Somatotype characteristics of normal-weight and obese women among different metabolic subtypes.
Galić, Biljana Srdić; Pavlica, Tatjana; Udicki, Mirjana; Stokić, Edita; Mikalački, Milena; Korovljev, Darinka; Čokorilo, Nebojša; Drvendžija, Zorka; Adamović, Dragan
2016-02-01
Obesity is a well known risk factor for the development of metabolic abnormalities. However, some obese people are healthy and on the other hand some people with normal weight have adverse metabolic profile, therefore it can be assumed that there is a difference in physical characteristics amongst these people. The aim of this study was to establish whether there are somatotype differences between metabolically healthy and metabolically obese women who are obese or of normal weight. Study included 230 women aged 44.76 ± 11.21y. Metabolic status was assessed according to IDF criteria, while somatotype was obtained using Heath & Carter method. Significant somatotype differences were observed in the group of women with normal-weight: metabolically healthy women had significantly lower endomorphy, mesomorphy and higher ectomorphy compared to metabolically obese normal-weight women (5.84-3.97-2.21 vs. 8.69-6.47-0.65). Metabolically healthy obese women had lower values of endomorphy and mesomorphy and higher values of ectomorphy compared to 'at risk' obese women but the differences were not statistically significant (7.59-5.76-0.63 vs. 8.51-6.58-0.5). Ectomorphy was shown as an important determinant of the favorable metabolic profile (cutoff point was 0.80). We concluded that, in addition to fat mass, metabolic profile could be predicted by the structure of lean body mass, and in particular by body linearity.
Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan
2015-02-01
Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.
Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohhira, Shuji; Enomoto, Mitsunori; Matsui, Hisao
Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, includingmore » typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats.« less
Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L
To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.
Fijal, Bonnie A; Guo, Yingying; Li, Si G; Ahl, Jonna; Goto, Taro; Tanaka, Yoko; Nisenbaum, Laura K; Upadhyaya, Himanshu P
2015-10-01
Atomoxetine, which is indicated for treatment of attention-deficit hyperactivity disorder (ADHD), is predominantly metabolized by genetically polymorphic cytochrome P450 2D6 (CYP2D6). Based on identified CYP2D6 genotypes, individuals can be categorized into 4 phenotypic metabolizer groups as ultrarapid, extensive, intermediate, and poor. Previous studies have focused on observed differences between poor and extensive metabolizers, but it is not well understood whether the safety profile of intermediate metabolizers differs from that of ultrarapid and extensive metabolizers. This study compared safety and tolerability among the different CYP2D6 metabolizer groups in the 12-week open-label phase of an atomoxetine study in adult patients with ADHD. Genotyping identified 1039 patients as extensive/ultrarapid metabolizers, 780 patients as intermediate metabolizers, and 117 patients as poor metabolizers. Common (≥5% frequency) treatment-emergent adverse events did not significantly differ between extensive/ultrarapid and intermediate metabolizers (odds ratios were <2.0 or >0.5). Poor metabolizers had higher frequencies of dry mouth, erectile dysfunction, hyperhidrosis, insomnia, and urinary retention compared with the other metabolizer groups. There were no significant differences between extensive/ultrarapid and intermediate metabolizers in changes from baseline in vital signs. These results suggest that data from CYP2D6 intermediate and extensive/ultrarapid metabolizers can be combined when considering safety analyses related to atomoxetine. © 2015, The American College of Clinical Pharmacology.
Silviera, Matthew L.; Smith, Brian P.; Powell, Jasmine; Sapienza, Carmen
2012-01-01
We have compared DNA methylation in normal colon mucosa between colon cancer patients and patients without cancer. We identified significant differences in methylation between the two groups at 114 – 874 genes. The majority of the differences are in pathways involved in the metabolism of carbohydrates, lipids and amino acids. We also compared transcript levels of genes in the insulin-signaling pathway. We found that the mucosa of cancer patients had significantly higher transcript levels of several hormones regulating glucose metabolism and significantly lower transcript levels of a glycolytic enzyme and a key regulator of glucose and lipid homeostasis. The se differences suggest that the normal colon mucosa of cancer patients metabolizes dietary components differently than the colon mucosa of controls. Because the differences identified are present in morphologically normal tissue, they may be diagnostic of colon cancer and/or prognostic of colon cancer susceptibility. PMID:22300984
Metabolic Expenditures During Extravehicular Activity: Spaceflight versus Ground-based Simulation
NASA Technical Reports Server (NTRS)
Klein, Jill; Conkin, Johnny; Gernhardt, Michael; Srinivasan, Ramachandra
2008-01-01
In general metabolic rates tend to be higher in NBL than in flight: a) Restraint method dependent; b) Significant differences between the NBL and flight for BRT and APFR (buoyancy effects); and c) No significant difference between NBL and flight for free float and SRMS/SSRMS operations. The total metabolic energy expenditure for a given task and for the EVA as a whole are similar between NBL and flight: a) NBL metabolic rates are higher, but training EVAs are constrained to 5 hours; and b) Flight metabolic rates are lower, but the EVAs are typically an hour or more longer in duration. NBL metabolic rates provide a useful operational tool for flight planning. Quantifying differences and similarities between training and flight improves knowledge for preparation of safe and efficient EVAs.
