. Overcoming challenges in implementing the WHO Surgical Safety Checklist: lessons learnt from using a checklist training course to facilitate rapid scale up in Madagascar

    PubMed Central

    Close, Kristin L; Baxter, Linden S; Ravelojaona, Vaonandianina A; Rakotoarison, Hasiniaina N; Bruno, Emily; Herbert, Alison; Andean, Vanessa; Callahan, James; Andriamanjato, Hery H

    2017-01-01

    The WHO Surgical Safety Checklist was launched in 2009, and appropriate use reduces mortality, surgical site infections and complications after surgery by up to 50%. Implementation across low-income and middle-income countries has been slow; published evidence is restricted to reports from a few single institutions, and significant challenges to successful implementation have been identified and presented. The Mercy Ships Medical Capacity Building team developed a multidisciplinary 3-day Surgical Safety Checklist training programme designed for rapid wide-scale implementation in all regional referral hospitals in Madagascar. Particular attention was given to addressing previously reported challenges to implementation. We taught 427 participants in 21 hospitals; at 3–4 months postcourse, we collected surveys from 183 participants in 20 hospitals and conducted one focus group per hospital. We used a concurrent embedded approach in this mixed-methods design to evaluate participants’ experiences and behavioural change as a result of the training programme. Quantitative and qualitative data were analysed using descriptive statistics and inductive thematic analysis, respectively. This analysis paper describes our field experiences and aims to report participants’ responses to the training course, identify further challenges to implementation and describe the lessons learnt. Recommendations are given for stakeholders seeking widespread rapid scale up of quality improvement initiatives to promote surgical safety worldwide. PMID:29225958

  3. Student Service Members/Veterans on Campus: Challenges for Reintegration

    PubMed Central

    Borsari, Brian; Yurasek, Ali; Miller, Mary Beth; Murphy, James G.; McDevitt-Murphy, Meghan E.; Martens, Matthew P.; Darcy, Monica G.; Carey, Kate B.

    2016-01-01

    Many returning OIF/OEF/OND Veterans are seeking higher education in an effort to develop a meaningful career and financial stability. Evidence suggests that student service members/Veterans (SSM/Vs) are experiencing less academic success than other students. The purpose of this review is to identify the unique challenges of SSM/Vs and evaluate current campus efforts to facilitate their retention and academic performance. With a focus on SSM/Vs attending colleges and universities, we obtained 57 peer-reviewed and 73 grey literature records published between 2001 and 2015. The current SSM/V literature contains an abundance of grey literature, and the empirical research tends to be limited by cross-sectional design and small sample sizes. SSM/Vs encounter significant personal and environmental challenges when transitioning from the military to college campuses. A variety of services have been developed to address the needs of the SSM/V population, but the efficacy of these services remains largely unknown. In conclusion, there is a clear need to provide education to faculty, students and staff regarding the experiences of SSM/Vs. Efforts to enhance screening for, availability of, and SSM/V engagement in mental health services would also be beneficial, as would improved availability of and SSM/V access to academic support. All future programs designed to address the unique challenges of SSM/Vs in the academic environment should also be systematically implemented and evaluated. PMID:28206804

  4. Propulsion Design With Freeform Fabrication (PDFF)

    NASA Technical Reports Server (NTRS)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in an SFF thruster design could reduce thruster weight by a factor of two or more. The thrust-to-weight ratios for such designs can achieve 1,000:1 or more, depending on chamber pressure. The potential exists for continued development in materials, size, speed, accuracy of SFF techniques, which can lead to speculative developments of PDFF processes such as fabrication of custom human interface devices like masks, chairs, and clothing, and advanced biomedical application to human organ reconstruction. Other potential applications are: higher fidelity lower cost test fixtures for probes and inspection, disposable thrusters, and ISRU (in situ resource utilization) for component production in space or on Lunar and Martian missions, and application for embedding MEMS (microelectromechanical systems) during construction process of form changing aerostructure/dynamic structures.

  5. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  6. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  7. Engaging Undergraduates to Solve Global Health Challenges: A New Approach Based on Bioengineering Design

    PubMed Central

    Oden, Maria; Mirabal, Yvette; Epstein, Marc

    2010-01-01

    Recent reports have highlighted the need for educational programs to prepare students for careers developing and disseminating new interventions that improve global public health. Because of its multi-disciplinary, design-centered nature, the field of Biomedical Engineering can play an important role in meeting this challenge. This article describes a new program at Rice University to give undergraduate students from all disciplines a broad background in bioengineering and global health and provides an initial assessment of program impact. Working in partnership with health care providers in developing countries, students in the Beyond Traditional Borders (BTB) initiative learn about health challenges of the poor and put this knowledge to work immediately, using the engineering design process as a framework to formulate solutions to complex global health challenges. Beginning with a freshman design project and continuing through a capstone senior design course, the BTB curriculum uses challenges provided by partners in the developing world to teach students to integrate perspectives from multiple disciplines, and to develop leadership, communication, and teamwork skills. Exceptional students implement their designs under the guidance of clinicians through summer international internships. Since 2006, 333 students have designed more than 40 technologies and educational programs; 28 have been implemented in sub-Saharan Africa, Latin America, the Caribbean, southeast Asia, and the United States. More than 18,000 people have benefited from these designs. 95% of alumni who completed an international internship reported that participation in the program changed or strengthened their career plans to include a focus on global health medicine, research, and/or policy. Empowering students to use bioengineering design to address real problems is an effective way to teach the new generation of leaders needed to solve global health challenges. PMID:20387116

  8. The influence of staff training on challenging behaviour in individuals with intellectual disability: a review.

    PubMed

    Cox, Alison D; Dube, Charmayne; Temple, Beverley

    2015-03-01

    Many individuals with intellectual disability engage in challenging behaviour. This can significantly limit quality of life and also negatively impact caregivers (e.g., direct care staff, family caregivers and teachers). Fortunately, efficacious staff training may alleviate some negative side effects of client challenging behaviour. Currently, a systematic review of studies evaluating whether staff training influences client challenging behaviour has not been conducted. The purpose of this article was to identify emerging patterns, knowledge gaps and make recommendations for future research on this topic. The literature search resulted in a total of 19 studies that met our inclusion criteria. Articles were separated into four staff training categories. Studies varied across sample size, support staff involved in training, study design, training duration and data collection strategy. A small sample size (n = 19) and few replication studies, alongside several other procedural limitations prohibited the identification of a best practice training approach. © The Author(s) 2014.

  9. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.

    PubMed

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-06-06

    The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis of novel low specific speed pump designs

    NASA Astrophysics Data System (ADS)

    Klas, R.; Pochylý, F.; Rudolf, P.

    2014-03-01

    Centrifugal pumps with very low specific speed present significant design challenges. Narrow blade channels, large surface area of hub and shroud discs relative to the blade area, and the presence of significant of blade channel vortices are typical features linked with the difficulty to achieve head and efficiency requirements for such designs. This paper presents an investigation of two novel designs of very low specific speed impellers: impeller having blades with very thick trailing edges and impeller with thick trailing edges and recirculating channels, which are bored along the impeller circumference. Numerical simulations and experimental measurements were used to study the flow dynamics of those new designs. It was shown that thick trailing edges suppress local eddies in the blade channels and decrease energy dissipation due to excessive swirling. Furthermore the recirculating channels will increase the circumferential velocity component on impeller outlet thus increasing the specific energy, albeit adversely affecting the hydraulic efficiency. Analysis of the energy dissipation in the volute showed that the number of the recirculating channels, their geometry and location, all have significant impact on the magnitude of dissipated energy and its distribution which in turn influences the shape of the head curve and the stability of the pump operation. Energy dissipation within whole pump interior (blade channels, volute, rotor- stator gaps) was also studied.

  11. Designing and Developing Game-Like Learning Experience in Virtual Worlds: Challenges and Design Decisions of Novice Instructional Designers

    ERIC Educational Resources Information Center

    Yilmaz, Turkan Karakus; Cagiltay, Kursat

    2016-01-01

    Many virtual worlds have been adopted for implementation within educational settings because they are potentially useful for building effective learning environments. Since the flexibility of virtual worlds challenges to obtain effective and efficient educational outcomes, the design of such platforms need more attention. In the present study, the…

  12. Reliable Design Versus Trust

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?

  13. Qualitative analysis of decision making by speech-language pathologists in the design of aided visual displays.

    PubMed

    McFadd, Emily; Wilkinson, Krista

    2010-06-01

    For children with complex communication needs, augmentative and alternative communication (AAC) devices offer a functional way to communicate thoughts and feelings. Despite many significant advances in the field, effective and efficient aided communication can remain a challenge for some clients and their partners. One critical element of aided AAC intervention is systematic attention to the design of the communication display itself. A well-designed display will foster communication outcomes; a poorly designed one might have the opposite effect. Surprisingly, to our knowledge there are no studies of the strategies that clinicians actually employ when putting together a display. In this research note, we examine, on a case-by-case basis, the strategies six clinicians used when constructing display pages, as a means of highlighting potential areas that might warrant systematic research on display design.

  14. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material.

    PubMed

    Trefry, John C; Wollen, Suzanne E; Nasar, Farooq; Shamblin, Joshua D; Kern, Steven J; Bearss, Jeremy J; Jefferson, Michelle A; Chance, Taylor B; Kugelman, Jeffery R; Ladner, Jason T; Honko, Anna N; Kobs, Dean J; Wending, Morgan Q S; Sabourin, Carol L; Pratt, William D; Palacios, Gustavo F; Pitt, M Louise M

    2015-12-19

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein's poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.

  15. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    PubMed Central

    Trefry, John C.; Wollen, Suzanne E.; Nasar, Farooq; Shamblin, Joshua D.; Kern, Steven J.; Bearss, Jeremy J.; Jefferson, Michelle A.; Chance, Taylor B.; Kugelman, Jeffery R.; Ladner, Jason T.; Honko, Anna N.; Kobs, Dean J.; Wending, Morgan Q.S.; Sabourin, Carol L.; Pratt, William D.; Palacios, Gustavo F.; Pitt, M. Louise M.

    2015-01-01

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations. PMID:26703716

  16. Powering the Future: A Wind Turbine Design Challenge

    ERIC Educational Resources Information Center

    Pries, Caitlin Hicks; Hughes, Julie

    2011-01-01

    Nothing brings out the best in eighth-grade physical science students quite like an engineering challenge. The wind turbine design challenge described in this article has proved to be a favorite among students with its focus on teamwork and creativity and its (almost) sneaky reinforcement of numerous physics concepts. For this activity, pairs of…

  17. Sustainable supply chain design: a configurational approach.

    PubMed

    Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research.

  18. Sustainable Supply Chain Design: A Configurational Approach

    PubMed Central

    Masoumik, S. Maryam; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652

  19. Creativity as a Key Driver for Designing Context Sensitive Health Informatics.

    PubMed

    Zhou, Chunfang; Nøhr, Christian

    2017-01-01

    In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.

  20. Map design and production issues for the Utah Gap Analysis Project

    USGS Publications Warehouse

    Hutchinson, John A.; Wittmann, J.H.

    1997-01-01

    The cartographic preparation and printing of four maps for the Utah GAP Project presented a wide range of challenges in cartographic design and production. In meeting these challenges, the map designers had to balance the purpose of the maps together with their legibility and utility against both the researchers' desire to show as much detail as possible and the technical limitations inherent in the printing process. This article describes seven design and production issues in order to illustrate the challenges of making maps from a merger of satellite data and GIS databases, and to point toward future investigation and development.

  1. Meeting the challenge of a 50000-hour-life-time requirement

    NASA Technical Reports Server (NTRS)

    Vest, C. E.; Studer, P. A.

    1971-01-01

    Space mission requirements for the 70's have established a 50,000-hour-lifetime challenge for the mechanisms designer. This challenge may be met by two approaches: (1) development of new materials for wear-prone elements, and (2) design innovation of new electromechanical devices that do not include mechanical wear-prone components. Present state-of-the-art materials require restricted operation regarding load, speed, and power for gears, bearings, and brush-slipring components. These restrictions are discussed, and methods of improvement are suggested. The design-innovations approach is discussed and is illustrated by the design of an experimental magnetically suspended motor.

  2. S1 of distinct IBV population expressed from recombinant adenovirus confers protection against challenge.

    PubMed

    Toro, H; Zhang, J F; Gallardo, R A; van Santen, V L; van Ginkel, F W; Joiner, K S; Breedlove, C

    2014-06-01

    Protective properties of three distinct infectious bronchitis virus (IBV) Ark Delmarva poultry industry (ArkDPI) S1 proteins encoded from replication-defective recombinant adenovirus vectors were investigated. Using a suboptimal dose of each recombinant virus, we demonstrated that IBV S1 amino acid sequences showing > or = 95.8% amino acid identity to the S1 of the challenge strain differed in their ability at conferring protection. Indeed, the S1 sequence of the IBV population previously designated C4 (AdIBVS1.C4), which protected the most poorly, differs from the S1 sequence of population C2 (AdIBVS1.C2), which provided the highest protection, only at amino acid position 56. The fact that a change in one amino acid in this region significantly altered the induction of a protective immune response against this protein provides evidence that the first portion of S1 displays relevant immunoprotective epitopes. Use of an optimal dose of AdIBVS1.C2 effectively protected chickens from clinical signs and significantly reduced viral load after IBV Ark virulent challenge. Moreover, increased numbers of both IgA and IgG IBV-specific antibody secreting lymphocytes were detected in the spleen after challenge. The increased response detected for both IgA and IgG lymphocytes after challenge might be explained by vaccine-induced B memory cells. The fact that a single vaccination with Ad/IBVS1.C2 provides protection against IBV challenge is promising, because Ad-vectored vaccines can be mass delivered by in ovo inoculation using automated in ovo injectors.

