NASA Astrophysics Data System (ADS)
Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.
2017-12-01
Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.
Pearce, Jeffrey D.; Craven, Timothy E.; Edwards, Matthew S.; Corriere, Matthew A.; Crutchley, Teresa A.; Fleming, Shawn H.; Hansen, Kimberley J.
2010-01-01
Background Atherosclerotic renovascular disease is associated with an increased risk of cardiovascular disease (CVD) events. This study examines associations between Doppler-derived parameters from the renal artery and renal parenchyma and all-cause mortality and fatal and nonfatal CVD events in a cohort of elderly Americans. Study Design Cohort study. Setting A subset of participants from the Cardiovascular Health Study (CHS). Through an ancillary study, 870 (70% recruitment) Forsyth County, NC, CHS participants consented to undergo renal duplex sonography to define the prevalence of renovascular disease in the elderly, resulting in 726 (36% men; mean age, 77 years) technically adequate complete studies included in this investigation. Predictor Renal duplex sonography–derived Doppler signals from the main renal arteries and renal parenchyma. Spectral analysis from Doppler-shifted frequencies and angle of insonation were used to estimate renal artery peak systolic and end diastolic velocity (both in meters per second). Color Doppler was used to identify the corticomedullary junction. Using a 3-mm Doppler sample, the parenchymal peak systolic and end diastolic frequency shift (both in kilohertz) were obtained. Resistive index was calculated as (1 – [end diastolic frequency shift/peak systolic frequency shift]) using Doppler samples from the hilar arteries of the left or right kidney with the higher main renal artery peak systolic velocity. Outcomes & Measurements Proportional hazard regression analysis was used to determine associations between renal duplex sonography–derived Doppler signals and CVD events and all-cause mortality adjusted for accepted cardiovascular risk factors. Index CVD outcomes were defined as coronary events (angina, myocardial infarction, and coronary artery bypass grafting/percutaneous coronary intervention), cerebrovascular events (stroke or transient ischemic attack), and any CVD event (angina, congestive heart failure, myocardial infarction, stroke, transient ischemic attack, and coronary artery bypass grafting [CABG]/percutaneous transluminal coronary intervention [PTCI]). Results During follow-up, 221 deaths (31%), 229 CVD events (32%), 122 coronary events (17%), and 92 cerebrovascular events (13%) were observed. Renal duplex sonography–derived Doppler signals from the renal parenchyma were associated independently with all-cause mortality and CVD outcomes. In particular, increased parenchymal end diastolic frequency shift was associated significantly with any CVD event (HR, 0.73; 95% CI, 0.62-0.87; P < 0.001). Marginally significant associations were observed between increases in parenchymal end diastolic frequency shift and decreased risk of death (HR, 0.86; 95% CI, 0.73-1.00; P = 0.06) and decreased risk of cerebrovascular events (HR, 0.78; 95% CI, 0.61-1.01; P = 0.06). Parenchymal end diastolic frequency shift was not significantly predictive of coronary events (HR, 0.84; 95% CI, 0.67-1.06; P = 0.1). Limitations CHS participants showed a “healthy cohort” effect that may underestimate the rate of CVD events in the general population. Conclusion Renal duplex sonographic Doppler signals from the renal parenchyma showed significant associations with subsequent CVD events after controlling for other significant risk factors. In particular, a standard deviation increase in parenchymal end diastolic frequency shift was associated with 27% risk reduction in any CVD event. PMID:20116688
3D atom microscopy in the presence of Doppler shift
NASA Astrophysics Data System (ADS)
Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid
2018-03-01
The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.
[The application of Doppler broadening and Doppler shift to spectral analysis].
Xu, Wei; Fang, Zi-shen
2002-08-01
The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.
2006-01-01
The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watermann, J.; McNamara, A.G.; Sofko, G.J.
Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetricmore » than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.« less
Doppler color imaging. Principles and instrumentation.
Kremkau, F W
1992-01-01
DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.
Reversal of orbital angular momentum arising from an extreme Doppler shift
Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.
2018-01-01
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257
Doppler-corrected differential detection system
NASA Technical Reports Server (NTRS)
Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)
1991-01-01
Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.
Orbit determination singularities in the Doppler tracking of a planetary orbiter
NASA Technical Reports Server (NTRS)
Wood, L. J.
1985-01-01
On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.
Reversal of orbital angular momentum arising from an extreme Doppler shift.
Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J
2018-04-10
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.
C IV Doppler shifts observed in active region filaments
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.
1986-01-01
The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.
Photoacoustic Doppler effect from flowing small light-absorbing particles.
Fang, Hui; Maslov, Konstantin; Wang, Lihong V
2007-11-02
From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.
Apparatus and method for noninvasive particle detection using doppler spectroscopy
Sinha, Dipen N.
2016-05-31
An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.
Digital second-order phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.
1975-01-01
Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Measurement of winds in Venus' upper mesosphere based on Doppler shifts of the 2.6-mm (C-12)O line
NASA Technical Reports Server (NTRS)
Shah, Kathryn P.; Muhleman, Duane O.; Berge, Glenn L.
1991-01-01
Venus observations conducted in 1988 at the first rotational transition of (C-12)O finely sampled this absorption line by means of a 32-channel filter bank; with this spatial and spectral resolution, it proved possible to measure Doppler shifts of the absorption line across the planet due to strong winds in Venus' upper mesosphere. The Doppler shifts change in a way that is indicative of westward horizontal winds. The radial wind speeds from the Doppler shifts were smoothed to reduce noise and then fitted in least-squares fashion to canonical forms of the lower atmosphere's westward zonal flow. The two flows exhibit a high correlation in orientation.
Lower-Hybrid-Drift Wave Turbulence in the Distant Magnetotail
1978-05-01
kV ɘ with =• Y ~~ <» (Krall and Liewer, 1971). In this situation a Doppler shifted ,1; lower hybrid wave (u), - kV, . = ± u...satellite includes the relevant Doppler shifts since, in general, proton bulk flows are not directed parallel to the local magnetic field vector...theory of Section II predicts a relatively narrow frequency spectrum, the dominance of the Doppler shifting term k • Vp in Eq.(23)acts to
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
NASA Astrophysics Data System (ADS)
Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman
2015-05-01
A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.
Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided g Determination
NASA Astrophysics Data System (ADS)
Vogt, Patrik; Kuhn, Jochen; Müller, Sebastian
2011-09-01
This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education.1-4 We describe a computer-aided determination of the free-fall acceleration g using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects speed is changing linearly with time, the Doppler shift is also changing with time. It is possible to measure this shift using software that is both easy to use and readily available. Students will use the time-dependency of the Doppler shift to experimentally determine the acceleration due to gravity by using a cell phone as a freely falling object emitting a sound with constant frequency.
NASA Technical Reports Server (NTRS)
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Electrostatic Ion-Cyclotron Waves in Magnetospheric Plasmas: Non-Local Aspects.
1983-10-14
moving observer will see a Doppler shifted frequency --- S where is the velocity vector of the observer (satellite) and k is the wave vector. Since k...direction) will not see any Doppler -shift, irrespective of the size of ky . Such a statement could not be made in the purely local theory, since there...a local theory, a wide range of Doppler shifts would be produced, from -kivs to +kivs, since the maximum value of kx is k1. Some of the observations
Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications
NASA Technical Reports Server (NTRS)
Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)
2017-01-01
An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.
Spectroscopic Doppler analysis for visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.
2017-12-01
Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.
Use of global ionospheric maps for HF Doppler measurements interpretation
NASA Astrophysics Data System (ADS)
Petrova, I. R.; Bochkarev, V. V.; Latypov, R. R.
2018-04-01
The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.
Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave
NASA Astrophysics Data System (ADS)
Wen, Biyang; Li, Ke
2016-08-01
Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.
Method and apparatus for analyzing the fill characteristics of a packaging container
Rodriguez, J.G.
1998-10-13
A system is described for analyzing the fill characteristics of a container. A container having a filling material therein is positioned adjacent a sound generator. Sound waves from the generator are applied to the container, causing it to vibrate. A vibration detector is used to determine the amount of container vibration. A preferred vibration detector involves a laser vibrometer which applies a reference laser beam to the vibrating container. The reference beam is reflected off of the container to generate a reflected laser beam. The reflected beam experiences a Doppler frequency shift compared with the reference beam which is caused by container vibration. The Doppler shift of the reflected beam is then compared with standardized Doppler shift data from a control container. Repeated Doppler shift measurements may also be undertaken which are converted into a vibration profile that is compared with a standardized vibration profile from a control container. 4 figs.
Method and apparatus for analyzing the fill characteristics of a packaging container
Rodriguez, Julio G.
1998-01-01
A system for analyzing the fill characteristics of a container. A container having a filling material therein is positioned adjacent a sound generator. Sound waves from the generator are applied to the container, causing it to vibrate. A vibration detector is used to determine the amount of container vibration. A preferred vibration detector involves a laser vibrometer which applies a reference laser beam to the vibrating container. The reference beam is reflected off of the container to generate a reflected laser beam. The reflected beam experiences a Doppler frequency shift compared with the reference beam which is caused by container vibration. The Doppler shift of the reflected beam is then compared with standardized Doppler shift data from a control container. Repeated Doppler shift measurements may also be undertaken which are converted into a vibration profile that is compared with a standardized vibration profile from a control container.
On the role of mean flows in Doppler shifted frequencies
NASA Astrophysics Data System (ADS)
Gerkema, Theo; Maas, Leo R. M.; van Haren, Hans
2013-04-01
In the oceanographic literature, the term 'Doppler shift' often features in the context of mean flows and (internal) waves. Closer inspection reveals that the term is in fact used for two different things, which should be carefully distinguished, for their conflation results in incorrect interpretations. One refers to the difference in frequencies measured by two observers, one at a fixed position and one moving with the mean flow. The other definition is the one used in physics, where the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts occur only if the source and observer move with respect to each other; a steady mean flow cannot create a Doppler shift. We rehash the classical theory to straighten out some misconceptions and discuss how wave dispersion affects the classical relations and their application, for example on near-inertial internal waves.
Identification of atmospheric structure by coherent microwave sounding
NASA Technical Reports Server (NTRS)
Birkemeier, W. P.
1969-01-01
Two atmospheric probing experiments involving beyond-the-horizon propagation of microwave signals are reported. In the first experiment, Doppler-shift caused by the cross path wind is measured by a phase lock receiver with the common volume displaced in azimuth from the great circle. Variations in the measured Doppler shift values are explained in terms of variations in atmospheric structure. The second experiment makes use of the pseudorandom sounding signal used in a RAKE communication system. Both multipath delay and Doppler shift are provided by the receiver, permitting the cross section of the atmospheric layer structure to be deduced.
ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.
2012-07-01
Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less
Explaining observed red and blue-shifts using multi-stranded coronal loops
NASA Astrophysics Data System (ADS)
Regnier, S.; Walsh, R. W.; Pearson, J.
2012-03-01
Magnetic plasma loops have been termed the building blocks of the solar atmosphere. However, it must be recognised that if the range of loop structures we can observe do consist of many ''sub-resolution'' elements, then current one-dimensional hydrodynamic models are really only applicable to an individual plasma element or strand. Thus a loop should be viewed is an amalgamation of these strands. They could operate in thermal isolation from one another with a wide range of temperatures occurring across the structural elements. This scenario could occur when the energy release mechanism consists of localised, discrete bursts of energy that are due to small scale reconnection sites within the coronal magnetic field- the nanoflare coronal heating mechanism. These energy bursts occur in a time-dependent manner, distributed along the loop/strand length, giving a heating function that depends on space and time. An important observational discovery with the Hinode/EIS spectrometer is the existence of red and blue-shifts in coronal loops depending on the location of the footpoints (inner or outer parts of the active region), and the temperature of the emission line in which the Doppler shifts are measured. Based on the multi-stranded model developed by Sarkar and Walsh (2008, ApJ, 683, 516), we show that red and blue-shifts exist in different simulated Hinode/EIS passbands: cooler lines (OV-SiVII) being dominated by red-shifts, whilst hotter lines (FeXV-CaXVII) are a combination of both. The distribution of blue-shifts depends on the energy input and not so much on the heating location. Characteristic Doppler shifts generated fit well with observed values. We also simulate the Hinode/EIS rasters to closely compare our simulation with the observations. Even if not statistically significant, loops can have footpoints with opposite Doppler shifts.
Velocity measurement by vibro-acoustic Doppler.
Nabavizadeh, Alireza; Urban, Matthew W; Kinnick, Randall R; Fatemi, Mostafa
2012-04-01
We describe the theoretical principles of a new Doppler method, which uses the acoustic response of a moving object to a highly localized dynamic radiation force of the ultrasound field to calculate the velocity of the moving object according to Doppler frequency shift. This method, named vibro-acoustic Doppler (VAD), employs two ultrasound beams separated by a slight frequency difference, Δf, transmitting in an X-focal configuration. Both ultrasound beams experience a frequency shift because of the moving objects and their interaction at the joint focal zone produces an acoustic frequency shift occurring around the low-frequency (Δf) acoustic emission signal. The acoustic emission field resulting from the vibration of the moving object is detected and used to calculate its velocity. We report the formula that describes the relation between Doppler frequency shift of the emitted acoustic field and the velocity of the moving object. To verify the theory, we used a string phantom. We also tested our method by measuring fluid velocity in a tube. The results show that the error calculated for both string and fluid velocities is less than 9.1%. Our theory shows that in the worst case, the error is 0.54% for a 25° angle variation for the VAD method compared with an error of -82.6% for a 25° angle variation for a conventional continuous wave Doppler method. An advantage of this method is that, unlike conventional Doppler, it is not sensitive to angles between the ultrasound beams and direction of motion.
Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.
Bradley, Marshall; Sabatier, James M
2012-03-01
Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America
Using local correlation tracking to recover solar spectral information from a slitless spectrograph
NASA Astrophysics Data System (ADS)
Courrier, Hans T.; Kankelborg, Charles C.
2018-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.
High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation
NASA Astrophysics Data System (ADS)
Xie, Tuqiang; Wang, Zhenguo; Pan, Yingtian
2003-12-01
We report a new rapid-scanning optical delay device suitable for high-speed optical coherence tomography (OCT) in which an acousto-optic modulator (AOM) is used to independently modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. Experimental results show that the fluctuation of the measured Doppler frequency shift is less than +/-0.2% over 95% duty cycle of OCT imaging, thus allowing for enhanced signal-to-noise ratio of optical heterodyne detection. The increased Doppler frequency shift by AOM also permits complete envelop demodulation without the compromise of reducing axial resolution; if used with a resonant rapid-scanning optical delay, it will permit high-performance real-time OCT imaging. Potentially, this new rapid-scanning optical delay device will improve the performance of high-speed Doppler OCT techniques.
Microwave imaging of spinning object using orbital angular momentum
NASA Astrophysics Data System (ADS)
Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang
2017-09-01
The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.
Weinberger, J; Goldman, M
1985-01-01
Patients with symptoms of cerebral ischemia are often evaluated with non-invasive carotid artery testing. An abnormal carotid Doppler ultrasound frequency shift pattern of early systolic flutter (ESF) was demonstrated by auscultation and velocity wave form analysis in patients with normal carotid bifurcations. Ten of these patients were studied with echocardiography (echo) and eight had mitral valve prolapse (MVP). To evaluate the association between ESF and MVP, a prospective blinded study was performed, recording carotid Doppler frequency shift in 50 patients referred for routine echocardiography. A total of 18 patients had ESF: 9/12 patients with MVP by echocardiography had ESF. Nine additional patients without MVP had ESF (two with mitral regurgitation and two with redundant mitral valves). The association of ESF with MVP was significant (p less than 0.001). The findings of ESF with a normal carotid artery by non-invasive testing suggests a possible mitral valve origin for symptoms of cerebrovascular disease.
DOE R&D Accomplishments Database
Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.
1979-01-01
Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.
Petlevich, Walter J.; Sverdrup, Edward F.
1978-01-01
A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
Extreme Doppler Shifting of Io's Neutral Jets
NASA Astrophysics Data System (ADS)
Schmidt, Carl
2017-08-01
The dynamics and the extension of Jupiter's magnetosphere are determined by the massive internal plasma sources combined with the fast rotation. The vast majority of the plasma originates from the atmosphere of the moon Io, the most volcanically active body in our solar system. Here we propose to characterize the density and velocity of energetic neutral atoms escaping from Io's atmosphere. Exploiting the high resolution and sensitivity of the COS G130M spectral mode, we will measure the Doppler velocities of atomic O, S and Cl streams, which are energized through charge exchange and dissociative recombination of molecular ions. Prior COS observations of Io revealed a large number of emission lines from several ion and neutral species with excellent S/N, obtained over a single HST orbit. Those spectra were obtained surrounding eclipse geometry, where Doppler shifts are minimized and were restricted to Io itself rather than the stream region. Here we will target the extended clouds with only two orbits total when the moon is at eastern and western elongation for maximum Doppler shifts. The observations will provide new constraints on the diffuse large-scale cloud structures in the Jovian system and significantly improve our understanding of the transport of mass and energy within the Io-torus interaction. The absolute brightness, in combination with plasma parameters from line ratios/collision strengths, will allow us to quantify the outflow of energetic neutral atoms from Io's main sulfur-oxygen atmosphere for the first time.
Active Region Moss: Doppler Shifts from Hinode/EIS Observations
NASA Technical Reports Server (NTRS)
Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.
2012-01-01
Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.
2007-01-01
synchronization ; vm(k) white Gaussian noise with average power σ2. If the Doppler shift f m,k is significant, then it causes the received signal ym(k) to be time ...intersymbol interference (ISI) to extend over 20-300 symbols at a data rate of 2-10 kilosymbols per second. Another obstacle is the time -varying Doppler... synchronization that employs a phase-locked loop (PLL) or delay-locked loop (DLL). However, the DFE and PLL/DLL have to interact in a nonlinear fashion
NASA Astrophysics Data System (ADS)
Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.
2008-08-01
Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.
Determining the near-surface current profile from measurements of the wave dispersion relation
NASA Astrophysics Data System (ADS)
Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen
2017-11-01
The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.
Statistics of biospeckles with application to diagnostics of periodontitis
NASA Astrophysics Data System (ADS)
Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.
1999-04-01
Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.
Mercury exosphere. III: Energetic characterization of its sodium component
NASA Astrophysics Data System (ADS)
Leblanc, Francois; Chaufray, Jean-Yves; Doressoundiram, Alain; Berthelier, Jean-Jacques; Mangano, Valeria; López-Ariste, Arturo; Borin, Patrizia
2013-04-01
Mercury's sodium exosphere has been observed only few times with high spectral resolution from ground based observatories enabling the analysis of the emission spectra. These observations highlighted the energetic state of the sodium exospheric atoms relative to the surface temperature. More recently, the Doppler shift of the exospheric Na atoms was measured and interpreted as consistent with an exosphere moving outwards from the subsolar point (Potter, A.E., Morgan, T.H., Killen, R.E. [2009]. Icarus 204, 355-367). Using THEMIS solar telescope, we observed Mercury's sodium exosphere with very high spectral resolution at two opposite positions of its orbit. Using this very high spectral resolution and the scanning capabilities of THEMIS, we were able to reconstruct the 2D spatial distributions of the Doppler shifts and widths of the sodium atomic Na D2 and D1 lines. These observations revealed surprisingly large Doppler shift as well as spectral width consistent with previous observations. Starting from our 3D model of Mercury Na exosphere (Mercury Exosphere Global Circulation Model, Leblanc, F., Johnson, R.E. [2010]. Icarus 209, 280-300), we coupled this model with a 3D radiative transfer model described in a companion paper (Chaufray, J.Y., Leblanc, F. [2013]. Icarus, submitted for publication) which allows us to properly treat the non-maxwellian state of the simulated sodium exospheric population. Comparisons between THEMIS observations and simulations suggest that the previously observed energetic state of the Na exosphere might be essentially explained by a state of the Na exospheric atoms far from thermal equilibrium along with the Doppler shift dispersion of the Na atoms induced by the solar radiation pressure. However, the Doppler shift of the spectral lines cannot be explained by our modelling, suggesting either an exosphere spatially structured very differently than in our model or the inaccuracy of the spectral calibration when deriving the Doppler shift.
NASA Astrophysics Data System (ADS)
Liu, Lei; Guo, Rui; Wu, Jun-an
2017-02-01
Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.
Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel
2012-01-01
An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
NASA Technical Reports Server (NTRS)
Constaninides, N. J.; Bicknell, T. J. (Inventor)
1980-01-01
A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.
Using Doppler Shifts of GPS Signals To Measure Angular Speed
NASA Technical Reports Server (NTRS)
Campbell, Charles E., Jr.
2006-01-01
A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.
NASA Astrophysics Data System (ADS)
Zhang, Ruiying; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-08-01
We propose a method for photoacoustic flow measurement based on the Doppler effect from a flowing homogeneous medium. Excited by spatially modulated laser pulses, the flowing medium induces a Doppler frequency shift in the received photoacoustic signals. The frequency shift is proportional to the component of the flow speed projected onto the acoustic beam axis, and the sign of the shift reflects the flow direction. Unlike conventional flowmetry, this method does not rely on particle heterogeneity in the medium; thus, it can tolerate extremely high particle density. A red-ink phantom flowing in a tube immersed in water was used to validate the method in both the frequency and time domains. The phantom flow immersed in an intralipid solution was also measured.
Meemon, Panomsak; Rolland, Jannick P.
2010-01-01
Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Doppler effect of subluminal and superluminal sources in eight dimensions
NASA Astrophysics Data System (ADS)
Chandola, H. C.; Rajput, B. S.
1984-06-01
The study of the relativistic Doppler effect of subliminal and superluminal sources has been undertaken in the eight-dimensional space. It has been shown that correct Doppler shifts are obtained in the external spaces of these sources and the conformal correspondence between Doppler effect curves holds in case of approaching and receeding sources but not in the transverse case.
Blood flow velocity measurement by endovascular Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.
2013-03-01
Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.
Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication
2014-05-01
in underwater acoustic wireless sensor networks . We analyzed the data collected from our experiments using non-data aided (blind) techniques such as...investigated different methods for blind Doppler shift estimation and compensation for a single carrier in underwater acoustic wireless sensor ...distributed underwater sensor networks . Detailed experimental and simulated results based on second order cyclostationary features of the received signals
NASA Technical Reports Server (NTRS)
Ruyten, Wilhelmus M.; Keefer, Dennis
1992-01-01
The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.
Development of the One-Sided Nonlinear Adaptive Doppler Shift Estimation
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.; Serror, Judith A.
2009-01-01
The new development of a one-sided nonlinear adaptive shift estimation technique (NADSET) is introduced. The background of the algorithm and a brief overview of NADSET are presented. The new technique is applied to the wind parameter estimates from a 2-micron wavelength coherent Doppler lidar system called VALIDAR located in NASA Langley Research Center in Virginia. The new technique enhances wind parameters such as Doppler shift and power estimates in low Signal-To-Noise-Ratio (SNR) regimes using the estimates in high SNR regimes as the algorithm scans the range bins from low to high altitude. The original NADSET utilizes the statistics in both the lower and the higher range bins to refine the wind parameter estimates in between. The results of the two different approaches of NADSET are compared.
Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali
2018-05-01
Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.
Cross-correlation Doppler global velocimetry (CC-DGV)
NASA Astrophysics Data System (ADS)
Cadel, Daniel R.; Lowe, K. Todd
2015-08-01
A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.
El-Sayed, Mohamed Adel; Saleh, Said Abdel-Aty; Maher, Mohammad Ahmed; Khidre, Asmaa Mohamed
2018-04-01
To assess efficacy and tolerability of sildenafil citrate on utero-placental blood flow and fetal growth in pregnancies complicated by fetal growth restriction (FGR). From March 2015, a randomized controlled trial of 54 patients at 24 weeks or more complicated by FGR and abnormal Doppler indices were randomly allocated 1:1 into an intervention arm (receive sildenafil citrate, 50 mg) or a control arm (receive placebo). The primary outcomes were changes occurred in the Doppler parameters 2 h following drug administration. Baseline characteristics were similar between groups. Significant difference was observed in the Delta uterine and umbilical Doppler indices among sildenafil group as compared to placebo group (p < 0.001). Middle cerebral Doppler indices, however, decreased significantly after sildenafil, which could be the result of shifting more blood to improve the utero-placental perfusion. No difference regarding Delta cerebro-placental ratio among both groups (p = 0.979). Sildenafil was also associated with pregnancy prolongation (p = .0001), increased gestational age at delivery (p = .004), improved neonatal weight (p = .0001), and less admission to neonatal intensive care unit (p = .03). No adverse effects reported in both treatment arms. Sildenafil citrate, by its vasodilator effect, can improve utero-placental blood flow in pregnancies complicated by FGR and abnormal Doppler. gov Registry: NCT02362399.
Graphical Representation of the Doppler Shift: Classical and Relativistic
ERIC Educational Resources Information Center
Rojas, R.; Fuster, G.
2007-01-01
The Doppler shift is a frequency change of a repetitive effect, as measured by a receiver, due to the motion of the wave emitter, to the motion of the wave receiver, or both. A demonstration of the effect is provided by the sound of a car's horn that changes from a higher pitch to a lower pitch when a car drives past. Most derivations of the…
Imaging nanoparticle flow using magneto-motive optical Doppler tomography.
Kim, Jeehyun; Oh, Junghwan; Milner, Thomas E; Nelson, J Stuart
2007-01-24
We introduce a novel approach for imaging solutions of superparamagnetic iron oxide (SPIO) nanoparticles using magneto-motive optical Doppler tomography (MM-ODT). MM-ODT combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect nanoparticles flowing through a microfluidic channel. A solenoid with a cone-shaped ferrite core extensively increased the magnetic field strength (B(max) = 1 T, [Formula: see text]) at the tip of the core and also focused the magnetic field in microfluidic channels containing nanoparticle solutions. Nanoparticle contrast was demonstrated in a microfluidic channel filled with an SPIO solution by imaging the Doppler frequency shift which was observed independently of the nanoparticle flow rate and direction. Results suggest that MM-ODT may be applied to image Doppler shift of SPIO nanoparticles in microfluidic flows with high contrast.
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1993-01-01
The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.
NASA Astrophysics Data System (ADS)
Feher, Kamilo
The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.
Methods of Laser, Non-Linear, and Fiber Optics in Studying Fundamental Problems of Astrophysics
NASA Astrophysics Data System (ADS)
Kryukov, P. G.
2018-04-01
Precise measurements of Doppler shifts of lines in stellar spectra allowing the radial velocity to be measured are an important field of astrophysical studies. A remarkable feature of the Doppler spectroscopy is the possibility to reliably measure quite small variations of the radial velocities (its acceleration, in fact) during long periods of time. Influence of a planet on a star is an example of such a variation. Under the influence of a planet rotating around a star, the latter demonstrates periodic motion manifested in the Doppler shift of the stellar spectrum. Precise measurements of this shift made it possible to indirectly discover planets outside the Solar system (exoplanets). Along with this, searching for Earth-type exoplanets within the habitable zone is an important challenge. For this purpose, accuracy of spectral measurements has to allow one to determine radial velocity variations at the level of centimeters per second during the timespans of about a year. Suchmeasurements on the periods of 10-15 years also would serve as a directmethod for determination of assumed acceleration of the Universe expansion. However, the required accuracy of spectroscopic measurements for this exceeds the possibilities of the traditional spectroscopy (an iodine cell, spectral lamps). Methods of radical improvement of possibilities of astronomical Doppler spectroscopy allowing one to attain the required measurement accuracy of Doppler shifts are considered. The issue of precise calibration can be solved through creating a system of a laser optical frequency generator of an exceptionally high accuracy and stability.
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1970-01-01
Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application
NASA Technical Reports Server (NTRS)
Badessa, R. S.; Kent, R. L.; Nowell, J. C.; Searle, C. L.
1960-01-01
A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated.
Trans-skull ultrasonic Doppler system aided by fuzzy logic
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto
2012-06-01
This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.
Special relativity corrections for space-based lidars.
Gudimetla, V S; Kavaya, M J
1999-10-20
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated. The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Special Relativity Corrections for Space-Based Lidars
NASA Technical Reports Server (NTRS)
RaoGudimetla, Venkata S.; Kavaya, Michael J.
1999-01-01
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Spread-Spectrum Carrier Estimation With Unknown Doppler Shift
NASA Technical Reports Server (NTRS)
DeLeon, Phillip L.; Scaife, Bradley J.
1998-01-01
We present a method for the frequency estimation of a BPSK modulated, spread-spectrum carrier with unknown Doppler shift. The approach relies on a classic periodogram in conjunction with a spectral matched filter. Simulation results indicate accurate carrier estimation with processing gains near 40. A DSP-based prototype has been implemented for real-time carrier estimation for use in New Mexico State University's proposal for NASA's Demand Assignment Multiple Access service.
Third-order-harmonic generation in coherently spinning molecules
NASA Astrophysics Data System (ADS)
Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.
2017-10-01
The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.
Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.
Goldman, Geoffrey H
2013-02-01
A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.
Zero Autocorrelation Waveforms: A Doppler Statistic and Multifunction Problems
2006-01-01
by ANSI Std Z39-18 It is natural to refer to A as the ambiguity function of u, since in the usual setting on the real line R, the analogue ambiguity...Doppler statistic |Cu,uek(j)| is excellent and provable for detecting deodorized Doppler frequency shift [11] (see Fig. 2). Also, if one graphs only
Advanced Receiver For Phase-Shift-Keyed Signals
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.
1992-01-01
ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.
Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering
NASA Technical Reports Server (NTRS)
Shirley, John A.; Winter, Michael
1993-01-01
An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.
Doppler interpretation of quasar red shifts.
Zapolsky, H S
1966-08-05
The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.
Doppler-shifted self-reflected wave from a semiconductor
NASA Astrophysics Data System (ADS)
Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser
1997-06-01
We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.
Coherent Doppler lidar signal covariance including wind shear and wind turbulence
NASA Technical Reports Server (NTRS)
Frehlich, R. G.
1993-01-01
The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.
Doppler-corrected Balmer spectroscopy of Rydberg positronium
NASA Astrophysics Data System (ADS)
Jones, A. C. L.; Hisakado, T. H.; Goldman, H. J.; Tom, H. W. K.; Mills, A. P.; Cassidy, D. B.
2014-07-01
The production of long-lived Rydberg positronium (Ps) and correction for Doppler shifts in the excitation laser frequencies are crucial elements of proposed measurements of the gravitational freefall of antimatter and for precision measurements of the optical spectrum of Ps. Using a two-step optical transition via 2P levels, we have prepared Ps atoms in Rydberg states up to the term limit. The spectra are corrected for the first-order Doppler shift using measured velocities, and the Balmer transitions are resolved for 15≤n≤31. The excitation signal amplitude begins to decrease for n >50, consistent with the onset of motional electric field ionization in the 3.5-mT magnetic field at the Ps formation target.
DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.
2013-01-01
The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows towardmore » Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.« less
NASA Technical Reports Server (NTRS)
Mccurdy, D. A.; Powell, C. A.
1979-01-01
A laboratory experiment was conducted to determine the effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise. Duration, doppler shift, and spectra were individually controlled by specifying aircraft operational factors, such as velocity, altitude, and spectrum, in a computer synthesis of the aircraft-noise stimuli. This control allowed the separation of the effects of duration from the other main factors in the experimental design: velocity, tonal content, and sound pressure level. The annoyance of a set of noise stimuli which were comprised of factorial combinations of a 3 durations, 3 velocities, 3 sound pressure levels, and 2 tone conditions were judged. The judgements were made by using a graphical scale procedure similar to numerical category scaling. Each of the main factors except velocity was found to affect the judged annoyance significantly. The interaction of tonal content with sound pressure level was also found to be significant. The duration correction used in the effective-perceived-noise-level procedure, 3 dB per doubling of effective duration, was found to account most accurately for the effect of duration. No significant effect doppler shift was found.
NASA Technical Reports Server (NTRS)
Brandon, J. P.
1972-01-01
Studies of solar physics phenomena are aided by the ability to observe the sun from earth orbit without periodic occultation. Charts are presented for the selection of suitable orbits about the earth at which a spacecraft is continuously illuminated through a period of a few days. Selection of the orbits considers the reduction of Doppler shift and wavefront attenuation due to relative orbital velocity and residual earth atmosphere.
Oscillations in the wake of a flare blast wave
NASA Astrophysics Data System (ADS)
Tothova, D.; Innes, D. E.; Stenborg, G.
2011-04-01
Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif
NASA Technical Reports Server (NTRS)
Chamberlin, Phillip Clyde
2016-01-01
The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradianceas a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He II 30.38 nm emission at a velocity of almost 120 km s(exp -1) along the line-of-sight.
Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed
NASA Astrophysics Data System (ADS)
Buckingham, Michael J.
2010-09-01
An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.
Wind turbine generators with active radar signature control blades
NASA Astrophysics Data System (ADS)
Tennant, Alan; Chambers, Barry
2004-07-01
The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.
The Doppler Effect: A Consideration of Quasar Redshifts.
ERIC Educational Resources Information Center
Gordon, Kurtiss J.
1980-01-01
Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)
NASA Technical Reports Server (NTRS)
Powell, Michael R.; Hall, W. A.
1993-01-01
It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.
NASA Astrophysics Data System (ADS)
Yang, Pengju; Guo, Lixin
2016-11-01
Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.
Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar
NASA Astrophysics Data System (ADS)
Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even
2017-04-01
The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.
An elementary approach to the gravitational Doppler shift
NASA Astrophysics Data System (ADS)
Wörner, C. H.; Rojas, Roberto
2017-01-01
In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.
Signature management of radar returns from wind turbine generators
NASA Astrophysics Data System (ADS)
Tennant, A.; Chambers, B.
2006-04-01
The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, but the Doppler shifts introduced by the WTG blades are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the radar cross section (RCS) of the blade return. The active blade can operate in one of two modes: first the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected; a second mode of operation is to introduce specific coding onto the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques developed for active radar absorbers. Results of theoretical and experimental work using a 10 GHz Doppler radar and scale-model WTG are presented.
A Microwave Interferometer on an Air Track.
ERIC Educational Resources Information Center
Polley, J. Patrick
1993-01-01
Uses an air track and microwave transmitters and receivers to make a Michelson interferometer. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)
Velocity measurements in the plume of an arcjet engine
NASA Technical Reports Server (NTRS)
Pivirotto, T. J.; Deininger, W. D.
1987-01-01
A nonintrusive technique has been used to conduct a radial survey in the flow field of an arcjet engine plume. The technique measures the Doppler shift of an optically thin line resulting from recombination and relaxation processes in the high Mach number stream, in order to determine flow velocities. Atom temperature can also be calculated from the same Doppler-broadened line widths, when these shifts are measured with a scanning Fabry-Perot spectrometer whose design is presented in detail.
Radial velocity observations of the sun at night
NASA Technical Reports Server (NTRS)
Mcmillan, R. S.; Moore, T. L.; Perry, M. L.; Smith, P. H.
1993-01-01
The ability to detect planets orbiting stars has been evaluated through solar-spectrum Doppler shift measurements for 5 years, using the sunlit surface of the moon to furnish nighttime access to the solar spectrum integrated over the solar disk as though the sun were being observed at stellar distance. These lunar observations have indicated that the Doppler shift of the integrated solar photosphere disk in violet absorption lines has varied less that +/- 4 m/sec over the 1987-1992 interval studied.
2006-11-20
Doppler -shifted, quasistatic turbulence from the real, time- mogeneous medium,18 we can then estimate that k - k1 and dependent turbulence near the...ground is due to Doppler -shifted, spatially irregular, electric- field structures that are stationary in the ion frame. Sub- we have determined that the...erpnding cn ar ion tepeoratre- 18F J. Crary, M. V. Goldman , R. E. Ergun, and D. L. Newman, Geophys. sented in this paper gives the perpendicular ion
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, Drake
1991-01-01
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.
Unruh, W.P.
1987-03-23
Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.
An international review of laser Doppler vibrometry: Making light work of vibration measurement
NASA Astrophysics Data System (ADS)
Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.
2017-12-01
In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.
Insights on the Spectral Signatures of Stellar Activity and Planets from PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Allen B.; Fischer, Debra A.; Cisewski, Jessi
Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanetmore » signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.« less
Karplus, H.H.B.; Raptis, A.C.
1981-11-13
A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.
Karplus, Henry H. B.; Raptis, Apostolos C.
1983-01-01
A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.
Scattering characteristics of relativistically moving concentrically layered spheres
NASA Astrophysics Data System (ADS)
Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.
2018-02-01
The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.
Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane;
2010-01-01
In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights
Navigator alignment using radar scan
Doerry, Armin W.; Marquette, Brandeis
2016-04-05
The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
Laser cooling of nuclear spin 0 alkali 78Rb
NASA Astrophysics Data System (ADS)
Behr, J. A.; Gorelov, A.; Anholm, M.
2015-05-01
The textbook example for sub-Doppler cooling is a J = 1/2 I = 0 alkali atom in lin ⊥ lin molasses. In the σ+ σ- configuration of a standard MOT, the main sub-Doppler cooling mechanism relies on changing alignment (MF2 population) with the summed linear polarization orientation, but there is no such variation in AC Stark shift for F = 1/2. We have nevertheless looked for signs of sub-Doppler cooling by trapping I = 0 78Rb in a standard MOT and measuring the cloud size as a function of laser detuning and intensity. The 78Rb cloud size does not change significantly with lowered intensity, and expands slightly with detuning, consistent with minimal to no sub-Doppler cooling. Our geometry does show the well-known substantially smaller cloud size with detuning and intensity for I = 3/2 87Rb. Maintaining an I = 0 alkali cloud size with lowered intensity will help our planned β- ν correlation experiments in 38mK decay by suppressing possible production of photoassisted dimers. Supported by NSERC and NRC Canada through TRIUMF.
Impulsive EUV bursts observed in C IV with OSO-8. [UV solar spectra
NASA Technical Reports Server (NTRS)
Athay, R. G.; White, O. R.; Lites, B. W.; Bruner, E. C., Jr.
1980-01-01
Time sequences of profiles of the 1548 A line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness, Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150 s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2 x 20 arc sec. Mean burst diameters are estimated to be 3 arc sec, or smaller. All but three of the bursts show Doppler shifts with velocities sometimes exceeding 75 km/s; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. The bursts are interpreted as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer.
Doppler radar with multiphase modulation of transmitted and reflected signal
NASA Technical Reports Server (NTRS)
Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)
1989-01-01
A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.
Development of Point Doppler Velocimetry for Flow Field Investigations
NASA Technical Reports Server (NTRS)
Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.
2006-01-01
A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.
OBSERVATIONAL EVIDENCE OF ELECTRON-DRIVEN EVAPORATION IN TWO SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Ning, Z. J.; Zhang, Q. M., E-mail: lidong@pmo.ac.cn
2015-11-01
We have explored the relationship between hard X-ray (HXR) emissions and Doppler velocities caused by the chromospheric evaporation in two X1.6 class solar flares on 2014 September 10 and October 22, respectively. Both events display double ribbons and the Interface Region Imaging Spectrograph slit is fixed on one of their ribbons from the flare onset. The explosive evaporations are detected in these two flares. The coronal line of Fe xxi 1354.09 Å shows blueshifts, but the chromospheric line of C i 1354.29 Å shows redshifts during the impulsive phase. The chromospheric evaporation tends to appear at the front of themore » flare ribbon. Both Fe xxi and C i display their Doppler velocities with an “increase-peak-decrease” pattern that is well related to the “rising-maximum-decay” phase of HXR emissions. Such anti-correlation between HXR emissions and Fe xxi Doppler shifts and correlation with C i Doppler shifts indicate the electron-driven evaporation in these two flares.« less
Laser Doppler measurement techniques for spacecraft
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Gagliardi, Robert M.
1986-01-01
Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.
NASA Technical Reports Server (NTRS)
Grossi, M. D.; Gay, R. H.
1975-01-01
A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).
Method and system of doppler correction for mobile communications systems
NASA Technical Reports Server (NTRS)
Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)
1999-01-01
Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).
New ion trap for atomic frequency standard applications
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Dick, G. J.; Maleki, L.
1989-01-01
A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.
Superharmonic microbubble Doppler effect in ultrasound therapy
NASA Astrophysics Data System (ADS)
Pouliopoulos, Antonios N.; Choi, James J.
2016-08-01
The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5 × 104-5 × 107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of broadband emissions, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time.
Superharmonic microbubble Doppler effect in ultrasound therapy
Pouliopoulos, Antonios N; Choi, James J
2016-01-01
Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5 × 104–5 × 107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to the onset of broadband emissions, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time. PMID:27469394
Current-induced spin wave Doppler shift
NASA Astrophysics Data System (ADS)
Bailleul, Matthieu
2010-03-01
In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).
NASA Technical Reports Server (NTRS)
Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.
2010-01-01
A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.
The EVE Doppler Sensitivity and Flare Observations
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.
2011-01-01
The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.
Miller, Brian S.; Leaper, Russell; Calderan, Susannah; Gedamke, Jason
2014-01-01
The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds. PMID:25229644
Miller, Brian S; Leaper, Russell; Calderan, Susannah; Gedamke, Jason
2014-01-01
The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Ricci Kempton, Eliza; Rauscher, Emily, E-mail: ekempton@ucolick.org
2012-06-01
Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observedmore » a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.« less
Analysis of Nuclear Lifetimes Using the Gamma-ray Induced Doppler Shift Attenuation Method
NASA Astrophysics Data System (ADS)
Crespi, F. C. L.
2018-05-01
Lifetime measurements allow extraction of fundamental information on the nature of the excited states of a nuclear system. Since nuclear lifetimes cover many orders of magnitude, a number of experimental techniques and detection setups have been developed depending on the range of the lifetime of interest. The Gamma-ray Induced Doppler Shift Attenuation (GRIDSA) Method presented here is applied to the measurement of very short lifetimes, in the femtosecond range. It allows determining the nuclear lifetime by measuring the Doppler shift of a gamma ray emitted from the state of interest, in different directions with respect to a coincident preceding gamma ray, populating the same state and inducing a recoil of the nucleus in the target material with velocities of the order of 104-105 m/s. We realized an experiment in order to test the GRIDSA technique for the measurement of fs lifetimes after (n,γ) reactions. The measurement was performed at the Institut Laue-Langevin (ILL) with the 8 Ge-clover detectors of the FIPPS array. Preliminary results are discussed.
Long-term Doppler Shift and Line Profile Studies of Planetary Search Target Stars
NASA Technical Reports Server (NTRS)
McMillan, Robert S.
2002-01-01
This grant supported attempts to develop a method for measuring the Doppler shifts of solar-type stars more accurately. The expense of future space borne telescopes to search for solar systems like our own makes it worth trying to improve the relatively inexpensive pre-flight reconnaissance by ground-based telescopes. The concepts developed under this grant contributed to the groundwork for such improvements. They were focused on how to distinguish between extrasolar planets and stellar activity (convection) cycles. To measure the Doppler shift (radial velocity; RV) of the center of mass of a star in the presence of changing convection in the star's photosphere, one can either measure the effect of convection separately from that of the star's motion and subtract its contribution to the apparent RV, or measure the RV in a way that is insensitive to convection. This grant supported investigations into both of these approaches. We explored the use of a Fabry-Perot Etalon HE interferometer and a multichannel Fourier Transform Spectrometer (mFTS), and finished making a 1.8-m telescope operational and potentially available for this work.
NASA Astrophysics Data System (ADS)
Chilcote, M. A.; Labelle, J. W.; Lind, F. D.; Coster, A. J.; Galkin, I. A.; Miller, E.; Weatherwax, A. T.
2013-12-01
Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere were detected from time variations in the Doppler shifts of commercial AM radio broadcast stations. Three separately deployed receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network, recorded signals from two radio stations during eleven nights in March-April, 2012. Combining these measurements established that variations in the frequencies of the received signals, with amplitudes up to a few tenths of a Hertz, resulted from Doppler shifts produced by the ionosphere. At times, TIDs were detected as large amplitude variations in the Doppler shift with approximately 40-minute period correlated across the array. For one study interval, 0000-0400 UT on April 13, 2012, simultaneous GPS-TEC, digisonde, and superDARN coherent backscatter radar measurements confirmed the detection of TIDs with the same period. Detection of the AM signals at widely spaced receivers allowed the phase velocity and wavelength of the TIDs to be inferred, with some limitations due to differing reflection heights for the different frequencies. These measurements will be compared to phase velocities and wavelengths determined from combining an array of GPS receivers; discrepancies due to the altitude sensitivity of the techniques or other effects will be discussed. These results demonstrate that AM radio signals can be used for detection of nighttime TIDs.
Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2016-01-01
A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.
Imaging doppler lidar for wind turbine wake profiling
Bossert, David J.
2015-11-19
An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.
Two-photon absorption dispersion spectrometer for 1.53 μm eye-safe Doppler LIDAR.
Vance, J D
2012-07-01
Based upon resonant two-photon absorption within a rubidium cell and 780 nm pump light, a birefringent medium for 1.530 μm is induced that changes rapidly with frequency. The birefringence is exploited to build a spectrometer that is capable of measuring the Doppler shift of scattered photons.
High Speed A/D DSP Interface for Carrier Doppler Tracking
NASA Technical Reports Server (NTRS)
Baggett, Timothy
1998-01-01
As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
Red Shifts with Obliquely Approaching Light Sources.
ERIC Educational Resources Information Center
Head, C. E.; Moore-Head, M. E.
1988-01-01
Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)
NASA Technical Reports Server (NTRS)
Shepherd, K. P.
1979-01-01
The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.
The significance of the quadratic Doppler effect for space travel and astrophysics
NASA Astrophysics Data System (ADS)
Boehm, M.
1985-09-01
It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.
Temporal coherence of high-order harmonics generated at solid surfaces
NASA Astrophysics Data System (ADS)
Hemmers, D.; Behmke, M.; Karsch, S.; Keyling, J.; Major, Z.; Stelzmann, C.; Pretzler, G.
2014-07-01
We present interferometric measurements of the temporal coherence of high-order harmonics generated by reflection of a titanium sapphire laser off a solid surface. It is found that the coherence length of the harmonic emission is significantly reduced compared with the bandwidth limited case. To identify the responsible mechanism, the acquired data were analyzed by means of particle-in-cell simulations, whose results show good agreement between the calculated spectra and the measured coherence times. We show that the observed broadening can be understood consistently by the occurrence of a Doppler shift induced by the moving plasma surface, which is dented by the radiation pressure of the laser pulse. In this case, this Doppler effect would also lead to positive chirp of the emitted radiation.
NASA Technical Reports Server (NTRS)
Gay, R. H.; Grossi, M. D.
1975-01-01
The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.
Ulusan, Serife; Yakar, Tolga; Koc, Zafer
2011-01-01
We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p = 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.
ERIC Educational Resources Information Center
Schuepbach, Daniel; Huizinga, Mariette; Duschek, Stefan; Grimm, Simone; Boeker, Heinz; Hell, Daniel
2009-01-01
Set shifting provokes specific alterations of cerebral hemodynamics in basal cerebral arteries. However, no gender differences have been reported. In the following functional transcranial Doppler study, we introduced cerebral hemodynamic modulation to the aspects of set shifting during Wisconsin Card Sorting Test (WCST). Twenty-one subjects…
Nuclear transition moment measurements of neutron rich nuclei
NASA Astrophysics Data System (ADS)
Starosta, Krzysztof
2009-10-01
The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.
First artificial periodic inhomogeneity experiments at HAARP
NASA Astrophysics Data System (ADS)
Hysell, D. L.; McCarrick, M. J.; Fallen, C. T.; Vierinen, J.
2015-03-01
Experiments involving the generation and detection of artificial periodic inhomogeneities have been performed at the High Frequency Active Auroral Research Program (HAARP) facility. Irregularities were created using powerful X-mode HF emissions and then probed using short (10 μs) X- and O-mode pulses. Reception was performed using a portable software-defined receiver together with the crossed rhombic antenna from the local ionosonde. Echoes were observed reliably between about 85 and 140 km altitude with signal-to-noise ratios as high as about 30 dB. The Doppler shift of the echoes can be associated with the vertical neutral wind in this altitude range. Small but persistent Doppler shifts were observed. The decay time constant of the echoes is meanwhile indicative of the ambipolar diffusion coefficient which depends on the plasma temperature, composition, and neutral gas density. The measured time constants appear to be consistent with theoretical expectations and imply a methodology for measuring neutral density profiles. The significance of thermospheric vertical neutral wind and density measurements which are difficult to obtain using ground-based instruments by other means is discussed.
The Martian rotation from Doppler measurements: Simulations of future radioscience experiments
NASA Astrophysics Data System (ADS)
Péters, Marie-Julie; Yseboodt, Marie; Dehant, Véronique; Le Maistre, Sebastien; Marty, Jean-Charles
2016-10-01
The radioscience experiment onboard the future InSight and ExoMars missions consists in two-way Doppler shift measurement from a X-band radio link between a lander on Mars and the ground stations on Earth. The Doppler effect on the radio signal is related to the revolution of the planets around the Sun and to the variations of the orientation and the rotation of Mars. The variations of the orientation of the rotation axis are the precession and nutations, related to the deep interior of Mars and the variations of the rotation rate are the length-of-day variation, related to the dynamic of the atmosphere.We perform numerical simulations of the Doppler measurements in order to quantify the precision that can be achieved on the determination of the Mars rotation and orientation parameters (MOP). For this purpose, we use the GINS (Géodésie par Intégrations Numériques Simultanées) software developed by the CNES and further adapted at the Royal Observatory of Belgium for planetary geodesy applications. This software enables to simulate the relative motion of the lander at the surface of Mars relative to the ground stations and to compute the MOP signature on the Doppler shift. The signature is the difference between the Doppler observable estimated taking into account a MOP and the Doppler estimated without this parameter.The objective is to build a strategy to be applied to future data processing in order to improve our estimation of the MOP. We study the effect of the elevation of the Earth in the sky of the lander, of the tracking duration and number of pass per week, of the tracking time, of the lander position and of Doppler geometry on the signatures. Indeed, due to the geometry, the Doppler data are highly sensitive to the position variations along the line of sight.
Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P
1983-01-01
A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.
NASA Technical Reports Server (NTRS)
Xiong, Fuqin; Andro, Monty
2001-01-01
This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.
Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter
NASA Technical Reports Server (NTRS)
Atakturk, Serhad S.; Katsaros, Kristina B.
1993-01-01
Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.
Doppler characteristics of sea clutter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; Doerry, Armin Walter
2010-06-01
Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristicsmore » of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.« less
Satellite Doppler data processing using a microcomputer
NASA Technical Reports Server (NTRS)
Schmid, P. E.; Lynn, J. J.
1977-01-01
A microcomputer which was developed to compute ground radio beacon position locations using satellite measurements of Doppler frequency shift is described. Both the computational algorithms and the microcomputer hardware incorporating these algorithms were discussed. Results are presented where the microcomputer in conjunction with the NIMBUS-6 random access measurement system provides real time calculation of beacon latitude and longitude.
Quantification of absolute blood velocity using LDA
NASA Astrophysics Data System (ADS)
Borozdova, M. A.; Fedosov, I. V.; Tuchin, V. V.
2018-04-01
We developed novel schematics of a Laser Doppler anemometer where measuring volume is comparable with the red blood cell (RBC) size and a small period of interference fringes improves device resolution. The technique was used to estimate Doppler frequency shift at flow velocity measurements. It has been shown that technique is applicable for measurements in whole blood.
Experimental study of dual polarized radar return from the sea surface
NASA Astrophysics Data System (ADS)
Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.
2017-10-01
Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.
The high-resolution Doppler imager on the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.
1993-01-01
The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.
Doppler search for a gravitational background radiation with two spacecraft
NASA Astrophysics Data System (ADS)
Bertotti, B.; Iess, L.
1985-11-01
The prospect of detecting a gravitational wave background by means of a simultaneous Doppler tracking of two spacecraft are discussed. It is found that the cross spectrum of the Doppler shifts of the two spacecraft is a filtered expression of the energy density spectrum of the background. The filter function, which is expressed as a series in terms of Legendre polynomials, is obtained by an integration over the rotation group, assuming the background to be isotropic. The main noise sources are examined, and the advantages of a measurement with two spacecraft are noted.
Doppler imaging using spectrally-encoded endoscopy
Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.
2009-01-01
The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020
Method and apparatus for Doppler frequency modulation of radiation
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)
1980-01-01
A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.
Long-range, noncoherent laser Doppler velocimeter.
Bloom, S H; Kremer, R; Searcy, P A; Rivers, M; Menders, J; Korevaar, E
1991-11-15
An experimental demonstration of a long-range, noncoherent laser Doppler velocimeter (LDV) is presented. The LDV detects incoming Doppler-shifted signal photons by using the sharp spectral absorption features in atomic or molecular vapors. The edge of the absorption feature is used to convert changes in frequency to large changes in transmission. Preliminary measurements of wind velocity using seeded aerosols showed that the LDV results agreed with mechanical anemometer measurements to within the accuracy of the LDV measurements. With optimization the LDV will provide accurate range-resolved and vibration-tolerant wind-speed measurements at large distances.
Recent Developments in Microwave Ion Clocks
NASA Astrophysics Data System (ADS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.
NASA Astrophysics Data System (ADS)
St.-Maurice, Jean-Pierre; Chau, Jorge L.
2016-10-01
Stimulated by recent observations described in a companion paper, we have revisited existing theories of the Farley-Buneman instability throughout the altitude range 90 to 125 km. We have assumed that the irregularities detected by radars at a given altitude are dominated by structures moving at the threshold speed in a direction associated with maximum linear growth rate conditions. We included recent nonisothermal electron and ion theories, which can modify threshold speeds by considerable amounts. We included altitude-dependent models of ion and electron temperature and of the ion motion in the phase velocity calculations. Our treatment of the instability explains why some spectra are slow (Doppler shifts typically 200 m/s) and narrow, while others are fast (1500 m/s or close to the E × B) and narrow. These narrow spectra have all the characteristics of what has been labeled as "Type III" and "Type IV" in the past. Our calculations also offer an explanation for the observation of a strong asymmetry in the number of events with positive Doppler shifts near the nominal ion-acoustic speed and those with negative Doppler shifts of the same magnitude.
NASA Technical Reports Server (NTRS)
Scaife, Bradley James
1999-01-01
In any satellite communication, the Doppler shift associated with the satellite's position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this thesis, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on an averaged discrete Fourier transform along with peak detection on spectral match filtered data. We provide theory and simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU's implementation of NASA's demand assignment, multiple access (DAMA) service.
Relativistic effects in earth-orbiting Doppler lidar return signals.
Ashby, Neil
2007-11-01
Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.
Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided "g" Determination
ERIC Educational Resources Information Center
Vogt, Patrik; Kuhn, Jochen; Muller, Sebastian
2011-01-01
This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education. We describe a computer-aided determination of the free-fall acceleration "g" using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects…
System for Processing Coded OFDM Under Doppler and Fading
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee
2005-01-01
An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure) that would afford frequency diversity for reducing the adverse effects of multipath fading. By using parallel concatenated convolutional codes (also known as Turbo codes) across the dual-channel and advanced OFDM signal processing within each channel, the proposed system is intended to achieve at least an order of magnitude improvement in received signal-to-noise ratio under adverse channel effects while preserving spectral efficiency.
Doppler optical coherence tomography of retinal circulation.
Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David
2012-09-18
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.
2013-12-01
The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.
NASA Technical Reports Server (NTRS)
McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul
1995-01-01
Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.
NASA Astrophysics Data System (ADS)
Aisenberg, Sol
2012-02-01
There is a difference between (a) distances of remote standard candles, SN Type Ia, and (b) distances based upon their red shifts. It was believed that these galaxies had accelerated and used Dark Energy. There are 2 assumptions not supported by observations. The first is that the red shifts for remote galaxies are due to the Doppler Effect associated with receding velocity. Hubble only observed red shifts as a function of distances of known stars, and never measured receding velocities. He suggested the Doppler Effect as a cause, but expressed doubt about the suggestion. There are other causes for a red shift - gravity red shift of light from the sun, and loss of photon energy by gravity interaction of photons with dust and gas in interstellar space. The second assumption is that Hubble's linear relationship between the observed red shift and the distance will be valid at very large distances. Increasing red shift corresponds to a decrease of photon energy towards zero, and cannot be used for very remote stars - where the photon energy approaches zero and the red shift dependence becomes nonlinear and asymptotic to a constant value. This predicts the difference between the galaxy distances and the distances determined from their observed red shifts. The recent Nobel Prize (to Schmidt, Reis, and Perlmutter) needs reexamination. Two basic assumptions that are the foundation of their work may not be accurate. Details are in my earlier essays in ``The Misunderstood Universe'', 2009. .
Mass defect effects in atomic clocks
NASA Astrophysics Data System (ADS)
Yudin, Valeriy; Taichenachev, Alexey
2018-03-01
We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.
Differences between Doppler velocities of ions and neutral atoms in a solar prominence
NASA Astrophysics Data System (ADS)
Anan, T.; Ichimoto, K.; Hillier, A.
2017-05-01
Context. In astrophysical systems with partially ionized plasma, the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field's Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes such as magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims: This paper aims to investigate the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods: We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory. We compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results: There are instances when the difference in velocities between neutral atoms and ions is significant, for example 1433 events ( 3% of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions: We interpreted the difference of Doppler velocities as being a result of the motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma. The movie attached to Fig. 1 is available at http://www.aanda.org
Ferguson, B G
1993-12-01
The acoustic emissions from a propeller-driven aircraft are received by a microphone mounted just above ground level and then by a hydrophone located below the sea surface. The dominant feature in the output spectrum of each acoustic sensor is the spectral line corresponding to the propeller blade rate. A frequency estimation technique is applied to the acoustic data from each sensor so that the Doppler shift in the blade rate can be observed at short time intervals during the aircraft's transit overhead. For each acoustic sensor, the observed variation with time of the Doppler-shifted blade rate is compared with the variation predicted by a simple ray-theory model that assumes the atmosphere and the sea are distinct isospeed sound propagation media separated by a plane boundary. The results of the comparison are shown for an aircraft flying with a speed of about 250 kn at altitudes of 500, 700, and 1000 ft.
Electronic Warfare and Radar Systems Engineering Handbook. 4th Edition
2013-10-01
and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming Offboard Chaff RCP or RHCP Right-hand Circular...Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...Doppler techniques, in order to precisely predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that
Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph
2004-01-01
The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.
Fraunhofer filters to reduce solar background for optical communications
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1986-01-01
A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.
Suga, Nobuo
2018-04-01
For echolocation, mustached bats emit velocity-sensitive orientation sounds (pulses) containing a constant-frequency component consisting of four harmonics (CF 1-4 ). They show unique behavior called Doppler-shift compensation for Doppler-shifted echoes and hunting behavior for frequency and amplitude modulated echoes from fluttering insects. Their peripheral auditory system is highly specialized for fine frequency analysis of CF 2 (∼61.0 kHz) and detecting echo CF 2 from fluttering insects. In their central auditory system, lateral inhibition occurring at multiple levels sharpens V-shaped frequency-tuning curves at the periphery and creates sharp spindle-shaped tuning curves and amplitude tuning. The large CF 2 -tuned area of the auditory cortex systematically represents the frequency and amplitude of CF 2 in a frequency-versus-amplitude map. "CF/CF" neurons are tuned to a specific combination of pulse CF 1 and Doppler-shifted echo CF 2 or 3 . They are tuned to specific velocities. CF/CF neurons cluster in the CC ("C" stands for CF) and DIF (dorsal intrafossa) areas of the auditory cortex. The CC area has the velocity map for Doppler imaging. The DIF area is particularly for Dopper imaging of other bats approaching in cruising flight. To optimize the processing of behaviorally relevant sounds, cortico-cortical interactions and corticofugal feedback modulate the frequency tuning of cortical and sub-cortical auditory neurons and cochlear hair cells through a neural net consisting of positive feedback associated with lateral inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
NASA Astrophysics Data System (ADS)
Qin, Yi-Ping; Zhang, Fu-Wen
2005-12-01
Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600 keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be Γ = 116+9-9 (at the 68% confident level, triangleχ2 = 1) and the rest frame spectral peak energy to be E0,p = 2.96+0.24-0.18 keV. Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.
Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer
NASA Technical Reports Server (NTRS)
Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.
1989-01-01
Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.
Short wavelength ion waves upstream of the earth's bow shock
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Gurnett, D. A.
1984-01-01
The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328
Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Xiao, Z.; Zhang, D. H.
2012-02-01
In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.
Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert
2012-01-01
Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.
Vacancy defect and defect cluster energetics in ion-implanted ZnO
NASA Astrophysics Data System (ADS)
Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.
2010-02-01
We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.