Metabolism drives distribution and abundance in extremophile fish
McHugh, Peter A.; Glover, Chris N.; McIntosh, Angus R.
2017-01-01
Differences in population density between species of varying size are frequently attributed to metabolic rates which are assumed to scale with body size with a slope of 0.75. This assumption is often criticised on the grounds that 0.75 scaling of metabolic rate with body size is not universal and can vary significantly depending on species and life-history. However, few studies have investigated how interspecific variation in metabolic scaling relationships affects population density in different sized species. Here we predict inter-specific differences in metabolism from niche requirements, thereby allowing metabolic predictions of species distribution and abundance at fine spatial scales. Due to the differences in energetic efficiency required along harsh-benign gradients, an extremophile fish (brown mudfish, Neochanna apoda) living in harsh environments had slower metabolism, and thus higher population densities, compared to a fish species (banded kōkopu, Galaxias fasciatus) in physiologically more benign habitats. Interspecific differences in the intercepts for the relationship between body and density disappeared when species mass-specific metabolic rates, rather than body sizes, were used to predict density, implying population energy use was equivalent between mudfish and kōkopu. Nevertheless, despite significant interspecific differences in the slope of the metabolic scaling relationships, mudfish and kōkopu had a common slope for the relationship between body size and population density. These results support underlying logic of energetic equivalence between different size species implicit in metabolic theory. However, the precise slope of metabolic scaling relationships, which is the subject of much debate, may not be a reliable indicator of population density as expected under metabolic theory. PMID:29176819
Tidblad, Anders; Gustafsson, Jan; Marcus, Claude; Ritzén, Martin; Ekström, Klas
2017-06-01
Severe growth hormone deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition to biochemical disturbances. However, less is known regarding these parameters in short children with GH peak levels in the lower normal range during provocation tests. Our aim was to study the metabolic profile of this group and compare it with that of healthy children of normal height. Thirty-five pre-pubertal short children (<-2.5 SDS) aged between 7 and 10years, with peak levels of GH between 7 and 14μg/L in an arginine insulin tolerance test (AITT), were compared with twelve age- and sex-matched children of normal height. The metabolic profile of the subjects was analysed by blood samples, DEXA, frequently sampled intravenous glucose tolerance test, microdialysis and stable isotope examinations of rates of glucose production and lipolysis. There were no overall significant metabolic differences between the groups. However, in the subgroup analysis, the short children with GH peaks <10μg/L had significantly lower fasting insulin levels which also correlated to other metabolic parameters. The short pre-pubertal children with GH peak levels between 7 and 14μg/L did not differ significantly from healthy children of normal height but subpopulations within this group show significant metabolic differences. Copyright © 2017 Elsevier Ltd. All rights reserved.
An application of statistics to comparative metagenomics
Rodriguez-Brito, Beltran; Rohwer, Forest; Edwards, Robert A
2006-01-01
Background Metagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments. Results Here we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified. Conclusion The methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems. PMID:16549025
An application of statistics to comparative metagenomics.
Rodriguez-Brito, Beltran; Rohwer, Forest; Edwards, Robert A
2006-03-20
Metagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments. Here we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified. The methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.
[Serum creatine kinase activity in dogs and cats with metabolic diseases].