  3. A Study on the Use of a Metadata Schema for Characterizing School Education STEM Lessons Plans by STEM Teachers

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Cao, Yiwei; Sotiriou, Sofoklis; Sampson, Demetrios G.; Faltin, Nils

    2016-01-01

    Online labs (OLs) constitute digital educational tools which can have a significant role in supporting science, technology, engineering and mathematics (STEM) teachers in their daily teaching practice. Designing STEM lessons supported by specific OLs is a challenging task and thus, it is useful for STEM teachers to be able to share their lesson…

  4. The Design and Development of a Web-Based E-Learning Platform for the Understanding and Acquisition of Various Entrepreneurial Skills in SMEs and Industry

    ERIC Educational Resources Information Center

    Ogunleye, Ayodele; Owolabi, Tunde; Adeyemo, Sunday

    2013-01-01

    In recent times, the role of entrepreneurs has been recognized to be of great significance in accelerating the pace of growth of economic development of any country. Internet-enabled technologies have also challenged existing business models in numerous market sectors and offered innovation opportunities to a variety of stakeholders--not least…

  5. Low-floor bus design preferences of walking aid users during simulated boarding and alighting.

    PubMed

    D'souza, Clive; Paquet, Victor; Lenker, James; Steinfeld, Edward; Bareria, Piyush

    2012-01-01

    Low-floor buses represent a significant improvement in accessible public transit for passengers with limited mobility. However, there is still a need for research on the inclusive design of transit buses to identify specific low-floor bus design conditions that are either particularly accommodating or challenging for passengers with functional and mobility impairments. These include doorway locations, seating configuration and the large front wheel-well covers that collectively impact boarding, alighting and interior movement of passengers. Findings from a laboratory study using a static full-scale simulation of a lowfloor bus to evaluate the impact of seating configuration and crowding on interior movement and accessibility for individuals with and without walking aids are presented (n=41). Simulated bus journeys that included boarding, fare payment, seating, and alighting were performed. Results from video observations and subjective assessments showed differences in boarding and alighting performance and users' perceptions of task difficulty. The need for assistive design features (e.g. handholds, stanchions), legroom and stowage space for walking aids was evident. These results demonstrate that specific design conditions in low-floor buses can significantly impact design preference among those who use walking aids. Consideration of ergonomics and inclusive design can therefore be used to improve the design of low-floor buses.

  6. Web-based technical assistance and training to promote community tobacco control policy change.

    PubMed

    Young, Walter F; Montgomery, Debbie; Nycum, Colleen; Burns-Martin, Lavon; Buller, David B

    2006-01-01

    In 1998 the tobacco industry was released of claims that provided monetary relief for states. A significant expansion of tobacco control activity in many states created a need to develop local capacity. Technical assistance and training for new and experienced staff became a significant challenge for tobacco control leadership. In Colorado, this challenge was addressed in part through the development of a technical assistance and training Web site designed for local tobacco control staff and coalition members. Researchers, technical Web site development specialists, state health agency, and state tobacco control coalition staff collaborated to develop, promote, and test the efficacy of this Web site. The work group embodied a range of skills including tobacco control, Web site technical development, marketing, training, and project management. Persistent marketing, updating of Web site content, and institutionalizing it as a principal source of information and training were key to use by community coalition members.

  7. Co-Optimization of Internal Combustion Engines and Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to bemore » realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.« less

  8. Perceived Challenges in Primary Literature in a Master’s Class: Effects of Experience and Instruction

    PubMed Central

    Lie, Richard; Abdullah, Christopher; He, Wenliang; Tour, Ella

    2016-01-01

    Primary literature offers rich opportunities to teach students how to “think like a scientist,” but the challenges students face when they attempt to read research articles are not well understood. Here, we present an analysis of what master’s students perceive as the most challenging aspects of engaging with primary literature. We examined 69 pairs of pre- and postcourse responses from students enrolled in a master’s-level course that offered a structured analysis of primary literature. On the basis of these responses, we identified six categories of challenges. Before instruction, “techniques” and “experimental data” were the most frequently identified categories of challenges. The majority of difficulties students perceived in the primary literature corresponded to Bloom’s lower-order cognitive skills. After instruction, “conclusions” were identified as the most difficult aspect of primary literature, and the frequency of challenges that corresponded to higher-order cognitive skills increased significantly among students who reported less experience with primary literature. These changes are consistent with a more competent perception of the primary literature, in which these students increasingly focus on challenges requiring critical thinking. Students’ difficulties identified here can inform the design of instructional approaches aimed to teach students how to critically read scientific papers. PMID:27909027

  9. Challenges for nurses who work in community mental health centres in the West Bank, Palestine.

    PubMed

    Marie, Mohammad; Hannigan, Ben; Jones, Aled

    2017-01-01

    Nurses in Palestine (occupied Palestinian territory) work in a significantly challenging environment. The mental health care system is underdeveloped and under-resourced. For example, the total number of nurses who work in community mental health centres in the West Bank is seventeen, clearly insufficient in a total population of approximately three million. This research explored daily challenges that Palestinian community mental health nurses (CMHNs) face within and outside their demanding workplaces. An interpretive qualitative design was chosen. Face-to-face interviews were completed with fifteen participants. Thirty-two hours of observations of the day-to-day working environment and workplace routines were conducted in two communities' mental health centres. Written documents relating to practical job-related policies were also collected from various workplaces. Thematic analysis was used across all data sources resulting in four main themes, which describe the challenges faced by CMHNs. These themes consist of the context of unrest, stigma, lack of resources, and organisational or mental health system challenges. The study concludes with a better understanding of challenges in nursing which draws on wider cultural contexts and resilience. The outcomes from this study can be used to decrease the challenges for health professionals and enhance the mental health care system in Palestine.

  10. Challenges in the design and implementation of the Multicenter Uveitis Steroid Treatment (MUST) Trial--lessons for comparative effectiveness trials.

    PubMed

    Holbrook, Janet T; Kempen, John H; Prusakowski, Nancy A; Altaweel, Michael M; Jabs, Douglas A

    2011-12-01

    Randomized clinical trials (RCTs) are an important component of comparative effectiveness (CE) research because they are the optimal design for head-to-head comparisons of different treatment options. To describe decisions made in the design of the Multicenter Uveitis Steroid Treatment (MUST) Trial to ensure that the results would be widely generalizable. Review of design and implementation decisions and their rationale for the trial. The MUST Trial is a multicenter randomized controlled CE trial evaluating a novel local therapy (intraocular fluocinolone acetonide implant) versus the systemic therapy standard of care for noninfectious uveitis. Decisions made in protocol design in order to broaden enrollment included allowing patients with very poor vision and media opacity to enroll and including clinical sites outside the United States. The treatment protocol was designed to follow standard care. The primary outcome, visual acuity, is important to patients and can be evaluated in all eyes with uveitis. Other outcomes include patient-reported visual function, quality of life, and disease and treatment related complications. The trial population is too small for subgroup analyses that are of interest and the trial is being conducted at tertiary medical centers. CE trials require greater emphasis on generalizability than many RCTs but otherwise face similar challenges for design choices as any RCT. The increase in heterogeneity in patients and treatment required to ensure generalizability can be balanced with a rigorous approach to implementation, outcome assessment, and statistical design. This approach requires significant resources that may limit implementation in many RCTs, especially in clinical practice settings.

  11. Challenges facing developers of CAD/CAM models that seek to predict human working postures

    NASA Astrophysics Data System (ADS)

    Wiker, Steven F.

    2005-11-01

    This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.

  12. Elementary Design Challenges

    ERIC Educational Resources Information Center

    Gerlach, Jonathan W.

    2010-01-01

    How many of our students come to the classroom with little background knowledge about the world around them and how things work? To help students develop conceptual understanding and explore the design process, the author brought the NASA "Engineering Design Challenges" program to his school district, redeveloped for elementary students. In this…

  13. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  14. The challenges of being an insider in storytelling research.

    PubMed

    Blythe, Stacy; Wilkes, Lesley; Jackson, Debra; Halcomb, Elizabeth

    2013-01-01

    To describe the challenges related to being an 'insider' researcher in a study that uses a feminist-informed storytelling research design and to discuss practical strategies to manage these challenges. The positioning of the researcher in qualitative research has numerous methodological implications. Often, qualitative researchers share similar experiences or characteristics with their participants. Such an 'insider' position provides challenges for the researcher in conducting the research. Understanding these challenges and planning how to manage them is beneficial for the researcher and for the conduct of the project. This paper is based on the research team's experience of undertaking a feminist-informed storytelling study exploring the experiences of Australian women providing long-term foster care. This paper provides a discussion of the methodology used in the investigation. Four challenges resulting from the insider status of the primary researcher were identified as affecting the research: assumed understanding, ensuring analytic objectivity, dealing with emotions and participants' expectations. Strategies to address these challenges include: 'participant probing', 'researcher reflexivity', review by an 'outsider' researcher, identifying the risk, debriefing, making the aims and use of study outcomes clear, and acknowledging participants' expectations. Methods to implement these strategies are described. The use of an insider researcher was beneficial to our study design and helped with recruitment and rapport, enabling collaboration and the generation of stories rich in content. By identifying the challenges associated with insider research and using strategies to mitigate them, researchers can effectively use an insider position in conjunction with a storytelling research design. ImplicaTIONS FOR FUTURE RESEARCH/PRACTICE: Further investigation of the insider in different qualitative research designs would be useful in identifying challenges and benefits specific to those designs.

  15. Metamaterials Application in Sensing

    PubMed Central

    Chen, Tao; Li, Suyan; Sun, Hui

    2012-01-01

    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975

  16. MMP Inhibitors: Past, present and future.

    PubMed

    Cathcart, Jillian M; Cao, Jian

    2015-06-01

      Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.

  17. Protein Simulation Data in the Relational Model.

    PubMed

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

  18. Protein Simulation Data in the Relational Model

    PubMed Central

    Simms, Andrew M.; Daggett, Valerie

    2011-01-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost—significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646

  19. Pervasive Sensing: Addressing the Heterogeneity Problem

    NASA Astrophysics Data System (ADS)

    O'Grady, Michael J.; Murdoch, Olga; Kroon, Barnard; Lillis, David; Carr, Dominic; Collier, Rem W.; O'Hare, Gregory M. P.

    2013-06-01

    Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct.

  20. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  1. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin construction of the world's largest orbiting power system in 1997.

  2. Presidential Green Chemistry Challenge: 2011 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2011 award winner, Professor Bruce H. Lipshutz, designed a novel, second-generation surfactant called TPGS-750-M. It is a designer surfactant composed of safe, inexpensive ingredients.

  3. Impact of imaging room environment: staff job stress and satisfaction, patient satisfaction, and willingness to recommend.

    PubMed

    Quan, Xiaobo; Joseph, Anjali; Ensign, Janet C

    2012-01-01

    The built environment significantly affects the healthcare experiences of patients and staff. Healthcare administrators and building designers face the opportunity and challenge of improving healthcare experience and satisfaction through better environmental design. The purpose of the study was to evaluate how a novel environmental intervention for imaging rooms, which integrated multiple elements of healing environments including positive distractions and personal control over environment, affects the perceptions and satisfactions of its primary users-patients and staff. Anonymous questionnaire surveys were conducted to compare patient and staff perceptions of the physical environment, satisfaction, and stress in two types of imaging rooms: imaging rooms with the intervention installed (intervention rooms) and traditionally designed rooms without the intervention (comparison rooms). Imaging technologists and patients perceived the intervention rooms to be significantly more pleasant-looking. Patients in the intervention rooms reported significantly higher levels of environmental control and were significantly more willing to recommend the intervention rooms to others. The environmental intervention was effective in improving certain aspects of the imaging environment: pleasantness and environmental control. Further improvement of the imaging environment is needed to address problematic areas such as noise.

  4. More ethical and more efficient clinical research: multiplex trial design.

    PubMed

    Keus, Frederik; van der Horst, Iwan C C; Nijsten, Maarten W

    2014-08-14

    Today's clinical research faces challenges such as a lack of clinical equipoise between treatment arms, reluctance in randomizing for multiple treatments simultaneously, inability to address interactions and increasingly restricted resources. Furthermore, many trials are biased by extensive exclusion criteria, relatively small sample size and less appropriate outcome measures. We propose a 'Multiplex' trial design that preserves clinical equipoise with a continuous and factorial trial design that will also result in more efficient use of resources. This multiplex design accommodates subtrials with appropriate choice of treatment arms within each subtrial. Clinical equipoise should increase consent rates while the factorial design is the best way to identify interactions. The multiplex design may evolve naturally from today's research limitations and challenges, while principal objections seem absent. However this new design poses important infrastructural, organisational and psychological challenges that need in depth consideration.

  5. Commentary: The Challenge of Nonexperimental Interventions Studies in Social Work

    ERIC Educational Resources Information Center

    Schilling, Robert

    2010-01-01

    The challenging context of social work interventions require that most intervention studies will be derived from nonexperimental research designs. Two evaluation studies in this special issue employed nonrandomized designs to examine the efficacy of two programs--a police crisis intervention team designed to enhance officers' responses to mental…

  6. 3 CFR - Designation of Officers of the Millennium Challenge Corporation To Act as Chief Executive Officer...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Designation of Officers of the Millennium Challenge Corporation To Act as Chief Executive Officer of the Millennium Challenge Corporation Presidential Documents... an acting CEO of the MCC. Sec. 3. Judicial Review. This memorandum is not intended to, and does not...

  7. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    ERIC Educational Resources Information Center

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  8. Fostering Sustained Energy Behavior Change and Increasing Energy Literacy in a Student Housing Energy Challenge

    ERIC Educational Resources Information Center

    Brewer, Robert Stephen

    2013-01-01

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to…

  9. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis.

    PubMed

    Reimers, Jeffrey R; Biczysko, Malgorzata; Bruce, Douglas; Coker, David F; Frankcombe, Terry J; Hashimoto, Hideki; Hauer, Jürgen; Jankowiak, Ryszard; Kramer, Tobias; Linnanto, Juha; Mamedov, Fikret; Müh, Frank; Rätsep, Margus; Renger, Thomas; Styring, Stenbjörn; Wan, Jian; Wang, Zhuan; Wang-Otomo, Zheng-Yu; Weng, Yu-Xiang; Yang, Chunhong; Zhang, Jian-Ping; Freiberg, Arvi; Krausz, Elmars

    2016-09-01

    While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Li, Ying; Jeschke, Harald O.; Valentí, Roser

    2016-06-01

    In this study, we reanalyze the magnetic interactions in the Kitaev spin-liquid candidate materials Na2IrO3,α -RuCl3 , and α -Li2IrO3 using nonperturbative exact diagonalization methods. These methods are more appropriate given the relatively itinerant nature of the systems suggested in previous works. We treat all interactions up to third neighbors on equal footing. The computed terms reveal significant long-range coupling, bond anisotropy, and/or off-diagonal couplings which we argue naturally explain the observed ordered phases in these systems. Given these observations, the potential for realizing the spin-liquid state in real materials is analyzed, and synthetic challenges are defined and explained.