Fixed Delay Interferometry for Doppler Extrasolar Planet Detection
NASA Astrophysics Data System (ADS)
Ge, Jian
2002-06-01
We present a new technique based on fixed delay interferometry for high-throughput, high-precision, and multiobject Doppler radial velocity (RV) surveys for extrasolar planets. The Doppler measurements are conducted by monitoring the stellar fringe phase shifts of the interferometer instead of absorption-line centroid shifts as in state-of-the-art echelle spectroscopy. High Doppler sensitivity is achieved through optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broad band. This broadband operation is performed by coupling the interferometer with a low- to medium-resolution postdisperser. The resulting fringing spectra over the bandpass are recorded on a two-dimensional detector, with fringes sampled in the slit spatial direction and the spectrum sampled in the dispersion direction. The resulting total Doppler sensitivity is, in theory, independent of the dispersing power of the postdisperser, which allows for the development of new-generation RV machines with much reduced size, high stability, and low cost compared to echelles. This technique has the potential to improve RV survey efficiency by 2-3 orders of magnitude over the cross-dispersed echelle spectroscopy approach, which would allow a full-sky RV survey of hundreds of thousands of stars for planets, brown dwarfs, and stellar companions once the instrument is operated as a multiobject instrument and is optimized for high throughput. The simple interferometer response potentially allows this technique to be operated at other wavelengths independent of popular iodine reference sources, being actively used in most of the current echelles for Doppler planet searches, to search for planets around early-type stars, white dwarfs, and M, L, and T dwarfs for the first time. The high throughput of this instrument could also allow investigation of extragalactic objects for RV variations at high precision.
Doppler lidar wind measurement with the edge technique
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Gentry, Bruce M.
1992-01-01
The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.
Tangential velocity measurement using interferometric MTI radar
Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.
2006-01-03
Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.
An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches
NASA Astrophysics Data System (ADS)
Ge, Jian; Erskine, David J.; Rushford, Mike
2002-09-01
A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.
Noise normalization and windowing functions for VALIDAR in wind parameter estimation
NASA Astrophysics Data System (ADS)
Beyon, Jeffrey Y.; Koch, Grady J.; Li, Zhiwen
2006-05-01
The wind parameter estimates from a state-of-the-art 2-μm coherent lidar system located at NASA Langley, Virginia, named VALIDAR (validation lidar), were compared after normalizing the noise by its estimated power spectra via the periodogram and the linear predictive coding (LPC) scheme. The power spectra and the Doppler shift estimates were the main parameter estimates for comparison. Different types of windowing functions were implemented in VALIDAR data processing algorithm and their impact on the wind parameter estimates was observed. Time and frequency independent windowing functions such as Rectangular, Hanning, and Kaiser-Bessel and time and frequency dependent apodized windowing function were compared. The briefing of current nonlinear algorithm development for Doppler shift correction subsequently follows.
Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows
NASA Technical Reports Server (NTRS)
Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.
1992-01-01
The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.
Range-dependence of acoustic channel with traveling sinusoidal surface wave.
Choo, Youngmin; Seong, Woojae; Lee, Keunhwa
2014-04-01
Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
Spacecraft Doppler Tracking as a Xylophone Detector
NASA Technical Reports Server (NTRS)
Tinto, Massimo
1996-01-01
We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.
Editorial special issue on "Laser Doppler vibrometry"
NASA Astrophysics Data System (ADS)
Vanlanduit, Steve; Dirckx, Joris
2017-12-01
The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).
High-Resolution Radar Waveforms Based on Randomized Latin Square Sequences
2017-04-18
familiar Costas sequence [17]. The ambiguity function first introduced by Woodward in [13] is used to evaluate the matched filter output of a Radar waveform...the zero-delay cut that the result takes the shape of a sinc function which shows, even for significant Doppler shifts, the matched filter output...bad feature as the high ridge of the LFM waveform will still result in a large matched filter response from the target, just not at the correct delay
Method for ambiguity resolution in range-Doppler measurements
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)
1994-01-01
A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.
TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
We present high-spatial resolution spectropolarimetric observations of a quiescent hedgerow prominence taken in the He I 1083.0 nm triplet. The observation consisted of a time series in sit-and-stare mode of ∼36 minutes duration. The spectrograph's slit crossed the prominence body and we recorded the time evolution of individual vertical threads. Eventually, we observed the development of a dark Rayleigh-Taylor plume that propagated upward with a velocity, projected onto the plane of the sky, of 17 km s{sup –1}. Interestingly, the plume apex collided with the prominence threads pushing them aside. We inferred Doppler shifts, Doppler widths, and magnetic field strength variations bymore » interpreting the He I Stokes profiles with the HAZEL code. The Doppler shifts show that clusters of threads move coherently while individual threads have oscillatory patterns. Regarding the plume we found strong redshifts (∼9-12 km s{sup –1}) and large Doppler widths (∼10 km s{sup –1}) at the plume apex when it passed through the prominence body and before it disintegrated. We associate the redshifts with perspective effects while the Doppler widths are more likely due to an increase in the local temperature. No local variations of the magnetic field strength associated with the passage of the plume were found; this leads us to conclude that the plumes are no more magnetized than the surroundings. Finally, we found that some of the threads' oscillations are locally damped, what allowed us to apply prominence seismology techniques to infer additional prominence physical parameters.« less
Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)
NASA Astrophysics Data System (ADS)
Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul
2015-06-01
Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.
Use of speckle for determining the response characteristics of Doppler imaging radars
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1986-01-01
An optical model is developed for imaging optical radars such as the SAR on Seasat and the Shuttle Imaging Radar (SIR-B) by analyzing the Doppler shift of individual speckles in the image. The signal received at the spacecraft is treated in terms of a Fresnel-Kirchhoff integration over all backscattered radiation within a Huygen aperture at the earth. Account is taken of the movement of the spacecraft along the orbital path between emission and reception. The individual points are described by integration of the point source amplitude with a Green's function scattering kernel. Doppler data at each point furnishes the coordinates for visual representations. A Rayleigh-Poisson model of the surface scattering characteristics is used with Monte Carlo methods to generate simulations of Doppler radar speckle that compare well with Seasat SAR data SIR-B data.
Development of Rayleigh Doppler lidar for measuring middle atmosphere winds
NASA Astrophysics Data System (ADS)
Raghunath, K.; Patra, A. K.; Narayana Rao, D.
Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar
Evidence of mass outflow in the low corona over a large sunspot
NASA Astrophysics Data System (ADS)
Neupert, W. M.; Brosius, J. W.; Thomas, R. J.; Thompson, W. T.
1994-04-01
An extreme ultraviolet (EUV) imaging spectrograph designed for sounding rocket flight has been used to search for velocity fields in the low solar corona. During a flight in May, 1989, we obtained emission line profile measurements along a chord through an active region on the Sun. Relative Doppler velocities were measured in emission lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only Doppler shift appreciably greater than this level was observed in the line of Mg IX at 368.1 A over the umbra of the large sunspot. The maximum shift measured at that location corresponded to a velocity toward the observer of 14 plus or minus 3 km/s relative to the mean of measurements in that emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the magnetic field geometry, this mass outflow could either re-appear as a downflow of material in distant footprints of closed coronal loops or, if along open field lines, could contribute to the solar wind. The site of the sunspot was near a major photospheric magnetic field boundary. Such boundaries have been associated with low-speed solar winds as observed in interplanetary plasmas.
The Weyl Definition of Redshifts
ERIC Educational Resources Information Center
Harvey, Alex
2012-01-01
In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…
1983-12-01
effects of the transmitted waveform. This will be accomplished via comparisons of signal-to-noise ratios for non-coherent filtering vs. coherent narrowband...form of frequency or phase modulation. The simulation will assume we are processing the video (baseband) signal which resu fr i an enviroment (target...range, they can be resolved in doppler if AWD/2 > Fr where &wD is the doppler-shift difference. A similiar consideration of target resolution for a
Method for shaping and aiming narrow beams. [sonar mapping and target identification
NASA Technical Reports Server (NTRS)
Heyser, R. C. (Inventor)
1981-01-01
A sonar method and apparatus is discribed which utilizes a linear frequency chirp in a transmitter/receiver having a correlator to synthesize a narrow beamwidth pattern from otherwise broadbeam transducers when there is relative velocity between the transmitter/receiver and the target. The chirp is so produced in a generator in bandwidth, B, and time, T, as to produce a time bandwidth product, TB, that is increased for a narrower angle. A replica of the chirp produced in a generator is time delayed and Doppler shifted for use as a reference in the receiver for correlation of received chirps from targets. This reference is Doppler shifted to select targets preferentially, thereby to not only synthesize a narrow beam but also aim the beam in azimuth and elevation.
SAR imaging - Seeing the unseen
NASA Technical Reports Server (NTRS)
Kobrick, M.
1982-01-01
The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.
SINA: A test system for proximity fuses
NASA Astrophysics Data System (ADS)
Ruizenaar, M. G. A.
1989-04-01
SINA, a signal generator that can be used for testing proximity fuses, is described. The circuitry of proximity fuses is presented; the output signal of the RF circuit results from a mixing of the emitted signal and received signal that is Doppler shifted in frequency by the relative motion of the fuse with respect to the reflecting target of surface. With SINA, digitized and stored target and clutter signals (previously measured) can be transformed to Doppler signals, for example during a real flight. SINA can be used for testing fuse circuitry, for example in the verification of results of computer simulations of the low frequency Doppler signal processing. The software of SINA and its use are explained.
Laser Doppler velocimetry using a modified computer mouse
NASA Astrophysics Data System (ADS)
Zaron, Edward D.
2016-10-01
A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.
Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency
Zhang, Mingming; Shivacharan, Rajat S.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.
2016-01-01
Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization. PMID:27013678
Magnetic Compensation for Second-Order Doppler Shift in LITS
NASA Technical Reports Server (NTRS)
Burt, Eric; Tjoelker, Robert
2008-01-01
The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.
Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu
2012-01-01
Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
NASA Astrophysics Data System (ADS)
Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing
2015-06-01
In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
Acceleration and heating of heavy ions in high speed solar wind streams
NASA Technical Reports Server (NTRS)
Gomberoff, L.; Gratton, F. T.; Gnavi, G.
1995-01-01
Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the dispersion relation, the one which goes to the Doppler-shifted alpha particle gyrofrequency. The Alfven waves continue to propagate along the first branch of the dispersion relation and proceed to accelerate and heat the alpha particles.
Two AFC Loops For Low CNR And High Dynamics
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.; Aguirre, Sergio
1992-01-01
Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.
Laser Doppler spectrometer method of particle sizing. [for air pollution
NASA Technical Reports Server (NTRS)
Weber, F. N.
1976-01-01
A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.
Allely, Rebekah R; Van-Buendia, Lan B; Jeng, James C; White, Patricia; Wu, Jingshu; Niszczak, Jonathan; Jordan, Marion H
2008-01-01
A paradigm shift in management of postburn facial scarring is lurking "just beneath the waves" with the widespread availability of two recent technologies: precise three-dimensional scanning/digitizing of complex surfaces and computer-controlled rapid prototyping three-dimensional "printers". Laser Doppler imaging may be the sensible method to track the scar hyperemia that should form the basis of assessing progress and directing incremental changes in the digitized topographical face mask "prescription". The purpose of this study was to establish feasibility of detecting perfusion through transparent face masks using the Laser Doppler Imaging scanner. Laser Doppler images of perfusion were obtained at multiple facial regions on five uninjured staff members. Images were obtained without a mask, followed by images with a loose fitting mask with and without a silicone liner, and then with a tight fitting mask with and without a silicone liner. Right and left oblique images, in addition to the frontal images, were used to overcome unobtainable measurements at the extremes of face mask curvature. General linear model, mixed model, and t tests were used for data analysis. Three hundred seventy-five measurements were used for analysis, with a mean perfusion unit of 299 and pixel validity of 97%. The effect of face mask pressure with and without the silicone liner was readily quantified with significant changes in mean cutaneous blood flow (P < .5). High valid pixel rate laser Doppler imager flow data can be obtained through transparent face masks. Perfusion decreases with the application of pressure and with silicone. Every participant measured differently in perfusion units; however, consistent perfusion patterns in the face were observed.
NASA Astrophysics Data System (ADS)
Spaleta, J.; Bristow, W. A.
2013-12-01
SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.
Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement
NASA Astrophysics Data System (ADS)
Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.
2014-11-01
A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.
Nodding motions of accretion rings and disks - A short-term period in SS 433
NASA Technical Reports Server (NTRS)
Katz, J. I.; Anderson, S. F.; Grandi, S. A.; Margon, B.
1982-01-01
It is pointed out that accretion disks and rings in mass transfer binaries have been observed spectroscopically and calculated theoretically for many years. The present investigation is partly based on the availability of several years of spectroscopic observations of the Doppler shifts of the moving lines in SS433. A formalism is presented to compute frequencies and amplitudes of short-term 'nodding' motions in precessing accretion disks in close binary systems. This formalism is applied to an analysis of the moving-line Doppler shifts in SS433. The 35d X-ray cycle of Hercules X-1 is also discussed. In the considered model, the companion star exerts a gravitational torque on the disk rim. Averaged over the binary orbit, this yields a steady torque which results in the mean driven counterprecession of the disk.
First fast-ion D-alpha (FIDA) measurements and simulations on C-2U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolte, N. G., E-mail: nbolte@TriAlphaEnergy.com; Gupta, D.; Onofri, M.
2016-11-15
The first measurements of fast-ion D-alpha (FIDA) radiation have been acquired on C-2U, Tri Alpha Energy’s advanced, beam-driven field-reversed configuration (FRC). These measurements are also forward modeled by FIDASIM. This is the first measurement and simulation of FIDA carried out on an FRC topology. FIDA measurements are made of Doppler-shifted Balmer-alpha light from neutralized fast ions using a bandpass filter and photomultiplier tube. One adjustable line-of-sight measured signals at eight locations and eight times during the FRC lifetime over 26 discharges. Filtered signals include only the highest energy ions (>6 keV) and share some salient features with the FIDASIM result.more » Highly Doppler-shifted beam radiation is also measured with a high-speed camera and is spatially well-correlated with FIDASIM.« less
Narrow bandwidth detection of vibration signature using fiber lasers
Moore, Sean; Soh, Daniel B.S.
2018-05-08
The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1986-01-01
Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.
Complex regression Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.
2018-04-01
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent
NASA Technical Reports Server (NTRS)
Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.
2005-01-01
The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.
NASA Technical Reports Server (NTRS)
Vincent, R. A.
1984-01-01
The Doppler, spaced-antenna and interferometric methods of measuring wind velocities all use the same basic information, the Doppler shifts imposed on backscattered radio waves, but they process it in different ways. The Doppler technique is most commonly used at VHF since the narrow radar beams are readily available. However, the spaced antenna (SA) method has been successfully used with the SOUSY and Adelaide radars. At MF/HF the spaced antenna method is widely used since the large antenna arrays (diameter 1 km) required to generate narrow beams are expensive to construct. Where such arrays of this size are available then the Doppler method has been successfully used (e.g., Adelaide and Brisbane). In principle, the factors which influence the choice of beam pointing angle, the optimum antenna spacing will be the same whether operation is at MF or VHF. Many of the parameters which govern the efficient use of wind measuring systems have been discussed at previous MST workshops. Some of the points raised by these workshops are summarized.
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
Forsman, A C; Kyrala, G A
2001-05-01
Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers et al., Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.
Parametric Investigation of Laser Doppler Microphones
NASA Astrophysics Data System (ADS)
Daoud, M.; Naguib, A.
2002-11-01
The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.
A Moire Fringing Spectrometer for Extra-Solar Planet Searches
NASA Astrophysics Data System (ADS)
van Eyken, J. C.; Ge, J.; Mahadevan, S.; De Witt, C.; Ramsey, L. W.; Berger, D.; Shaklan, S.; Pan, X.
2001-12-01
We have developed a prototype moire fringing spectrometer for high precision radial velocity measurements for the detection of extra-solar planets. This combination of Michelson interferometer and spectrograph overlays an interferometer comb on a medium resolution stellar spectrum, producing Moire patterns. Small changes in the doppler shift of the spectrum lead to corresponding large shifts in the Moire pattern (Moire magnification). The sinusoidal shape of the Moire fringes enables much simpler measurement of these shifts than in standard echelle spectrograph techniques, facilitating high precision measurements with a low cost instrument. Current data analysis software we have developed has produced short-term repeatability (over a few hours) to 5-10m/s, and future planned improvements based on previous experiments should reduce this significantly. We plan eventually to carry out large scale surveys for low mass companions around other stars. This poster will present new results obtained in the lab and at the HET and Palomar 5m telescopes, the theory of the instrument, and data analysis techniques.
Observation and Study of Proton Aurora by using Scanning Photometer
NASA Astrophysics Data System (ADS)
Mochizuki, T.; Ono, T.; Kadokura, A.; Sato, N.
2009-12-01
The proton auroras have significant differences from electron auroras in their spectral shape. They show Doppler-shifted and broadened spectra: the spectra have Doppler-shifted (~0.5 nm shorter) peak and both bluewing (~2-4 nm) and redwing (~1.5 nm) extending. Energy spectra of precipitating protons have been estimated from this shape. Recently it is found that the intensity in the extent of the blue wing reflects more effectively by the change of the mean energy of precipitating protons than the shift of peak wavelength [Lanchester et al., 2003]. Another character of the H-beta aurora is that it is diffuse form because a proton becomes hydrogen atom due to a charge-exchange reaction with atmospheric constituent and then possible to move across the magnetic field line. By using a scanning photometer, the movement of the proton auroral belt and change of a spectrum shape associated with the variation of proton source region due to storm and substorm were reported, however, not discussed in detail yet [Deehr and Lummerzheim, 2001]. The purpose of this study is to obtain the detail characteristics of H-beta aurora for understanding of source region of energetic protons in the magnetosphere. For this purpose, a new meridian-scanning photometer (SPM) was installed at Husafell station in Iceland in last summer season and Syowa Station, Antarctica. It will contribute to investigate the distribution of energetic protons and plasma waves which cause the pitch angle scattering in the magnetosphere. The meridian-scanning photometer is able to observe at five wavelengths for H-beta emission. One channel is to measure the background level. By analyzing the data obtained by the SPM, the H-beta spectrum can be estimated by fitting a model function with it. Then it is possible to obtain distribution of precipitating protons in north-south direction. It is also possible to estimate an energy spectrum of precipitating proton, simultaneously. The instrumental parameters of the SPM is defined by the transmission characteristics of the interference filters; they are 485.7 nm (FWHM: 3.0 nm), 484.5 nm (0.6 nm), 485.5 nm (0.6 nm), 486.5 nm (0.6 nm) and 487.5 nm (0.6 nm) for H-beta auroras, and OI 630 nm (0.6 nm), N_2 1PG 670.5 nm (5.0 nm) and OI 844.6 nm (0.6 nm) for electron auroras. We analyzed the event at 2100 UT 23rd June, 2009 observed at Syowa station. This is typical auroral breakup event. And in this event, breakup occurred in FOV of the photometer and expanded to poleward. Then NS aurora appeared and pulsating aurora occurred. We calculated Doppler profile and each parameter is below. The peak intensity is 80 R/nm, wavelength at peak intensity is 486.0 nm, HWHM of bluewing is 1.7 nm and HWHM of redwing is 0.9 nm. These value are within past studies, although the Doppler shift of peak intensity is 0.1 nm and shorter than the average of past studies (0.5 nm). And intensity and Doppler profile of proton aurora changed with eqatorward moving in substorm growth phase. This suggests that the source of precipitating proton moves Earthward and its energy increases, and correspond to the result of Deehr and Lummerzheim, 2001. We are going to report the more detailed result of this event and new events of proton aurora.
SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features
NASA Astrophysics Data System (ADS)
Harwit, M.
2010-03-01
We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.
Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar
NASA Astrophysics Data System (ADS)
Hooper, D. A.
1999-07-01
Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.
SPACE COMMUNICATIONS TECHNIQUES
A description is given of the expansion of interim simplex space communication facilities at Rome, N . Y ., and Trinidad to full duplex for use in...communications baseband demod ulator, doppler-shift tracking, and passive radar tracking at Rome, N . Y . are discussed.
On the detectability of key-MeV solar protons through their nonthermal Lyman-alpha emission
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Chang, C. R.
1985-01-01
The intensity and timescale of nonthermal Doppler-shifted hydrogen L alpha photon emission as diagnostics of 10 keV to 10 MeV protons bombarding the solar chromosphere during flares are investigated. The steady-state excitation and ionization balance of the proton beam are determined, taking into account all important atomic interactions with the ambient chromosphere. For a proton energy flux comparable to the electron energy flux commonly inferred for large flares, L alpha wing intensities orders of magnitude larger than observed nonflaring values were found. Investigation of timescales for ionization and charge exchange leads researchers to conclude that over a wide range of values of mean proton energy and beam parameters, Doppler-shifted nonthermal L alpha emission is a useful observational diagnostic of the presence of 10 keV to 10 MeV superthermal proton beams in the solar flare chromosphere.
NASA Technical Reports Server (NTRS)
Di Rosa, Michael D.; Chang, Albert Y.; Hanson, Ronald K.
1993-01-01
Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5 percent NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, CW ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10 percent. At high Mach numbers there was evidence of rotational freezing of NO.
Acoustic sounding of wind velocity profiles in a stratified moving atmosphere.
Ostashev, V E; Georges, T M; Clifford, S F; Goedecke, G H
2001-06-01
The paper deals with analytical and numerical studies of the effects of atmospheric stratification on acoustic remote sensing of wind velocity profiles by sodars. Both bistatic and monostatic schemes are considered. Formulas for the Doppler shift of an acoustic echo signal scattered by atmospheric turbulence advected with the mean wind in a stratified moving atmosphere are derived. Numerical studies of these formulas show that errors in retrieving wind velocity can be of the order of 1 m/s if atmospheric stratification is ignored. Formulas for the height at which wind velocity is retrieved are also derived. Approaches are proposed which allow one to take into account the effects of atmospheric stratification when restoring the wind velocity profile from measured values of the Doppler shift and the time interval of acoustic impulse propagation from a sodar to the scattering volume and back to the ground.
Low collectivity of the first 2+ states of 212,210Po
NASA Astrophysics Data System (ADS)
Kocheva, D.; Rainovski, G.; Jolie, J.; Pietralla, N.; Blazhev, A.; Astier, A.; Altenkirch, R.; Bast, M.; Beckers, M.; Ansari, S.; Braunroth, Th.; Cappellazzo, M.; Cortés, M. L.; Dewald, A.; Diel, F.; Djongolov, M.; Fransen, C.; Gladnishki, K.; Goldkuhle, A.; Hennig, A.; Karayonchev, V.; Keatings, J. M.; Kluge, E.; Kröll, Th.; Litzinger, J.; Moschner, K.; Müller-Gatermann, C.; Petkov, P.; Rudigier, M.; Scheck, M.; Spagnoletti, P.; Scholz, Ph.; Schmidt, T.; Spieker, M.; Stahl, C.; Stegmann, R.; Stolz, A.; Vogt, A.; Stoyanova, M.; Thöle, P.; Warr, N.; Werner, V.; Witt, W.; Wölk, D.; Zamora, J. C.; Zell, K. O.; Van Isacker, P.; Ponomarev, V. Yu.
2018-05-01
The lifetimes of the first 2+ excited states of 212,210Po were measured in two transfer reactions 208Pb(12C,8Be)212Po and 208Pb(12C,10Be)210Po by the Recoil Distance Doppler Shift (RDDS) method and by the Doppler Shift Attenuation method (DSAM), respectively. The derived absolute B(E2) values of 2.6(3) W.u. for 212Po and 1.83(28) W.u. for 210Po indicate low collectivity. It is shown that the properties of the yrast {2}1+, {4}1+, {6}1+ and {8}1+ states in both nuclei cannot be described consistently in the framework of nuclear shell models. It is also demonstrated in the case of 210Po that Quasi-particle Phonon Model (QPM) calculations cannot overcome this problem thus indicating the existence of a peculiarity which is neglected in both theoretical approaches.
NASA Astrophysics Data System (ADS)
Daemi, Mohammad Hossein; Rasouli, Saifollah
2018-07-01
In this work, a three-point spatial phase shifting (SPS) method is implemented for chasing of the moving interference fringes in the homodyne laser Doppler vibrometry (HoLDV). By the use of SPS method, we remove disability of the HoLDV in the discrimination of the motion direction for long-range displacements. From the phase increments histogram, phase unwrapping tolerance value is selected, and adequacy of the data acquisition rate and required bandwidth limit are determined. Also in this paper, a detailed investigation on the effect of detectors positioning errors and influence of the Gaussian profile of the interfering beams on the measurements are presented. Performance of the method is verified by measuring a given harmonic vibration produced by a loudspeaker. Also, by the proposed method, vibration of mounting system of a disk laser gain medium is characterized.
Complex phase error and motion estimation in synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Soumekh, M.; Yang, H.
1991-06-01
Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.
NASA Astrophysics Data System (ADS)
Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.
2007-09-01
Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.
Molecular velocimetry using stimulated Raman spectroscopy
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1984-01-01
Molecular flow velocity of N2 was measured in a supersonic wind tunnel using inverse Raman spectroscopy. This technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counter-propagating (backward scattering). A retrometer system is employed to yield a vibration-free optical configuration which has the additional advantage of obtaining both the forward and backward scattered spectra simultaneously. The linebreadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the concept was performed in a supersonic wind tunnel and included: (1) measurements over the Mach number range 2.50 to 4.63; (2) static pressure measurements (at Mach 2.50) corresponding to a Reynolds number per foot range of 1 to 5 x 10 to the 6th power; and (3) measurements behind the shock wave of a flat plate model.
NASA Technical Reports Server (NTRS)
Mashhoon, B.; Grishchuk, L. P.
1980-01-01
Consideration is given to the possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft. Attention is given in the geometrical optics limit, to the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field, and it is shown to be gauge independent. The propagation of a free electromagnetic wave in a gravitational radiation field is examined with the conclusion that no resonance phenomena can be expected. Finally, the 'Doppler noise' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the radiation spectrum and the detection system used.
NASA Astrophysics Data System (ADS)
Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.
2014-06-01
A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.
NASA Technical Reports Server (NTRS)
Cheng, S. W. S.
1982-01-01
The development of the Resonant Doppler Velocimeter (RDV) is discussed. It is a new nonintrusive laser technique for flow diagnosis. The RDV technique is applied to supersonic nitrogen flow with sodium atoms as tracer particles. The measurements are achieved by shining a tunable single frequency laser beam into the flow. The resonant absorption spectrum of the seeded species is determined by observing the fluorescence signal intensity as a function of excitation wavelength. By comparing the peak absorption wavelength with a reference frequency marker, the flow velocity along the excitation beam can be obtained through the Doppler shift relation. By fitting the spectrum with a theoretical line profile, the static temperature and pressure of the flow an be determined.
Radar research on thunderstorms and lightning
NASA Technical Reports Server (NTRS)
Rust, W. D.; Doviak, R. J.
1982-01-01
Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.
Measurement of movements in the ionosphere using radio reflections
NASA Astrophysics Data System (ADS)
Whitehead, J. D.; From, W. R.; Jones, K. L.; Monro, P. E.
1983-05-01
Movements of the ionosphere may be measured using radio reflections either by observing the movement of the diffraction, or interference, pattern along the ground; or by using the Doppler shifts of the echo as a radar beam is scanned across the sky. The two methods may use the same experimental arrangement and even the same data. The error in the drift velocity measured for scattered echoes is inversely proportional to the square of the array size for both methods. More detail of the random motion may be observed with the Doppler method. When the radio reflections are from an undulating surface in the ionosphere which changes its form as it moves, the Doppler method combined with further analysis is required to measure the movement and change of the undulating surface.
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
1998 NASA Review: Center for Space Telemetering and Telecommunication Systems
NASA Technical Reports Server (NTRS)
Cunningham, Garry
1998-01-01
The following topics are included in the conference proceedings following the program overview: (1) Coding and Carrier Recovery Techniques; (2) Carrier Frequency Estimation Under Unknown Doppler Shifts; (3) Small Satellite Experiments; (4) Bandwidth Efficient Modulation/Equalization Techniques.
A symmetrical laser Doppler velocity meter and its application to turbulence characterization
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1972-01-01
A symmetrical method of optical heterodyning of the Doppler shifted scattered laser radiation developed for velocity measurements with a minimal instrumental spectral broadening and a high signal-to-noise ratio. The method employs two laser beams incident on the moving scatterer and does not use any reference beam for heterodyning. The Doppler signal frequency is independent of the scattering angle and the signal possesses no receiving aperture broadening. Optical alignment is simple. Typical values of the instrumental spectral broadening were approximately 0.8 percent of the center frequency of the Doppler signal, and the signal-to-noise ratio was approximately 25 dB, obtained from an air flow system using submicron dioctylphthalate scattering aerosol. Experimental and theoretical studies were made on the characteristics of the Doppler signal and the effect of system parameters in turbulent flow measurement. The optimization process involved in the beam optics and in the use of a spatial filter is described. For localized flow measurement in any direction of the three-dimensional orthogonal coordinates, the system, using uncorrected optical components, had a sensing volume which can be described by a sensitive length of 600 microns and a diameter of 100 microns.
Christian Andreas Doppler--the man and his legacy.
Coman, I M
2005-01-01
Reminding the life and legacy of the Austrian Scientist who discovered the famous 'Doppler Effect'. C.A. Doppler was born the 29th of November 1803 in Salzburg. After studies in Linz and Vienna, he graduated in mathematics, became assistant at the University and later worked as a professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and --in 1850--as first director of the new Institute of Physics. C.A. Doppler did publish on magnetism, electricity, optics, and astronomy. He remains in the history of science due to the discovery presented (May 25, 1842) at the Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens"; the paper described (applied to light) the shift of frequency which bears nowadays his name. The theory was later experimentally proven and--extended for any electromagnetic and acoustic waves--got myriads if applications in astronomy, physics, aviation, meteorology, and health science. Satomura in Japan (1955) published it's first ultrasound vascular application--with successive achievements in the next decades. Doppler ultrasonagraphy became the main noninvasive instrument for functional assesment of heart and vessels.
Special relativity effects for space-based coherent lidar experiments
NASA Technical Reports Server (NTRS)
Raogudimetla, V. S.
1994-01-01
There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the case of the space-based coherent lidar, assuming flat ground. Here an interest in developing analytical expression for the location of the receiving point for the return with respect to the satellite, receiving angle and Doppler shift in frequency and amount of tip, all as measured in the satellite moving coordinate system and the diffuse scattering angle at the ground which does not require any compensation. All the three cases of retro-reflection, specular reflection and diffuse scattering by the ground should be treated though retro-reflection and diffuse scattering are more important.
Transverse Wave Induced Kelvin–Helmholtz Rolls in Spicules
NASA Astrophysics Data System (ADS)
Antolin, P.; Schmit, D.; Pereira, T. M. D.; De Pontieu, B.; De Moortel, I.