  11. Designing scalable product families by the radial basis function-high-dimensional model representation metamodelling technique

    NASA Astrophysics Data System (ADS)

    Pirmoradi, Zhila; Haji Hajikolaei, Kambiz; Wang, G. Gary

    2015-10-01

    Product family design is cost-efficient for achieving the best trade-off between commonalization and diversification. However, for computationally intensive design functions which are viewed as black boxes, the family design would be challenging. A two-stage platform configuration method with generalized commonality is proposed for a scale-based family with unknown platform configuration. Unconventional sensitivity analysis and information on variation in the individual variants' optimal design are used for platform configuration design. Metamodelling is employed to provide the sensitivity and variable correlation information, leading to significant savings in function calls. A family of universal electric motors is designed for product performance and the efficiency of this method is studied. The impact of the employed parameters is also analysed. Then, the proposed method is modified for obtaining higher commonality. The proposed method is shown to yield design solutions with better objective function values, allowable performance loss and higher commonality than the previously developed methods in the literature.

  12. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Penaranda, M.M.D.; LaPatra, S.E.; Kurath, G.

    2011-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a fish rhabdovirus that causes significant mortality in salmonid species. In North America IHNV has three major genogroups designated U, M, and L. Host-specificity of the M and U genogroups of IHNV has been established both in the field and in experimental challenges, with M isolates being more prevalent and more virulent in rainbow trout (Oncorhynchus mykiss), and U isolates being more prevalent and highly virulent in sockeye salmon (Oncorhynchus nerka). In this study, efficacy of DNA vaccines containing either M (pM) or U (pU) virus glycoprotein genes was investigated during intra- and cross-genogroup challenges in rainbow trout. In virus challenges at 7 days post-vaccination (early antiviral response), both pM and pU were highly protective against either M or U IHNV. In challenges at 28 days post-vaccination (specific antiviral response), both pM and pU were protective against M IHNV but the homologous pM vaccine was significantly more protective than pU in one of two experiments. At this stage both pM and pU induced comparably high protection against U IHNV challenge. Correlates of protection were also investigated by assessing the expression of the interferon-stimulated gene Mx-1 and the production of neutralizing antibodies (NAbs) following pM or pU DNA vaccination. Mx-1 gene expression, measured at 4 and 7 days post-vaccination as an indicator of the host innate immune response, was found to be significantly higher after pM than pU vaccination in some cases. Neutralizing antibody was produced in response to the two vaccines, but antibody titers did not show consistent correlation with protection. The results show that the rainbow trout innate and adaptive immune responses have some ability to distinguish between the U and M genogroup IHNV, but overall the pM and pU vaccines were protective against both homologous and cross-genogroup challenges.

  13. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preclinical and clinical development of siRNA-based therapeutics

    PubMed Central

    Ozcan, Gulnihal; Ozpolat, Bulent; Coleman, Robert L.; Sood, Anil K.; Lopez-Berestein, Gabriel

    2015-01-01

    Discovery of RNA interference, first in plants and C. elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment. PMID:25666164

  15. Exposing the Backstage: Critical Reflections on a Longitudinal Qualitative Study of Residents’ Care Networks in Assisted Living

    PubMed Central

    Kemp, Candace L.; Ball, Mary M.; Morgan, Jennifer Craft; Doyle, Patrick J.; Burgess, Elisabeth O.; Dillard, Joy A.; Barmon, Christina E.; Fitzroy, Andrea F.; Helmly, Victoria E.; Avent, Elizabeth S.; Perkins, Molly M.

    2018-01-01

    In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents’ care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building. PMID:27651072

  16. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  17. Designing the future: NBIC technologies and human performance enhancement.

    PubMed

    Canton, James

    2004-05-01

    Never before has any civilization had the unique opportunity to enhance human performance on the scale that we will face in the near future. The convergence of nanotechnology, biotechnology, information technology, and cognitive science (NBIC) is creating a set of powerful tools that have the potential to significantly enhance human performance as well as transform society, science, economics, and human evolution. As the NBIC convergence becomes more understood, the possibility that we may be able to enhance human performance in the three domains of therapy, augmentation, and designed evolution will become anticipated and even expected. In addition, NBIC convergence represents entirely new challenges for scientists, policymakers, and business leaders who will have, for the first time, vast new and powerful tools to shape markets, societies, and lifestyles. The emergence of NBIC convergence will challenge us in new ways to balance risk and return, threat and opportunity, and social responsibility and competitive advantage as we step into the 21st century.

  18. From Here to Autonomy.

    PubMed

    Endsley, Mica R

    2017-02-01

    As autonomous and semiautonomous systems are developed for automotive, aviation, cyber, robotics and other applications, the ability of human operators to effectively oversee and interact with them when needed poses a significant challenge. An automation conundrum exists in which as more autonomy is added to a system, and its reliability and robustness increase, the lower the situation awareness of human operators and the less likely that they will be able to take over manual control when needed. The human-autonomy systems oversight model integrates several decades of relevant autonomy research on operator situation awareness, out-of-the-loop performance problems, monitoring, and trust, which are all major challenges underlying the automation conundrum. Key design interventions for improving human performance in interacting with autonomous systems are integrated in the model, including human-automation interface features and central automation interaction paradigms comprising levels of automation, adaptive automation, and granularity of control approaches. Recommendations for the design of human-autonomy interfaces are presented and directions for future research discussed.

  19. The rise of organic electrode materials for energy storage.

    PubMed

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  20. Exposing the Backstage: Critical Reflections on a Longitudinal Qualitative Study of Residents' Care Networks in Assisted Living.

    PubMed

    Kemp, Candace L; Ball, Mary M; Morgan, Jennifer Craft; Doyle, Patrick J; Burgess, Elisabeth O; Dillard, Joy A; Barmon, Christina E; Fitzroy, Andrea F; Helmly, Victoria E; Avent, Elizabeth S; Perkins, Molly M

    2017-07-01

    In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents' care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building.

  1. Preclinical and clinical development of siRNA-based therapeutics.

    PubMed

    Ozcan, Gulnihal; Ozpolat, Bulent; Coleman, Robert L; Sood, Anil K; Lopez-Berestein, Gabriel

    2015-06-29

    The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.

    PubMed

    Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S

    2014-01-01

    Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.

  3. Blended learning in anesthesia education: current state and future model.

    PubMed

    Kannan, Jaya; Kurup, Viji

    2012-12-01

    Educators in anesthesia residency programs across the country are facing a number of challenges as they attempt to integrate blended learning techniques in their curriculum. Compared with the rest of higher education, which has made advances to varying degrees in the adoption of online learning anesthesiology education has been sporadic in the active integration of blended learning. The purpose of this review is to discuss the challenges in anesthesiology education and relevance of the Universal Design for Learning framework in addressing them. There is a wide chasm between student demand for online education and the availability of trained faculty to teach. The design of the learning interface is important and will significantly affect the learning experience for the student. This review examines recent literature pertaining to this field, both in the realm of higher education in general and medical education in particular, and proposes the application of a comprehensive learning model that is new to anesthesiology education and relevant to its goals of promoting self-directed learning.

  4. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE PAGES

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.; ...

    2016-06-23

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  5. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    DOE PAGES

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less

  6. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.

  7. Proficiency in science: assessment challenges and opportunities.

    PubMed

    Pellegrino, James W

    2013-04-19

    Proficiency in science is being defined through performance expectations that intertwine science practices, cross-cutting concepts, and core content knowledge. These descriptions of what it means to know and do science pose challenges for assessment design and use, whether at the classroom instructional level or the system level for monitoring the progress of science education. There are systematic ways to approach assessment development that can address design challenges, as well as examples of the application of such principles in science assessment. This Review considers challenges and opportunities that exist for design and use of assessments that can support science teaching and learning consistent with a contemporary view of what it means to be proficient in science.

  8. Challenges of Aircraft Design Integration

    DTIC Science & Technology

    2003-03-01

    predicted by the conceptual stick model and the full FEM of the Challenger wing without winglets . Advanced aerodynamic wing design methods To design wings...Piperni, E. Laurendeau Advanced Aerodynamics Bombardier Aerospace 400 CMte Vertu Road Dorval, Quebec, Canada, H4S 1Y9 Fassi.Kafyeke @notes.canadair.ca Tel...514) 855-7186 Abstract The design of a modern airplane brings together many disciplines: structures, aerodynamics , controls, systems, propulsion

  9. The Role of DNA Methylation in Cardiovascular Risk and Disease: Methodological Aspects, Study Design, and Data Analysis for Epidemiological Studies.

    PubMed

    Zhong, Jia; Agha, Golareh; Baccarelli, Andrea A

    2016-01-08

    Epidemiological studies have demonstrated that genetic, environmental, behavioral, and clinical factors contribute to cardiovascular disease development. How these risk factors interact at the cellular level to cause cardiovascular disease is not well known. Epigenetic epidemiology enables researchers to explore critical links between genomic coding, modifiable exposures, and manifestation of disease phenotype. One epigenetic link, DNA methylation, is potentially an important mechanism underlying these associations. In the past decade, there has been a significant increase in the number of epidemiological studies investigating cardiovascular risk factors and outcomes in relation to DNA methylation, but many gaps remain in our understanding of the underlying cause and biological implications. In this review, we provide a brief overview of the biology and mechanisms of DNA methylation and its role in cardiovascular disease. In addition, we summarize the current evidence base in epigenetic epidemiology studies relevant to cardiovascular health and disease and discuss the limitations, challenges, and future directions of the field. Finally, we provide guidelines for well-designed epigenetic epidemiology studies, with particular focus on methodological aspects, study design, and analytical challenges. © 2016 American Heart Association, Inc.

  10. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  11. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  12. Prospective Longitudinal Studies of Infant Siblings of Children With Autism: Lessons Learned and Future Directions.

    PubMed

    Szatmari, Peter; Chawarska, Katarzyna; Dawson, Geraldine; Georgiades, Stelios; Landa, Rebecca; Lord, Catherine; Messinger, Daniel S; Thurm, Audrey; Halladay, Alycia

    2016-03-01

    The objectives of this review are to highlight the impact of the first decade of high-risk (HR) infant sibling work in autism spectrum disorder (ASD) and to identify potential areas of translational focus for the next decade of research. A group of clinicians and researchers in ASD working both inside and outside of the HR design met on a regular basis to review the infant sibling research, and came to an agreement on areas that had changed clinical practice and areas that had the potential to change practice with further research. The group then outlined several methodological and translational challenges that must be addressed in the next decade of research if the field is to reach its potential. The review concluded that the HR design has yielded an understanding that ASD often, but not always, begins to emerge between 6 and 18 months, with early signs affecting social communication. Research using the HR design has also allowed a better understanding of the sibling recurrence risk (between 10% and 20%). Emerging areas of interest include the developmental trajectories of social communications skills in the early years, the expression of a milder phenotype in siblings not affected with ASD, and the possibility that early intervention with infant siblings may improve outcomes for those with ASD. Important challenges for the future include linking screening to intervention, collecting large sample sizes while ensuring cross-site reliability, and building in capacity for replication. Although there are significant methodological and translational challenges for high-risk infant sibling research, the potential of this design to improve long-term outcomes of all children with ASD is substantial. Published by Elsevier Inc.

  13. Implementation of CycleTel Family Advice: an SMS-based service to provide family planning and fertility awareness information in India.

    PubMed

    Ashcroft, Nicki; Shelus, Victoria; Garg, Himanshu; McLarnon-Silk, Courtney; Jennings, Victoria H

    2017-01-01

    CycleTel Family Advice (CFA), an SMS-based service designed to improve knowledge of fertility and family planning (FP), was delivered to over 100,000 people in India from April to August 2015. The goal of CFA was to increase knowledge on a range of reproductive health topics, e.g., the menstrual cycle, fertility, and FP, and to increase positive perceptions and use of FP. This paper focuses on the best practices and operational challenges for providing an SMS service based on the implementation experience of CFA. The implementation process for CFA was well documented, specifically program design, commercial partnerships, formative research, design of messages, and recruitment of users. The impact of CFA on knowledge, attitudes, and behaviors was assessed through phone surveys before and after message delivery. Programmatic data and phone surveys resulted in several operational findings, particularly in the areas of user behavior, partnership management, and mHealth research. While there were improvements in knowledge, there were not significant changes in FP use and couple communication. The intervention yielded insights into designing an mHealth intervention as well as the opportunities and challenges of implementing a stand-alone SMS-based service with a broad audience. Lessons learned were that (I) SMS-based interventions, without other supporting systems, may not lead to high user engagement or behavior change; (II) partnerships with private sector technical platforms can help overcome the difficult problem of marketing and outreach, but they bring limitations to user interface and dependencies on a commercial structure; (III) collecting demographic data required to provide tailored content may be a barrier to user acquisition; and (IV) while phone surveys are useful for evaluation of mHealth interventions, reaching users is challenging and response rates are low.

  14. Prospective Longitudinal Studies of Infant Siblings of Children With Autism: Lessons Learned and Future Directions

    PubMed Central

    Szatmari, Peter; Chawarska, Katarzyna; Dawson, Geraldine; Georgiades, Stelios; Landa, Rebecca; Lord, Catherine; Messinger, Daniel S.; Thurm, Audrey; Halladay, Alycia

    2016-01-01

    Objective The objectives of this review are to highlight the impact of the first decade of high-risk (HR) infant sibling work in autism spectrum disorder (ASD) and to identify potential areas of translational focus for the next decade of research. Method A group of clinicians and researchers in ASD working both inside and outside of the HR design met on a regular basis to review the infant sibling research, and came to an agreement on areas that had changed clinical practice and areas that had the potential to change practice with further research. The group then outlined several methodological and translational challenges that must be addressed in the next decade of research if the field is to reach its potential. Results The review concluded that the HR design has yielded an understanding that ASD often, but not always, begins to emerge between 6 and 18 months, with early signs affecting social communication. Research using the HR design has also allowed a better understanding of the sibling recurrence risk (between 10% and 20%). Emerging areas of interest include the developmental trajectories of social communications skills in the early years, the expression of a milder phenotype in siblings not affected with ASD, and the possibility that early intervention with infant siblings may improve outcomes for those with ASD. Important challenges for the future include linking screening to intervention, collecting large sample sizes while ensuring cross-site reliability, and building in capacity for replication. Conclusion Although there are significant methodological and translational challenges for high-risk infant sibling research, the potential of this design to improve long-term outcomes of all children with ASD is substantial. PMID:26903251

  15. A Case Study of Online Degree Course Design and Performance of Online Learners

    ERIC Educational Resources Information Center

    Saul, Robert

    2013-01-01

    The increasing demand of learners in online higher education courses currently presents a challenge to online course designs in increasing the performance of learners. The online course design process involves many challenges, including a new delivery system, understanding online drivers for success, and an emerging profession of online…

  16. Rooftop Garden Design Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    A small commercial building in a nearby industrial park has decided to install a rooftop garden for its employees to enjoy. The garden will be about 100 feet long and 75 feet wide. This article presents a design challenge for technology and engineering students wherein they will assist in the initial conceptual design of the rooftop garden. The…

  17. School-Based Interventions Targeting Challenging Behaviors Exhibited by Young Children with Autism Spectrum Disorder: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Martinez, Jose R.; Werch, Brittany L.; Conroy, Maureen A.

    2016-01-01

    The purpose of this review was to critically examine and summarize the impact of school-based interventions designed to decrease challenging behaviors in young children with Autism Spectrum Disorder (ASD). Reviewed studies employed a single-case experimental design, targeted challenging behaviors, included children 3-8 years old with ASD, and took…

  18. No longer his and hers, but ours: examining sexual arousal in response to erotic stories designed for both sexes.

    PubMed

    Scott, Christina L; Cortez, Angelberto

    2011-01-01

    Research on sexual arousal and erotica has focused primarily on men and women's responses to erotic films and stories designed for a sex-specific audience. To reduce the confounds of relying on separate materials when evaluating sex differences in arousal, the present study designed suggestive and explicit erotic stories that were rated as being equally appealing to men and women. Participants were 212 undergraduate students who completed self-report measures of sexual self-esteem, sexual desire, and pre- and posttest measures of arousal. As hypothesized, women in the suggestive and explicit conditions reported a significant increase in sexual arousal; however, only men who read the explicit story demonstrated significant elevations in arousal. The creation of "equally appealing" erotic stories has challenged the existing research paradigm and has initiated the investigation of sexual arousal from a set of common materials designed for both sexes. The benefits of creating a series of equally appealing erotic materials extends beyond empirical research and may ultimately facilitate greater openness and communication between heterosexual couples.

  19. Effect of climate change and resource scarcity on health care.

    PubMed

    Richardson, Janet; Grose, Jane; Jackson, Bethany; Gill, Jamie-Lee; Sadeghian, Hannah Becky; Hertel, Johannes; Kelsey, Janet

    2014-07-15

    Climate change and resource scarcity pose significant threats to healthcare delivery. Nurses should develop the skills to cope with these challenges in the future. Skills sessions using sustainability scenarios can help nursing students to understand the effect climate change and resource scarcity will have on health care. Involving design students in clinical skills sessions can encourage multidisciplinary working and help to find solutions to promote healthcare sustainability.

  20. Optimization of a Small Scale Linear Reluctance Accelerator

    NASA Astrophysics Data System (ADS)

    Barrera, Thor; Beard, Robby

    2011-11-01

    Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.

  1. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. Conclusions Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases. PMID:23735014

  2. 'Is it the crime of the century?': factors for psychiatrists and service users that influence the long-term prescription of hypnosedatives.

    PubMed

    MacDonald, Joanna; Garvie, Christopher; Gordon, Sarah; Huthwaite, Mark; Mathieson, Fiona; Wood, Amber-Jane; Romans, Sarah

    2015-07-01

    Given the longstanding controversy about hypnosedative use, we aimed to investigate the attitudes of prescribing psychiatrists and service users towards long-term use of hypnosedative medication, and their perceptions of barriers to evidence-based nonmedication alternatives. Qualitative data from focus groups in Aotearoa/NZ were analysed thematically. A novel research design involved a service user researcher contributing throughout the research design and process. Service users and psychiatrists met to discuss each other's views, initially separately, and subsequently together. Analysis of the data identified four key themes: the challenge, for both parties, of sleep disturbance among service users with mental health problems; the conceptual and ethical conflicts for service users and psychiatrists in managing this challenge; the significant barriers to service users accessing evidence-based nonmedication alternatives; and the initial sense of disempowerment, shared by both service users and psychiatrists, which was transformed during the research process. Our results raise questions about the relevance of the existing guidelines for this group of service users, highlight the resource and time pressures that discourage participants from embarking on withdrawal regimes and education programmes on alternatives, highlight the lack of knowledge about alternatives and reflect the complex interaction between sleep and mental health problems, which poses a significant dilemma for service users and psychiatrists.

  3. Design Science Methodology Applied to a Chemical Surveillance Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhuanyi; Han, Kyungsik; Charles-Smith, Lauren E.

    Public health surveillance systems gain significant benefits from integrating existing early incident detection systems,supported by closed data sources, with open source data.However, identifying potential alerting incidents relies on finding accurate, reliable sources and presenting the high volume of data in a way that increases analysts work efficiency; a challenge for any system that leverages open source data. In this paper, we present the design concept and the applied design science research methodology of ChemVeillance, a chemical analyst surveillance system.Our work portrays a system design and approach that translates theoretical methodology into practice creating a powerful surveillance system built for specificmore » use cases.Researchers, designers, developers, and related professionals in the health surveillance community can build upon the principles and methodology described here to enhance and broaden current surveillance systems leading to improved situational awareness based on a robust integrated early warning system.« less

  4. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    PubMed

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  5. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  6. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    NASA’s Administrator, Charles Bolden (left), President/CEO of Lockheed Martin, Marillyn Hewson (right), and astronaut Rex Walheim (back row) pose for a group photo with the winning high school team in the Exploration Design Challenge. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)

  7. Design evolution of the orbiter reaction control subsystem

    NASA Technical Reports Server (NTRS)

    Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.

    1985-01-01

    The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.

  8. Design Challenges in Converting a Paper Checklist to Digital Format for Dynamic Medical Settings

    PubMed Central

    Sarcevic, Aleksandra; Rosen, Brett J.; Kulp, Leah J.; Marsic, Ivan; Burd, Randall S.

    2016-01-01

    We describe a mobile digital checklist that we designed and developed for trauma resuscitation—a dynamic, fast-paced medical process of treating severely injured patients. The checklist design was informed by our analysis of user interactions with a paper checklist that was introduced to improve team performance during resuscitations. The design process followed an iterative approach and involved several medical experts. We discuss design challenges in converting a paper checklist to its digital counterpart, as well as our approaches for addressing those challenges. While we show that using a digital checklist during a fast-paced medical event is feasible, we also recognize several design constraints, including limited display size, difficulties in entering notes about the medical process and patient, and difficulties in replicating user experience with paper checklists. PMID:28480116

  9. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  10. Student service members/veterans on campus: Challenges for reintegration.

    PubMed

    Borsari, Brian; Yurasek, Ali; Miller, Mary Beth; Murphy, James G; McDevitt-Murphy, Meghan E; Martens, Matthew P; Darcy, Monica G; Carey, Kate B

    2017-01-01

    Many returning OIF/OEF/OND Veterans are seeking higher education in an effort to develop a meaningful career and financial stability. Evidence suggests that student service members/veterans (SSM/Vs) are experiencing less academic success than other students. The purpose of this review is to identify the unique challenges of SSM/Vs and evaluate current campus efforts to facilitate their retention and academic performance. With a focus on SSM/Vs attending colleges and universities, we obtained 57 peer-reviewed and 73 gray literature records published between 2001 and 2015. The current SSM/V literature contains an abundance of gray literature, and the empirical research tends to be limited by cross-sectional design and small sample sizes. SSM/Vs encounter significant personal and environmental challenges when transitioning from the military to college campuses. A variety of services have been developed to address the needs of the SSM/V population, but the efficacy of these services remains largely unknown. In conclusion, there is a clear need to provide education to faculty, students, and staff regarding the experiences of SSM/Vs. Efforts to enhance screening for, availability of, and SSM/V engagement in mental health services would also be beneficial, as would improved availability of and SSM/V access to academic support. All future programs designed to address the unique challenges of SSM/Vs in the academic environment should also be systematically implemented and evaluated. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design.

    PubMed

    Beiki, Zohre; Jahanian, Ali

    2017-10-01

    DNA is known as the building block for storing the life codes and transferring the genetic features through the generations. However, it is found that DNA strands can be used for a new type of computation that opens fascinating horizons in computational medicine. Significant contributions are addressed on design of DNA-based logic gates for medical and computational applications but there are serious challenges for designing the medium and large-scale DNA circuits. In this paper, a new microarchitecture and corresponding design flow is proposed to facilitate the design of multistage large-scale DNA logic systems. Feasibility and efficiency of the proposed microarchitecture are evaluated by implementing a full adder and, then, its cascadability is determined by implementing a multistage 8-bit adder. Simulation results show the highlight features of the proposed design style and microarchitecture in terms of the scalability, implementation cost, and signal integrity of the DNA-based logic system compared to the traditional approaches.

  12. A simulation-based probabilistic design method for arctic sea transport systems

    NASA Astrophysics Data System (ADS)

    Martin, Bergström; Ove, Erikstad Stein; Sören, Ehlers

    2016-12-01

    When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.

  13. Listening for commissioning: A participatory study exploring young people's experiences, views and preferences of school-based sexual health and school nursing.

    PubMed

    Aranda, Kay; Coleman, Lester; Sherriff, Nigel S; Cocking, Chris; Zeeman, Laetitia; Cunningham, Liz

    2018-01-01

    To explore the experiences, views and preferences of young people aged 11-19 years regarding school-based sexual health and school nursing to inform commissioning and delivery for one local authority area in England during 2015. Promoting sexual health for young people remains a challenging, even controversial, but important public health issue. Concerns regarding accessibility, acceptability and efficacy in school-based sexual health and school nursing are evident in the literature. Additionally, a complex public health policy context now governs the funding, provision and delivery of sexual health and school nursing, which potentially presents further challenges. A qualitative, participatory design was used to explore sexual health and school nursing. Data were generated from 15 focus groups (n = 74), with young people aged 11-19 years, in educational-based settings in one local authority area in England. The resultant themes of visibility in relation to sexual health education and school nursing revealed both the complex tensions in designing and delivering acceptable and appropriate sexual health services for young people and the significance of participatory approaches. Our study shows the importance of participatory approaches in working with young people to clearly identify what they want and need in relation to sexual health. The findings also confirm the ways in which school-based sexual health remains challenging but requires a theoretical and conceptual shift. This we argue must be underpinned by participatory approaches. School nurses have always had a significant role to play in promoting positive sexual health for young people and they are exceptionally well placed to challenge the risk-based cultures that frequently dominate school-based sexual health. A shift of debates and practices towards the promotion of positive sexual health cultures though previously argued for now requires the active engagement and involvement of young people. © 2017 John Wiley & Sons Ltd.

  14. Effectiveness of objectivist online instruction on graduate learners' knowledge and competence

    NASA Astrophysics Data System (ADS)

    Maryannakis, Artemios

    Online courses currently offered by aeronautical institutions are unstructured conversions of traditional courses into Web-based courses that lack the learning theory and instructional design principles framework, thus lacking the efficiency and effectiveness in dealing with the academic demands required to prepare aviation/aerospace professionals for the challenges of the technologically driven twenty-first century. The purpose of this study was to compare the effectiveness of two versions of an aeronautical online graduate course on research methods knowledge and competence: a comprehensive objectivist design and an unstructured design. Quantitative, causal comparative, quasi-experimental methodology was utilized. Using criteria derived from literature, criteria were established for the development and eventual online delivery of a comprehensive objectivist instructional design on graduate research methods learning. Results revealed that the comprehensive objectivist design was significantly more effective than its unstructured counterpart on graduate learners' competence in research methods, but found no significant difference in knowledge. It was recommended that aeronautical institutions (a) create programs with critical thinking and problem solving embedded in their curriculum for enhancing learner competence, and (b) thoroughly train every online instructor in the development and use of comprehensive online instruction.

  15. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  16. Efficacy of the Get Ready to Learn yoga program among children with autism spectrum disorders: a pretest-posttest control group design.

    PubMed

    Koenig, Kristie Patten; Buckley-Reen, Anne; Garg, Satvika

    2012-01-01

    Occupational therapists use school-based yoga programs, but these interventions typically lack manualization and evidence from well-designed studies. Using an experimental pretest-posttest control group design, we examined the effectiveness of the Get Ready to Learn (GRTL) classroom yoga program among children with autism spectrum disorders (ASD). The intervention group received the manualized yoga program daily for 16 wk, and the control group engaged in their standard morning routine. We assessed challenging behaviors with standardized measures and behavior coding before and after intervention. We completed a between-groups analysis of variance to assess differences in gain scores on the dependent variables. Students in the GRTL program showed significant decreases (p < .05) in teacher ratings of maladaptive behavior, as measured with the Aberrant Behavior Checklist, compared with the control participants. This study demonstrates that use of daily classroomwide yoga interventions has a significant impact on key classroom behaviors among children with ASD. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  17. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    PubMed

    Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P

    2015-01-01

    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  18. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  19. Influence of Housing Wall Compliance on Shock Absorbers in the Context of Vehicle Dynamics

    NASA Astrophysics Data System (ADS)

    Pulvirenti, G.; Faria, C.

    2017-10-01

    Shock absorbers play a key role in vehicle dynamics. Researchers have spent significant effort in order to understand phenomena associated with this component, but there are still several issues to address, in part because new technology development and design trends continually lead to new challenges, among which weight reduction is crucial. For shock absorbers, weight reduction is related to the use of new materials (e.g. composite) or new design paradigms (e.g. more complex geometry, wall thickness, etc.). All of them are directly linked to wall compliance values higher than the actual ones. The present article proposes a first analysis of the phenomena introduced by a high wall compliance, through a modelling approach and various simulations in order to understand the vehicle behaviour changes. It is shown that high values of wall compliance lead to increased hysteresis in the force-velocity curve. However, comfort, handling and ride performances are not significantly affected by this designing parameter.

  20. Conducting Biobehavioral Research in Patients With Advanced Cancer: Recruitment Challenges and Solutions.

    PubMed

    Gilbertson-White, Stephanie; Bohr, Nicole; Wickersham, Karen E

    2017-10-01

    Despite significant advances in cancer treatment and symptom management interventions over the last decade, patients continue to struggle with cancer-related symptoms. Adequate baseline and longitudinal data are crucial for designing interventions to improve patient quality of life and reduce symptom burden; however, recruitment of patients with advanced cancer in longitudinal research is difficult. Our purpose is to describe challenges and solutions to recruitment of patients with advanced cancer in two biobehavioral research studies examining cancer-related symptoms. Study 1: Symptom data and peripheral blood for markers of inflammation were collected from newly diagnosed patients receiving chemotherapy on the first day of therapy and every 3-4 weeks for up to 6 months. Study 2: Symptom data, blood, and skin biopsies were collected from cancer patients taking epidermal growth factor receptor inhibitors at specific time points over 4 months. Screening and recruitment results for both studies are summarized. Timing informed consent with baseline data collection prior to treatment initiation was a significant recruitment challenge for both the studies. Possible solutions include tailoring recruitment to fit clinic needs, increasing research staff availability during clinic hours, and adding recruitment sites. Identifying solutions to these challenges will permit the conduct of studies that may lead to identification of factors contributing to variability in symptoms and development of tailored patient interventions for patients with advanced cancer.