2018-03-01
In addition to their jet-like dynamic behavior, spicules usually exhibit strong transverse speeds, multi-stranded structure, and heating from chromospheric to transition region temperatures. In this work we first analyze Hinode and IRIS observations of spicules and find different behaviors in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models, or long-wavelength torsional Alfvén waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective magnetohydrodynamic (MHD) wave. By comparing with an idealized 3D MHD simulation combined with radiative transfer modeling, we analyze the role of transverse MHD waves and associated instabilities in spicule-like features. We find that transverse wave induced Kelvin–Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped Mg II k and Ca II H source functions in the transverse cross-section, potentially allowing IRIS to capture the Kelvin–Helmholtz instability dynamics. Twists and currents propagate along the spicule at Alfvénic speeds, and the temperature variations within TWIKH rolls, produce the sudden appearance/disappearance of strands seen in Doppler velocity and in Ca II H intensity. However, only a mild intensity increase in higher-temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Lyu, B.; Shi, T. H.; Xu, L. Q.; Wang, F. D.; Li, Q.; Zhang, J. Z.; Hu, L. Q.; Li, J. G.; the EAST Team
2018-02-01
In this paper, we report an experimental study of the effect of a m/n = -2/-1 (m, n being poloidal and toroidal mode number, separately) classical tearing mode on (intermediate, small)-scale microturbulence (see the definition in section 1) in the core of an EAST L mode plasma discharge. The microturbulence at different scales k ⊥ = 10, 18 and 26 cm-1 (i.e., {k}\\perp {ρ }i˜ 2, 3.6 and 5.2, respectively. Here, {ρ }i is the ion gyroradius and k ⊥ is the perpendicular wavenumber) were measured simultaneously by the EAST multi-channel tangential CO2 laser collective scattering diagnostics. Experimental results confirm that the decrease of microturbulent Doppler shift ({f}{{Doppler}}={k}t{v}t/2π ), inversely correlated to the increase of microturbulent mean frequency (defined in equation (1)), is due to the 2/1 tearing mode. Temporal evolution of frequency-integrated spectral power S tot of microturbulence, found to be correlated with the width of 2/1 magnetic island, suggests the modulation effect on microturbulence by the tearing mode beyond Doppler shift effect. Modulation effects on microturbulence by the tearing mode are further demonstrated by the correlation between microturbulent envelope and magnetic fluctuations.
Luminosity Dependence and Search Doppler
NASA Technical Reports Server (NTRS)
VanParadijs, Johannes A.
1998-01-01
The research supported by this grant covered two projects: (1) a study of the luminosity dependence of the properties of atoll sources; and (2) a search for Doppler shifts in the pulse arrival times of the anomalous pulsar 4U 0142+61. Following the discovery of kilohertz quasi-periodic oscillations (QPOS) in Sco X-1 studies of the X-ray properties of atoll sources have been dominated by searches for these QPOS, and the study of their dependence on other source properties, such as X-ray luminosity and spectral state. In the project supported by grant NAG5-3269 we have detected kHz QPOs for several atoll sources. The physical interpretation of these QPO is as yet unclear, but simple models (such as the Keplerian beat frequency model) can probably be excluded. The results of this research have been reported. We have studied the X-ray pulsations of the anomalous X-ray pulsar 4U 0142+61 using the Rossi XTE. A detailed search for Doppler shifts did not lead to a positive detection. The upper limits exclude almost all types of possible companion stars, except white dwarfs. However, the latter can be excluded since anomalous X-ray pulsars are very young objects. We therefore conclude that anomalous X-ray pulsars are single neutron stars.
Local time distribution of the SSC-associated HF-Doppler frequency shifts
NASA Technical Reports Server (NTRS)
Kikuchi, T.; Sugiuchi, H.; Ishimine, T.
1985-01-01
The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field.
Direct measurement of Lorentz transformation with Doppler effects
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q, r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.
ERIC Educational Resources Information Center
Walker, Jearl
1983-01-01
Three physics experiments are described, minimizing difficulties for amateur experimenters. One experiment demonstrates the Doppler shift of light, converting the phenomenon into sound. The second measures Planck's constant. The third measures the universal gravitational constant, which does the same in Newton's theory of gravitation. (Author/JN)
Remote sensing of mesospheric winds with the High-Resolution Doppler Imager
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.
1992-01-01
Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.
Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin
2000-01-01
The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.
Transcutaneous measurement of volume blood flow
NASA Technical Reports Server (NTRS)
Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.
1974-01-01
Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.
NASA Technical Reports Server (NTRS)
Bauman, Leslie E.
1990-01-01
The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.
Improved test of time dilation in special relativity.
Saathoff, G; Karpuk, S; Eisenbarth, U; Huber, G; Krohn, S; Muñoz Horta, R; Reinhardt, S; Schwalm, D; Wolf, A; Gwinner, G
2003-11-07
An improved test of time dilation in special relativity has been performed using laser spectroscopy on fast ions at the heavy-ion storage-ring TSR in Heidelberg. The Doppler-shifted frequencies of a two-level transition in 7Li+ ions at v=0.064c have been measured in the forward and backward direction to an accuracy of Deltanu/nu=1 x 10(-9) using collinear saturation spectroscopy. The result confirms the relativistic Doppler formula and sets a new limit of 2.2 x 10(-7) for deviations from the time dilation factor gamma(SR)=(1-v2/c2)(-1/2).
Lifetime measurements of high-lying short lived states in {sup 69}As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matejska-Minda, M.; Bednarczyk, P.; Fornal, B.
2012-10-20
Lifetimes of high-spin states in {sup 69}As have been measured using Doppler shift attenuation technique with the GASP and RFD setup. The determined transition probabilities indicate large deformation associated with some rotational bands in this nucleus.
Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Hui; Xia, Lidong; Li, Bo
2014-10-20
The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow velocities at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometers. We measure the outflow velocity at coronal heights in several on-disk long-duration plumes, which are located in coronal holes (CHs) and show significant blueshifts throughout the entire observational period. In one case, a plume is measured four hours apart. The deduced outflow velocitiesmore » are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow velocity profile along the plumes, finding that the velocity corrected for the line-of-sight effect can reach 10 km s{sup –1} at 1.02 R {sub ☉}, 15 km s{sup –1} at 1.03 R {sub ☉}, and 25 km s{sup –1} at 1.05 R {sub ☉}. This clear signature of steady acceleration, combined with the fact that there is no significant blueshift at the base of plumes, provides an important constraint on plume models. At the height of 1.03 R {sub ☉}, EIS also deduced a density of 1.3 × 10{sup 8} cm{sup –3}, resulting in a proton flux of about 4.2 × 10{sup 9} cm{sup –2} s{sup –1} scaled to 1 AU, which is an order of magnitude higher than the proton input to a typical solar wind if a radial expansion is assumed. This suggests that CH plumes may be an important source of the solar wind.« less
A demonstrator for an incoherent Doppler wind lidar receiver
NASA Astrophysics Data System (ADS)
Fabre, F.; Marini, A.; Sidler, Thomas C.; Morancais, Didier; Fongy, G.; Vidal, Ph.
2018-04-01
The knowledge of wind fields for a global terrestrial coverage and accurate altitude sampling is one of the main keys for improvement of meteorological predictions and general understanding of atmosphere behaviour. The best way to recover this information is remote sensing from space using low Earth orbit satellites. The measurement principle is to analyse the Doppler shift of the flux emitted by the space instrument and backscattered by the atmosphere. One of the most promising principle for Doppler shift measurement is the direct detection which does not need local oscillators. what significantly simplifies the design of such a space-borne receiver. ESA-ESTEC initiated at early 95' a programme called "lncoherent Doppler Wind Lidar (IDWL) technologies" for the study and bread-boarding phase. MMS won this contract proposing an original concept based on the use of a Fizeau high resolution interferometer working in the UV band. coupled with an intensified CCD. This concept is patented by MMS, as well as the special CCD timing sequence that will be depicted below. The programme begun by a study of the space-borne instrument in order to identify main constraints and define the receiver as could be for a flight model. A detailed performance model was established and parametric analysis allowed to optimise the concept in order to reach required performances. This study phase finally provided the definition of a bread-board for expected performances demonstration. Moreover, the Laser Signal Simulator (LSS) which is used to simulate the Lidar echo in term of amplitude as well as frequency modulation was defined at this step. The performances of this test support equipment are of main importance for the validation of the demonstrator design and performances. The second part of the study aimed at defining the derailed design of the demonstrator and associated test support equipment as well as initiating preliminary validation experiments on most critical technologies, like Fizeau interferometer which needs particularly high thermal stability and spectral resolution. At the end of this design phase. the test bench equipment begun to be manufactured and equipment test results preliminary assessed the study phase results. After integration, the correct operation and control of the overall test bench were assessed and performance tests were undertaken . The final conclusion of this programme aimed at updating the performance simulation software in order to refine expected performances for the future flight instrument.
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
NASA Astrophysics Data System (ADS)
Zhang, Jisheng; Kempton, Eliza; Rauscher, Emily
2017-01-01
In recent years, astronomers have begun successfully observing the atmospheres of extrasolar planets using ground-based telescopes equipped with spectrographs capable of observing at high spectral resolution (R~105). Such studies are capable of diagnosing the atmospheric structure, composition, and dynamics (winds and rotation) of both transiting and non-transiting exoplanets. However, few studies have examined how the 3-D atmospheric dynamics could alter the emitted light of hot Jupiters at such high spectral resolution. Here, we present a model to explore such influence on the hot Jupiters’ thermal emission spectra. Our aim is to investigate the extent to which the effects of 3-D atmospheric dynamics are imprinted on planet-averaged thermal emission spectra. We couple together a 3-D general circulation model of hot Jupiter atmospheric dynamics (Rauscher & Menou, 2012) with a radiative transfer solver to predict the planet’s disk-integrated emission spectrum as a function of its orbital phase. For the first time, we self-consistently include the effects of the line-of-sight atmospheric motions (resulting from winds and rotation) in the calculation to produce Doppler-shifted spectral line profiles that result from the atmospheric dynamics. We focus our study on three benchmark hot Jupiters, HD 189733b, HD 209458b, and WASP-43b which have been the focus of previous detailed observational studies. We find that the high-resolution Doppler shifted thermal emission spectra can be used to diagnose key properties of the dynamical atmosphere - the planet’s longitudinal temperature and wind structure, and its rotation rate.
Theory of Parabolic Arcs in Interstellar Scintillation Spectra
NASA Astrophysics Data System (ADS)
Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.
2006-01-01
Interstellar scintillation (ISS), observed as time variation in the intensity of a compact radio source, is caused by small-scale structure in the electron density of the interstellar plasma. Dynamic spectra of ISS show modulation in radio frequency and time. Here we relate the (two-dimensional) power spectrum of the dynamic spectrum-the secondary spectrum-to the scattered image of the source. Recent work has identified remarkable parabolic arcs in secondary spectra. Each point in a secondary spectrum corresponds to interference between points in the scattered image with a certain Doppler shift and a certain delay. The parabolic arc corresponds to the quadratic relation between differential Doppler shift and delay through their common dependence on scattering angle. We show that arcs will occur in all media that scatter significant power at angles larger than the rms angle. Thus, effects such as source diameter, steep spectra, and dissipation scales, which truncate high angle scattering, also truncate arcs. Arcs are equally visible in simulations of nondispersive scattering. They are enhanced by anisotropic scattering when the spatial structure is elongated perpendicular to the velocity. In weak scattering the secondary spectrum is directly mapped from the scattered image, and this mapping can be inverted. We discuss additional observed phenomena including multiple arcs and reverse arclets oriented oppositely to the main arc. These phenomena persist for many refractive scattering times, suggesting that they are due to large-scale density structures, rather than low-frequency components of Kolmogorov turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauscher, Emily; Kempton, Eliza M. R.
We study the feasibility of observationally constraining the rotation rate of hot Jupiters, planets that are typically assumed to have been tidally locked into synchronous rotation. We use a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively), including the effect of variable stellar heating. We compare two observable properties: (1) the spatial variation of flux emitted by the planet, measurable in orbital phase curves, and (2) the net Doppler shift inmore » transmission spectra of the atmosphere, which is tantalizingly close to being measurable in high-resolution transit spectra. Although we find little difference between the observable properties of the synchronous and non-synchronous models of HD 189733b, we see significant differences when we compare the models of HD 209458b. In particular, the slowly rotating model of HD 209458b has an atmospheric circulation pattern characterized by westward flow and an orbital phase curve that peaks after secondary eclipse (in contrast to all of our other models), while the quickly rotating model has a net Doppler shift that is more strongly blueshifted than the other models. Our results demonstrate that the combined use of these two techniques may be a fruitful way to constrain the rotation rate of some planets and motivate future work on this topic.« less
Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse
NASA Astrophysics Data System (ADS)
Adair, Henry S., III
1998-07-01
Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.
Luisa, Siciliani; Vitale, Giovanna; Sorbo, Anna Rita; Maurizio, Pompili; Lodovico, Rapaccini Gian
2017-03-01
It has been demonstrated that Doppler waveform of the hepatic vein (normally triphasic) is transformed into a biphasic or monophasic waveform in cirrhotic patients. The compressive mechanism of liver tissue has been considered up till now the cause of this change. Moreover, cirrhotics show, after USCA injection, a much earlier HVTT due to intrahepatic shunts. Our aim was to prospectively evaluate the correlation between Doppler pattern of hepatic vein and HVTT of a second-generation USCA; we also correlated HVTT with the most common indexes of portal hypertension. We enrolled 38 participants: 33 cirrhotics and 5 healthy controls. Doppler shift signals were obtained from the right hepatic vein. To characterize the hepatic vein pattern, we used the hepatic vein waveform index (HVWI). This index becomes >1 with the appearance of the triphasic waveform. We recorded a clip from 20 s before to 2 min after a peripheral intravenous bolus injection of 2.4 ml of USCA (sulfur hexafluoride).The time employed by USCA to cross the liver from the hepatic artery and portal vein to the hepatic vein was defined as HA-HVTT and PV-HVTT, respectively. Cirrhotics with low HVWI showed an earlier transit time; participants with higher HVWI had a longer transit time ( p < 0.001). HVTT was earlier as MELD, Child-Pugh score and spleen diameter increased. Patients with ascites and varices of large size had significantly shorter transit times. Abnormal hepatic vein Doppler waveform in cirrhotic patients could be due to intrahepatic shunts. HVTT could be useful in the non-invasive evaluation of portal hypertension.
Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.
2017-12-01
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.
Characterization of turbulent wake of wind turbine by coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin
2014-11-01
The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.
Holographic motion picture camera with Doppler shift compensation
NASA Technical Reports Server (NTRS)
Kurtz, R. L. (Inventor)
1976-01-01
A holographic motion picture camera is reported for producing three dimensional images by employing an elliptical optical system. There is provided in one of the beam paths (the object or reference beam path) a motion compensator which enables the camera to photograph faster moving objects.
Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect
NASA Astrophysics Data System (ADS)
Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli
2018-03-01
The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.
Mass motions in the solar chromosphere and transition zone
NASA Technical Reports Server (NTRS)
Mein, P.; Simon, G.; Vial, J. C.; Shine, R. A.
1982-01-01
A comparison is made between H-alpha and C IV observations of Active Region 2717 on October 9, 1980. On the basis of this comparison, it is found that upward velocities are present above sunspots in the chromosphere-corona transition zone (20 km/s). The downward velocities are found to be well correlated in both lines. Doppler-shift ratios between C IV and H-alpha levels (approximately 10) are seen to be much smaller than expected from density ratio estimates. The comparison is seen as suggesting that flow lines are probably far from vertical in the transition zone. It is pointed out, however, that this depends on model densities that may not be correct. A simple method for comparing matter flows is presented. The best fit between H-alpha and C IV levels is obtained when C IV Doppler shifts are multiplied by the line intensity to the power 0.5 (approximately) in order to make allowance for density fluctuations.
A experiment on radio location of objects in the near-Earth space with VLBI in 2012
NASA Astrophysics Data System (ADS)
Nechaeva, M.; Antipenko, A.; Bezrukovs, V.; Bezrukov, D.; Dementjev, A.; Dugin, N.; Konovalenko, A.; Kulishenko, V.; Liu, X.; Nabatov, A.; Nesteruk, V.; Pupillo, G.; Reznichenko, A.; Salerno, E.; Shmeld, I.; Shulga, O.; Sybiryakova, Y.; Tikhomirov, Yu.; Tkachenko, A.; Volvach, A.; Yang, W.-J.
An experiment on radar location of space debris objects using of the method of VLBI was carried out in April, 2012. The radar VLBI experiment consisted in irradiation of some space debris objects (4 rocket stages and 5 inactive satellites) with a signal of the transmitter with RT-70 in Evpatoria, Ukraine. Reflected signals were received by a complex of radio telescopes in the VLBI mode. The following VLBI stations took part in the observations: Ventspils (RT-32), Urumqi (RT-25), Medicina (RT-32) and Simeiz (RT-22). The experiment included measurements of the Doppler frequency shift and the delay for orbit refining, and measurements of the rotation period and sizes of objects by the amplitudes of output interferometer signals. The cross-correlation of VLBI-data is performed at a correlator NIRFI-4 of Radiophysical Research Institute (Nizhny Novgorod). Preliminary data processing resulted in the series of Doppler frequency shifts, which comprised the information on radial velocities of the objects. Some results of the experiment are presented.
NASA Technical Reports Server (NTRS)
Strand, L. D.; Schultz, A. L.; Reedy, G. K.
1972-01-01
A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.
Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system
NASA Astrophysics Data System (ADS)
Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.
2016-11-01
An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.
NASA Technical Reports Server (NTRS)
Mcdonell, V. G.; Samuelsen, G. S.
1989-01-01
Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.
NASA Astrophysics Data System (ADS)
Volkov, M. V.; Kostrova, D. A.; Margaryants, N. B.; Gurov, I. P.; Erofeev, N. P.; Dremin, V. V.; Zharkikh, E. V.; Zherebtsov, E. A.; Kozlov, I. O.; Dunaev, A. V.
2017-03-01
Laser Doppler flowmetry (LDF) is widely used for diagnosing blood microcirculation diseases. It is well known that the Doppler shift of laser radiation scattered by moving red blood cells (RBC) can be assessed through analyzing photocurrent produced by a photodetector. LDF signal contains information about regulating blood flow rhythms: myogenic, cardiac, nervous and endothelial. The method of videocapillaroscopy (VCS) allows local capillary blood flow velocity evaluation and, using video data processing algorithms, is able to assess RBC velocity changes into capillary. We present the results of simultaneous investigations of changes in tissue perfusion of the distal phalanx of human finger by the LDF as well as changes in capillary blood flow velocity in the nail bed evaluated by the VCS method during arterial occlusion test. The experimental results confirmed the correspondence between blood perfusion and blood flow velocity.
Photonic Doppler velocimetry lens array probe incorporating stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2015-09-01
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
NASA Technical Reports Server (NTRS)
Miller, A. J.; Hays, P. B.; Abreu, V.; Long, C.; Kann, D.
1994-01-01
The NOAA National Weather Service currently derives global stratospheric wind analyses via several procedures. The first is the operational data assimilation system that extends from the surface up to about 50 mb and is in process of being tested to about 10 mb. In addition, a balanced wind is determined from the available Climate Analysis Center stratospheric height analyses that encompass the 70-0.4 mb region. The High Resolution Doppler Imager (HRDI) recently launched as a member of the Upper Atmosphere Research Satellite (UARS) is the first satellite instrument designed to measure winds in this stratospheric region and, thus, provide a basic evaluation of the NMC derived products. The HRDI accomplishes this by utilizing a triple-etalon Fabry-Perot interferometer that allows one to measure the Doppler shift of O2 absorption and emission features of the atmosphere, from which the wind field can be determined.
Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system.
Baltzer, M M; Craig, D; Den Hartog, D J; Nishizawa, T; Nornberg, M D
2016-11-01
An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.
Signal processing of aircraft flyover noise
NASA Technical Reports Server (NTRS)
Kelly, Jeffrey J.
1991-01-01
A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.
Multipoint photonic doppler velocimetry using optical lens elements
Frogget, Brent Copely; Romero, Vincent Todd
2014-04-29
A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.
Great Red Spot's detection with the Juno gravity experiment
NASA Astrophysics Data System (ADS)
Parisi, M.; Folkner, W. M.
2017-12-01
The Juno spacecraft entered orbit about Jupiter in July 2016. During the perijoves (or closest approaches to Jupiter), Juno carries out observations of the magnetosphere, atmosphere and gravity field of the planet. The gravity field is estimated from precise measurements of the Doppler shift of the Juno radio signal and provides information on the Jovian interior structure.In July 2017 the 7th Juno perijove was over the Great Red Spot. The primary goal was determining differences in ammonia and water abundance in the GRS using the Microwave Radiometer instrument, while Doppler data was acquired acquired on a secondary basis. We present results of analysis of the PJ7 Doppler data to constrain the mass density variations of the GRS relative to the global average. We also present analysis to determine whether future Juno data will provide stronger constraints on the structure of the GRS.
Edge technique for measurement of laser frequency shifts including the Doppler shift
NASA Technical Reports Server (NTRS)
Korb, Larry (Inventor)
1991-01-01
A method is disclosed for determining the frequency shift in a laser system by transmitting an outgoing laser beam. An incoming laser beam having a frequency shift is received. A first signal is acquired by transmitting a portion of the incoming laser beam to an energy monitor detector. A second signal is acquired by transmitting a portion of the incoming laser beam through an edge filter to an edge detector, which derives a first normalized signal which is proportional to the transmission of the edge filter at the frequency of the incoming laser beam. A second normalized signal is acquired which is proportional to the transmission of the edge filter at the frequency of the outgoing laser beam. The frequency shift is determined by processing the first and second normalized signals.
NASA Astrophysics Data System (ADS)
Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team
2014-10-01
The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.
Spectral Analysis Flare ribbons by NST and IRIS
NASA Astrophysics Data System (ADS)
Huang, Nengyi; Xu, Yan; Wang, Haimin; Jing, Ju
2017-08-01
As one of the most powerful phenomena of solar activities, flares have long been observed and studied extensively. Taking advantages of observing capabilities of modern solar telescopes and focal-plane instruments such as the Interface Region Imaging Spectrograph (IRIS) and the 1.6 m New Solar Telescope (NST) at Big Bear Solar observatory (BBSO), we are able to obtain high resolution imaging spectroscopic data in UV, visible and near-infrared (NIR) wavelengths. Here we present the spectral analysis of an M6.5 flare (SOL2015-06-22T18:23) which was well covered by the joint observation of IRIS and NST. In the visible wavelengths H-alpha and TiO, we can separate the flare ribbon into a very narrow leading front and faint trailing component, of which the former is characterized by the intense emission and significant Doppler signals. In the IRIS UV spectra, the ribbon front shows distinct properties, such as the line broadening, Doppler shifts and central reversal pattern, which are consistent with the visible observations. These characteristics suggest that the ribbon front to be the p
The vacuum friction paradox and related puzzles
NASA Astrophysics Data System (ADS)
Barnett, Stephen M.; Sonnleitner, Matthias
2018-04-01
The frequency of light emitted by a moving source is shifted by a factor proportional to its velocity. We find that this Doppler shift requires the existence of a paradoxical effect: that a moving atom radiating in otherwise empty space feels a net or average force acing against its direction motion and proportional in magnitude to is speed. Yet there is no preferred rest frame, either in relativity or in Newtonian mechanics, so how can there be a vacuum friction force?
Low Charge States of Si and S: from Cygnus X-1 to the Lab and Back
NASA Astrophysics Data System (ADS)
Hell, Natalie; Miškovičova, I.; Hanke, M.; Brown, G. V.; Wilms, J.; Clementson, J.; Beiersdorfer, P.; Liedahl, D. A.; Pottschmidt, K.; Porter, F.; Kilbourne, C.; Kelley, R. L.; Nowak, M.; Schulz, N. S.
2013-04-01
The X-ray light curves of the high mass X-ray binary (HMXB) Cygnus X-1 are shaped by strong, relatively short, absorption dips. While spectra extracted from the dip free phases are dominated by absorption lines of the Rydberg series of H- and He-like ions, 1s-2p transitions of lower ionized Si and S appear in the dip spectra. This shift in charge balance suggests that we probe “clumps” of cold material embedded in the companion's stellar wind as they cross our line of sight. Determining the bulk motion of these clumps by measuring the Doppler shifts of these lines as a function of dipping strength and ionization state can confirm this theory. Unfortunately, the predicted uncertainty for theoretical calculations - if available at all - is of the order of the expected shifts in the system. To overcome this lack of reliable reference wavelengths, we measured the Kα spectra of H- through F-like Si and S with the EBIT Calorimeter Spectrometer (ECS) and the Lawrence Livermore National Laboratory electron beam ion trap EBIT-I. We then directly apply these new line centers to calculate the Doppler shifts of the lines observed in Cygnus X-1. With this approach, we find shifts consistent with constant velocity of the absorber throughout all ionization states and, hence, provide evidence for an onion-like ion structure of the clumps. Funded by BMWi under DLR grant 50OR1207. Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA grants.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sudip; Bhattacharya, Dipankar; Thampan, Arun V.
2001-08-01
We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.
Doppler imaging with dual-detection full-range frequency domain optical coherence tomography
Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.
2010-01-01
Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488
Hybrid catadioptric system for advanced optical cavity velocimetry
Frayer, Daniel K.
2018-02-06
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Exploitation of SAR data for measurement of ocean currents and wave velocities
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Lyzenga, D. R.; Klooster, A., Jr.
1981-01-01
Methods of extracting information on ocean currents and wave orbital velocities from SAR data by an analysis of the Doppler frequency content of the data are discussed. The theory and data analysis methods are discussed, and results are presented for both aircraft and satellite (SEASAT) data sets. A method of measuring the phase velocity of a gravity wave field is also described. This method uses the shift in position of the wave crests on two images generated from the same data set using two separate Doppler bands. Results of the current measurements are pesented for 11 aircraft data sets and 4 SEASAT data sets.
An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density
NASA Astrophysics Data System (ADS)
Penn, M. J.
2000-12-01
From 15:33 through 16:02 UT on 13 June 1998, observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SOHO/CDS instruments as part of the SOHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region between 12-14 June 1998, and that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy data covered 512 × 512 arc sec of the disk center and were spectrally centered at the Hei 1083 nm line and captured +/-1.0 nm of surrounding solar spectrum. The Hei absorption line is seen blue-shifted to velocities of between 200 and 300 km s^-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s^-1 along a path inclined roughly 49 deg to the solar surface and rises to a height of just over 1.5 solar radii before it becomes too diffuse to follow. The filament also shows internal motions with multiple Doppler components shifted by +/-25 km s^-1. Finally, the KPVT data show no Stokes V profiles in the Doppler-shifted Hei 1083.03 nm absorption to a limit of roughly 3×10^-3 times the continuum intensity. The SOHO/CDS scanned the center of the KPVT FOV using seven EUV lines; Doppler-shifted filament emission is seen in lines from Hei 58.4 nm, Heii 30.4 nm, Oiv 55.5 nm, Ov 63.0 nm, Nevi 56.3 nm, and Mgx 61.0 nm representing temperatures from about 2×10^4K through 1×10^6K. Bound-free continuum absorption from Hi, without confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ_H I =4.8+/-2.5×10^17 cm^-2. Spatial maps show that this filament absorption is more confined than the regions which show emission.
NASA Astrophysics Data System (ADS)
Nijenhuis, Jan R.; Visser, Huib; Kruizinga, Bob
2003-10-01
Measuring the wind speed from a satellite is not new. However measuring with great precision is by far not trivial. Various methods are available for that. A common method is to use the Doppler effect. A UV-laser on board of the satellite is used to "fire" to the earth atmosphere. Some photons will be reflected back to the satellite. Because of the speed of the particles in the air the photons will experience a small Doppler shift. Wind speeds of 1 m/s are hereby equivalent to a wave length shift of 1 femtometer. The paper presents the patented method of how to measure these small wavelength shifts without running into trouble concerning the mechanical design. It will understood that such instrument will be very sensitive to thermal variations (a challenging requirement was that a temperature change of 0.2° in 7 seconds was specified at the interface surfaces). The optical system makes use of a modified Michelson interferometer while the mechanical system automatically compensates for thermal expansion effects. Originally the idea was to make a complete Zerodur structure to eliminate the thermal effects. However it appeared to be possible to use a titanium structure with certain elements made from invar and aluminium. No need to say that this reduced risk and cost of the instrument drastically.
Long, Chloe V; Flint, James A; Lepper, Paul A
2010-10-01
Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.
Enlivening Physics, a Local Video Disc Project.
ERIC Educational Resources Information Center
McInerney, M.
1989-01-01
Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)
Beam maser measurements of CH3OH rotational transitions
NASA Technical Reports Server (NTRS)
Gaines, L.; Casleton, K. H.; Kukolich, S. G.
1974-01-01
Precise measurements of rotational transitions in methanol are reported that were made by means of beam maser spectrometers. No hyperfine structure was resolved at a resonance line width of 8 kHz. Accurate center frequencies for the transitions measured are useful for determining Doppler shifts for observed interstellar lines.
Atmospheric scattering effects on ground-based measurements of thermospheric winds
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Schmitt, G. A.; Hays, P. B.; Meriwether, J. W., Jr.; Tepley, C. A.; Cogger, L. L.
1983-01-01
Convergent or divergent thermospheric wind patterns detected by ground-based Fabry-Perot interferometric measurements of the Doppler shifts of atomic lines are demonstrated to occur in the presence of strong intensity gradients and a scattering atmosphere. Consideration is given to the color shifts observed when sighting to the north or the south, and a numerical model is developed to describe the wind patterns which produce the recorded shifts. An account is taken of the direct and scattered components of the brightness, with the atmosphere treated as a single scattering layer with a reflecting surface underneath. A scattering coefficient is calculated, together with the line shape of the wavelength shifts. The scattered light is demonstrated, both through simulations and measurements taken near Calgary, Alberta, to produce convergence or divergence of the color shifts, depending on the line-of-sight of the viewing.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Doppler Global Velocimetry Measurements for Supersonic Flow Fields
NASA Technical Reports Server (NTRS)
Meyers, James F.
2005-01-01
The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:
Automatic retinal blood flow calculation using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2008-02-01
Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.
Mincey, John S.; Silva-Martinez, Jose; Karsilayan, AydinIlker; ...
2017-03-17
In this study, a coherent subsampling digitizer for pulsed Doppler radar systems is proposed. Prior to transmission, the radar system modulates the RF pulse with a known pseudorandom binary phase shift keying (BPSK) sequence. Upon reception, the radar digitizer uses a programmable sample-and-hold circuit to multiply the received waveform by a properly time-delayed version of the known a priori BPSK sequence. This operation demodulates the desired echo signal while suppressing the spectrum of all in-band noncorrelated interferers, making them appear as noise in the frequency domain. The resulting demodulated narrowband Doppler waveform is then subsampled at the IF frequency bymore » a delta-sigma modulator. Because the digitization bandwidth within the delta-sigma feedback loop is much less than the input bandwidth to the digitizer, the thermal noise outside of the Doppler bandwidth is effectively filtered prior to quantization, providing an increase in signal-to-noise ratio (SNR) at the digitizer's output compared with the input SNR. In this demonstration, a delta-sigma correlation digitizer is fabricated in a 0.18-μm CMOS technology. The digitizer has a power consumption of 1.12 mW with an IIP3 of 7.5 dBm. The digitizer is able to recover Doppler tones in the presence of blockers up to 40 dBm greater than the Doppler tone.« less
Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km
NASA Astrophysics Data System (ADS)
Yan, Zhaoai; Hu, Xiong; Guo, Wenjie; Guo, Shangyong; Cheng, Yongqiang; Gong, Jiancun; Yue, Jia
2017-02-01
A mobile Doppler lidar system has been developed to simultaneously measure zonal and meridional winds and temperature from 30 to 70 km. Each of the two zonal and meridional wind subsystems employs a 15 W power, 532 nm laser and a 1 m diameter telescope. Iodine vapor filters are used to stabilize laser frequency and to detect the Doppler shift of backscattered signal. The integration method is used for temperature measurement. Experiments were carried out using the mobile Doppler lidar in August 2014 at Qinghai, China (91°E, 38°N). The zonal wind was measured from 20 to 70 km at a 3 km spatial resolution and 2 h temporal resolution. The measurement error is about 0.5 m/s at 30 km, and 10 m/s at 70 km. In addition, the temperature was measured from 30 to 70 km at 1 km spatial resolution and 1 h temporal resolution. The temperature measurement error is about 0.4 K at 30 km, and 8.0 K at 70 km. Comparison of the lidar results with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the zonal wind of the Modern-Era Retrospective Analysis for Re-search and Applications (MERRA), and radiosonde zonal wind shows good agreement, indicating that the Doppler lidar results are reliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2014-04-28
We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with amore » high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)« less
NASA Astrophysics Data System (ADS)
Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.
2017-12-01
Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.
Nonlinear MHD Waves in a Prominence Foot
NASA Astrophysics Data System (ADS)
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Retinal nerve fiber layer thickness map and blood flow pulsation measured with SDOCT
NASA Astrophysics Data System (ADS)
Mujat, Mircea; Chan, Raymond C.; Cense, Barry; Pierce, Mark; Park, Hyle; Joo, Chulmin; Chen, Teresa C.; de Boer, Johannes F.
2006-02-01
Spectral-Domain Optical Coherence Tomography (SDOCT) allows for in-vivo video-rate investigation of biomedical tissue depth structure intended for non-invasive optical diagnostics. It has been suggested that OCT can be used for di-agnosis of glaucoma by measuring the thickness of the Retinal Nerve Fiber Layer (RNLF). We present an automated method for determining the RNFL thickness from a 3-D dataset based on edge detection using a deformable spline algo-rithm. The RNFL thickness map is combined with an integrated reflectance map and retinal cross-sectional images to provide the ophthalmologist with a familiar image for interpreting the OCT data. The video-rate capabilities of our SDOCT system allow for mapping the true retinal topography since motion artifacts are significantly reduced as com-pared to slower time-domain systems. Combined with Doppler Velocimetry, SDOCT also provides information on retinal blood flow dynamics. We analyzed the pulsatile nature of the bidirectional flow dynamics in an artery-vein pair for a healthy volunteer at different locations and for different blood vessel diameters. The Doppler phase shift is determined as the phase difference at the same point of adjacent depth profiles, and is integrated over the area delimited by two circles corresponding to the blood vessels location. Its temporal evolution clearly shows the blood flow pulsatile nature, the cardiac cycle, in both artery and vein. The artery is identified as having a stronger variation of the integrated phase shift. We observe that artery pulsation is always easily detectable, while vein pulsation seems to depend on the veins diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofman, L.; Knizhnik, K.; Kucera, T.
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evidentmore » as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.« less
Real-time high-velocity resolution color Doppler OCT
NASA Astrophysics Data System (ADS)
Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.
2001-05-01
Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.
Laser Doppler flowmetry in endodontics: a review.
Jafarzadeh, H
2009-06-01
Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.
Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys
NASA Astrophysics Data System (ADS)
Sitek, Jozef
2008-10-01
Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.
NASA Technical Reports Server (NTRS)
Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.
1989-01-01
A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica
2017-01-31
Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.
Lifetime measurement of neutron-rich even-even molybdenum isotopes
NASA Astrophysics Data System (ADS)
Ralet, D.; Pietri, S.; Rodríguez, T.; Alaqeel, M.; Alexander, T.; Alkhomashi, N.; Ameil, F.; Arici, T.; Ataç, A.; Avigo, R.; Bäck, T.; Bazzacco, D.; Birkenbach, B.; Boutachkov, P.; Bruyneel, B.; Bruce, A. M.; Camera, F.; Cederwall, B.; Ceruti, S.; Clément, E.; Cortés, M. L.; Curien, D.; De Angelis, G.; Désesquelles, P.; Dewald, M.; Didierjean, F.; Domingo-Pardo, C.; Doncel, M.; Duchêne, G.; Eberth, J.; Gadea, A.; Gerl, J.; Ghazi Moradi, F.; Geissel, H.; Goigoux, T.; Goel, N.; Golubev, P.; González, V.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Givechev, A.; Habermann, T.; Hackstein, M.; Harkness-Brennan, L.; Henning, G.; Hess, H.; Hüyük, T.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Knoebel, R.; Kojouharov, I.; Korichi, A.; Korten, W.; Kurz, N.; Labiche, M.; Lalović, N.; Louchart-Henning, C.; Mengoni, D.; Merchán, E.; Million, B.; Morales, A. I.; Napoli, D.; Naqvi, F.; Nyberg, J.; Pietralla, N.; Podolyák, Zs.; Pullia, A.; Prochazka, A.; Quintana, B.; Rainovski, G.; Reese, M.; Recchia, F.; Reiter, P.; Rudolph, D.; Salsac, M. D.; Sanchis, E.; Sarmiento, L. G.; Schaffner, H.; Scheidenberger, C.; Sengele, L.; Singh, B. S. Nara; Singh, P. P.; Stahl, C.; Stezowski, O.; Thoele, P.; Valiente Dobon, J. J.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.; Zielinska, M.; PreSPEC Collaboration
2017-03-01
Background: In the neutron-rich A ≈100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A =100 up to mass A =108 , and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the γ ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a γ -ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A =100 to A =108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: τ =29 .7-9.1+11.3 ps for the 4+ state of 108Mo and τ =3 .2-0.7+0.7 ps for the 6+ state of 102Mo. Conclusions: The reduced transition strengths B (E 2 ) , calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A =100 to A =108 with a maximum reached at N =64 . The transition probabilities decrease for 108Mo which may be related to its well-pronounced triaxial shape indicated by the calculations.
Coordinated satellite and incoherent scatter observations. [of the ionosphere
NASA Technical Reports Server (NTRS)
Calderon, C. H. J.
1975-01-01
Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the Cooperative Sounding Rocket Program are reported. The following types of data were acquired: (1) electron density and temperature, (2) vertical plasma drift, (3) electrojet relative echo power density, (4) electrojet Doppler shift and condition, and (5) 150 km echoing region.
(abstract) Dynamics of Meteor Trails Deposited in the Equatorial Electrojet
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Kudeki, Erhan
1996-01-01
Previously we reported that the meteor echoes detected at the Jicamarca Radio Observatory exhibit some unusual properties. In summary, the echo durations are very long ..., radio wave scattering is non-specular ..., and the doppler spectra of the scattered signals contain components that are red-shifted ... immediately after the onset of the echoes.
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
Solar Dynamics Observatory Lessons Learned
NASA Technical Reports Server (NTRS)
Rivera, Rachel; Uhl, Andrew; Secunda, Mark
2010-01-01
Mission is to study how solar activity is created and how space weather results from that activity. Atmospheric Imaging Assembly (AIA): High Resolution Images of 10 wavelengths every 10 seconds. Extreme Ultraviolet Variability Experiment (EVE): Measure Sun's brightness in EUV. Helioseismic and Magnetic Imager (HMI): Measures Doppler shift to study waves of the Sun. Launched February 11, 2010.
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2013-09-30
email: swinney@chaos.utexas.edu John Wilkin Department of Marine and Coastal Sciences, Rutgers University New Brunswick, NJ 08901-8521 phone...Doppler-shift field scattered by an object moving in a stratified medium, J. Acoust. Soc. Am., 113, 223-244, 2003. [11] Tang , D. J., J. N. Moum, J. F
Ultrafast two-dimensional lithium beam emission spectroscopy diagnostic on the EAST tokamak
NASA Astrophysics Data System (ADS)
Zoletnik, S.; Hu, G. H.; Tál, B.; Dunai, D.; Anda, G.; Asztalos, O.; Pokol, G. I.; Kálvin, S.; Németh, J.; Krizsanóczi, T.
2018-06-01
A diagnostic instrument is described for the Experimental Advanced Superconducting Tokamak (EAST) for the measurement of the edge plasma electron density profile and plasma turbulence properties. An accelerated neutral lithium beam is injected into the tokamak and the Doppler shifted 670.8 nm light emission of the Li2p-2s transition is detected. A novel compact setup is used, where the beam injection and observation take place from the same equatorial diagnostic port and radial-poloidal resolution is achieved with microsecond time resolution. The observation direction is optimized in order to achieve a sufficient Doppler shift of the beam light to be able to separate from the strong edge lithium line emission on this lithium coated device. A 250 kHz beam chopping technique is also demonstrated for the removal of background light. First results show the capability of measuring turbulence and its poloidal flow velocity in the scrape-off layer and edge region and the resolution of details of transient phenomena like edge localized modes with few microsecond time resolution.
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.; Brault, James W.
1990-11-01
Time series of the 2100/cm Delta v = 1 absorption bands of CO at the center of the solar disk and at the extreme limb have been recorded by Fourier transform spectrometer. The photospheric 5-min oscillation appears prominently at sun center. The peak-to-peak brightness temperature amplitude is roughly 300 K, and the peak-to-peak Doppler shift is roughly 1100 m/s. The 70 deg phase lag of maximum core intensity with respect to maximum redshift for the strongest Delta v = 1 absorptions is less than the 90 deg expected in the adiabatic limit. No dominant four-minute signal in the line intensity like that reported by Deming et al. (1984, 1986, and 1987) is found, nor is evidence for extreme fluctuations on short time scales like those proposed by Kalkofen et al. (1984). The strong Delta v = 1 lines exhibit systematic Doppler shifts of less than about 1 km/s, contrary to the predictions of transonic redshifts if the CO 'clouds' are associated with a dynamic cooling phase of the Ca II 'cell flashes.'
A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).
Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L
2008-04-03
Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
"simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Reimer, T. C.; Harter, W. G.
2014-06-01
A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."
Lifetimes of $sup 55$Co excited levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, G.F.; Chagnon, P.R.
1976-02-01
Gamma-rays deexciting $sup 55$CO levels have been studied in coincidence with deuterons detected in a particle telescope, in the $sup 54$Fe($sup 3$He,d$gamma$)$sup 55$Co reaction. Excitation energies, relative $gamma$-ray intensities, and Doppler-shift attenuations of 12 levels have been measured. Mean lifetimes and transition strengths are reported. The Doppler-shifted line shape of the 2164$Yields$0-keV transition has been analyzed and has been found consistent with the assumption of a single level. Lifetimes of selected levels are: 2164 keV, 125$sup +25$/sub -//sub 2//sub 0/ fs; 3301 keV, 50$sup +20$/sub -// sub 1//sub 5/ fs; 3322 keV, 45$sup +15$/sub -//sub 1//sub 0/ fs; 3641 keV,more » 300$sup +150$/sub -//sub 1//sub 0//sub 0/ fs; 4163 keV, 30$sup +15$/sub -//sub 1// sub 0/ fs; 4714 keV, 300$sup +200$/sub -//sub 1//sub 5//sub 0/ fs; 4719 keV, <30 fs; and 5172 keV, 10$sup +10$/sub -//sub 5/ fs. (AIP)« less
NASA Astrophysics Data System (ADS)
Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2005-12-01
Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.
NASA Astrophysics Data System (ADS)
Ponomarenko, P.; Menk, F. W.; Waters, C. L.
2004-12-01
SuperDARN HF radars are usually used to examine HF echoes from field-aligned ionospheric irregularity structures. However, ground scatter is also often recorded. Because the ground scatter signal is reflected from the ionosphere its Doppler shift is a sensitive indicator of ionospheric motions. We have used the TIGER radar, which operates at relatively low latitudes, to examine ground scatter returns with high time resolution. Ground scatter returns are present virtually every day and wave-like Doppler shift features are evident almost each time. Comparison with ground magnetometer data shows that these are the ionospheric signature of downgoing ULF waves. Several different types of wave features have been observed, including very large scale Pc5, harmonics of field line resonances in the Pc3-4 range, and bandlimited Pc4 at night. This paper presents examples and discusses the wave generation and propagation mechanisms. Furthermore, estimates of the ionospheric transfer function over the 10-110 mHz range are compared with results of numerical and analytical modelling.
NASA Technical Reports Server (NTRS)
Wright, E. L.
1983-01-01
Techniques for verifying the spectrum defined by Woody and Richards (WR, 1981), which serves as a base for dust-distorted models of the 3 K background, are discussed. WR detected a sharp deviation from the Planck curve in the 3 K background. The absolute intensity of the background may be determined by the frequency dependence of the dipole anisotropy of the background or the frequency dependence effect in galactic clusters. Both methods involve the Doppler shift; analytical formulae are defined for characterization of the dipole anisotropy. The measurement of the 30-300 GHz spectra of cold galactic dust may reveal the presence of significant amounts of needle-shaped grains, which would in turn support a theory of a cold Big Bang.
Detecting Patchy Reionization in the Cosmic Microwave Background.
Smith, Kendrick M; Ferraro, Simone
2017-07-14
Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.
Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao
2017-04-01
Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.
Infrasonic waves in the ionosphere generated by a weak earthquake
NASA Astrophysics Data System (ADS)
Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.
2011-08-01
A computer code has been developed to simulate the generation of infrasonic waves (frequencies considered ≤80 Hz) by a weak earthquake (magnitude ˜3.6), their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (˜160 km) where waves at the sounding frequency (3.59 MHz) of a continuous Doppler radar reflect. We have found that the pressure perturbation is 5.79×10-7 Pa (0.26% of the ambient value), the temperature perturbation is 0.088 K (0.015% of the ambient value) and the electron density perturbation is 2×108 m-3 (0.12% of the ambient value). The characteristic perturbation is found to be a bipolar pulse lasting ˜25 s, and the maximum Doppler shift is found to be ˜0.08 Hz, which is too small to be detected by the Doppler radar at the time of the earthquake.
Doppler-Zeeman mapping of the magnetic CP star HD 215441
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.
1997-07-01
The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.
Recent Doppler Backscattering results from EAST tokamak
NASA Astrophysics Data System (ADS)
Zhou, Chu; Liu, Adi; Zhang, Xiaohui; Hu, Jianqiang; Wang, Mingyuan; Yu, Changxuan; Liu, Wandong; Li, Hong; Lan, Tao; Sun, Xuan; Xie, Jinlin; Ding, Weixing; CAS Key Laboratory of Geospace Environment, University of Science and Technology of China Team; Department of Physics and Astronomy, University of California at Los Angeles Collaboration
2013-10-01
A Doppler reflectometer system has recently been installed in the EAST tokamak. It includes two separated systems, one for Q-band and the other for V-band. The optical system consists of a fixed flat mirror and a steerable parabolic mirror, which enabling the measurement of perpendicular wave number in the range of 4-22/cm, with the wave number resolution around 2/cm, while the radial location can cover the whole minor radius for L mode and the whole pedestal for H mode on EAST. A 2D Gaussion Ray tracing code is used to calculate the scattering location, the perpendicular wave number and the resolution. In EAST last experimental campaign the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. The Er evolution during L-H and H-L transition have also been measured. The two separated systems are also used as a poloidal coherent system together to study the GAM in EAST tokamak.
NASA Astrophysics Data System (ADS)
Niciejewski, R.; Skinner, W.; Cooper, M.; Marshall, A.; Meier, R. R.; Stevens, M. H.; Ortland, D.; Wu, Q.
2011-05-01
New analysis of the Doppler shift of O2 airglow spectra recorded by the TIMED Doppler Interferometer (TIDI) and the High Resolution Doppler Imager (HRDI) have provided conclusive evidence that the shuttle main engine exhaust plume generated in the lower thermosphere by the launch of STS-107 and imaged by the Global Ultraviolet Imager (GUVI) instrument on TIMED was transported to the Antarctic in ˜80 h, supporting a key inference from the initial study by Stevens et al. (2005). These new results were aided by improved knowledge of the effects of instrumental and satellite artifacts imposed on the Doppler spectra. STS-107 launched on 16 January 2003, and the neutral wind near its launch trajectory and nearby volume was sampled within minutes by TIDI. These initial observations suggested that the northernmost end of the shuttle's exhaust plume would move northeast and that the southern end would move southeast, motions that were identified in imagery acquired during the next orbit of TIMED. The direction and magnitude of plume motion inferred from GUVI images obtained 12, 26, and 50 h after launch were again confirmed by TIDI and HRDI. The appearance of the plume over the Antarctic ˜80 h after launch, inferred from earlier work by the appearance of iron ablated from the shuttle's main engines, was consistent with neutral winds measured by the satellite Doppler instruments over the Antarctic. The transport of the plume from the coast of Florida to the Antarctic was aided by the favorable phase and strong amplitude of a 2 day planetary wave of wave number three in the southern hemisphere on 18 January 2003. The existence of the 2 day wave was deduced from zonally averaged and combined TIDI and HRDI neutral wind observations. We conclude that the existence of strong and sustained winds in the MLT, significantly greater than expected from empirical and theoretical models, is indisputable and provides compelling evidence supporting the global-scale nature of thermospheric winds with magnitude greater than 100 m/s observed by Larsen (2002) from 40 years of sounding rocket chemical release experiments.
Radar Astrometry of Asteroid 99942 (2004 MN4): Predicting the 2029 Earth Encounter and Beyond
NASA Astrophysics Data System (ADS)
Giorgini, J. D.; Benner, L. A. M.; Nolan, M. C.; Ostro, S. J.
2005-08-01
Asteroid 2004 MN4 is expected to pass 4.6 (+/- 1.6) Earth-radii above the surface of the Earth on 2029-Apr-13. Such close approaches by objects as large as 2004 MN4 (D ≳ 0.3 km) are thought to occur at ≳ 1000-year intervals on average. 2004 MN4 is expected to reach 3rd magnitude and thus be visible to the unaided eye. With a disk 2-4 arcseconds across, it may be resolved by ground-based telescopes. Arecibo (2380-MHz) delay-Doppler radar astrometry, obtained in late January 2005, significantly corrected 2004 MN4's orbit by revealing a 1.4 arcsecond bias in pre-discovery optical measurements. Doppler-shifted echoes were acquired 4.8σ (176.4 mm/s) away from the predicted frequency on Jan 27. Range on Jan 29 was found to be 747 km (2.8σ ) closer to Earth than the pre-radar orbit predicted. Incorporation of these delay-Doppler measurements into a new weighted least-squares orbit solution moved the 2029-Apr-13 encounter prediction 5σ closer to the Earth, illustrating the problematic nature of prediction and statistical analysis with single-apparition optical data-sets. Without delay-Doppler data, the bias was not apparent, even when optical measurements spanned a full orbit period. The current combined data-set does not permit reliable trajectory propagation to encounters beyond 2029; Monte Carlo analysis shows that, by 2036, the 3σ confidence region wraps >300 degrees of heliocentric longitude around the Sun, with some sections of this statistical region experiencing low-probability encounters with the Earth in the 2030's, gravitationally scattering some possible trajectories inward to the orbit of Venus, or outward toward Mars. Future measurements from radar opportunities in August 2005 and May 2006 (SNR ≈5-10) have the potential to eliminate statistical encounters in the 2030's. Delay-Doppler astrometry from 2013 (SNR ≈30) should permit deterministic encounter prediction through 2070, shrinking the along-track uncertainty in 2036 by two orders of magnitude,from ≳ 8(10)8 km to ≲7(10)6 km.
Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas
Smith, H. M.; Fredrickson, E. D.
2017-02-07
Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotationmore » with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). Lastly, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.« less
Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Fan, Siteng; He, Jiansen; Yan, Limei; Tomczyk, Steven; Tian, Hui; Song, Hongqiang; Wang, Linghua; Zhang, Lei
2018-01-01
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot ({≈} 10 MK) rising blob was detected on the east limb, with an initial ejection flow speed of {≈} 330 km s^{-1}. The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from {≈} ± 3 km s^{-1} to {≈} ± 15 km s^{-1} and effective thermal velocities from {≈} 30 km s^{-1} to {≈} 60 km s^{-1}, according to the CoMP observations at the Fe xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was {≈} 1000 seconds for the Fe 171 Å channel, while it was {≈} 500 seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.
NASA Astrophysics Data System (ADS)
Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.
2017-08-01
The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler-shifted spectrum constructed from the simulated test ion velocities excellently reproduces the experimental measurements, verifying that the observed ambient ion motion corresponds to collisionless coupling through the laminar electric field.
Spectroscopic monitoring of SS 433: A search for long-term variations of kinematic model parameters
NASA Astrophysics Data System (ADS)
Davydov, V. V.; Esipov, V. F.; Cherepashchuk, A. M.
2008-06-01
Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of H α. We determined Doppler shifts of the moving emission lines, H α + and H α -, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for H α - and 389 for H α +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for H α - and 630 for H α + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561 c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.
Rapid intensity and velocity variations in solar transition region lines
NASA Astrophysics Data System (ADS)
Hansteen, V. H.; Betta, R.; Carlsson, M.
2000-08-01
We have obtained short exposure (3 s) time series of strong upper chromospheric and transition region emission lines from the quiet Sun with the SUMER instrument onboard SOHO during two 1 hour periods in 1996. With a Nyqvist frequency of 167 mHz and relatively high count rates the dataset is uniquely suited for searching for high frequency variations in intensity and Doppler velocity. From Monte-Carlo experiments taking into account the photon-counting statistics we estimate our detection limit to correspond to a wave-packet of four periods coherent over 3'' with a Doppler-shift amplitude of 2.5km s-1 in the darkest internetwork areas observed in C III. In the network the detection limit is estimated to be 1.5km s-1. Above 50 mHz we detect wave-packet amplitudes above 3km s-1 less than 0.5% of the time. Between 20 and 50 mHz we detect some wave-packets with a typical duration of four periods and amplitudes up to 8km s-1. At any given internetwork location these wave-packets are present 1% of the time. In the 10-20 mHz range we see amplitudes above 3km s-1 12% of the time. At lower frequencies our dataset is consistent with other SUMER datasets reported in the literature. The chromospheric 3-7 mHz signal is discernible in the line emission. In the internetwork this is the dominant oscillation frequency but higher frequencies (7-10 mHz) are often present and appear coherent in Doppler velocity over large spatial regions (≍ 40"). Wavelet analysis implies that these oscillations have typical durations of 1000s. The network emission also shows a 5 mHz signal but is dominated by low frequency variations (of < 4 mHz) in both intensity and velocity. The oscillations show less power in intensity than in velocity. We find that while both red and blue shifted emission is observed, the transition region lines are on average red shifted between 5-10km s-1 in the network. A net red shift is also found in the internetwork emission but it is smaller (< 4km s-1). The line widths do not differ much between the internetwork and network, the non-thermal line widths increase with increasing temperature of line formation from 30km s-1 for the C II 1334 Å line to 45km s-1 for the O VI 1032 Å line. By constructing scatterplots of velocity versus intensity we find that in the network a mean redshift is correlated with a high mean intensity. In the internetwork regions we do not find any correlation between the intensity and the Doppler velocity.
NASA Technical Reports Server (NTRS)
Elliott, Morgan; Martin, David
2015-01-01
For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail to the Cardiovascular Laboratory and the Space Life Science Summer Institute, which helped me prepare for future graduate school research presentations. This internship allowed me to apply and expand the anatomy, physiology, and mechanics information I learned during my undergraduate degree in Biomedical Engineering to the cardiovascular system with the unique zero gravity perspective. Additionally, I was able to develop skills with data analysis techniques involving speckle tracking for ventricular strain and Doppler waveforms for blood velocities. Additionally, I was able to expand upon my previous work in the Cardiovascular Laboratory by writing a literature review on a data analysis project I completed last summer. Ultimately, this internship and venous relationship comparison project provided me with a significant learning experience and additional skill sets, which are applicable to my goals of attaining a Ph.D. in biomedical engineering with a focus on tissue engineering and the cardiovascular system.
NASA Astrophysics Data System (ADS)
Petrova, I. R.; Bochkarev, V. V.; Latipov, R. R.
2009-09-01
We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3-4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1-72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.
Development of Navigation Doppler Lidar for Future Landing Mission
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III
2016-01-01
A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L.
2015-10-14
We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensitymore » transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include “line-RALF” experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hui; He, Jiansen; Young, Peter R.
An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less
Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel
2017-06-01
Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.
Human middle-ear nonlinearity measurements using laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Gladiné, Kilian; Muyshondt, Pieter G. G.; Dirckx, Joris J. J.
2017-12-01
It has long been supposed that the middle-ear has near to perfect linear characteristics, and several attempts have been made to investigate this hypothesis. In conclusion, the middle-ear was regarded as a linear system at least up till sound pressure levels of 120 dB. Because of the linear relationship between Doppler shift of light and the vibration velocity of the object on which the light is reflected, laser Doppler vibrometry (LDV) is an intrinsically highly linear measurement technique. Therefore it allows straightforward detection of very small nonlinearities in a vibration response. In this paper, laser Doppler vibrometry and multisine stimulation are used to detect nonlinear distortions in the vibration response at the umbo of the tympanic membrane of seven human cadaver temporal bones. Nonlinear distortions were detected starting from sound pressure levels of 99 dB and measurements were performed up to 120 dB. These distortions can be subdivided into even degree (e.g. quadratic distortion tones) and odd degree nonlinear distortions (e.g. cubic distortion tones). We illustrate that with odd multisine stimulation the level of even and odd degree nonlinear distortions can be investigated separately. In conclusion, laser Doppler vibrometry is an adequate tool to detect nonlinear distortions in the middle-ear system and to quantify the level of such distortions even at 57 dB below the vibration response. The possibility to analyze even degree and odd degree nonlinear distortion levels separately can help in future work to pinpoint the source of the nonlinearity.
NASA Astrophysics Data System (ADS)
Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo
2017-04-01
We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.
NASA Astrophysics Data System (ADS)
Bounhir, Aziza; Benkhaldoun, Zouhair; Kaab, Mohamed; Makela, Jonathan J.; Harding, Brian; Fisher, Daniel J.; Lagheryeb, Amine; Khalifa, Malki; Lazrek, Mohamed; Daassou, Ahmed
2015-08-01
In this paper we report on the thermospheric winds and temperatures over Oukaimeden Observatory in Morocco in some stormy nights during the year 2014. These results are based on Fabry-Perot interferometer (FPI) measurements of Doppler shifts and Doppler broadenings of the 630.0nm spectral emission and pertain to the lower thermosphere region, near 250km altitude. This FPI is a part of RENOIR experiment installed thanks to scientific cooperation program with university of Illinois Urbana (USA).The storm energy input modify the global circulation in the thermosphere resulting in significant changes in the ionospheric plasma properties. Thermospheric and ionospheric storms are closely connected.We first set up the climatological behavior of the thermospheric winds and temperature during quiet nights. These results will be presented in this session in a separate abstract (M. Kaab & Z. Benkhaldoun et al) . Then we investigate the departure of the winds and the temperatures from their climatological behavior during some magnetic storms. The winds present many features. We can notice westward winds and an enhancement of the equatorward winds with sometimes an appearance of a poleward component. We also notice a significant increase of the temperature that last several hours. By looking trough the geomagnetic indices we investigate the delay of thermospheric storm time in our region and its effects on the winds and temperature patterns.
Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-10-25
This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.
Directionality of Flare-Accelerated Particles from γ -ray Lines
NASA Astrophysics Data System (ADS)
Share, G. H.; Murphy, R. J.
2000-05-01
The energies and widths of γ -ray lines emitted by ambient nuclei excited by flare-accelerated protons and α -particles provide information on their directionality, spectra, and on the uniformity of the interaction region. For example, the γ -rays observed from a downward beam of particles impacting at 0o heliocentric angle would exhibit a clear Doppler red-shift and some broadening, dependent on the spectrum of the particles. In contrast, γ -rays observed from the same beam of particles impacting at 90o would be neither observably shifted nor broadened. We have studied the energies and widths of strong lines from de-excitations of 20Ne, 12C, and 16O in solar flares as a function of heliocentric angle. We use spectra from 21 flares observed with NASA's Solar Maximum Mission/GRS and Compton Observatory/OSSE experiments. The line energies of all three nuclei exhibit ~0.9% red-shifts from their laboratory values for flares observed at heliocentric angles <40o. In contrast, the energies are not significantly shifted for flares observed at angles >80o. The lines at all heliocentric angles are broadened between ~2.5% to 4%. These results are suggestive of a broad downward distribution of accelerated particles in flares or an isotropic distribution in a medium that has a significant density gradient. Detailed comparisons of these data with results from the gamma-ray production code (Ramaty, et al. 1979, ApJS, 40, 487; Murphy, et al. 1991, ApJ, 371, 793) are required in order to place constraints on the angular distributions of particles. This research has been supported by NASA grant W-18995.
Determining the Pressure Shift of Helium I Lines Using White Dwarf Stars
NASA Astrophysics Data System (ADS)
Camarota, Lawrence
This dissertation explores the non-Doppler shifting of Helium lines in the high pressure conditions of a white dwarf photosphere. In particular, this dissertation seeks to mathematically quantify the shift in a way that is simple to reproduce and account for in future studies without requiring prior knowledge of the star's bulk properties (mass, radius, temperature, etc.). Two main methods will be used in this analysis. First, the spectral line will be quantified with a continuous wavelet transformation, and the components will be used in a chi2 minimizing linear regression to predict the shift. Second, the position of the lines will be calculated using a best-fit Levy-alpha line function. These techniques stand in contrast to traditional methods of quantifying the center of often broad spectral lines, which usually assume symmetry on the parts of the lines.
Loiseaus, J
1968-07-01
Shifts z and z' toward the red of the galaxy NGC 5668 for a beam of 21 cm, z measured in radioastronomy with a frequency meter and z' measured in optics with a spectrograph, not being equal, it follows that the speed of light from a galaxy c ' is not equal to that of a galaxy c which is measured on earth from stationary source. The Doppler empirical formula cannot be explained in classical mechanics since it is in contradiction with it. As for the theory of relativity c ' = c from a postulate and z' = z. If we consider the universe represented on a three-dimensional space (H), non-Euclidian, with Euclidian connection plunged in a Riemannine four-dimension space (E), a certain universal time, like that of an astronomer, can be defined and its course calculated in relation to this time: it will necessarily be confounded with the atomic clock time, but c ' not equal c and z' not equal z: the Doppler formula is not accurate. However, c ' and c as well as z' and z are so close in all the experiments carried out on earth, even when an artificial satellite is used, that the errors made in using the Doppler formula are clearly inferior to experimental errors.