  1. Testing Universal Design of a Public Media Website with Diverse Users.

    PubMed

    Chen, Weiqin; Kessel, Siri; Sanderson, Norun C; Tatara, Naoe

    2016-01-01

    Testing with users can identify more issues than other testing methods. Many researchers have argued for the importance of user testing in Universal Design. However, testing Universal Design with diverse users poses many challenges. In this paper we will share our experience with testing the Universal Design of a public media website with real users. We discuss the challenges faced and lessons learned in the process.

  2. [Computational chemistry in structure-based drug design].

    PubMed

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  3. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  4. Supracolloidal fullerene-like cages: design principles and formation mechanisms.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-11-30

    How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.

  5. Five Decades: From Challenge to Acclaim.

    PubMed

    Melina, Vesanto

    2016-09-01

    What can make your work as a dietitian so meaningful that you begin each day with enthusiasm, and if you so choose, retain that joy in your work for 5 decades or more? Three themes are: (i) doing work that profoundly makes sense to you, (ii) inspiring others (and yourself) to make healthful choices, and (iii) moving through challenges to success. Initially it can be challenging to make a living through work that is most deeply meaningful or closest to your heart. Yet it is well worth finding the balance between practicality and movement in the desired direction. Other challenges faced by dietitians involve helping others to adopt new, more healthful lifestyle choices. As health professionals, our attitudes towards plant-based diets have changed dramatically during these past decades. This article examines our evolving perspectives of plant-based diets, and uses this as an example of movement through challenges to success and acclaim. Vegetarian and vegan diets that were considered entirely inappropriate for many stages of the life cycle in the 1970s are now seen to confer health benefits. This applies to well-designed plant-based diets, thus offering a significant role for dietitians as creative leaders in this field.

  6. The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  7. Design Challenges: Connecting the Classroom to the Real World

    ERIC Educational Resources Information Center

    Brookes, Tori

    2017-01-01

    School lockers are an essential part of secondary school life and students have been using them for decades. It is unlikely the design has changed since they were used by their grandparents. Although lockers have not changed, school definitely has. Are school lockers something that also need to be changed? A design challenge is an open-ended…

  8. Designing Empathy: The Role of a "Control Room" in an E-Learning Environment

    ERIC Educational Resources Information Center

    Gentes, Annie; Cambone, Marie

    2013-01-01

    Purpose: The purpose of this paper is to focus on the challenge of designing an interface for a virtual class, where being represented together contributes to the learning process. It explores the possibility of virtual empathy. Design/methodology/approach: The challenges are: How can this feeling of empathy be recreated through a delicate staging…

  9. Wanting to Learn: A Necessary Condition for the Effectiveness of Instructional Design

    ERIC Educational Resources Information Center

    Gropper, George L.

    2015-01-01

    There are inevitable challenges standing in the way of the success of any approach to Instructional Design. Some are being faced up to. Some are not. Not least among them is the absence of empirically established principles undergirding Instructional Design prescriptions. The challenge it poses is to their reliability and validity. Nothing that…

  10. From Prototype to Product: Making Participatory Design of mHealth Commercially Viable.

    PubMed

    Andersen, Tariq O; Bansler, Jørgen P; Kensing, Finn; Moll, Jonas

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned.

  11. Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.

    2012-06-01

    Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.

  12. The MedlinePlus public user interface: studies of design challenges and opportunities.

    PubMed

    Marill, Jennifer L; Miller, Naomi; Kitendaugh, Paula

    2006-01-01

    What are the challenges involved in designing, modifying, and improving a major health information portal that serves over sixty million page views a month? MedlinePlus, the National Library of Medicine's (NLM's) consumer health Website, is examined. Challenges are presented as six "studies," which describe selected design issues and how NLM staff resolved them. Improving MedlinePlus is an iterative process. Changes in the public user interface are ongoing, reflecting Web design trends, usability testing recommendations, user survey results, new technical requirements, and the need to grow the site in an orderly way. Testing and analysis should accompany Website design modifications. New technologies may enhance a site but also introduce problems. Further modifications to MedlinePlus will be informed by the experiences described here.

  13. Mechanistic analysis of challenge-response experiments.

    PubMed

    Shotwell, M S; Drake, K J; Sidorov, V Y; Wikswo, J P

    2013-09-01

    We present an application of mechanistic modeling and nonlinear longitudinal regression in the context of biomedical response-to-challenge experiments, a field where these methods are underutilized. In this type of experiment, a system is studied by imposing an experimental challenge, and then observing its response. The combination of mechanistic modeling and nonlinear longitudinal regression has brought new insight, and revealed an unexpected opportunity for optimal design. Specifically, the mechanistic aspect of our approach enables the optimal design of experimental challenge characteristics (e.g., intensity, duration). This article lays some groundwork for this approach. We consider a series of experiments wherein an isolated rabbit heart is challenged with intermittent anoxia. The heart responds to the challenge onset, and recovers when the challenge ends. The mean response is modeled by a system of differential equations that describe a candidate mechanism for cardiac response to anoxia challenge. The cardiac system behaves more variably when challenged than when at rest. Hence, observations arising from this experiment exhibit complex heteroscedasticity and sharp changes in central tendency. We present evidence that an asymptotic statistical inference strategy may fail to adequately account for statistical uncertainty. Two alternative methods are critiqued qualitatively (i.e., for utility in the current context), and quantitatively using an innovative Monte-Carlo method. We conclude with a discussion of the exciting opportunities in optimal design of response-to-challenge experiments. © 2013, The International Biometric Society.

  14. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-03-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

  15. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  16. Challenges faced by former child soldiers in the aftermath of war in Uganda.

    PubMed

    Vindevogel, Sofie; De Schryver, Maarten; Broekaert, Eric; Derluyn, Ilse

    2013-06-01

    Warfare takes a profound toll of all layers of society, creating multiple and multilevel challenges that impinge on the psychosocial well-being of affected individuals. This study aims to assess the scope and salience of challenges confronting former child soldiers and at identifying additional challenges they face compared to non-recruited young people in war-affected northern Uganda. The study was carried out with a stratified random sample of northern Ugandan adolescents (n = 1,008), of whom a third had formerly been recruited (n = 330). The mixed-method comparison design consisted of a constrained free listing task to determine the challenges; a free sorting task to categorize them into clusters; and statistical analysis of their prevalence among formerly recruited youth and of how they compare with those of nonrecruited youth. Altogether, 237 challenges were identified and clustered into 15 categories, showing that formerly recruited participants mainly identified "emotional" and "training and skills"-related challenges. Compared with nonrecruited counterparts, they reported significantly more "emotional" and fewer "social and relational" challenges, with the exception of stigmatization. Overall, there was similarity between the challenges reported by both groups. The challenges confronting formerly recruited youths reach well beyond the effects of direct war exposure and emerge mainly from multiple influence spheres surrounding them. These challenges are largely shared in common with nonrecruited youths. This multidimensional and collective character of challenges calls for comprehensive psychosocial interventions through which healing the psychological wounds of war is complemented by mending the war-affected surroundings at all levels and in all life areas. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. Toward Green Challenge Courses.

    ERIC Educational Resources Information Center

    Johnson, Karl E.

    1999-01-01

    Designing environmentally friendly challenge courses involves considering factors such as clearing, trees versus poles, soil erosion and compaction, toilet design, waste disposal, and carrying capacity. Strategies used in "green development" such as systems thinking, solution multipliers, and brainstorming with stakeholders could promote…

  18. ARPA-E LITECAR Challenge

    ScienceCinema

    Liu, Ping; Salvi, Ashwin

    2018-01-16

    With more than 250 conceptual designs submitted, we are pleased to highlight the winners of the LIghtweighting Technologies Enabling Comprehensive Automotive Redesign (LITECAR) Challenge. These innovative conceptual designs seek to lightweight a vehicle while maintaining or exceeding current U.S. automotive safety standards.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, John; Halbgewachs, Ron; Chavez, Adrian

    The manner in which the control systems are being designed and operated in the energy sector is undergoing some of the most significant changes in history due to the evolution of technology and the increasing number of interconnections to other system. With these changes however come two significant challenges that the energy sector must face; 1) Cyber security is more important than ever before, and 2) Cyber security is more complicated than ever before. A key requirement in helping utilities and vendors alike in meeting these challenges is interoperability. While interoperability has been present in much of the discussions relatingmore » to technology utilized within the energy sector and especially the Smart Grid, it has been absent in the context of cyber security. The Lemnos project addresses these challenges by focusing on the interoperability of devices utilized within utility control systems which support critical cyber security functions. In theory, interoperability is possible with many of the cyber security solutions available to utilities today. The reality is that the effort required to achieve cyber security interoperability is often a barrier for utilities. For example, consider IPSec, a widely-used Internet Protocol to define Virtual Private Networks, or tunnels , to communicate securely through untrusted public and private networks. The IPSec protocol suite has a significant number of configuration options and encryption parameters to choose from, which must be agreed upon and adopted by both parties establishing the tunnel. The exercise in getting software or devices from different vendors to interoperate is labor intensive and requires a significant amount of security expertise by the end user. Scale this effort to a significant number of devices operating over a large geographical area and the challenge becomes so overwhelming that it often leads utilities to pursue solutions from a single vendor. These single vendor solutions may inadvertently lock utilities into proprietary and closed systems.« less

  20. Design and Development of a Rapid Research, Design, and Development Platform for In-Situ Testing of Tools and Concepts for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.

    2017-01-01

    To provide justification for equipping a fleet of aircraft with avionics capable of supporting trajectory-based operations, significant flight testing must be accomplished. However, equipping aircraft with these avionics and enabling technologies to communicate the clearances required for trajectory-based operations is cost-challenging using conventional avionics approaches. This paper describes an approach to minimize the costs and risks of flight testing these technologies in-situ, discusses the test-bed platform developed, and highlights results from a proof-of-concept flight test campaign that demonstrates the feasibility and efficiency of this approach.

  1. Active mixing of complex fluids at the microscale

    DOE PAGES

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-09-22

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. As a result, active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks withmore » programmable control of local composition.« less

  2. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    PubMed

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  3. Diamond Turned High Precision PIAA Optics and Four Mirror PIAA System for High Contrast Imaging of Exo-planets

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan

    2011-01-01

    Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.

  4. Overview of the Altair Lunar Lander Thermal Control System Design

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.

  5. Active mixing of complex fluids at the microscale

    PubMed Central

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-01-01

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. Active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks with programmable control of local composition. PMID:26396254

  6. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    PubMed

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  7. Improving designer productivity

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting those challenges.

  8. Maximizing research study effectiveness in malaria elimination settings: a mixed methods study to capture the experiences of field-based staff.

    PubMed

    Canavati, Sara E; Quintero, Cesia E; Haller, Britt; Lek, Dysoley; Yok, Sovann; Richards, Jack S; Whittaker, Maxine Anne

    2017-09-11

    In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols. This mixed-methods analysis sought to gain an understanding of the daily challenges encountered by research field staff in the artemisinin-resistant, malaria elimination setting of Western Cambodia. In doing so, this study seeks to understand how the experiences and opinions of field staff can be captured, and used to inform future study designs. Twenty-two reports from six field-based malaria studies conducted in Western Cambodia were reviewed using content analysis to identify challenges to conducting the research. Informal Interviews, Focus Group Discussions and In-depth Interviews were also conducted among field research staff. Thematic analysis of the data was undertaken using Nvivo 9 ® software. Triangulation and critical case analysis was also used. There was a lack of formalized avenues through which field workers could report challenges experienced when conducting the malaria studies. Field research staff faced significant logistical barriers to participant recruitment and data collection, including a lack of available transportation to cover long distances, and the fact that mobile and migrant populations (MMPs) are usually excluded from studies because of challenges in follow-up. Cultural barriers to communication also hindered participant recruitment and created unexpected delays. Field staff often paid a physical, emotional and financial cost, going beyond their duty in order to keep the study running. Formal monthly reports filled out by field study staff could be a key tool for capturing field study staff experiences effectively, but require specific report fields to encourage staff to outline their challenges and to propose potential solutions. Forging strong bonds with communities and their leaders may improve communication, and decrease barriers to participant recruitment. Study designs that make it feasible for MMPs to participate should be pursued; in addition to increasing the potential participant pool, this will ensure that the most malaria-endemic demographic is taken into account in research studies. Overlaps between clinical care and research create ethical dilemmas for study staff, a fact that warrants careful consideration. Lessons learned from study field staff should be used to create a set of locally-relevant recommendations to inform future study designs.

  9. A Method To Determine the Kinetics of Solute Mixing in Liquid/Liquid Formulation Dual-Chamber Syringes.

    PubMed

    Werk, Tobias; Mahler, Hanns-Christian; Ludwig, Imke Sonja; Luemkemann, Joerg; Huwyler, Joerg; Hafner, Mathias

    Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products, which cannot be co-formulated due to technical or regulatory issues. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercial dual-chamber syringes (with a bypass designed as a longitudinal ridge) when the two liquids significantly differ in their physical properties (viscosity, density). However, an optimized dual-chamber syringe design with multiple bypass channels resulted in improved mixing of liquids. Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercially available dual-chamber syringes when the two liquids significantly differ in viscosity and density. However, an optimized dual-chamber syringe design resulted in improved mixing of liquids. © PDA, Inc. 2017.

  10. ZAP! Adapted: Incorporating design in the introductory electromagnetism lab

    NASA Astrophysics Data System (ADS)

    McNeil, J. A.

    2002-04-01

    In the last decade the Accreditation Board of Engineering and Technology(ABET) significantly reformed the criteria by which engineering programs are accredited. The new criteria are called Engineering Criteria 2000 (EC2000). Not surprisingly, engineering design constitutes an essential component of these criteria. The Engineering Physics program at the Colorado School of Mines (CSM) underwent an ABET general review and site visit in the fall of 2000. In preparation for this review and as part of a campus-wide curriculum reform the Physics Department was challenged to include elements of design in its introductory laboratories. As part of the background research for this reform, several laboratory programs were reviewed including traditional and studio modes as well as a course used by Cal Tech and MIT called "ZAP!" which incorporates design activities well-aligned with the EC2000 criteria but in a nontraditional delivery mode. CSM has adapted several ZAP! experiments to a traditional laboratory format while attempting to preserve significant design experiences. The new laboratory forms an important component of the reformed course which attempts to respect the psychological principles of learner-based education. This talk reviews the reformed introductory electromagnetism course and how the laboratories are integrated into the pedagogy along with design activities. In their new form the laboratories can be readily adopted by physics departments using traditional delivery formats.