Huang, Hanrui; Sejdić, Ervin
2013-12-01
Trans-cranial Doppler (TCD) recordings are used to monitor cerebral blood flow in the main cerebral arteries. The resting state is usually characterized by the mean velocity or the maximum Doppler shift frequency (an envelope signal) by insonating the middle cerebral arteries. In this study, we characterized cerebral blood flow in the anterior cerebral arteries. We analyzed both envelope signals and raw signals obtained from bilateral insonation. We recruited 20 healthy patients and conducted the data acquisition for 15 min. Features were extracted from the time domain, the frequency domain and the time-frequency domain. The results indicate that a gender-based statistical difference exists in the frequency and time-frequency domains. However, no handedness effect was found. In the time domain, information-theoretic features indicated that mutual dependence is higher in raw signals than in envelope signals. Finally, we concluded that insonation of the anterior cerebral arteries serves as a complement to middle cerebral artery studies. Additionally, investigation of the raw signals provided us with additional information that is not otherwise available from envelope signals. Use of direct trans-cranial Doppler raw data is therefore validated as a valuable method for characterizing the resting state. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju
2016-09-20
We observed intermittent modulation by scattered light from a single submicrometer particle moving in the flow channel using a self-mixing microchip Yb:YAG laser Doppler velocimeter (LDV) under lateral beam access. The Doppler-shift frequency chirping (i.e., velocity change) was identified in accordance with a particle passage through the beam focus. Single particle counting, which obeys the Poisson distribution, was performed successfully over a long period of time. The experimental results have been reproduced by a numerical simulation. The LDV signal was increased over 20 dB for a 202-nm particle without chirping by collinear beam access with the laser beam axis aligned along the flow direction.
Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue
NASA Astrophysics Data System (ADS)
Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-11-01
Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.
Management of Portal Hypertension After Liver Transplantation.
Korda, D; Deák, P Á; Kiss, G; Gerlei, Z; Kóbori, L; Görög, D; Fehérvári, I; Piros, L; Máthé, Z; Doros, A
2017-09-01
Post-transplantation portal hypertension has severe complications, such as esophageal varix bleeding, therapy refractory ascites, extreme splenomegaly, and graft dysfunction. The aim of our study was to analyze the effectiveness of the therapeutic strategies and how to visualize the procedure. A retrospective study involving liver transplantation patients from the Semmelweis University Department of Transplantation and Surgery was performed between 2005 and 2015. The prevalence, etiology, and leading complications of the condition were determined. The applied interventions' effects on the patients' ascites volume, splenic volume, and the occurrence of variceal bleeding were determined. Mean portal blood flow velocity and congestion index values were calculated using Doppler ultrasonography. The prevalence of post-transplantation portal hypertension requiring intervention was 2.8%. The most common etiology of the disease was portal anastomotic stenosis. The most common complications were esophageal varix bleeding and therapy refractory ascites. The patients' ascites volume decreased significantly (2923.3 ± 1893.2 mL vs. 423.3 ± 634.3 mL; P < .05), their splenic volume decreased markedly. After the interventions, only one case of recurrent variceal bleeding was reported. The calculated Doppler parameters were altered in the opposite direction in cases of pre-hepatic versus intra- or post-hepatic portal hypertension. After the interventions, these parameters shifted towards the physiologic ranges. The interventions performed in our clinic were effective in most cases. The patients' ascites volume, splenic volume, and the prevalence of variceal bleeding decreased after the treatment. Doppler ultrasonography has proved to be a valuable imaging modality in the diagnosis and the follow-up of post-transplantation portal hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Hui; Wang, Yijun
2016-02-01
The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.
Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.
2016-01-01
Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993
2006-11-20
it 221036.34, 1037.02 where c is the speed of light. For spectral lines formed by scat- can pump the radiative component of the 21037 line at outflow...shift if the material is far from the plane of Li et al. 1998). In very fast CMEs pumping of the 21037 line the sky (Noci & Maccari 1999). Most of the...the plane of the sky. the 2002 July 18, 2002 July 15, and 2002 July 18 events suggest that pumping of the 0 vi 21037 line by 0 vi 21032 might be pres
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, Drake
1988-01-01
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approximately 10 meters/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar-type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this investigation is to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight are made in the near infrared (approximately 2 micrometer), using the Kitt Peak McMath Fourier transform spectrometer, with an N2O gas absorption cell for calibration. Researchers currently achieve an accuracy of approximately 5 meters/sec. Solar rotation velocities vary by plus or minus 2000 meters/sec across the solar disk, and imperfect optical integration of these velocities is the principal source of error. We have been monitoring the apparent velocity of integrated sunlight since 1983. They initially saw a decrease of approximately 30 meters/sec in the integrated light velocity from 1983 through 1985, but in 1987 to 1988 the integrated light velocity returned to its 1983 level. It is too early to say whether these changes are solar-cycle related. Although the FTS, unlike a slit spectrograph, has a large field of view, researchers are always looking for ways to improve the optical integration of the solar disk. They recently made an improvement in the method used to optically collimate the FTS, and this has reduced the error level, eliminating some systematic effects seen earlier.
Gilio, Daniel Bruno; Miranda Corrêa, Rosana Rosa; Souza de Oliveira Guimarães, Camila; Peres, Luiz Cesar; Marques Salge, Ana Karina; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; Costa da Cunha Castro, Eumenia
2009-08-01
One of the frequent questions in obstetric practice is to determine placental vascular changes that may account for abnormal Doppler flow velocity alterations in maternal uterine vessels from women and fetuses without pregnancy pathology. A retrospective morphometric study was realized using 27 placentas from patients submitted for Doppler flow velocity exam during pregnancy. The placentas were morphologically examined using hematoxylin-eosin staining. Measurements of villi were made with the use of a video camera coupled to a common light microscope and a computer with automatic image analyzing software. Of the 27 placentas, 13 (48%) were of patients showing unaltered Doppler and 14 (52%) showing altered Doppler. The number of stem villi vessels was significantly larger in the placentas of patients with Doppler exam alterations (P = 0.003). This group also presented greater stem villi vessel thickness, although without significant difference. The number of intermediary and terminal villi vessels was greater in the placentas of patients with altered Doppler exams (P < 0.001), and a greater terminal villi area was observed in these cases (P < 0.001). The morphological proof that uterine artery Doppler flow velocity exam alterations are associated with placental vascular alterations demonstrates the importance of this exam during prenatal care, even in the absence of maternal-fetal alterations.
Feasibility assessment of Doppler radar long-term physiological measurements.
Massagram, Wansuree; Lubecke, Victor M; Boric-Lubecke, Olga
2011-01-01
In this paper we examine the feasibility of applying doppler radar technique for a long-term health monitoring. Doppler radar was used to detect and eliminate periods of significant motion. This technique was verified using a human study on 17 subjects, and it was determined that for 15 out of 17 subjects there was no significant motion for over 85% of the measurement interval in supine positions. Majority of subjects exhibited significantly less motion in supine position, which is promising for sleep monitoring, and monitoring of hospitalized patients.
Verification of CH4 on Mars and investigation of its temporal and spatial variations by SOFIA/EXES
NASA Astrophysics Data System (ADS)
Aoki, Shohei
2015-10-01
Discovery of CH4 in the Martian atmosphere has led to much discussion since it could be a signature of on-going and/or past biological/geological activities on Mars. However, the presence of CH4 and its temporal and spatial variations are still under discussion because previous observations had large uncertainties. We propose sensitive measurements of the Martian CH4 by SOFIA/EXES in order to verify the presence and investigate its temporal and spatial variation. Our primal goal is to demonstrate the firm detection of CH4 on Mars. SOFIA/EXES allows us to perform sensitive observations of the Martian CH4 from the Earth using the 7.5 um band. The high altitude of SOFIA telescope (~12 km) enables us to significantly reduce the effects of terrestrial atmosphere, and high spectral resolution of EXES (R~90,000) enables us to detect the tiny lines of the Martian CH4. We request to perform weekly observations of CH4 by SOFIA/EXES during larger Doppler-shift period (between Feb./2016-March/2016). The large Doppler shift (-14.3 - -17.3 km/s) allows us to separate the Martian and terrestrial CH4 lines. In addition, owing to the relatively large diameter of the SOFIA telescope (~ 2.5 m), geographical distribution of CH4 (3 x 3 areas over the Martian disk) can be investigated. Last but not least, we plan to perform joint observations with (1) the spacecraft-borne MEX/PFS, (2) the ground-based T60/MILAHI, (3) ground-based IRTF/CSHELL, and (4) in-situ Curiosity/TLS. Combination of the current best instruments for the joint observations provide definitive confirmation of the presence (or absence) of CH4, and clues to search for the source.
Lifetimes of low-lying excited states in 50 36 86Kr
NASA Astrophysics Data System (ADS)
Henderson, J.; Chester, A.; Ball, G. C.; Caballero-Folch, R.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Moukaddam, M.; Ruotsalainen, P.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Williams, J.
2018-04-01
Background: The evolution of nuclear magic numbers at extremes of isospin is a topic at the forefront of contemporary nuclear physics. N =50 is a prime example, with increasing experimental data coming to light on potentially doubly magic 100Sn and 78Ni at the proton-rich and proton-deficient extremes, respectively; however, experimental discrepancies exist in the data for less exotic systems. Purpose: In 86Kr the B (E 2 ;21+→01+) value—a key indicator of shell evolution—has been experimentally determined by two different methodologies, with the results deviating by 3 σ . Here, we report on a new high-precision measurement of this value, as well as the first measured lifetimes and hence transition strengths for the 22+ and 3(2) - states in the nucleus. Methods: The Doppler-shift attenuation method was implemented using the TRIUMF-ISAC γ -ray escape-suppressed spectrometer (TIGRESS) γ -ray spectrometer and the TIGRESS integrated plunger device. High-statistics Monte Carlo simulations were utilized to extract lifetimes in accordance with state-of-the-art methodologies. Results: Lifetimes of τ (21+)=336 ±4 (stat.)±20 (sys.) fs, τ (22+)=263 ±9 (stat.)±19 (sys.) fs, and τ (3(2) -)=73 ±6 (stat.)±32 (sys.) fs were extracted. This yields a transition strength for the first-excited state of B (E 2 ;21+→01+)=259 ±3 (stat.)±16 (sys.) e2 fm4. Conclusions: The measured lifetime disagrees with the previous Doppler-shift attenuation method measurement by more than 3 σ , while agreeing well with a previous value extracted from Coulomb excitation. The newly extracted B (E 2 ;21+→01+) value indicates a more significant reduction in the N =50 isotones approaching Z =40 .
NASA Technical Reports Server (NTRS)
Jamora, Dennis A.
1993-01-01
Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.
Radar investigation of asteroids
NASA Technical Reports Server (NTRS)
Ostro, S. J.
1982-01-01
The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.
Surányi, A; Kozinszky, Z; Molnár, A; Nyári, T; Bitó, T; Pál, A
2013-10-01
The aim of our study was to evaluate placental three-dimensional power Doppler indices in diabetic pregnancies in the second and third trimesters and to compare them with those of the normal controls. Placental vascularization of pregnant women was determined by three-dimensional power Doppler ultrasound technique. The calculated indices included vascularization index (VI), flow index (FI), and vascularization flow index (VFI). Uncomplicated pregnancies (n = 113) were compared with pregnancies complicated by gestational diabetes mellitus (n = 56) and diabetes mellitus (n = 43). The three-dimensional power Doppler indices were not significantly different between the two diabetic subgroups. All the indices in diabetic patients were significantly reduced compared with those in non-diabetic individuals (p < 0.001). Placental three-dimensional power Doppler indices are slightly diminished throughout diabetic pregnancy [regression coefficients: -0.23 (FI), -0.06 (VI), and -0.04 (VFI)] and normal pregnancy [regression coefficients: -0.13 (FI), -0.20 (VI), and -0.11 (VFI)]. The uteroplacental circulation (umbilical and uterine artery) was not correlated significantly to the three-dimensional power Doppler indices. If all placental indices are low during late pregnancy, then the odds of the diabetes are significantly high (adjusted odds ratio: 1.10). A decreased placental vascularization could be an adjunct sonographic marker in the diagnosis of diabetic pregnancy in mid-gestation and late gestation. © 2013 John Wiley & Sons, Ltd.
Raisis, A L; Young, L E; Taylor, P M; Walsh, K P; Lekeux, P
2000-03-01
To use Doppler ultrasonography and single-fiber laser Doppler flowmetry (LDF) to evaluate blood flow in the dependent and nondependent hind limbs of anesthetized horses and to evaluate changes in femoral arterial blood flow and microvascular skeletal muscle perfusion in response to administration of phenylephrine hydrochloride or dobutamine hydrochloride. 6 healthy adult horses. Horses were anesthetized and positioned in left lateral recumbency. Doppler ultrasonography was used to measure velocity and volumetric flow in the femoral vessels. Single-fiber LDF was used to measure relative microvascular perfusion at a single site in the semimembranosus muscles. Phenylephrine or dobutamine was then administered to decrease or increase femoral arterial blood flow, and changes in blood flow and microvascular perfusion were recorded. Administration of phenylephrine resulted in significant decreases in femoral arterial and venous blood flows and cardiac output and significant increases in mean aortic blood pressure, systemic vascular resistance, and PCV. Administration of dobutamine resulted in significant increases in femoral arterial blood flow, mean aortic blood pressure, and PCV. Significant changes in microvascular perfusion were not detected. Results suggest that Doppler ultrasonography and single-fiber LDF can be used to study blood flows in the hind limbs of anesthetized horses. However, further studies are required to determine why changes in femoral arterial blood flows were not associated with changes in microvascular perfusion.
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Raymond, J. C.; Kahler, S. W.
2006-11-01
We present UV spectral information for 22 halo or partial halo CMEs observed by UVCS. The CME fronts show broad line profiles, while the line intensities are comparable to the background corona. The Doppler shifts of the front material are generally small, showing that the motion of gas in the fronts is mostly transverse to the line of sight. This indicates that, at least in halo CMEs, the fronts generally correspond to coronal plasma swept up by a shock or compression wave, rather than plasma carried outward by magnetic loops. This favors an ice cream cone (or a spherical shell) model, as opposed to an expanding arcade of loops. We use the line widths to discriminate between shock heating and bulk expansion. Of 14 cases where we detected the CME front, the line broadening in 7 cases can be attributed to shock heating, while in 3 cases it is the line-of-sight component of the CME expansion. For the CME cores we determine the angles between the motion and the plane of the sky, along with the actual heliocentric distances, in order to provide quantitative estimates of projection effects.
Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity
NASA Technical Reports Server (NTRS)
Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.
2013-01-01
A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.
Cross-shell excitations from the f p shell: Lifetime measurements in 61Zn
NASA Astrophysics Data System (ADS)
Queiser, M.; Vogt, A.; Seidlitz, M.; Reiter, P.; Togashi, T.; Shimizu, N.; Utsuno, Y.; Otsuka, T.; Honma, M.; Petkov, P.; Arnswald, K.; Altenkirch, R.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Lewandowski, L.; Müller-Gatermann, C.; Régis, J.-M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K.-O.
2017-10-01
Lifetimes of excited states in the neutron-deficient nucleus 61Zn were measured employing the recoil-distance Doppler-shift (RDDS) and the electronic fast-timing methods at the University of Cologne. The nucleus of interest was populated as an evaporation residue in 40Ca(24Mg,n 2 p )61Zn and 58Ni(α ,n )61Zn reactions at 67 and 19 MeV, respectively. Five lifetimes were measured for the first time, including the lifetime of the 5 /21- isomer at 124 keV. Short lifetimes from the RDDS analysis are corrected for Doppler-shift attenuation (DSA) in the target and stopper foils. Ambiguous observations in previous measurements were resolved. The obtained lifetimes are compared to predictions from different sets of shell-model calculations in the f p , f5 /2p g9 /2 , and multishell f p -g9 /2d5 /2 model spaces. The band built on the 9 /21+ state exhibits a prolate deformation with β ≈0.24 . Especially, the inclusion of cross-shell excitation into the 1 d5 /2 orbital is found to be decisive for the description of collectivity in the first excited positive-parity band.
Schnitzler, Hans-Ulrich; Denzinger, Annette
2011-05-01
Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.
Single-element ultrasound transducer for combined vessel localization and ablation.
Chen, Wen-Shiang; Shen, Che-Chou; Wang, Jen-Chieh; Ko, Chung-Ting; Liu, Hao-Li; Ho, Ming-Chih; Chen, Chiung-Nien; Yeh, Chih-Kuang
2011-04-01
This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Lockwood, M.
1981-06-01
Observations of the amplitudes and Doppler shifts of received HF radio waves are compared with model predictions made using a two-dimensional ray-tracing program. The signals are propagated over a sub-auroral path, which is shown to lie along the latitudes of the mid-latitude trough at times of low geomagnetic activity. Generalizing the predictions to include a simple model of the trough in the density and height of the F2 peak enables the explanation of the anomalous observed diurnal variations. The behavior of received amplitude, Doppler shift, and signal-to-noise ratio as a function of the K sub p index value, the time of day, and the season (in 17 months of continuous recording) is found to agree closely with that predicted using the statistical position of the trough as deduced from 8 years of Alouette satellite soundings. The variation in the times of the observation of large signal amplitudes with the K sub p value and the complete absence of such amplitudes when it exceeds 2.75 are two features that implicate the trough in these effects.
Helioseismology of a Realistic Magnetoconvective Sunspot Simulation
NASA Technical Reports Server (NTRS)
Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L., Jr.
2012-01-01
We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.
A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698
A fiber optic Doppler sensor and its application in debonding detection for composite structures.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.
The indirect effects on the computation of geoid undulations
NASA Technical Reports Server (NTRS)
Wichiencharoen, C.
1982-01-01
The indirect effects on the geoid computation due to the second method of Helmert's condensation were studied. when Helmert's anomalies are used in Stokes's equation, there are three types of corrections to the free air geoid. The first correction, the indirect effect on geoid undulation due to the potential change in Helmert's reduction, had a maximum value of 0.51 meters in the test area covering the United States. The second correction, the attraction change effect on geoid undulation, had a maximum value of 9.50 meters when the 10 deg cap was used in Stokes' equation. The last correction, the secondary indirect effect on geoid undulatin, was found negligible in the test area. The corrections were applied to uncorrected free air geoid undulations at 65 Doppler stations in the test area and compared with the Doppler undulations. Based on the assumption that the Doppler coordinate system has a z shift of 4 meters with respect to the geocenter, these comparisons showed that the corrections presented in this study yielded improved values of gravimetric undulations.
The EMBLA 2000 Mission in Hessdalen
NASA Astrophysics Data System (ADS)
Teodorani, M.; Montebugnoli, S.; Monari, J.
2000-11-01
In August 2000 a team of italian physical scientists, working in collaboration with norwegian colleagues from Østfold College, carried out an instrumental expedition in Hessdalen (Norway), which was just the first of a series of future scientific missions planned by the joint italian-norwegian EMBLA Project. The mission was aimed at studying unexplained anomalous atmospheric luminous phenomena occurring in the Hessdalen valley since about 20 years, and it was firstly devoted to the monitor of the radio spectrum in the UHF, VLF and ELF wavelength ranges, secondly to the study of the typology of luminous phenomena. This paper presents an ample introduction describing the analysis of the data acquired in the period 1998-2000 by means of the norwegian automatic videocamera of the Hessdalen Interactive Observatory: the hourly and monthly statistics of the luminous phenomenon and its spatial distribution over the celestial sphere are shown. The paper is then focussed into the results which were obtained with the employed radio spectrum analyzers of the EMBLA team, in particular the discovery of highly anomalous periodic signals of unknown origin which were caracterized by a spike-like and a Doppler-like morphology and which were mostly detected in the VLF radio range. It is shown that the Doppler shift, supposed to be due to a `particle-like' emitting source, ranges in a very short time from 10.000 up-to 100.000 km/sec with a frequency shift which is both red-wards and blue-wards, by changing periodically. Subsequently the physical interpretation is presented and discussed: (a) the occurrence of spike-like signals may be due to the pulsation of a radio-emitting source or alternatively to the rotation of a spheroidal source with a radio-emitting spot on its surface; (b) the very high measured velocities involved in the Doppler-like signals, together with the periodic inversion of the Doppler shift, are hypothesized to be due to a physical mechanism involving the magnetically collimated acceleration of high-energy particles modulated by the rotation of a self-contained `plasma spheroid' whose magnetic axis is misaligned in comparison with its rotation axis. Moreover, a detailed description of the luminous phenomena which were sighted during the many planned skywatching sessions, is presented, together with photo-analysis and point-spread functions of enhanced frames. Finally, a detailed plan for future optical observations and analysis is shown in the appendix, in which photometric and spectroscopic techniques by means of portable scout instrumentation are described.
Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan
2017-11-01
This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
EVIDENCE FOR ROTATIONAL MOTIONS IN THE FEET OF A QUIESCENT SOLAR PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco Suarez, D.; Asensio Ramos, A.; Trujillo Bueno, J., E-mail: dorozco@iac.es
2012-12-20
We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the He I 1083.0 nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent hedgerow prominence. The data show opposite Doppler shifts, {+-}6 km s{sup -1}, at the edges of the prominence feet. We argue that these shifts maymore » be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the Solar Dynamics Observatory provided us with clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with velocities of about 10-15 km s{sup -1}. Finally, the shapes of the observed intensity profiles suggest the presence of, at least, two components at some locations at the edges of the prominence feet. One of them is typically Doppler shifted (up to {approx}20 km s{sup -1}) with respect to the other, thus suggesting the existence of supersonic counter-streaming flows along the line of sight.« less
NASA Technical Reports Server (NTRS)
Hays, P. B.
1982-01-01
A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.
Use of PZT's for adaptive control of Fabry-Perot etalon plate figure
NASA Technical Reports Server (NTRS)
Skinner, WIlbert; Niciejewski, R.
2005-01-01
A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.
Comparison of 2- and 10-micron coherent Doppler lidar performance
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1995-01-01
The performance of 2- and 10-micron coherent Doppler lidar is presented in terms of the statistical distribution of the maximum-likelihood velocity estimator from simulations for fixed range resolution and fixed velocity search space as a function of the number of coherent photoelectrons per estimate. The wavelength dependence of the aerosol backscatter coefficient, the detector quantum efficiency, and the atmospheric extinction produce a simple shift of the performance curves. Results are presented for a typical boundary layer measurement and a space-based measurement for two regimes: the pulse-dominated regime where the signal statistics are determined by the transmitted pulse, and the atmospheric-dominated regime where the signal statistics are determined by the velocity fluctuations over the range gate. The optimal choice of wavelength depends on the problem under consideration.
Development of Time-Distance Helioseismology Data Analysis Pipeline for SDO/HMI
NASA Technical Reports Server (NTRS)
DuVall, T. L., Jr.; Zhao, J.; Couvidat, S.; Parchevsky, K. V.; Beck, J.; Kosovichev, A. G.; Scherrer, P. H.
2008-01-01
The Helioseismic and Magnetic Imager of SDO will provide uninterrupted 4k x 4k-pixel Doppler-shift images of the Sun with approximately 40 sec cadence. These data will have a unique potential for advancing local helioseismic diagnostics of the Sun's interior structure and dynamics. They will help to understand the basic mechanisms of solar activity and develop predictive capabilities for NASA's Living with a Star program. Because of the tremendous amount of data the HMI team is developing a data analysis pipeline, which will provide maps of subsurface flows and sound-speed distributions inferred form the Doppler data by the time-distance technique. We discuss the development plan, methods, and algorithms, and present the status of the pipeline, testing results and examples of the data products.
Mass motion in upper solar chromosphere detected from solar eclipse observation
NASA Astrophysics Data System (ADS)
Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang
2016-05-01
The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.
Direct Detection Doppler Lidar for Spaceborne Wind Measurement
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Flesia, Cristina
1999-01-01
Aerosol and molecular based versions of the double-edge technique can be used for direct detection Doppler lidar spaceborne wind measurement. The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We have developed double edge versions of the edge technique for aerosol and molecular-based lidar measurement of the wind. Aerosol-based wind measurements have been made at Goddard Space Flight Center and molecular-based wind measurements at the University of Geneva. We have demonstrated atmospheric measurements using these techniques for altitudes from 1 to more than 10 km. Measurement accuracies of better than 1.25 m/s have been obtained with integration times from 5 to 30 seconds. The measurements can be scaled to space and agree, within a factor of two, with satellite-based simulations of performance based on Poisson statistics. The theory of the double edge aerosol technique is described by a generalized formulation which substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency at approximately the half-width of each edge filter. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared to the single edge technique. The use of two high resolution edge filters substantially reduces the effects of Rayleigh scattering on the measurement, as much as order of magnitude, and allows the signal to noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined using the two edge channels and an energy monitor channel. The effects of Rayleigh scattering may then subtracted from the measurement and we show that the correction process does not significantly increase the measurement noise for Rayleigh to aerosol ratios up to 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photon, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh to aerosol ratio of 5. Methods for increasing the dynamic range of the aerosol-based system to more than +/- 100 m/s are given.
Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-01-01
Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235
NASA Astrophysics Data System (ADS)
Chen, Ruizhu; Zhao, Junwei
2018-02-01
Time–distance helioseismology measures acoustic travel times to infer the structure and flow field of the solar interior; however, both the mean travel times and the travel-time shifts suffer systematic center-to-limb variations, which complicate the interpretation and inversions of the time–distance measurements. In particular, the center-to-limb variation in travel-time shifts (CtoL effect) has a significant impact on the inference of the Sun’s meridional circulation, and needs to be removed from the helioseismic measurements, although the observational properties and the physical cause of the CtoL effect have yet to be investigated. In this study, we measure the CtoL effect in the frequency domain using Doppler-velocity data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, and study its properties as a function of disk-centric distance, travel distance, and frequency of acoustic waves. It is found that the CtoL effect has a significant frequency dependence—it reverses sign at a frequency around 5.4 mHz and reaches maximum at around 4.0 mHz before the sign reversal. The tendency of frequency dependence varies with disk-centric distance in a way that both the sign-reversal frequency and the maximum-value frequency decrease closer to the limb. The variation tendency does not change with travel distance, but the variation magnitude is approximately proportional to travel distance. For comparison, the flow-induced travel-time shifts show little frequency dependence. These observational properties provide more clues on the nature of the CtoL effect, and also possibly lead to new ways of effect-removal for a more robust determination of the deep meridional flow.
Petrović, Z Lj; Phelps, A V
2009-12-01
Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4
Hα Doppler shifts in a tornado in the solar corona
NASA Astrophysics Data System (ADS)
Schmieder, B.; Mein, P.; Mein, N.; Levens, P. J.; Labrosse, N.; Ofman, L.
2017-01-01
Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims: The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods: The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results: The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10'' wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions: The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado.
Fischer, Andreas
2016-11-01
Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.
Historical Notes on the Expanding Universe
NASA Technical Reports Server (NTRS)
Way, Michael J.; Belenkyi, Ari; Nussbaumer, Harry; Peacock, John
2014-01-01
The article Measuring the Hubble constant by Mario Livio and Adam Riess (Physics Today, October 2013, page 41) reviewed studies of the expanding universe from the 1920s to the present. Although the history of the subject underwent considerable compression to fit the length of a magazine article, we think it may leave a misleading impression of some of the key steps to our current understanding. We therefore offer the following clarifications. Most significantly, papers by Arthur Eddington and by Willem de Sitter in 1930, who successfully promoted Georges Lematres 1927 article for the Scientific Society of Brussels, effected a paradigm shift in interpretation of extragalactic redshifts in 1930. Before then, the astronomical community was generally unaware of the existence of nonstatic cosmological solutions and did not broadly appreciate that redshifts could be thought of locally as Doppler shifts in an expanding matter distribution. Certainly, in 1929 Edwin Hubble referred only to the de Sitter solution of 1917. At the time, the relation between distance and redshift predicted in that model was generally seen purely as a manifestation of static spacetime curvature.
Energetic-particle-modified global Alfvén eigenmodes
NASA Astrophysics Data System (ADS)
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
2018-04-01
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v0/vA and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v0/vA . This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.
Energetic-particle-modified global Alfven eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less
Energetic-particle-modified global Alfven eigenmodes
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
2018-04-30
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less
Postural responses of head and foot cutaneous microvascular flow and their sensitivity to bed rest
NASA Technical Reports Server (NTRS)
Aratow, Michael; Hargens, Alan R.; Meyer, J.-UWE; Arnaud, Sara B.
1991-01-01
To explore the mechanism for facial puffiness, headache, and nasal congestion associated with microgravity and cephalad fluid shifts, the postural responses of the cutaneous microcirculation (CMC) in the forehead and dorsum of the foot of eight healthy men were studied by changing body position on a tilt table and measuring blood flows with a laser Doppler flowmeter. Increasing arterial pressure in the feet by moving from a -6-deg head-down tilt to a 60-deg head-up posture decreased foot CMC by 46.5 + or - 12.0 percent. Raising arterial pressure in the head increased forehead CMC by 25.5 + or - 0.7 percent (p less than 0.05). To investigate the possibility that these opposite responses could be modified by simulated microgravity, tilt test were repeated after 7 d of -6-deg head-down-tilt bed rest. The responses were not significantly different from those recorded before bed rest. Therefore, CMC in the feet is well regulated to prevent edema when shifting to an upright position, whereas there is less regulation in the head CMC.
Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu
2017-11-01
To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Koenig, M J; Torp-Pedersen, S; Boesen, M I; Holm, C C; Bliddal, H
2010-02-01
Anterior knee tendon problems are seldom reported in badminton players although the game is obviously stressful to the lower extremities. Painful anterior knee tendons are common among elite badminton players. The anterior knee tendons exhibit colour Doppler activity. This activity increases after a match. Painful tendons have more Doppler activity than tendons without pain. Cohort study. 72 elite badminton players were interviewed about training, pain and injuries. The participants were scanned with high-end ultrasound equipment. Colour Doppler was used to examine the tendons of 64 players before a match and 46 players after a match. Intratendinous colour Doppler flow was measured as colour fraction (CF). The tendon complex was divided into three loci: the quadriceps tendon, the proximal patellar tendon and the insertion on the tibial tuberosity. Interview: Of the 72 players, 62 players had problems with 86 tendons in the lower extremity. Of these 86 tendons, 48 were the anterior knee tendons. Ultrasound: At baseline, the majority of players (87%) had colour Doppler flow in at least one scanning position. After a match, the percentage of the knee complexes involved did not change. CF increased significantly in the dominant leg at the tibial tuberosity; single players had a significantly higher CF after a match at the tibial tuberosity and in the patellar tendon both before and after a match. Painful tendons had the highest colour Doppler activity. Most elite badminton players had pain in the anterior knee tendons and intratendinous Doppler activity both before and after match. High levels of Doppler activity were associated with self-reported ongoing pain.
Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H
2006-12-01
To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (p<0.01) and 0.328 (p<0.05), respectively. The ultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.
NASA Astrophysics Data System (ADS)
Struck, James
2011-09-01
Force that Increases with distance is different than dark energy as I am arguing for existence of force based on psychological and astronomical bases. Hubble shift, doppler shift, comet return, quasar zoo and quasars and psychological evidence of interest in distant objects lends support to a force like gravity, nuclear, weak, strong, virtual, decay, biological, growth forces which increases its intensity with distance unlike gravity which decreases in intensity with distance. Jane Frances Back Struck contributed to this finding with her request that her grandparents have "perfect justice" even though her grandparents had died before she was born; interest increasing with distance from grandparents.
Radiometric Spacecraft Tracking for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Border, James S.; Shin, Dong K.
2008-01-01
Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.
Method and apparatus for measuring frequency and phase difference
NASA Technical Reports Server (NTRS)
Shores, Paul (Inventor); Lichtenberg, Christopher (Inventor); Kobayashi, Herbert S. (Inventor); Cunningham, Allen R. (Inventor)
1986-01-01
The present invention is a system for deriving direct digital indications of frequency and phase difference between two incoming pulse trains adaptable for collision avoidance systems or the like. A pair of radar beams are directed toward a target and corresponding beams returning therefrom are detected. A digital difference circuit forms a pulse train from the Doppler shift frequencies of each beam pair having a repetition rate functionally related to the difference in magnitude of the shift frequencies. Pulses from the pulse train are counted as a function of time. Visual indications thereof on display are correlative to target position relative to beams.
Bellamy, Justin L; Mundinger, Gerhard S; Flores, José M; Wimmers, Eric G; Yalanis, Georgia C; Rodriguez, Eduardo D; Sacks, Justin M
2015-03-01
Multiple perfusion assessment technologies exist to identify compromised microvascular free flaps. The effectiveness, operability, and cost of each technology vary. The authors investigated surgeon preference and clinical behavior with several perfusion assessment technologies. A questionnaire was sent to members of the American Society for Reconstructive Microsurgery concerning perceptions and frequency of use of several technologies in varied clinical situations. Demographic information was also collected. Adjusted odds ratios were calculated using multinomial logistic regression accounting for clustering of similar practices within institutions/regions. The questionnaire was completed by 157 of 389 participants (40.4 percent response rate). Handheld Doppler was the most commonly preferred free flap-monitoring technology (56.1 percent), followed by implantable Doppler (22.9 percent) and cutaneous tissue oximetry (16.6 percent). Surgeons were significantly more likely to opt for immediate take-back to the operating room when presented with a concerning tissue oximetry readout compared with a concerning handheld Doppler signal (OR, 2.82; p < 0.01), whereas other technologies did not significantly alter postoperative management more than simple handheld Doppler. Clinical decision making did not significantly differ by demographics, training, or practice setup. Although most surgeons still prefer to use standard handheld Doppler for free flap assessment, respondents were significantly more likely to opt for immediate return to the operating room for a concerning tissue oximetry reading than an abnormal Doppler signal. This suggests that tissue oximetry may have the greatest impact on clinical decision making in the postoperative period.
NASA Astrophysics Data System (ADS)
Cahoy, Kerri; Fischer, Debra; Spronck, Julien; DeMille, David
2010-07-01
Exoplanets can be detected from a time series of stellar spectra by looking for small, periodic shifts in the absorption features that are consistent with Doppler shifts caused by the presence of an exoplanet, or multiple exoplanets, in the system. While hundreds of large exoplanets have already been discovered with the Doppler technique (also called radial velocity), our goal is to improve the measurement precision so that many Earth-like planets can be detected. The smaller mass and longer period of true Earth analogues require the ability to detect a reflex velocity of ~10 cm/s over long time periods. Currently, typical astronomical spectrographs calibrate using either Iodine absorptive cells or Thorium Argon lamps and achieve ~10 m/s precision, with the most stable spectrographs pushing down to ~2 m/s. High velocity precision is currently achieved at HARPS by controlling the thermal and pressure environment of the spectrograph. These environmental controls increase the cost of the spectrograph, and it is not feasible to simply retrofit existing spectrometers. We propose a fiber-fed high precision spectrograph design that combines the existing ~5000-6000 A Iodine calibration system with a high-precision Laser Frequency Comb (LFC) system from ~6000-7000 A that just meets the redward side of the Iodine lines. The scientific motivation for such a system includes: a 1000 A span in the red is currently achievable with LFC systems, combining the two calibration methods increases the wavelength range by a factor of two, and moving redward decreases the "noise" from starspots. The proposed LFC system design employs a fiber laser, tunable serial Fabry-Perot cavity filters to match the resolution of the LFC system to that of standard astronomical spectrographs, and terminal ultrasonic vibration of the multimode fiber for a stable point spread function.
Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea
2011-06-01
We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p <0.005 and <0.001, respectively). The detection rate of standard plus contrast or vardenafil enhanced power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Electronic Warfare and Radar Systems Engineering Handbook
2012-06-01
Airframe Missile, or Reliability, Availability, and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming...the Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that the radar can also be used to update the aircraft
Automated Detection of a Crossing Contact Based on Its Doppler Shift
2009-03-01
contacts in passive sonar systems. A common approach is the application of high- gain processing followed by successive classification criteria. Most...contacts in passive sonar systems. A common approach is the application of high-gain processing followed by successive classification criteria...RESEARCH MOTIVATION The trade-off between the false alarm and detection probability is fundamental in radar and sonar . (Chevalier, 2002) A common
Model for Ultrafast Carrier Scattering in Semiconductors
2012-11-14
energy transfer between semi-classical carrier drift-diffusion under an electric field and quantum kinetics of interband /intersubband transitions...from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation which depends ...energy-drift term under a strong dc field was demonstrated to reduce the field- dependent drift velocity and mobility. The Doppler shift in the energy
2014-05-09
Interfaces Configuration – Wired Network Connections before Editing Move the cursor to the end of the line that ends with “eth0 inet dhcp ” and type...X”. This will delete text one character back from the cursor. Delete the word “ dhcp ”. Once this is done, type “a” to begin inserting text and add
2015-08-24
SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2...network keeping constraints such as transmission rate, transmission delay, Signal-to-Interference and Noise Ratio (SINR) under consideration. Table...distances. It is advantageous to accomplish such transmission using sensors in a multi-hop relay form keeping constraints such as transmission rate
On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels
2013-12-01
Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks
An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density
NASA Astrophysics Data System (ADS)
Penn, M. J.
2000-05-01
From 15:33-16:02 UT on 13 June 1998 observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SoHO/CDS instruments as part of the SoHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region from 12 through 14 June 1998, that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy sho the He I 1083 nm absorption line blue-shifted to velocities of between 200 and 300 km s-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s-1 along a path inclined roughly 49 degrees to the solar surface and rises to a height of just over 1.5 solar radii. The KPVT data show no Stokes V profiles in the Doppler shifted He I 1083 nm absorption to a limit of roughly 3 x 10-3 times the continuum intensity. The SoHO/CDS data scanned the center of the KPVT FOV using seven EUV lines; Doppler shifted filament emission is seen in six lines from representing temperatures from about 2 x 104K through 1 x 106K. Bound-free continuum absorption from H I, free from confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ HI = 1.7 x 1018cm-2. Spatial maps show that this filament absorption is more confined than the regions which show emission. This work was made possible by 1997 and 1999 SoHO Guest Investigator awards NASA #W-19,142 Basic and NASA NAG5-8004.
Cross Sections for Balmer-Alpha Excitation in Heavy Particle Collisions.
NASA Astrophysics Data System (ADS)
Bae, Young Kun
Doppler shifted and unshifted Balmer-alpha radiation has been observed in the absolute sense for energetic H('+), H(,2)('+) and H(,3)('+) ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick -target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms. The Balmer-alpha radiation emitted by hydrogen and deuterium beams has been used as a diagnostic method of neutral beam parameters. One important neutral beam parameter is the species mix between H('+), H(,2)('+) and H(,3)('+) ion currents produced by the ion source and accelerator. This species mix can be resolved by analysis of the Balmer-alpha radiation if the beam is observed along an off normal axis with sufficient spectral resolution to separate the Doppler shifted radiation components from each other. An impediment to this approach to measuring the ion species is that some of the required cross sections have not been measured. This is the motivation for the presented experimental work. A home made monochromator gave enough optical throughput and spectral resolution for separation of the Doppler shifted lines from the unshifted lines. By selectively varying the target pressure and the distance of travel into the target prior to the observation region, excitation cross sections for three different angular momentum states (3s, 3p and 3d) have been determined. Combinations of a linear polarizer and a half-wave plate were used for polarization measurement. Separation of the individual Zeeman levels have been tried for the 3p state from the information obtained from the polarization. Theoretical estimates of the cascading corrections have been applied in the case of both thin and thick targets. The intensity development equations for thick targets also have been derived. Cross sections for 3s production show general agreement with previous measurements, while those for 3p and 3d differ by as much as a factor of two. Target dissociative excitation cross sections show good agreement with previous measurements except those measured by Williams, et al..
NASA Astrophysics Data System (ADS)
Grilli, Stéphan; Guérin, Charles-Antoine; Grosdidier, Samuel
2015-04-01
Where coastal tsunami hazard is governed by near-field sources, Submarine Mass Failures (SMFs) or earthquakes, tsunami propagation times may be too small for a detection based on deep or shallow water buoys. To offer sufficient warning time, it has been proposed by others to implement early warning systems relying on High Frequency Surface Wave Radar (HFSWR) remote sensing, that has a dense spatial coverage far offshore. A new HFSWR, referred to as STRADIVARIUS, has been recently deployed by Diginext Inc. to cover the "Golfe du Lion" (GDL) in the Western Mediterranean Sea. This radar, which operates at 4.5 MHz, uses a proprietary phase coding technology that allows detection up to 300 km in a bistatic configuration (with a baseline of about 100 km). Although the primary purpose of the radar is vessel detection in relation to homeland security, it can also be used for ocean current monitoring. The current caused by an arriving tsunami will shift the Bragg frequency by a value proportional to a component of its velocity, which can be easily obtained from the Doppler spectrum of the HFSWR signal. Using state of the art tsunami generation and propagation models, we modeled tsunami case studies in the western Mediterranean basin (both seismic and SMFs) and simulated the HFSWR backscattered signal that would be detected for the entire GDL and beyond. Based on simulated HFSWR signal, we developed two types of tsunami detection algorithms: (i) one based on standard Doppler spectra, for which we found that to be detectable within the environmental and background current noises, the Doppler shift requires tsunami currents to be at least 10-15 cm/s, which typically only occurs on the continental shelf in fairly shallow water; (ii) to allow earlier detection, a second algorithm computes correlations of the HFSWR signals at two distant locations, shifted in time by the tsunami propagation time between these locations (easily computed based on bathymetry). We found that this second method allowed detection for currents as low as 5 cm/s, i.e., in deeper water, beyond the shelf and further away from the coast, thus allowing an earlier detection.
Analysing Simple Motions Using the Doppler Effect--"Seeing" Sound
ERIC Educational Resources Information Center
Stonawski, Tamás; Gálik, Tamás
2017-01-01
The Doppler effect has seen widespread use in the past hundred years. It is used for medical imaging, for measuring speed, temperature, direction, etc, and it makes the spatial relations of motion easy to map. The Doppler effect also allows GPS receivers to measure the speed of a vehicle significantly more accurately than dashboard speedometers.…
Agha, Hala Mounir; Hamza, Hala S; Kotby, Alyaa; Ganzoury, Mona E L; Soliman, Nanies
2017-10-01
To evaluate the left ventricular function before and after transcatheter percutaneous patent ductus arteriosus (PDA) closure, and to identify the predictors of myocardial dysfunction post-PDA closure if present. Transcatheter PDA closure; conventional, Doppler, and tissue Doppler imaging; and speckle tracking echocardiography. To determine the feasibility and reliability of tissue Doppler and myocardial deformation imaging for evaluating myocardial function in children undergoing transcatheter PDA closure. Forty-two children diagnosed with hemodynamically significant PDA underwent percutaneous PDA closure. Conventional, Doppler, and tissue Doppler imaging, and speckle-derived strain rate echocardiography were performed at preclosure and at 48 hours, 1 month, and 6 months postclosure. Tissue Doppler velocities of the lateral and septal mitral valve annuli were obtained. Global and regional longitudinal peak systolic strain values were determined using two-dimensional speckle tracking echocardiography. The median age of the patients was 2 years and body weight was 15 kg, with the mean PDA diameter of 3.11 ± 0.99 mm. M-mode measurements (left ventricular end diastolic diameter, left atrium diameter to aortic annulus ratio, ejection fraction, and shortening fraction) reduced significantly early after PDA closure ( p < 0.001). After 1 month, left ventricular end diastolic diameter and left atrium diameter to aortic annulus ratio continued to decrease, while ejection fraction and fractional shortening improved significantly. All tissue Doppler velocities showed a significant decrease at 48 hours with significant prolongation of global myocardial function ( p < 0.001) and then were normalized within 1 month postclosure. Similarly, global longitudinal strain significantly decreased at 48 hours postclosure ( p < 0.001), which also recovered at 1 month follow-up. Preclosure global longitudinal strain showed a good correlation with the postclosure prolongation of the myocardial performance index. Transcatheter PDA closure causes a significant decrease in left ventricular performance early after PDA closure, which recovers completely within 1 month. Preclosure global longitudinal strain can be a predictor of postclosure myocardial dysfunction.
Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)
2001-01-01
The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a hurricane were made with the airborne Doppler lidar. Potential applications and plans for improvement will also be described.
Three-Dimensional Structure and Energy Balance of a Coronal Mass Ejection
NASA Technical Reports Server (NTRS)
Lee, J.-Y.; Raymond, J. C.; Ko, Y.-K.; Kim, K.-S.
2009-01-01
UVCS observed Doppler-shifted material of a partial halo coronal mass ejection (CME) on 2001 December 13. The observed ratio of [O VJ/O V] is a reliable density diagnostic important for assessing the state of the plasma. Earlier UVCS observations of CMEs found evidence that the ejected plasma is heated long after the eruption. This paper investigated the heating rates, which represent a significant fraction of the CME energy budget. The parameterized heating and radiative and adiabatic cooling have been used to evaluate the temperature evolution of the CME material with a time-dependent ionization state model. Continuous heating is required to match the UVCS observations. To match the O VI bright knots, a higher heating rate is required such that the heating energy is greater than the kinetic energy.
Noninvasive measurement of central venous pressure
NASA Technical Reports Server (NTRS)
Webster, J. G.; Mastenbrook, S. M., Jr.
1972-01-01
A technique for the noninvasive measurement of CVP in man was developed. The method involves monitoring venous velocity at a point in the periphery with a transcutaneous Doppler ultrasonic velocity meter while the patient performs a forced expiratory maneuver. The idea is the CVP is related to the value of pressure measured at the mouth which just stops the flow in the vein. Two improvements were made over the original procedure. First, the site of venous velocity measurement was shifted from a vein at the antecubital fossa (elbow) to the right external jugular vein in the neck. This allows for sensing more readily events occurring in the central veins. Secondly, and perhaps most significantly, a procedure for obtaining a curve of relative mean venous velocity vs mouth pressure was developed.
Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy
NASA Technical Reports Server (NTRS)
Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish
2016-01-01
This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.
[Identification of cervical lymph node micrometastasis of tongue cancer by color Doppler and MRI].
Fan, Sufeng; Zhang, Quan; Li, Qiuli; Wang, Lina; Zheng, Lie; Liu, Longzhong
2014-01-01
To assess the values of color Doppler and magnetic resonance imaging (MRI) in the identification of cervical lymph node micrometastasis of tongue cancer. Totally 96 cases of tongue cancer with impalpable neck lymph node was examined with color Doppler and MRI within one week before surgery. Chi-square test was used to assess if the presence of regional lymph node micrometastasis, histopathological analysis as a golden standard lymph node micrometastasis. For the diagnosis of cervical lymph node micrometastasis, color Doppler was significantly better than MRI in sensitivity (72.5% vs 50.0%, P = 0.039) and the accuracy (78.1% vs 64.6%, P = 0.038), but no significant difference in the specificity (82.1% vs 75.0%, P = 0.357), the positive predictive value (74.4% vs 58.8%, P = 0.159) and the negative predictive value (80.7% vs 67.7%, P = 0.108). Color Doppler is better than MRI in the sensitivity and accuracy for the diagnosis of cervical lymph node micrometastasis of tongue cancer.
ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA
NASA Technical Reports Server (NTRS)
Sjogren, W. L.
1994-01-01
The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
MARLI: MARs LIdar for global climate measurements from orbit
NASA Astrophysics Data System (ADS)
Allan, G. R.; Riris, H.; Sun, X.; Yu, A. W.; Abshire, J. B.
2017-12-01
NASA-GSFC is developing a pulsed multifunction lidar instrument to remotely measure winds in the Martian atmosphere from orbit. The key capabilities of this multifunctional atmospheric pulsed lidar will include continuous measurement of the aerosol backscatter profiles, the cross polarized (ice) backscatter profiles, the Doppler (wind profiles), and the range to the scattering surface from orbit. Our approach for MARLI is to use a direct detection lidar with efficient lasers, a large area low-mass telescope, a simple and rugged Doppler discriminator and with photon-sensitive detectors. The induced Doppler shifts on laser backscattered from aerosols in the Martian atmosphere will be detected using a time-resolved change in transmission through a solid etalon from two, slightly off-axis backscattered beams and the edge technique. In this presentation we report on the current progress of the core measurement of wind. We have demonstrated in the lab Doppler measurements down to 5m/s using a spinning target a pulsed lidar and edge technique. The laser is a seeded, pulsed-YAG in a MOPA configuration, operating at 1064nm producing pulses of 20ns and at a few mJ at 4KHz. Center frequency drift is less than 10MHz per minute. The Doppler discriminator is a solid etalon of 60 mm diameter and 40 mm thick with a peak transmission of over 65% and a bandpass of 100MHz FWHM. The detector is a cooled MCT array. We will also report on the deployment of the breadboard instrument to the GGAO to directly measure surface winds using the 48" telescope. The results from our field trials, the laser, detector and instrument will be more fully described in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenzhong; Yi, Ji; Chen, Siyu
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.
2015-01-01
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F
2015-09-01
Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.
[Venous Doppler color echography: importance and inconveniences].
Laroche, J P; Dauzat, M; Muller, G; Janbon, C
1993-01-01
Color Doppler is a technique which performs a real-time opacification of the vascular system with blue indicating reverse flow and red indicating forward flow (directional color coding). In venous pathology, the use of color Doppler improves significantly the anatomical evaluation of the inferior vena cava, the iliac vein, the deep femoral vein, and the sural system. Color Doppler facilitates the study of deep venous thrombosis (providing useful information to differentiate ancient from most recent thrombus) and also the study of post-thrombotic conditions (assessment of reverse flow, repermeation phenomena). Finally, color Doppler produces a better insight for the study of varicose veins, especially with regard to mapping, identification of communicante veins, and study of the external saphenous vein.
Garg, Nitasha; Khaira, Harkiran Kaur; Kaur, Manjot; Sinha, Smita
2018-04-01
To compare the quantitative assessment of blood flow and vascularization of ovaries in polycystic ovary syndrome patients and normal women using three-dimensional power Doppler ultrasonography. This cross-sectional quantitative study was conducted on women of reproductive age group (15-45 years) attending Gynaecology OPD AIMSR, Bathinda, Punjab. Thirty women were enrolled in polycystic ovarian syndrome (PCOS) group and 30 healthy women in control group. Women were categorized as polycystic ovary syndrome according to Rotterdam's criteria. The women with PCOS underwent transvaginal USG Doppler on day 6 of the cycle using 3D power Doppler USG equipment (GE Voluson E8), and vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were measured. The mean values of VI, FI and VFI measured by power Doppler ultrasonography were significantly increased ( P value = 0.000) in women with PCOS when compared with healthy women. This study suggests that blood flow and vascularization measured by 3D power Doppler ultrasonography in ovaries of polycystic ovary syndrome patients were significantly more than the ovaries of normal women.
2012-02-02
flight hours to one significant atmospheric phenomena. OBJECTIVES The P-3 Doppler Wind Lidar (P3DWL) uses the latest version of a coherent ... Doppler transceiver developed at Lockheed Martin Coherent Technologies. The lidar , with the exception of the scanner, is shown on the top in Figure 1...Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment Ralph Foster Applied
Ultrasonic ranging for the oculometer
NASA Technical Reports Server (NTRS)
Guy, W. J.
1981-01-01
Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Goldburg, Walter I.
2002-01-01
A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.
Cooperatively coupled motion with superradiant and subradiant atoms
NASA Astrophysics Data System (ADS)
Lin, Guin-Dar; Lin, Kuan-Ting; Tang, Er-Siang
2017-04-01
We investigate the coupled motion of cooperative atoms subjected to the Doppler dissipative force. The dipole-dipole interaction introduces mutual decay channel and splits the super-radiant and sub-radiant states. The Doppler force is thus modified due to the collective emission and coupled recoil. Such a cooperative effect is more evident when the inter-atom separation is less than or comparable to a wavelength. In an optical molasses, we find that, along the axis of two atoms, there presents an effective potential with mechanically stable and unstable regions alternatively as their separation increases. Taking the cooperative Lamb shift into account, we map out the stability diagram and investigate the blockade effect. We thank the support from MOST of Taiwan under Grant No. 105-2112-M-002-015-MY3 and National Taiwan University under Grant No. NTU-ERP-105R891401.
Doppler compensation by shifting transmitted object frequency within limits
NASA Technical Reports Server (NTRS)
Laughlin, C. R., Jr.; Hollenbaugh, R. C.; Allen, W. K. (Inventor)
1973-01-01
A system and method are disclosed for position locating, deriving centralized air traffic control data, and communicating via voice and digital signals between a multiplicity of remote aircraft, including supersonic transports, and a central station. Such communication takes place through a synchronous satellite relay station. Side tone ranging patterns, as well as the digital and voice signals, are modulated on a carrier transmitted from the central station and received on all of the supersonic transports. Each aircraft communicates with the ground stations via a different frequency multiplexed spectrum. Supersonic transport position is derived from a computer at the central station and supplied to a local air traffic controller. Position is determined in response to variable phase information imposed on the side tones at the aircrafts. Common to all of the side tone techniques is Doppler compensation for the supersonic transport velocity.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.
1985-01-01
Techniques are established for visualizing velocity in gaseous flows. Two approaches are considered, both of which are capable of yielding velocity simultaneously at a large number of flowfield locations, thereby providing images of velocity. The first technique employs a laser to mark specific fluid elements and a camera to track their subsequent motion. Marking is done by laser-induced phosphorescence of biacetyl, added as a tracer species in a flow of N2, or by laser-induced formation of sulfur particulates in SF6-H2-N2 mixtures. The second technique is based on the Doppler effect, and uses an intensified photodiode array camera and a planar form of laser-induced fluorescence to detect 2-d velocities of I2 (in I2-N2 mixtures) via Doppler-shifted absorption of narrow-linewidth laser radiation at 514.5 nm.
New Possibilities of Positron-Emission Tomography
NASA Astrophysics Data System (ADS)
Volobuev, A. N.
2018-01-01
The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.
Low-frequency gravitational wave detection via double optical clocks in space
NASA Astrophysics Data System (ADS)
Su, Jianfeng; Wang, Qiang; Wang, Qinghua; Jetzer, Philippe
2018-04-01
We propose a Doppler tracking system for gravitational wave detection via double optical clocks in space (DOCS). In this configuration two spacecrafts (each containing an optical clock) are launched to space for Doppler shift observations. Compared to the similar attempt of gravitational wave detection in the Cassini mission, the radio signal of DOCS that contains the relative frequency changes avoids completely noise effects due for instance to troposphere, ionosphere, ground-based antenna and transponder. Given the high stabilities of the two optical clocks (Allan deviation ∼ 4.1× 10-17 @ 1000 s), an overall estimated sensitivity of 5 × 10-19 could be achieved with an observation time of 2 yr, and would allow to detect gravitational waves in the frequency range from ∼10‑4 Hz to ∼10‑2 Hz.
Spacecraft Doppler tracking with a VLBI antenna
NASA Technical Reports Server (NTRS)
Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.
1990-01-01
Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.
Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun
2018-03-12
This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.
[Per partum acidosis: Interest and feasibility of cerebral Doppler during labor].
Barrois, M; Chartier, M; Lecarpentier, E; Goffinet, F; Tsatsaris, V
2016-09-01
To evaluate feasibility and interest of fetal cerebral Doppler during labor and the link with fetal pH to predict perinatal fetal asphyxia. Our prospective study in a university perinatal center, included patients during labor. There were no risk factors during pregnancy and patients were included after 37 weeks of pregnancy. For each patient an ultrasound with cerebral Doppler was done concomitant to a fetal scalp blood sample. We collected maternal and fetal characteristics as well as cervix dilatation, fetal heart rate analysis and fetal presentation. Among 49 patients included over a period of 4 months, cerebral Doppler failed in 7 cases (11%). Majority of failure occurred at 10cm of dilatation (P=0.007, OR=14.1 [1.483; 709.1275]). Others factors like: maternal age, body mass index, parity, history of C-Section were not associated with higher rate of failure. We did not found either significant correlation between cerebral fetal Doppler and pH on fetal scalp blood sample (r=0.15) nor pH at cord blood sample (r=0.13). No threshold of cerebral Doppler is significant for fetal asphyxia prediction. Fetal cerebral Doppler is feasible during labor with a low rate of failure but not a good exam to predict fetal acidosis and asphyxia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Li, Min; Yu, Bing-bing; Wu, Jian-hua; Xu, Lin; Sun, Gang
2013-01-01
Purpose As Doppler ultrasound has been proven to be an effective tool to predict and compress the optimal pulsing windows, we evaluated the effective dose and diagnostic accuracy of coronary CT angiography (CTA) incorporating Doppler-guided prospective electrocardiograph (ECG) gating, which presets pulsing windows according to Doppler analysis, in patients with a heart rate >65 bpm. Materials and Methods 119 patients with a heart rate >65 bpm who were scheduled for invasive coronary angiography were prospectively studied, and patients were randomly divided into traditional prospective (n = 61) and Doppler-guided prospective (n = 58) ECG gating groups. The exposure window of traditional prospective ECG gating was set at 30%–80% of the cardiac cycle. For the Doppler group, the length of diastasis was analyzed by Doppler. For lengths greater than 90 ms, the pulsing window was preset during diastole (during 60%–80%); otherwise, the optimal pulsing intervals were moved from diastole to systole (during 30%–50%). Results The mean heart rates of the traditional ECG and the Doppler-guided group during CT scanning were 75.0±7.7 bpm (range, 66–96 bpm) and 76.5±5.4 bpm (range: 66–105 bpm), respectively. The results indicated that whereas the image quality showed no significant difference between the traditional and Doppler groups (P = 0.42), the radiation dose of the Doppler group was significantly lower than that of the traditional group (5.2±3.4mSv vs. 9.3±4.5mSv, P<0.001). The sensitivities of CTA applying traditional and Doppler-guided prospective ECG gating to diagnose stenosis on a segment level were 95.5% and 94.3%, respectively; specificities 98.0% and 97.1%, respectively; positive predictive values 90.7% and 88.2%, respectively; negative predictive values 99.0% and 98.7%, respectively. There was no statistical difference in concordance between the traditional and Doppler groups (P = 0.22). Conclusion Doppler-guided prospective ECG gating represents an improved method in patients with a high heart rate to reduce effective radiation doses, while maintaining high diagnostic accuracy. PMID:23696793
Spin-dependent evolution of collectivity in 112Te
NASA Astrophysics Data System (ADS)
Doncel, M.; Bäck, T.; Qi, C.; Cullen, D. M.; Hodge, D.; Cederwall, B.; Taylor, M. J.; Procter, M.; Giles, M.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.
2017-11-01
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations.
North Pacific Acoustic Laboratory and Deep Water Acoustics
2014-09-30
collaboration with Gerald D’Spain at the Marine Physical Laboratory ( MPL ) has continued. Data from PhilSea10 during the Drift Test have corrected for...Doppler shift, processed and provided to MPL . The collaboration will continue as the analysis progresses. II. Award Number N00014-13-1-0053...Wage (George Mason Univ.), Peter Worcester (Scripps), and others. In addition, we have begun close collaboration with Gerald D’Spain ( MPL
Experiment to investigate current drive by fast Alfven waves in a small tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahl, J.; Ishihara, O.; Wong, K.
1985-07-01
An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.
Lifetime measurement of high spin states in (75) Kr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Trivedi, T.; Maurya, K.
2010-01-01
The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.
Command Wire Sensor Measurements
2012-09-01
coupled with the extreme harsh terrain has meant that few of these techniques have proved robust enough when moved from the laboratory to the field...to image stationary objects and does not accurately image moving targets. Moving targets can be seriously distorted and displaced from their true...battlefield and for imaging of fixed targets. Moving targets can be detected with a SAR if they have a Doppler frequency shift greater than the
RF Bearing Estimation in Wireless Sensor Networks
2010-01-01
are the main design drivers. Techniques based on ultrasonic and infrared signal modalities have short range and require line-of-sight. Clearly, RF...generating a Doppler shifted RF signal . The small frequency change can be measured even on low cost resource constrained nodes using a radio...is already included in the power budget and RF range is superior to most other signals . Radio signal strength (RSS) based approaches are the most
1987-12-01
Metabolism (VMAX) Using Quantitative Structure- Activity Relationships (QSAR) 17 Directed Motion Doppler Shift Effects on Mitric Oxide (0,0) Gamma Band...chemiluminescence values were observed at characteristic times after adding glucose to the disks. We also produced virus-sized nanoparticles (Glucose...These nanoparticles were able to penetrate a .2 um filter,and they retained their enzymatic activity for weeks. They produced 20-fold greater
Zhang, Xi; Miao, Lingjuan; Shao, Haijun
2016-01-01
If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper. PMID:27144570
Zhang, Xi; Miao, Lingjuan; Shao, Haijun
2016-05-02
If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.
NASA Astrophysics Data System (ADS)
Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.
2017-10-01
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.
NASA Technical Reports Server (NTRS)
Korb, C. L.; Gentry, Bruce M.
1995-01-01
The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.
Rosetta at comet 67P/Churyumov-Gerasimenko: Spacecraft orbit modeling
NASA Astrophysics Data System (ADS)
Hahn, Matthias; Paetzold, Martin; Tellmann, Silvia; Haeusler, Bernd; Andert, Thomas
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its target comet 67P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investiga-tions (RSI) experiment addresses fundamental aspects of cometary science such as the deter-minations of the nucleus mass and bulk density, its size and shape, its gravity field and internal structure, and its perturbed interplanetary orbit. The radio carrier links at X-band (8.4 GHz) and S-band (2.3 GHz) between the Rosetta spacecraft and the Earth will be used for these investigations. The motion of the spacecraft will be perturbed near the comet nucleus. The Doppler frequency shifts of the transmitted radio signals can be used to reconstruct the flown orbit. In order to extract small changes of the Doppler frequency, a prediction of the orbit is needed which includes best known estimates for all forces acting on the spacecraft. These forces are the nucleus gravity field, third body perturbations, the solar radiation pressure, the solar wind pressure, the cometary outgassing, etc. It is then possible to determine iteratively low degree and order harmonic coefficients of the nucleus gravity field or the gas pressure force and the gas production rate from outgassing from the differences between the predicted and the observed frequency shifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Couvidat, S.; Lagg, A.
The solar atmosphere is extremely dynamic, and many important phenomena develop on small scales that are unresolved in observations with the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory. For correct calibration and interpretation of the observations, it is very important to investigate the effects of small-scale structures and dynamics on the HMI observables, such as Doppler shift, continuum intensity, spectral line depth, and width. We use 3D radiative hydrodynamics simulations of the upper turbulent convective layer and the atmosphere of the Sun, and a spectro-polarimetric radiative transfer code to study observational characteristics of the Fe imore » 6173 Å line observed by HMI in quiet-Sun regions. We use the modeling results to investigate the sensitivity of the line Doppler shift to plasma velocity, and also sensitivities of the line parameters to plasma temperature and density, and determine effective line formation heights for observations of solar regions located at different distances from the disk center. These estimates are important for the interpretation of helioseismology measurements. In addition, we consider various center-to-limb effects, such as convective blueshift, variations of helioseismic travel-times, and the “concave” Sun effect, and show that the simulations can qualitatively reproduce the observed phenomena, indicating that these effects are related to a complex interaction of the solar dynamics and radiative transfer.« less
Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.
Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping
2018-04-27
Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.
Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana
Morlock, Scott E.; Stewart, James A.
1999-01-01
The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.
NASA Technical Reports Server (NTRS)
Chirillo, F.; Bruni, A.; Balestra, G.; Cavallini, C.; Olivari, Z.; Thomas, J. D.; Stritoni, P.
2001-01-01
OBJECTIVE: To investigate transthoracic Doppler echocardiography in the identification of coronary artery bypass graft (CABG) flow for assessing graft patency. DESIGN: The initial study group comprised 45 consecutive patients with previous CABG undergoing elective cardiac catheterisation for recurrent ischaemia. The Doppler variables best correlated with angiographic graft patency were then tested prospectively in a further 84 patients (test group). SETTING: Three tertiary referral centres. INTERVENTIONS: Flow velocities in grafts were recorded at rest and during hyperaemia induced by dipyridamole (0.56 mg/kg/4 min), under the guidance of transthoracic colour Doppler flow mapping. Findings on transthoracic Doppler were compared with angiography. MAIN OUTCOME MEASURES: Feasibility of identifying open grafts by Doppler and diagnostic accuracy for Doppler detection of significant (>/= 70%) graft stenosis. RESULTS: In the test group the identification rate for mammary artery grafts was 100%, for saphenous vein grafts to left anterior descending coronary artery 91%, for vein grafts to right coronary artery 96%, and for vein grafts to circumflex artery 90%. Coronary flow reserve (the ratio between peak diastolic velocity under hyperaemia and at baseline) of < 1.9 (95% confidence interval 1.83 to 2.08) had 100% sensitivity, 98% specificity, 87.5% positive predictive value, and 100% negative predictive value for mammary artery graft stenosis. Coronary flow reserve of < 1.6 (95% CI 1.51 to 1.73) had 91% sensitivity, 87% specificity, 85.4% positive predictive value, and 92.3% negative predictive value for significant vein graft stenosis. CONCLUSIONS: Transthoracic Doppler can provide non-invasive assessment of CABG patency.
A novel modality for intrapartum fetal heart rate monitoring.
Ashwal, Eran; Shinar, Shiri; Aviram, Amir; Orbach, Sharon; Yogev, Yariv; Hiersch, Liran
2017-11-02
Intrapartum fetal heart rate (FHR) monitoring is well recommended during labor to assess fetal wellbeing. Though commonly used, the external Doppler and fetal scalp electrode monitor have significant shortcomings. Lately, non-invasive technologies were developed as possible alternatives. The objective of this study is to compare the accuracy of FHR trace using novel Electronic Uterine Monitoring (EUM) to that of external Doppler and fetal scalp electrode monitor. A comparative study conducted in a single tertiary medical center. Intrapartum FHR trace was recorded simultaneously using three different methods: internal fetal scalp electrode, external Doppler, and EUM. The latter, a multichannel electromyogram (EMG) device acquires a uterine signal and maternal and fetal electrocardiograms. FHR traces obtained from all devices during the first and second stages of labor were analyzed. Positive percent of agreement (PPA) and accuracy (by measuring root means square error between observed and predicted values) of EUM and external Doppler were both compared to internal scalp electrode monitoring. A Bland-Altman agreement plot was used to compare the differences in FHR trace between all modalities. For momentary recordings of fetal heart rate <110 bpm or >160 bpm level of agreement, sensitivity, and specificity were also evaluated. Overall, 712,800 FHR momentary recordings were obtained from 33 parturients. Although both EUM and external Doppler highly correlated with internal scalp electrode monitoring (r 2 = 0.98, p < .001 for both methods), the accuracy of EUM was significantly higher than external Doppler (99.0% versus 96.6%, p < .001). In addition, for fetal heart rate <110 bpm or >160 bpm, the PPA, sensitivity, and specificity of EUM as compared with internal fetal scalp electrode, were significantly greater than those of external Doppler (p < .001). Intrapartum FHR using EUM is both valid and accurate, yielding higher correlations with internal scalp electrode monitoring than external Doppler. As such, it may provide a good framework for non-invasive evaluation of intrapartum FHR.
NASA Technical Reports Server (NTRS)
Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.
2003-01-01
BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.
Formation of Fourier phase shifts in the solar Ni I 6768 A line
NASA Technical Reports Server (NTRS)
Jones, Harrison P.
1989-01-01
A formalism is developed to understand better how Doppler shifts of spectrum lines as inferred from phase shifts in the Fourier transforms of line profiles are related to the underlying velocity structures which they are intended to measure. With a standard model atmosphere and a simplified, quasi-LTE treatment of line formation, the formalism is applied to the Ni I 6768 A line, which has been selected for use with a network of imaging interferometers under development by the Global Oscillations Network Group for research in helioseismology. Fourier phase shifts are found to be a remarkably linear measure of velocity even in the presence of gradients and unresolved lateral variations in the assumed velocity field. An assumed outward increase in amplitude of a model oscillatory velocity is noticeably reflected in the center-to-limb behavior of the simulated velocity measure, and a sample model of solar granulation is found to have a strong influence on the formation of the Fourier phase.
Performance of laser Doppler velocimeter with polydisperse seed particles in high speed flows
NASA Technical Reports Server (NTRS)
Samimy, M.; Bhattacharyya, S.; Abu-Hijleh, B. A./K.
1988-01-01
The flowfield behind an oblique shock wave, where the LDV measured velocities are seed particle size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV was discussed.
Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1989-01-01
The flowfield behind an oblique shock wave, where the LDV measured velocities are seed-particle-size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV are discussed.
Nonreciprocal Localization of Photons
NASA Astrophysics Data System (ADS)
Ramezani, Hamidreza; Jha, Pankaj K.; Wang, Yuan; Zhang, Xiang
2018-01-01
We demonstrate that it is possible to localize photons nonreciprocally in a moving photonic lattice made by spatiotemporally modulating the atomic response, where the dispersion acquires a spectral Doppler shift with respect to the probe direction. A static defect placed in such a moving lattice produces a spatial localization of light in the band gap with a shifting frequency that depends on the direction of incident field with respect to the moving lattice. This phenomenon has an impact not only in photonics but also in broader areas such as condensed matter and acoustics, opening the doors for designing new devices such as compact isolators, circulators, nonreciprocal traps, sensors, unidirectional tunable filters, and possibly even a unidirectional laser.
NASA Technical Reports Server (NTRS)
Mileant, A.; Simon, M.
1986-01-01
When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-01-01
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-04-29
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.
Algül, Ali; Balci, Pinar; Seçil, Mustafa; Canda, Tülay
2003-06-01
To compare ability of detection of vascular structures by utilizing ultrasonographic contrast agent (Levovist) prior to and following power Doppler ultrasound (PDUS) and colour Doppler ultrasound (CDUS) and to determine useful parameters in the differentiation of malignant and benign breast masses by means of verified data. Vascularisation characteristics of 38 breast masses (22 malignant, 16 benign) which were confirmed by mammography and B-mode sonography were evaluated by both CDUS and PDUS following and prior to intravenous contrast application. In addition, Vmax and RI values of vascular structures were calculated by Doppler spectral evaluation. Malignant lesions showed more vascularity than benign lesions both with and without contrast enhancement. With both methods, by utilizing contrast agent, central, penetrating and tortuous vascular structures became more significant in malignant lesions when compared with benign lesions. PDUS was able to detect vascular structures better than CDUS; however, the difference was not statistically significant. Presence of peripheral vascularity was not useful in differentiating malignant from benign lesions. Vmax and RI values were higher in malignant lesions and the difference was statistically significant. In both methods, Vmax > 15 cm/sec and RI > 0.80 (CDUS), and RI > 0.70 (PDUS) were accepted as malignancy parameters. Vascular patterns of breast masses as determined with PDUS and CDUS with contrast enhancement and Doppler spectral examinations enabled differentiation of malignant and benign breast lesions. Thus, it is possible to decrease the number of unnecessary surgical interventions.
Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.
Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.
Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).
Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L
2016-11-01
Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.
Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee
1998-01-01
Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the component of the wind along the line-of-sight of the laser. Measuring the radial wind in several directions provides sufficient information to determine the true wind speed and direction. The lidar has operated from our laboratory at Goddard since June, 1997. Wind profiles have been obtained to altitudes of 12 km with a vertical resolution of 330 in. Vector wind data are obtained by rotating the scan mirror to measure line-of-sight wind profiles for at least two azimuth angles at an elevation angle of 45 degrees. The precision of the data as determined from the standard deviation of multiple independent lidar profiles is in the range of 1 to 3 m/sec up to 10 km. Good agreement is obtained when the lidar data are compared with the upper air rawinsonde soundings taken at Dulles airport. Examples of the wind lidar data will be presented along with a description of the instrument and future developments.
Is Doppler tissue velocity during early left ventricular filling preload independent?
NASA Technical Reports Server (NTRS)
Yalcin, F.; Kaftan, A.; Muderrisoglu, H.; Korkmaz, M. E.; Flachskampf, F.; Garcia, M.; Thomas, J. D.
2002-01-01
BACKGROUND: Transmitral Doppler flow indices are used to evaluate diastolic function. Recently, velocities measured by Doppler tissue imaging have been used as an index of left ventricular relaxation. OBJECTIVE: To determine whether Doppler tissue velocities are influenced by alterations in preload. METHODS: Left ventricular preload was altered in 17 patients (all men, mean (SD) age, 49 (8) years) during echocardiographic measurements of left ventricular end diastolic volume, maximum left atrial area, peak early Doppler filling velocity, and left ventricular myocardial velocities during early filling. Preload altering manoeuvres included Trendelenberg (stage 1), reverse Trendelenberg (stage 2), and amyl nitrate (stage 3). Systolic blood pressure was measured at each stage. RESULTS: In comparison with baseline, left ventricular end diastolic volume (p = 0.001), left atrial area (p = 0.003), peak early mitral Doppler filling velocity (p = 0.01), and systolic blood pressures (p = 0.001) were all changed by preload altering manoeuvres. Only left ventricular myocardial velocity during early filling remained unchanged by these manoeuvres. CONCLUSIONS: In contrast to standard transmitral Doppler filling indices, Doppler tissue early diastolic velocities are not significantly affected by physiological manoeuvres that alter preload. Thus Doppler tissue velocities during early left ventricular diastole may provide a better index of diastolic function in cardiac patients by providing a preload independent assessment of left ventricular filling.
Ozdemir, Ozhan; Sari, Mustafa Erkan; Kalkan, Dilek; Koc, Esra Meltem; Ozdemir, Seyda; Atalay, Cemal Resat
2015-04-01
To compare ovarian stromal artery blood flows measured by Doppler ultrasonography of polycystic ovary syndrome (PCOS) patients and healthy women with polycystic ovarian image in ultrasonography. Forty-two patients diagnosed with PCOS according to the criteria of 2003 Rotterdam Concencus Conferance on PCOS and 38 healthy volunteers with polycystic ovarian image in ultrasonography were included in the study. Ovarian volumes and ovarian stromal artery blood flows were measured by 3-dimensional (3-D) ultrasonography and Doppler ultrasonography in all patients. In patients with PCOS, ovarian stromal artery pulsatility index (PI) and resistivity index (RI) were found significantly different from healthy women with polycystic ovarian image in ultrasonography (p < 0.05). 3-D ovarian volumes were found significantly higher in patients with PCOS (p < 0.05), and a negative correlation was also obtained between ovarian volumes and ovarian stromal artery resistivity indices. Ovarian stromal artery Doppler examination could have an importance to explain the pathophysiology of PCOS, but there are few publications in the literature about PCOS and the details of ovarian stromal artery Doppler parameters in patients with polycystic ovarian image only. We conclude that Doppler ultrasonography findings of PCOS patients might be helpful in understanding the clinical follow-up and etiology of the disease.
Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Thijs, Lutgarde; Liu, Yan-Ping; Gu, Yu-Mei; Staessen, Jan A
2015-04-01
The cardio-renal interaction occurs via hemodynamic and humoral factors. Noninvasive assessment of renal hemodynamics is currently possible by assessment of renal resistive index (RRI) derived from intrarenal Doppler arterial waveforms as ((peak systolic velocity - end-diastolic velocity)/peak systolic velocity). Limited information is available regarding the relationship between RRI and cardiac hemodynamics. We investigated these associations in randomly recruited subjects from a general population. In 171 participants (48.5% women; mean age, 52.2 years), using pulsed wave Doppler, we measured RRI (mean, 0.60) and left ventricular outflow tract (LVOT) and transmitral (E and A) blood flow peak velocities and its velocity time integrals (VTI). Using carotid applanation tonometry, we measured central pulse pressure and arterial stiffness indexes such as augmentation pressure and carotid-femoral pulse wave velocity. In stepwise regression analysis, RRI independently and significantly increased with female sex, age, body weight, brachial pulse pressure, and use of β-blockers, whereas it decreased with body height and mean arterial pressure. In multivariable-adjusted models with central pulse pressure and arterial stiffness indexes as the explanatory variables, we observed a significant and positive correlation of RRI only with central pulse pressure (P < 0.0001). Among the Doppler indexes of left ventricular blood flow, RRI was significantly and positively associated with LVOT and E peak velocities (P ≤ 0.012) and VTIs (P ≤ 0.010). We demonstrated that in unselected subjects RRI was significantly associated with central pulse pressure and left ventricular systolic and diastolic Doppler blood flow indexes. Our findings imply that in addition to the anthropometric characteristics, cardiac hemodynamic factors influence the intrarenal arterial Doppler waveform patterns. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chang, Edward I; Ibrahim, Amir; Zhang, Hong; Liu, Jun; Nguyen, Alexander T; Reece, Gregory P; Yu, Peirong
2016-03-01
The efficacy of implantable Doppler probes remains an area of considerable debate. This study aims to decipher its sensitivity and specificity for free flap monitoring. A retrospective review of all free flaps with an implantable Doppler probe was performed between 2000 and 2012. A Cook-Swartz implantable Doppler probe was used in 439 patients (head and neck, n = 364; breast, n = 53; extremity, n = 22), and demonstrated equivalent sensitivity and specificity between flap types. The overall sensitivity and specificity were 77.8 percent and 88.4 percent, respectively. The artery was monitored in 267 patients, compared to venous monitoring in 101 patients, and in 71 patients both the artery and vein were monitored. Arterial monitoring had significantly greater specificity than venous monitoring, (94.2 percent versus 74.0 percent; p < 0.001), but no benefit was found in monitoring both the artery and the vein. Venous monitoring was significantly associated with reoperation (OR, 3.17; 95 percent CI, 1.70 to 5.91; p = 0.0003). There were 284 flaps that had a monitoring segment in addition to the implantable Doppler probe that significantly increased overall specificity for microvascular complications (OR, 17.71; 95 percent CI, 3.39 to 92.23; p = 0.0006). The specificity (90.5 percent versus 84.8 percent) and sensitivity (80.0 percent versus 66.7 percent) were significantly higher for clinically monitored flaps. The take-back rate was 13.0 percent, with positive findings in 59.6 percent, and 5.2 percent total flap loss. The use of implantable Doppler probes has high sensitivity and specificity for buried free flaps despite positive findings in less than 60 percent of take-backs. Monitoring the artery is recommended, but clinical examination remains the gold standard for flap monitoring. Diagnostic, IV.
Alavi, Afsaneh; Sibbald, R Gary; Nabavizadeh, Reza; Valaei, Farnaz; Coutts, Pat; Mayer, Dieter
2015-12-01
To determine the accuracy of audible arterial foot signals with an audible handheld Doppler ultrasound for identification of significant peripheral arterial disease as a simple, quick, and readily available bedside screening tool. Two hundred consecutive patients referred to an interprofessional wound care clinic underwent audible handheld Doppler ultrasound of both legs. As a control and comparator, a formal bilateral lower leg vascular study including the calculation of Ankle Brachial Pressure Index and toe pressure (TP) was performed at the vascular lab. Diagnostic reliability of audible handheld Doppler ultrasound was calculated versus Ankle Brachial Pressure Index as the gold standard test. A sensitivity of 42.8%, a specificity of 97.5%, negative predictive value of 94.10%, positive predictive value of 65.22%, positive likelihood ratio of 17.52, and negative likelihood ratio of 0.59. The univariable logistic regression model had an area under the curve of 0.78. There was a statistically significant difference at the 5% level between univariable and multivariable area under the curves of the dorsalis pedis and posterior tibial models (p < 0.001). Audible handheld Doppler ultrasound proved to be a reliable, simple, rapid, and inexpensive bedside exclusion test of peripheral arterial disease in diabetic and nondiabetic patients. © The Author(s) 2015.
Relative ion expansion velocity in laser-produced plasmas
NASA Technical Reports Server (NTRS)
Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.
1988-01-01
The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.
DMSK: A practical 2400-bps receiver for the mobile satellite service: An MSAT-X Report
NASA Technical Reports Server (NTRS)
Davarian, F.; Simon, M. K.; Sumida, J.
1985-01-01
The partical aspects of a 2400-bps differential detection minimum-shift-keying (DMSK) receiver are investigated. Fundamental issues relating to hardware precision, Doppler shift, fading, and frequency offset are examined, and it is concluded that the receiver's implementation at baseband is more advantageous both in cost and simplicity than its IF implementation. The DMSK receiver has been fabricated and tested under simulated mobile satellite environment conditions. The measured receiver performance in the presence of anomalies pertinent to the link is presented in this report. Furthermore, the receiver behavior in a band-limited channel (GMSK) is also investigated. The DMSK receiver performs substantially better than a coherent minimum-shift-keying (MSK) receiver in a heavily fading environment. The DMSK radio is simple and robust, and results in a lower error floor than its coherent counterpart. Moreover, this receiver is suitable for burst-type signals, and its recovery from deep fades is fast.
Ultrashort Pulse (USP) Laser-Matter Interactions
2013-03-05
spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity Service Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB
VizieR Online Data Catalog: Echelle spectra of 10 bright asteroids (Zwitter+, 2007)
NASA Astrophysics Data System (ADS)
Zwitter, T.; Mignard, F.; Crifo, F.
2006-10-01
Table 5 gives observed spectra of twilight and asteroids rebinned to the same wavelength bins, continuum normalized and Doppler shifted to zero radial velocity. Asteroid spectra of 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 21 Lutetia, 27 Euterpe, 40 Harmonia, 49 Pales, and 80 Sappho are given. Spectra of observed twilight sky and of a theoretical Kurucz Solar model are added for comparison. (1 data file).
Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests
NASA Technical Reports Server (NTRS)
Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.
1984-01-01
The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.
Morel, O; Pachy, F; Chavatte-Palmer, P; Bonneau, M; Gayat, E; Laigre, P; Evain-Brion, D; Tsatsaris, V
2010-11-01
Three-dimensional (3D) Doppler quantification within the uteroplacental unit could be of great help in understanding and screening for pre-eclampsia and intrauterine growth restriction. Yet the correlation between 3D Doppler indices and true blood flow has not been confirmed in vivo. The aim of this study was to evaluate this correlation in a pregnant sheep model. A blood flow quantitative sensor and a controllable vascular occlusion system were placed around the common uterine artery in seven sheep in late pregnancy, while all the other arterial supplies were ligated. Several occlusion levels were applied, from 0 to 100%, simultaneously with 3D Doppler acquisitions of several placentomes, using standardized settings. Each placentome was analyzed using VOCAL™ (Virtual Organ Computer-aided AnaLysis) software. The correlation between true blood flow and Doppler indices (vascularization index (VI), flow index (FI) and vascularization flow index (VFI)) was evaluated, together with measurement reproducibility. Forty-eight acquisitions were analyzed. All 3D Doppler indices were significantly correlated with true blood flow. Higher correlations were observed for VI and VFI (r = 0.81 (0.74-0.87), P < 0.0001 and r = 0.75 (0.67-0.82), P < 0.0001) compared with FI (r = 0.53 (0.38-0.64) P < 0.0001). Both intra- and interobserver reproducibility were high, with intraclass correlation coefficients of at least 0.799. This is the first in-vivo experimental study confirming a significant correlation between true blood perfusion and quantitative 3D Doppler indices measured within the uteroplacental unit. These results confirm the potential usefulness of 3D Doppler ultrasound for the assessment of placental vascular insufficiency both in clinical cases and in a research setting. Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd.
Infrasonic Effect of Solar Eclipses
NASA Astrophysics Data System (ADS)
Pushin, V. F.; Chernogor, L. F.
2013-06-01
The relevance of this study is due to the need to understand, physical effects associated with rare phenomenon, solar eclipse. Until recently, the features of internal gravity wave generation, have been studied in the 10 -100 min period range, while in this, study an attempt is made to confirm the fact of generation, and estimate the general parameters of infrasound oscillations, associated with solar eclipses in the 1-10 min period range. The observations were made with the HF Doppler radar at vertical, incidence. The data were subjected to spectral analysis and, band-pass filtering. The solar eclipses that had occurred over, Kharkiv city (Ukraine) within 1999-2011 are determined to be, associated with Doppler shift of frequency oscillations in the, infrasound frequency band ( 5-8 min period range) and with, amplitude of 20 -100 mHz. The corresponding amplitude, of electron density oscillations was approximately equal to, 0.1- 0.5 %.
Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements
NASA Astrophysics Data System (ADS)
Zhu, Meng; Dennis, Cindi; McMichael, Robert
2010-03-01
The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);
NASA Astrophysics Data System (ADS)
Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana
2017-09-01
We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.
NASA Technical Reports Server (NTRS)
Zimmermann, M.
1980-01-01
A technique is presented for visualizing and quantitatively measuring velocity, temperature, and pressure by shining a single frequency laser beam into a gaseous flow which is seeded with an atomic species. The laser is tuned through the absorption frequencies of the seeded species and the absorption profile is detected by observing fluorescence as the atoms relax back to the ground state. The flow velocity is determined by observing the Doppler shift in the absorption frequency. Spectroscopic absorption line broadening mechanisms furnish information regarding the static temperature and pressure of the moving gas. Results of experiments conducted in the free stream and in the bow shock of a conical model mounted in a hypersonic wind tunnel indicate that the experimental uncertainties in the measurement of average values for the velocity, temperature and pressure of the flow are 0.1, 5 and 10 percent respectively.
Optic probe for multiple angle image capture and optional stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2016-11-29
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
Radiation forces on small particles in the solar system
NASA Technical Reports Server (NTRS)
Burns, J. A.; Lamy, P. L.; Soter, S.
1979-01-01
Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.
The Properties of Extragalactic Radio Jets
NASA Astrophysics Data System (ADS)
Finke, Justin
2018-01-01
I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.
Hydroacoustic Applications in South Carolina: Technological Advancements in the Streamgaging Network
Shelton, John M.
2008-01-01
Until the 1990s, the U.S. Geological Survey (USGS) had been making streamflow measurements using the same type of equipment for more than 100 years. The Price AA current meter was developed by USGS engineers in 1896. Until recently, the majority of all streamflow measurements made by the USGS were made using this instrument. In the mid-1990s, a new technology emerged in the field of inland streamflow monitoring. The acoustic Doppler current profiler (ADCP), originally developed for oceanographic work, was adapted for inland streamflow measurements. This instrument is transforming the USGS streamgaging program. The ADCP transmits an acoustic pulse through the water column. A 'Doppler shift' is measured as the signal is reflected off of particles in the water, such as sediment and microorganisms. Based on the assumption that the particles in the water are traveling at the same velocity as the water itself, a water velocity is computed.
Multicomponent Arcjet plasma Parameters
NASA Astrophysics Data System (ADS)
Gorbunkov, V.; Kositsin, V. V.; Ruban, V. I.; Shalay, V. V.
2018-01-01
To determine the plasma arc parameters of an arcjet thruster, the kinetic theory of gases is used. We can find a well-known statement about the adiabatic character of the compression process due to the growth of the gas temperature in a change in its spectral composition and in the Doppler effect. The use of tungsten in the nozzle design details explains the appearance of atoms of this element in the plasma volume. The emission spectra of tungsten allow us to indirectly judge the temperature of the arc discharge and its character. Absorption of the long-wavelength wing of the line contour at λ = 465.987 nm substantiates our conclusion about the consumption of the anode material in the process of operating the arcjet. The Doppler shift of the emission lines of argon allows us to determine the rate of the gas jet escape. The results of the study can be useful in the design of aircraft.
Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares
2018-02-01
We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Coherent Doppler Lidar for Precision Navigation of Spacecrafts
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce
2011-01-01
A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.
Ultra-stable sub-meV monochromator for hard X-rays
Toellner, T. S.; Collins, J.; Goetze, K.; ...
2015-07-17
A high-resolution silicon monochromator suitable for 21.541 keV synchrotron radiation is presented that produces a bandwidth of 0.27 meV. The operating energy corresponds to a nuclear transition in 151Eu. The first-of-its-kind, fully cryogenic design achieves an energy-alignment stability of 0.017 meV r.m.s. per day, or a 100-fold improvement over other meV-monochromators, and can tolerate higher X-ray power loads than room-temperature designs of comparable resolution. This offers the potential for significantly more accurate measurements of lattice excitation energies using nuclear resonant vibrational spectroscopy if combined with accurate energy calibration using, for example, high-speed Doppler shifting. The design of the monochromator alongmore » with its performance and impact on transmitted beam properties are presented.« less
Zierler, R E; Phillips, D J; Beach, K W; Primozich, J F; Strandness, D E
1987-08-01
The combination of a B-mode imaging system and a single range-gate pulsed Doppler flow velocity detector (duplex scanner) has become the standard noninvasive method for assessing the extracranial carotid artery. However, a significant limitation of this approach is the small area of vessel lumen that can be evaluated at any one time. This report describes a new duplex instrument that displays blood flow as colors superimposed on a real-time B-mode image. Returning echoes from a linear array of transducers are continuously processed for amplitude and phase. Changes in phase are produced by tissue motion and are used to calculate Doppler shift frequency. This results in a color assignment: red and blue indicate direction of flow with respect to the ultrasound beam, and lighter shades represent higher velocities. The carotid bifurcations of 10 normal subjects were studied. Changes in flow velocities across the arterial lumen were clearly visualized as varying shades of red or blue during the cardiac cycle. A region of flow separation was observed in all proximal internal carotids as a blue area located along the outer wall of the bulb. Thus, it is possible to detect the localized flow patterns that characterize normal carotid arteries. Other advantages of color-flow imaging include the ability to rapidly identify the carotid bifurcation branches and any associated anatomic variations.
Vasospasm is a significant factor in cyclosporine-induced neurotoxicity: case report.
Braakman, Hilde M H; Lodder, Jan; Postma, Alida A; Span, Lambert F R; Mess, Werner H
2010-05-11
The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial. We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved. This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.
Lifetimes of low-lying excited states in Kr 50 36 86
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.; Chester, A.; Ball, G. C.
b>Bmore » The evolution of nuclear magic numbers at extremes of isospin is a topic at the forefront of contemporary nuclear physics. N = 50 is a prime example, with increasing experimental data coming to light on potentially doubly magic Sn 100 and Ni 78 at the proton-rich and proton-deficient extremes, respectively; however, experimental discrepancies exist in the data for less exotic systems. Purpose: In Kr 86 the B ( E 2 ; 2 1 + → 0 1 + ) value—a key indicator of shell evolution—has been experimentally determined by two different methodologies, with the results deviating by 3 σ . Here, we report on a new high-precision measurement of this value, as well as the first measured lifetimes and hence transition strengths for the 2 2 + and 3 ( 2 ) - states in the nucleus. Methods: The Doppler-shift attenuation method was implemented using the TRIUMF-ISAC γ -ray escape-suppressed spectrometer (TIGRESS) γ -ray spectrometer and the TIGRESS integrated plunger device. High-statistics Monte Carlo simulations were utilized to extract lifetimes in accordance with state-of-the-art methodologies. Results: Lifetimes of τ ( 2 1 + ) = 336 ± 4 (stat.) ± 20 (sys.) fs, τ ( 2 2 + ) = 263 ± 9 (stat.) ± 19 (sys.) fs, and τ ( 3 ( 2 ) - ) = 73 ± 6 (stat.) ± 32 (sys.) fs were extracted. This yields a transition strength for the first-excited state of B ( E 2 ; 2 1 + → 0 1 + ) = 259 ± 3 (stat.) ± 16 (sys.) e 2 fm 4 . Conclusions: Finally, the measured lifetime disagrees with the previous Doppler-shift attenuation method measurement by more than 3 σ , while agreeing well with a previous value extracted from Coulomb excitation. The newly extracted B ( E 2 ; 2 1 + → 0 1 + ) value indicates a more significant reduction in the N = 50 isotones approaching Z = 40 .« less