  11. Self Managing Heart Failure in Remote Australia - Translating Concepts into Clinical Practice

    PubMed Central

    Iyngkaran, Pupalan; Toukhsati, Samia R.; Harris, Melanie; Connors, Christine; Kangaharan, Nadarajan; Ilton, Marcus; Nagel, Tricia; Moser, Debra K.; Battersby, Malcolm

    2016-01-01

    Congestive heart failure (CHF) is an ambulatory health care condition characterized by episodes of decompensation and is usually without cure. It is a leading cause for morbidity and mortality and the lead cause for hospital admissions in older patients in the developed world. The long-term requirement for medical care and pharmaceuticals contributes to significant health care costs. CHF management follows a hierarchy from physician prescription to allied health, predominately nurse-led, delivery of care. Health services are easier to access in urban compared to rural settings. The differentials for more specialized services could be even greater. Remote Australia is thus faced with unique challenges in delivering CHF best practice. Chronic disease self-management programs (CDSMP) were designed to increase patient participation in their health and alleviate stress on health systems. There have been CDSMP successes with some diseases, although challenges still exist for CHF. These challenges are amplified in remote Australia due to geographic and demographic factors, increased burden of disease, and higher incidence of comorbidities. In this review we explore CDSMP for CHF and the challenges for our region. PMID:27397492

  12. Challenges in Translational Development of Pharmaceutical Cocrystals.

    PubMed

    Kale, Dnyaneshwar P; Zode, Sandeep S; Bansal, Arvind K

    2017-02-01

    The last 2 decades have witnessed increased research in the area of cocrystals resulting in deeper scientific understanding, increase in intellectual property landscape, and evolution in the regulatory environment. Pharmaceutical cocrystals have received significant attention as a new solid form on account of their ability to modulate poor physicochemical properties of drug molecules. However, pharmaceutical development of cocrystals could be challenging, thus limiting their translation into viable drug products. In the present commentary, the role of cocrystals in the modulation of material properties and challenges involved in the pharmaceutical development of cocrystals have been discussed. The major hurdles encountered in the development of cocrystals such as safety of coformers, unpredictable performance during dissolution and solubility in different media, difficulties in establishing in vitro-in vivo correlation, and polymorphism have been extensively discussed. The influence of selecting appropriate formulation and process design on these challenges has been discussed. Finally, a brief outline of cocrystals that are undergoing clinical development has also been presented. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. The 20-20-20 Airships NASA Centennial Challenge

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Diaz, Ernesto; Miller, Sarah; Rhodes, Jason; Ortega, Sam; Hall, Jeffrey L.; Friedl, Randy; Booth, Jeff

    2015-01-01

    A NASA Centennial Challenge; (www.nasa.gov/challenges) is in development to spur innovation in stratospheric airships as a science platform. We anticipate a multi-million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads.In NASA's constrained budget environment, there are few opportunities for space missions in astronomy and Earth science, and these have very long lead times. We believe that airships (powered, maneuverable, lighter-than-air vehicles) could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. This technology would also have broad commercial applications including communications and asset tracking. We seek to spur private industry (or non-profit institutions, including Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms. This poster will introduce the challenge in development and provide details of who to contact for more information.

  14. The 20-20-20 Airship Challenge

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Diaz, Ernesto; Miller, Sarah; Rhodes, Jason

    2014-06-01

    A NASA Centennial Challenge; (http://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html) is in development to spur innovation in stratospheric airships as a science platform. We anticipate a million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads.In NASA’s constrained budget environment, there are few opportunities for space missions in astronomy and Earth science, and these have very long lead times. We believe that airships (powered, maneuverable, lighter-than-air vehicles) could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. We seek to spur private industry (or non-profit institutions, including FFRDCs and Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms. This poster will introduce the challenge in development and provide details of who to contact for more information.

  15. The Future of Electronic Device Design: Device and Process Simulation Find Intelligence on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.

    1999-01-01

    We are on the path to meet the major challenges ahead for TCAD (technology computer aided design). The emerging computational grid will ultimately solve the challenge of limited computational power. The Modular TCAD Framework will solve the TCAD software challenge once TCAD software developers realize that there is no other way to meet industry's needs. The modular TCAD framework (MTF) also provides the ideal platform for solving the TCAD model challenge by rapid implementation of models in a partial differential solver.

  16. Designing astrophysics missions for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  17. Methodological considerations in a pilot study on the effects of a berry enriched smoothie on children’s performance in school

    PubMed Central

    Rosander, Ulla; Rumpunen, Kimmo; Olsson, Viktoria; Åström, Mikael; Rosander, Pia; Wendin, Karin

    2017-01-01

    ABSTRACT Berries contain bioactive compounds that may affect children’s cognitive function positively, while hunger and thirst during lessons before lunch affect academic performance negatively. This pilot study addresses methodological challenges in studying if a berry smoothie, offered to schoolchildren as a mid-morning beverage, affects academic performance. The objective was to investigate if a cross-over design can be used to study these effects in a school setting. Therefore, in order to investigate assay sensitivity, 236 Swedish children aged 10–12 years were administered either a berry smoothie (active) or a fruit-based control beverage after their mid-morning break. Both beverages provided 5% of child daily energy intake. In total, 91% of participants completed the study. Academic performance was assessed using the d2 test of attention. Statistical analyses were performed using the Wilcoxon signed rank test in StatXact v 10.3. The results showed that the children consumed less of the active berry smoothie than the control (154 g vs. 246 g). Both beverages increased attention span and concentration significantly (p = 0.000). However, as there was no significant difference (p = 0.938) in the magnitude of this effect between the active and control beverages, the assay sensitivity of the study design was not proven. The effect of the beverages on academic performance was attributed the supplementation of water and energy. Despite careful design, the active smoothie was less accepted than the control. This could be explained by un-familiar sensory characteristics and peer influence, stressing the importance of sensory similarity and challenges to perform a study in school settings. The employed cross-over design did not reveal any effects of bioactive compound consumption on academic performance. In future studies, the experimental set up should be modified or replaced by e.g. the parallel study design, in order to provide conclusive results. PMID:29230155

  18. Methodological considerations in a pilot study on the effects of a berry enriched smoothie on children's performance in school.

    PubMed

    Rosander, Ulla; Rumpunen, Kimmo; Olsson, Viktoria; Åström, Mikael; Rosander, Pia; Wendin, Karin

    2017-01-01

    Berries contain bioactive compounds that may affect children's cognitive function positively, while hunger and thirst during lessons before lunch affect academic performance negatively. This pilot study addresses methodological challenges in studying if a berry smoothie, offered to schoolchildren as a mid-morning beverage, affects academic performance. The objective was to investigate if a cross-over design can be used to study these effects in a school setting. Therefore, in order to investigate assay sensitivity, 236 Swedish children aged 10-12 years were administered either a berry smoothie (active) or a fruit-based control beverage after their mid-morning break. Both beverages provided 5% of child daily energy intake. In total, 91% of participants completed the study. Academic performance was assessed using the d2 test of attention. Statistical analyses were performed using the Wilcoxon signed rank test in StatXact v 10.3. The results showed that the children consumed less of the active berry smoothie than the control (154 g vs. 246 g). Both beverages increased attention span and concentration significantly (p = 0.000). However, as there was no significant difference (p = 0.938) in the magnitude of this effect between the active and control beverages, the assay sensitivity of the study design was not proven. The effect of the beverages on academic performance was attributed the supplementation of water and energy. Despite careful design, the active smoothie was less accepted than the control. This could be explained by un-familiar sensory characteristics and peer influence, stressing the importance of sensory similarity and challenges to perform a study in school settings. The employed cross-over design did not reveal any effects of bioactive compound consumption on academic performance. In future studies, the experimental set up should be modified or replaced by e.g. the parallel study design, in order to provide conclusive results.

  19. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Quick, Julian; Guo, Yi

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this papermore » we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.« less

  20. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains through Integrated Design Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Quick, Julian; Guo, Yi

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this papermore » we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.« less

  1. A Tool Supporting Collaborative Data Analytics Workflow Design and Management

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Bao, Q.; Lee, T. J.

    2016-12-01

    Collaborative experiment design could significantly enhance the sharing and adoption of the data analytics algorithms and models emerged in Earth science. Existing data-oriented workflow tools, however, are not suitable to support collaborative design of such a workflow, to name a few, to support real-time co-design; to track how a workflow evolves over time based on changing designs contributed by multiple Earth scientists; and to capture and retrieve collaboration knowledge on workflow design (discussions that lead to a design). To address the aforementioned challenges, we have designed and developed a technique supporting collaborative data-oriented workflow composition and management, as a key component toward supporting big data collaboration through the Internet. Reproducibility and scalability are two major targets demanding fundamental infrastructural support. One outcome of the project os a software tool, supporting an elastic number of groups of Earth scientists to collaboratively design and compose data analytics workflows through the Internet. Instead of recreating the wheel, we have extended an existing workflow tool VisTrails into an online collaborative environment as a proof of concept.

  2. The healing balm of nature: Understanding and supporting the naturalist intelligence in individuals diagnosed with ASD. Comment on: ;Implications of the idea of neurodiversity for understanding the origins of developmental disorders; by Nobuo Masataka

    NASA Astrophysics Data System (ADS)

    Armstrong, Thomas

    2017-03-01

    Masataka's [1] review article challenges the deficiency-oriented paradigm that most researchers and practitioners in the field of developmental disorders embrace with regard to children and adults diagnosed with autism spectrum disorders (ASD). While acknowledging the clear disadvantages possessed by those with ASD in the social domain, the paper challenges us to consider the possibility that people with this ;disorder; may also possess significant strengths and that knowledge of those strengths may help parents, teachers, therapists, and researchers design interventions that are better suited to assisting neurodiverse individuals in successfully adapting to the world.

  3. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  4. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  5. A Cool Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The world of man-made design is all around, in everyday objects and appliances people use without a second thought. In this exercise, students have an opportunity to challenge the common refrigerator's design--and improve it. This approach can be used with many other appliances.

  6. The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs

    DTIC Science & Technology

    1984-02-01

    In vitro and in vivo ( mice ) screening of these compounds indicates some promise as AChE regenerators, prompting the preparation of gram quantities of...PAM 6 (E-I) have been synthesized and characterized. In vitro (immobilized-AChE) and in vivo ( mice ) screening of these compounds showed promising...screening assay. An ED5 0 determination (diisopropylfluorophosphate [DFPJ challenge/ mice ) showed 5-I-2-PAM (5) to be significantly more effective than 2

  7. Changes in Educational Practices: A Multiple Case Study Investigating Faculty Implemented Changes in Educational Practices Designed to Meet the Academic Needs of the Contemporary Student at a Southwestern Community College

    ERIC Educational Resources Information Center

    Tompkins, David K.

    2017-01-01

    For the past few decades, the trend of first generation low-economic status community college students, considerably comprised of immigrants, has continued to grow at a significant rate (Connell, 2008; Ray, 2013; Kim & Diaz, 2013c; Kim, 2014). Community colleges are encountering challenges that were previously viewed as minimal or secondary to…

  8. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  9. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  10. Design of an Inductive Adder for the FCC injection kicker pulse generator

    NASA Astrophysics Data System (ADS)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  11. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    NASA Astrophysics Data System (ADS)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  12. Making it local: Beacon Communities use health information technology to optimize care management.

    PubMed

    Allen, Amy; Des Jardins, Terrisca R; Heider, Arvela; Kanger, Chatrian R; Lobach, David F; McWilliams, Lee; Polello, Jennifer M; Rein, Alison L; Schachter, Abigail A; Singh, Ranjit; Sorondo, Barbara; Tulikangas, Megan C; Turske, Scott A

    2014-06-01

    Care management aims to provide cost-effective, coordinated, non-duplicative care to improve care quality, population health, and reduce costs. The 17 communities receiving funding from the Office of the National Coordinator for Health Information Technology through the Beacon Community Cooperative Agreement Program are leaders in building and strengthening their health information technology (health IT) infrastructure to provide more effective and efficient care management. This article profiles 6 Beacon Communities' health IT-enabled care management programs, highlighting the influence of local context on program strategy and design, and describing challenges, lessons learned, and policy implications for care delivery and payment reform. The unique needs (eg, disease burden, demographics), community partnerships, and existing resources and infrastructure all exerted significant influence on the overall priorities and design of each community's care management program. Though each Beacon Community needed to engage in a similar set of care management tasks--including patient identification, stratification, and prioritization; intervention; patient engagement; and evaluation--the contextual factors helped shape the specific strategies and tools used to carry out these tasks and achieve their objectives. Although providers across the country are striving to deliver standardized, high-quality care, the diverse contexts in which this care is delivered significantly influence the priorities, strategies, and design of community-based care management interventions. Gaps and challenges in implementing effective community-based care management programs include: optimizing allocation of care management services; lack of available technology tailored to care management needs; lack of standards and interoperability; integrating care management into care settings; evaluating impact; and funding and sustainability.

  13. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  14. Some Challenges in the Design of Human-Automation Interaction for Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Roth, Emilie

    2014-01-01

    Increasing amounts of automation are being introduced to safety-critical domains. While the introduction of automation has led to an overall increase in reliability and improved safety, it has also introduced a class of failure modes, and new challenges in risk assessment for the new systems, particularly in the assessment of rare events resulting from complex inter-related factors. Designing successful human-automation systems is challenging, and the challenges go beyond good interface development (e.g., Roth, Malin, & Schreckenghost 1997; Christoffersen & Woods, 2002). Human-automation design is particularly challenging when the underlying automation technology generates behavior that is difficult for the user to anticipate or understand. These challenges have been recognized in several safety-critical domains, and have resulted in increased efforts to develop training, procedures, regulations and guidance material (CAST, 2008, IAEA, 2001, FAA, 2013, ICAO, 2012). This paper points to the continuing need for new methods to describe and characterize the operational environment within which new automation concepts are being presented. We will describe challenges to the successful development and evaluation of human-automation systems in safety-critical domains, and describe some approaches that could be used to address these challenges. We will draw from experience with the aviation, spaceflight and nuclear power domains.

  15. The future of 3D and video coding in mobile and the internet

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2013-09-01

    The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less

  17. Crowd Sourcing for Challenging Technical Problems and Business Model

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth

    2011-01-01

    Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.

  18. Developing a Watershed Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  19. An All-School Library Challenge

    ERIC Educational Resources Information Center

    Quirk, Connie

    2005-01-01

    The library media center is hosting an all-school team challenge, designed to celebrate reading and library skills. Students could choose from the contest categories like "Lord of the Rings", "Harry Potter", Author Facts Challenge and Opening Lines Challenge for the competition and those students who read more challenging books show their…

  20. Globalized E-Learning Cultural Challenges

    ERIC Educational Resources Information Center

    Edmundson, Andrea, Ed.

    2007-01-01

    "Globalized E-Learning Cultural Challenges" explores the issues educators, administrators, and instructional designers face when transferring knowledge and skills to other cultures through e-learning. Most e-learning courses have been designed in Western cultures, but the largest and fastest-growing consumer groups live in Eastern…

  1. Topological Methods for Design and Control of Adaptive Stochastic Complex Systems - to Meet the Challenges of Resilient Urban Infrastructure

    DTIC Science & Technology

    2017-03-24

    for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating...This report describes a brief research project on foundartional aspects of systems-of-systems design and operation. The overarching goal of the

  2. Micro- and nanodevices integrated with biomolecular probes

    PubMed Central

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A.

    2016-01-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  3. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    ScienceCinema

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2018-05-18

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  4. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  5. Efficacy of a training program designed to help address challenges faced by health promotion volunteers.

    PubMed

    Taguchi, Atsuko; Murayama, Hiroshi; Arakawa, Mihoko; Terao, Atsushi

    2017-01-01

    Objective To evaluate the effectiveness of a training program designed to address the following three challenges facing health promotion volunteers: lack of new volunteers, short tenure of volunteering, and failure to build a collaborative relationship with other civic organizations.Methods Thirty-eight volunteer leaders representing 36 school districts (one from each district and two additional leaders) from southern parts of Shiga Prefecture participated in the training program. Four training sessions were conducted between July 2012 and January 2013. Each session lasted for 2 hours. The program included a lecture, group work, and role playing, all of which centered on the challenges experienced by the volunteers and possible solutions. Those who participated constituted the "training group," and other volunteers in the same area of Shiga, who did not take part in the program, made up the "non-training group." A third, control group consisted of health promotion volunteers based in City A, located outside the areas where the training occurred. To compare the three groups, we collected data before and after the training. The main evaluation index comprised the following three survey items: having confidence in recruiting new volunteers, having confidence in overcoming the difficulties or discouragement to continue to volunteer, and having confidence in explaining their activities to other local organizations to earn their cooperation. These questions were asked in a self-administered questionnaire using a 6-point Likert scale (1: strongly disagree, 6: strongly agree).Results The data were compared among the training group (28 out of the 38 participants completed the survey), non-training group (n=293), and control group (n=107). On the question about recruiting new volunteers, the training group's mean score increased from 2.9 (standard deviation (SD)=1.3) to 3.3 (SD=1.0) following the training, and the improvement relative to the other two groups was statistically significant (P=0.008 for training vs. non-training, P<0.001 for training vs. control). On the question related to overcoming challenges and continuing volunteering, the training group's mean score went up from 3.3 (SD=1.1) to 3.5 (SD=0.9). The change was statistically significant compared to the non-training group (P=0.033), but not compared to the control group (P=0.401). No statistically significant change was found for the cooperation variable.Conclusion Overall, this training program appears to be effective in addressing the challenges that health promotion volunteer organizations face.

  6. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  7. Constructibility Challenges for Perimeter Control Blasting and Slope Development in Shale and Other "Weak" Rocks

    NASA Astrophysics Data System (ADS)

    Scarpato, D. J.

    2016-02-01

    Slope construction in shale can present some interesting challenges for geotechnical design engineers and contractors alike. There are challenges that can be expected and designed for; however, all too frequently, such challenges manifest themselves as "surprises" in the field. Common constructibility challenges can include drill hole deviation during drilling for controlled blasting; and, excavation slope instability arising from inconsistent perimeter control drilling. Drill hole deviation results from the cumulative effects from both drilling mechanics and rock mass conditions. Once a hole has initiated the deviation trajectory, it is difficult to rectify drill steel position. Although such challenges are not necessarily unique to shale, they are often exacerbated by weak, weathered and transversely isotropic nature of bedrock conditions. All too often, the working assumption is that shale is "soft" and easily excavatable; however, this blanket assumption can prove to be costly. This paper is intended to provide design professionals and contractors with the practical considerations needed to avoid the "surprises" associated with drill hole deviation, and minimize the potential for costly claims.

  8. High-speed civil transport - Advanced flight deck challenges

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.

  9. Teaching dementia care to physical therapy doctoral students: A multimodal experiential learning approach.

    PubMed

    Lorio, Anne K; Gore, Jane B; Warthen, Lindsey; Housley, Stephen N; Burgess, Elisabeth O

    2017-01-01

    As the population aged 65 and older grows, it becomes imperative for health care providers to expand their knowledge regarding geriatric conditions and concerns. Dementia is a devastating degenerative disease process that is affecting millions of individuals in the United States, with significant economic and emotional burden on family and caregivers. The need for further dementia education in physical therapy school is essential to improve attitudes and treatment that affect patient outcomes and quality of care. This physical therapy program implemented a 12-hour multimodal experiential learning module designed to educate their students on the challenges associated with dementia to increase knowledge and confidence when treating these patients. The results of this study showed statistically significant improvements in overall confidence and knowledge of treating patients with dementia. The study finds the addition of experiential learning to traditional didactic coursework improves students' reported confidence in working with patients with dementia and understanding the challenges associated with treating patients with dementia.

  10. Effect of quetiapine vs. placebo on response to two virtual public speaking exposures in individuals with social phobia.

    PubMed

    Donahue, Christopher B; Kushner, Matt G; Thuras, Paul D; Murphy, Tom G; Van Demark, Joani B; Adson, David E

    2009-04-01

    Clinical practice and open-label studies suggest that quetiapine (an atypical anti-psychotic) might improve symptoms for individuals with social anxiety disorder (SAD). The purpose of this study was to provide a rigorous test of the acute impact of a single dose of quetiapine (25mg) on SAD symptoms. Individuals with SAD (N=20) were exposed to a 4-min virtual reality (VR) public speaking challenge after having received quetiapine or placebo (double-blind) 1h earlier. A parallel VR challenge occurred 1 week later using a counter-balanced cross-over (within subject) design for the medication-placebo order between the two sessions. There was no significant drug effect for quetiapine on the primary outcome measures. However, quetiapine was associated with significantly elevated heart rate and sleepiness compared with placebo. Study findings suggest that a single dose of 25mg quetiapine is not effective in alleviating SAD symptoms in individuals with fears of public speaking.

  11. Challenges for African swine fever vaccine development-"… perhaps the end of the beginning."

    PubMed

    Rock, D L

    2017-07-01

    African swine fever (ASF), an acute, viral hemorrhagic disease in domestic swine with mortality rates approaching 100%, is arguably the most significant emerging disease threat for the swine industry worldwide. Devastating ASF outbreaks and continuing epidemic in the Caucasus region and Russia (2007-to date) highlight significance of this disease threat. There is no vaccine for ASF, thus leaving animal slaughter the only effective disease control option. It is clear, however, that vaccination is possible since protection against reinfection with the homologous strain of African swine fever virus (ASFV) has been clearly demonstrated. Vaccine development has been hindered by large gaps in knowledge concerning ASFV infection and immunity, the extent of ASFV strain variation in nature and the identification of viral proteins (protective antigens) responsible for inducing protective immune responses in the pig. This review focuses on the challenges surrounding ASF vaccine design and development, with an emphasis on existing knowledge gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever.

    PubMed

    Burmakina, G; Malogolovkin, A; Tulman, E R; Zsak, L; Delhon, G; Diel, D G; Shobogorov, N M; Morgunov, Yu P; Morgunov, S Yu; Kutish, G F; Kolbasov, D; Rock, D L

    2016-07-01

    African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Available data from vaccination/challenge experiments in pigs indicate that ASF protective immunity may be haemadsorption inhibition (HAI) serotype-specific. Recently, we have shown that two ASFV proteins, CD2v (EP402R) and C-type lectin (EP153R), are necessary and sufficient for mediating HAI serological specificity (Malogolovkin et al., 2015).. Here, using ASFV inter-serotypic chimeric viruses and vaccination/challenge experiments in pigs, we demonstrate that serotype-specific CD2v and/or C-type lectin proteins are important for protection against homologous ASFV infection. Thus, these viral proteins represent significant protective antigens for ASFV that should be targeted in future vaccine design and development. Additionally, these data support the concept of HAI serotype-specific protective immunity.

  13. Adaptive Design of Confirmatory Trials: Advances and Challenges

    PubMed Central

    Lai, Tze Leung; Lavori, Philip W.; Tsang, Ka Wai

    2015-01-01

    The past decade witnessed major developments in innovative designs of confirmatory clinical trials, and adaptive designs represent the most active area of these developments. We give an overview of the developments and associated statistical methods in several classes of adaptive designs of confirmatory trials. We also discuss their statistical difficulties and implementation challenges, and show how these problems are connected to other branches of mainstream Statistics, which we then apply to resolve the difficulties and bypass the bottlenecks in the development of adaptive designs for the next decade. PMID:26079372

  14. Exploration of a Capability-Focused Aerospace System of Systems Architecture Alternative with Bilayer Design Space, Based on RST-SOM Algorithmic Methods

    PubMed Central

    Li, Zhifei; Qin, Dongliang

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572

  15. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  16. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    PubMed

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  17. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  18. Lessons Learned in Evaluating a Multisite, Comprehensive Teen Dating Violence Prevention Strategy: Design and Challenges of the Evaluation of Dating Matters: Strategies to Promote Healthy Teen Relationships.

    PubMed

    Niolon, Phyllis Holditch; Taylor, Bruce G; Latzman, Natasha E; Vivolo-Kantor, Alana M; Valle, Linda Anne; Tharp, Andra T

    2016-03-01

    This paper describes the multisite, longitudinal cluster randomized controlled trial (RCT) design of the evaluation of the Dating Matters: Strategies to Promote Healthy Relationships initiative, and discusses challenges faced in conducting this evaluation. Health departments in 4 communities are partnering with middle schools in high-risk, urban communities to implement 2 models of teen dating violence (TDV) prevention over 4 years. Schools were randomized to receive either the Dating Matters comprehensive strategy or the "standard of care" strategy (an existing, evidence-based TDV prevention curriculum). Our design permits comparison of the relative effectiveness of the comprehensive and standard of care strategies. Multiple cohorts of students from 46 middle schools are surveyed in middle school and high school, and parents and educators from participating schools are also surveyed. Challenges discussed in conducting a multisite RCT include site variability, separation of implementation and evaluation responsibilities, school retention, parent engagement in research activities, and working within the context of high-risk urban schools and communities. We discuss the strengths and weaknesses of our approaches to these challenges in the hopes of informing future research. Despite multiple challenges, the design of the Dating Matters evaluation remains strong. We hope this paper provides researchers who are conducting complex evaluations of behavioral interventions with thoughtful discussion of the challenges we have faced and potential solutions to such challenges.

  19. Lessons Learned in Evaluating a Multisite, Comprehensive Teen Dating Violence Prevention Strategy: Design and Challenges of the Evaluation of Dating Matters: Strategies to Promote Healthy Teen Relationships

    PubMed Central

    Niolon, Phyllis Holditch; Taylor, Bruce G.; Latzman, Natasha E.; Vivolo-Kantor, Alana M.; Valle, Linda Anne; Tharp, Andra T.

    2018-01-01

    Objective This paper describes the multisite, longitudinal cluster randomized controlled trial (RCT) design of the evaluation of the Dating Matters: Strategies to Promote Healthy Relationships initiative, and discusses challenges faced in conducting this evaluation. Method Health departments in 4 communities are partnering with middle schools in high-risk, urban communities to implement 2 models of teen dating violence (TDV) prevention over 4 years. Schools were randomized to receive either the Dating Matters comprehensive strategy or the “standard of care” strategy (an existing, evidence-based TDV prevention curriculum). Our design permits comparison of the relative effectiveness of the comprehensive and standard of care strategies. Multiple cohorts of students from 46 middle schools are surveyed in middle school and high school, and parents and educators from participating schools are also surveyed. Results Challenges discussed in conducting a multisite RCT include site variability, separation of implementation and evaluation responsibilities, school retention, parent engagement in research activities, and working within the context of high-risk urban schools and communities. We discuss the strengths and weaknesses of our approaches to these challenges in the hopes of informing future research. Conclusions Despite multiple challenges, the design of the Dating Matters evaluation remains strong. We hope this paper provides researchers who are conducting complex evaluations of behavioral interventions with thoughtful discussion of the challenges we have faced and potential solutions to such challenges. PMID:29607239

  20. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  1. Visual social network analysis: effective approach to model complex human social, behaviour & culture.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar

    2012-01-01

    The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired.

  2. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    PubMed

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  3. Thermal systems design and analysis for a 10 K Sorption Cryocooler flight experiment

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Bard, Steven

    1993-01-01

    The design, analysis and predicted performance of the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is described from a thermal perspective. BETSCE is a shuttle side-wall mounted cryogenic technology demonstration experiment planned for launch in November 1994. BETSCE uses a significant amount of power (about 500 W peak) and the resultant heat must be rejected passively with radiators, as BETSCE has no access to the active cooling capability of the shuttle. It was a major challenge to design and configure the individual hardware assemblies, with their relatively large radiators, to enable them to reject their heat while satisfying numerous severe shuttle-imposed constraints. This paper is a useful case study of a small shuttle payload that needs to reject relatively high heat loads passively in a highly constrained thermal environment. The design approach described is consistent with today's era of 'faster, better, cheaper' small-scale space missions.

  4. A hierarchical approach for the design improvements of an Organocat biorefinery.

    PubMed

    Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H

    2015-04-01

    Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  6. Structural interaction fingerprints: a new approach to organizing, mining, analyzing, and designing protein-small molecule complexes.

    PubMed

    Singh, Juswinder; Deng, Zhan; Narale, Gaurav; Chuaqui, Claudio

    2006-01-01

    The combination of advances in structure-based drug design efforts in the pharmaceutical industry in parallel with structural genomics initiatives in the public domain has led to an explosion in the number of structures of protein-small molecule complexes structures. This information has critical importance to both the understanding of the structural basis for molecular recognition in biological systems and the design of better drugs. A significant challenge exists in managing this vast amount of data and fully leveraging it. Here, we review our work to develop a simple, fast way to store, organize, mine, and analyze large numbers of protein-small molecule complexes. We illustrate the utility of the approach to the management of inhibitor complexes from the protein kinase family. Finally, we describe our recent efforts in applying this method to the design of target-focused chemical libraries.

  7. A Design Case of the T.E.C.H. Playground: Decisions and Challenges in Creating a Space/Place to Transform Education through Creative Habits

    ERIC Educational Resources Information Center

    Stansberry, Susan L.

    2016-01-01

    This design case (Boling, 2010) includes the challenges, considerations, and decisions associated with the design and development of a learning space/place (Dourish, 2006; Harrison & Dourish, 1996) focused on innovative, creative, and imaginative ways to transform teaching and learning with technology. The T.E.C.H. Playground in the College of…

  8. Sustainable Facility Development: Perceived Benefits and Challenges

    ERIC Educational Resources Information Center

    Stinnett, Brad; Gibson, Fred

    2016-01-01

    Purpose: The purpose of this paper is to assess the perceived benefits and challenges of implementing sustainable initiatives in collegiate recreational sports facilities. Additionally, this paper intends to contribute to the evolving field of facility sustainability in higher education. Design/methodology/approach The design included qualitative…

  9. Numerical and Experimental Studies of Ultra Low Profile Three-dimensional Heat Sinks (3DHS) Made using a Novel Manufacturing Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Kota; Diana Sobers; Paul Kolodner

    2012-04-01

    The continued increase in electronic device packaging densities is placing ever more challenging performance requirements on air-cooled heat sinks. In cases where the state-of-the-art heat sink technology is unable of to meet these requirements, this often results in either a relaxation of design specifications, or the exploration of other thermal management technologies better able to handle high heat density applications, such as liquid cooling. Both of these approaches provide challenges to equipment designers, as relaxing requirements does not allow for a scale-able path to increased device densities and their associated functionality, while incorporating new thermal management technologies often requires majormore » hardware redesigns, which has significant cost implications. In this work, we explore the use of air-cooled heat sinks incorporating three-dimensional features, so-called three-dimensional heat sinks (3DHS), that enhance heat transfer through a number of different physical mechanisms, as an approach to further extending the limits of air cooling. An ultra low profile (5.7 mm) heat sink application is targeted due to the significant thermal challenges associated with restrictions on heat sink height. We also present details on a novel manufacturing method that has significant cost advantages over other fabrication methods such as investment casting and direct metal printing. Experiments on 3DHS and conventional heat sink are conducted in a wind tunnel test apparatus as a function of inlet air mass flow rate and flow bypass above the heat sinks. The experimental results show a strong correlation between heat sink permeability and thermal performance, as measured by heat sink thermal resistance versus ideal pumping power. The results also illustrate the important effects of flow bypass on heat sink performance. The best performing 3DHS design is observed to have up to a 19% improvement in thermal performance relative to a conventional parallel fin heat sink of the same form factor. Comparison of the experimental results with finite-volume simulations of the laminar, steady equations for mass, momentum and energy transport shows good agreement for heat sink thermal resistance and pressure drop across the heat sink. For the case where the fluid flow is modeled as transitional and steady, there is a greater discrepancy between simulations and experiments, suggesting that the experimental flow conditions are predominantly laminar.« less

  10. Student Design Challenges in Capillary Flow

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.; Wollman, Andrew; Hall, Nancy R.; Weislogel, Mark; DeLombard, Richard

    2016-01-01

    For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers.

  11. A vaccine strain of pseudorabies virus with deletions in the thymidine kinase and glycoprotein X genes.

    PubMed

    Marchioli, C C; Yancey, R J; Wardley, R C; Thomsen, D R; Post, L E

    1987-11-01

    A pseudorabies virus (PRV) mutant with deletions in genes for glycoprotein X (gX) and thymidine kinase, designated delta GX delta TK, was constructed and evaluated as a vaccine for protecting swine against PRV-induced mortality. Doses greater than or equal to 10(3) plaque-forming units (PFU) of this strain given to mice provided protection from challenge exposure with virulent PRV. Sera tested from mice inoculated with delta GX delta TK had high titers of neutralizing antibody to PRV, but reactivity in the same sera was not significantly different from that in sera from noninoculated mice (controls) when sera from both groups were evaluated by use of an ELISA with gX antigen produced in Escherichia coli. Compared with noninoculated pigs (controls), those given delta GX delta TK (greater than or equal to 10(2) PFU) were protected completely from lethal challenge exposure, without experiencing adverse effects on weight gain and with reduction of shedding of virulent challenge virus. Serotest results indicated that, although inoculated pigs responded with strong neutralizing antibody titers, the response of delta GX delta TK-inoculated pigs to gX, as determined by ELISA before challenge exposure, was not significantly greater than the ELISA values obtained from control pigs. The ELISA values from a group of pigs inoculated with a commercially available vaccine were significantly (P less than 0.05) higher than those of control pigs. The experimental vaccine, delta GX delta TK, was avirulent for mice, swine, and sheep, but was mildly virulent for calves (mortality, 1 of 12) and more virulent for dogs (mortality, 3 of 6) and cats (mortality, 2 of 6).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Automotive HMI design and participatory user involvement: review and perspectives.

    PubMed

    François, Mathilde; Osiurak, François; Fort, Alexandra; Crave, Philippe; Navarro, Jordan

    2017-04-01

    Automotive human-machine interface (HMI) design is facing new challenges due to the technological advances of the last decades. The design process has to be adapted in order to address human factors and road safety challenges. It is now widely accepted that user involvement in the HMI design process is valuable. However, the current form of user involvement in industry remains at the stages of concept assessment and usability tests. Moreover, the literature in other fields (e.g. information systems) promotes a broader user involvement with participatory design (i.e. the user is fully involved in the development process). This article reviews the established benefits of participatory design and reveals perspectives for automotive HMI quality improvement in a cognitive ergonomic framework. Practitioner Summary: Automotive HMI quality determines, in part, drivers' ability to perform primary driving tasks while using in-vehicle devices. User involvement in the design process is a key point to contribute to HMI quality. This article reports the potential benefits of a broad involvement from drivers to meet automotive HMI design challenges.

  13. Process variation challenges and resolution in the negative-tone develop double patterning for 20nm and below technology node

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David

    2015-03-01

    Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and color balanced layouts.

  14. Exploring design features for enhancing players' challenge in strategy games.

    PubMed

    Hsu, Shang Hwa; Wen, Ming-Hui; Wu, Muh-Cherng

    2007-06-01

    This paper examines how to make a player feel more challenged in a strategic computer game. It is hypothesized that information availability and resource advantage affect play difficulty, which in turn affects the challenge experienced. The difficulty of play can be defined in terms of the mental workload that players experience and the physical effort that players exert. Forty-five male college and graduate students participated in a 3 x 3 (information availability x resource advantage) between-subjects factorial design experiment. This experiment measured player mental workload, physical effort, and challenge. The results indicate that information availability affects player mental workload, and resource advantage affects levels of player physical effort, respectively. Moreover, the relationship between mental workload and challenge was found to be an inverted U-shaped curve; in other words, too much or too little mental workload may decrease player challenge. The relationship between physical effort and challenge exhibited similar characteristics.

  15. Approach to the E-ELT dome and main structure challenges

    NASA Astrophysics Data System (ADS)

    Bilbao, Armando; Murga, Gaizka; Gómez, Celia; Llarena, Javier

    2014-07-01

    The E-ELT as a whole could be classified as an extremely challenging project. More precisely, it should be defined as an array of many different sub-challenges, which comprise technical, logistical and managerial matters. This paper reviews some of these critical challenges, in particular those related to the Dome and the Main Structure, suggesting ways to face them in the most pragmatic way possible. Technical challenges for the Dome and the Main Structure are mainly related to the need to upscale current design standards to an order of magnitude larger design. Trying a direct design escalation is not feasible; it would not work. A design effort is needed to cross hybridize current design standards with technologies coming from other different applications. Innovative design is therefore not a wish but a must. And innovative design comes along with design risk. Design risk needs to be tackled from two angles: on the one hand through thorough design validation analysis and on the other hand through extensive pre-assembly and testing. And, once again, full scale integrated pre-assembly and testing of extremely large subsystems is not always possible. Therefore, defining a comprehensive test plan for critical components, critical subsystems and critical subassemblies becomes essential. Logistical challenges are linked to the erection site. Cerro Armazones is a remote site and this needs to be considered when evaluating transport and erection requirements. But it is not only the remoteness of the site that needs to be considered. The size of both Dome and Main Structure require large construction cranes and a well defined erection plan taking into account pre-assembly strategies, limited plan area utilization, erection sequence, erection stability during intermediate stages and, very specifically, efficient coordination between the Dome and the Main Structure erection processes. Managerial issues pose another set of challenges in this project. Both the size of the project and its special technical characteristics require specific managerial skills. Due to the size of the project it becomes essential to effectively manage and integrate a large number of suppliers and fabricators, of very different nature and geographically distributed. Project management plans need to cope with this situation. Also, extensive on site activities require intensive on site organization in line with large construction management strategies. Finally, the technical edge of the project requires deep technical understanding at management level in order to be able to take sound strategic decisions throughout the project in terms of the overall project quality, cost and schedule.

  16. Rewards and unique challenges faced by African-American custodial grandmothers: the importance of future planning.

    PubMed

    Crowther, Martha R; Huang, Chao-Hui Sylvia; Allen, Rebecca S

    2015-01-01

    This exploratory study examined the context and consequences of custodial grandparenting, along with attitudes and preferences regarding future planning among 22 African-American custodial grandmothers. A mixed-method research design was employed. Based on our integration of two theories regarding future planning and health behavior change, caregiving, emotional distress, religiosity and spirituality, and future planning were assessed using questionnaires along with semi-structured interviews. African-American custodial grandmothers (mean age M = 53.64, SD = 9.58) perceived their caregiving role as rewarding (72%) yet challenging (86%). More than 40% reported significant emotional distress (CES-D ≥ 16) that warrants clinical attention. Findings showed that while 64% of study participants had future plans regarding who will substitute in their caregiving role if they become incapacitated, only 9% had completed a living will. Three major themes emerged regarding custodial grandmothers' caregiving role which includes: (1) rewards; (2) challenges including feeling overwhelmed and health concerns; and (3) caregiving decisions including conflicts between 'My plan was…/put self on-hold' for grandchildren and difficulty with future planning. These themes highlighted the dynamics of caregiving across time, including current context and the ongoing process of decision-making. Findings suggest that while African-American custodial grandmothers find caregiving rewarding, they face unique challenges in contemplating and developing future plans. Custodial grandmothers think about substitute caregivers for their grandchildren but need assistance communicating a plan focused on their own needs for future care. Culturally sensitive interventions designed to facilitate effective utilization of future plans within this caregiver population are needed.

  17. Are We There Yet? Human Factors Knowledge and Health Information Technology - the Challenges of Implementation and Impact.

    PubMed

    Turner, P; Kushniruk, A; Nohr, C

    2017-08-01

    Objective: To review the developments in human factors (HF) research on the challenges of health information technology (HIT) implementation and impact given the continuing incidence of usability problems and unintended consequences from HIT development and use. Methods: A search of PubMed/Medline and Web of Science® identified HF research published in 2015 and 2016. Electronic health records (EHRs) and patient-centred HIT emerged as significant foci of recent HF research. The authors selected prominent papers highlighting ongoing HF and usability challenges in these areas. This selective rather than systematic review of recent HF research highlights these key challenges and reflects on their implications on the future impact of HF research on HIT. Results: Research provides evidence of continued poor design, implementation, and usability of HIT, as well as technology-induced errors and unintended consequences. The paper highlights support for: (i) strengthening the evidence base on the benefits of HF approaches; (ii) improving knowledge translation in the implementation of HF approaches during HIT design, implementation, and evaluation; (iii) increasing transparency, governance, and enforcement of HF best practices at all stages of the HIT system development life cycle. Discussion and Conclusion: HF and usability approaches are yet to become embedded as integral components of HIT development, implementation, and impact assessment. As HIT becomes ever-more pervasive including with patients as end-users, there is a need to expand our conceptualisation of the problems to be addressed and the suite of tactics and strategies to be used to calibrate our pro-active involvement in its improvement. Georg Thieme Verlag KG Stuttgart.

  18. Alcohol Use History and Panic-Relevant Responding among Adolescents: A Test using a Voluntary Hyperventilation Challenge

    PubMed Central

    Blumenthal, Heidemarie; Leen-Feldner, Ellen W.; Knapp, Ashley A.; Bunaciu, Liviu; Zamboanga, Byron L.

    2012-01-01

    Given the onset of alcohol use, neurological sensitivity, and enhanced panic-relevant vulnerability, adolescence is a key period in which to study the documented linkage between alcohol and panic-related problems. The current study was designed to build upon and uniquely extend extant work via (1) utilization of well-established experimental psychopathology techniques, and (2) evaluation of unique associations between alcohol use and panic symptoms after controlling for theoretically-relevant behavioral, environmental, and individual difference variables (i.e., age, gender, negative affectivity, anxiety sensitivity, child and parent tobacco use, and parental panic disorder). Participants were 111 community-recruited adolescents ages 12–17 years (M = 15.76 years; n = 50 girls). Youth completed a battery of well-established questionnaires and a voluntary hyperventilation challenge, and parents present at the laboratory completed a structured clinical interview. Adolescent alcohol use was categorized as Non-Users, Experimenters, or Users. Panic symptoms were indexed via retrospective self-report and adolescents’ response to a biological challenge procedure (i.e., voluntary hyperventilation). After controlling for theoretically-relevant covariates, Users evidenced elevated panic-relevant symptoms and responding compared to Non-Users; Experimenters did not differ from Non-Users. Findings suggest alcohol use history is uniquely associated with panic symptomatology among youth, including “real-time” reactivity elicited by a laboratory challenge. While there is significant work yet to be done, these data advance extant work and lay the groundwork for the types of sophisticated designs that will be needed to answer the most pressing and complex questions regarding the link between alcohol use and panic symptoms among adolescents. PMID:22369219

  19. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  20. ARES I-X: The First Test Flight of a New Era

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Davis, Stephan R.; Bryant, Richard Barry; Cook, Steve

    2010-01-01

    On October 28th, 2009, the National Aeronautics and Space Administration (NASA) launched the Ares I-X Flight Test Vehicle (FTV) from pad 39B, providing the first set of flight test data for NASA's Ares I vehicle design team. This test was critical in providing insight into areas were significant design challenges existed. This paper discusses the objectives of the mission and how they were satisfied. It discusses the overall results of the flight test and look at the data retrieved from the flight. Ares I-X was highly instrumented with over 700 channels of Developmental Flight Instrumentation (DFI). Significant insight was gained in the areas of thrust oscillation, vibro-acoustics, predicting jet interactions and slag ejection from solid rocket systems with submerged nozzles. The paper outlines results from the Guidance Navigation & Control (GN&C), Thermal, Vibro-acoustic, Structures, Aero, Aero-Acoustic and Trajectory teams.

Top