Neumann, S
2005-09-01
Elevated Creatine kinase-activitiy (CK) indicates disturbances of the muscle cell integrity. In addition to primary muscle disease, like trauma, inflammation or dystrophy, diseases of other organs can lead to secondary muscle involvement, which will be indicated by increased serum activities of the CK. The mechanisms of muscle cell disturbance are still unknown. An elevated protein catabolism in the muscle cell is suspected. In the present study we investigated, if dogs and cats with metabolic diseases have increased CK-activity in the serum. From 34 dogs and cats in a group with different metabolic diseases without metabolic acidosis 19% of the dogs and 50% of the cats had increased CK-activity in the serum. From 33 dogs and cats with different metabolic diseases connected with metabolic acidosis 86% of the dogs and 95% of the cats had simultaneously increased CK-activity in the serum. In comparison to healthy dogs and cats animals with metabolic diseases have significant and in cases of metabolic di-seases with metabolic acidosis cats have high significant elevation (dogs significant) of CK-activity in the serum. There was no significant correlation between the groups of patients. In conclusion we think that our results show that metabolic diseases often induce secondary myopathy, measured by CK-activity in the serum, but metabolic acidosis has no direct influence on elevated CK activity in dogs and cats.
Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients. PMID:24358312
Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.
OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles
Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.
2015-01-01
Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells. PMID:25688563
Using Analogs for Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity
NASA Technical Reports Server (NTRS)
Norcross, Jason R.
2013-01-01
In general metabolic rates tend to be higher in NBL than in flight: a) Restraint method dependant; b) Significant differences between the NBL and flight for BRT and APFR (buoyancy effects). c) No significant difference between NBL and flight for free float and SRMS/SSRMS operations. The total metabolic energy expenditure for a given task and for the EVA as a whole are similar between NBL and flight: a) NBL metabolic rates are higher, but training EVAs are constrained to 5 1/2 hours. b) Flight metabolic rates are lower, but the EVAs are typically an hour or more longer in duration. NBL metabolic rates provide a useful operational tool for flight planning. Quantifying differences and similarities between training and flight improves knowledge for preparation of safe and efficient EVAs.
Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P
2016-12-01
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.
Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.
2016-01-01
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318
Study on the correlation between KCNJ11 gene polymorphism and metabolic syndrome in the elderly.
Jiang, Fan; Liu, Ning; Chen, Xiao Zhuang; Han, Kun Yuan; Zhu, Cai Zhong
2017-09-01
The aim of the study was to examine the correlation between KCNJ11 gene polymorphism and metabolic syndrome in elderly patients. From January 2014 to January 2015, 54 elderly patients with metabolic syndrome were enrolled in this study as the observation group. During the same period, 46 healthy elderly individuals were enrolled in this study as the control group. KCNJ11 gene polymorphism (rs28502) was analyzed using polymerase chain reaction-restriction fragment length polymorphism. The expression levels of mRNA in different genotypes were detected using FQ-PCR. ELISA was used to evaluate the KCNJ11 protein expression in different genotypes. KCNJ11 gene polymorphism and metabolic syndrome was studied by measuring the blood pressure levels in patients with different genotypes. Three genotypes of KCNJ11 gene in rs28502 were CC, CT and TT. The CC, CT and TT genotype frequencies in healthy population were 8.5, 9.2 and 82.2%, respectively, while the genotype frequencies in patients with metabolic syndrome were 42.4, 49.8 and 7.8%, respectively. There were significant differences between groups (P≤0.05). However, the genotype frequencies of C/T in healthy individuals and metabolic syndrome patients were 35.3 and 38.3%, respectively. There were no significant differences between groups (P>0.05). FQ-PCR results showed that the KCNJ11 mRNA expression levels in the control and observation groups had no significant differences (P>0.05). However, the results obtained from ELISA analysis revealed that KCNJ11 protein expression level in the observation group was significantly higher than that in the control group (P<0.05). In conclusion, KCNJ11 gene polymorphism is associated with metabolic syndrome in the elderly. Elderly patients with the CC and TT genotypes are more likely to develop metabolic syndrome.
Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats.
Liu, Li; Jiang, Zhenzhou; Liu, Jing; Huang, Xin; Wang, Tao; Liu, Jun; Zhang, Yun; Zhou, Zhixing; Guo, Jianlu; Yang, Lina; Chen, Yun; Zhang, Luyong
2010-04-30
Triptolide, a major active component of Tripterygium wilfordii Hook F (TWHF), has multiple pharmacological activities. However, its clinical use is often limited by its severe toxicity. In the present study, we evaluated the oral toxicity of triptolide in Sprague-Dawley rats for 28 days at the dosages of 0, 200 and 400microg/kg/day, respectively. Significant difference in the toxicity of triptolide at 400microg/kg was found between different sexes. The triptolide-treated female rats showed many abnormalities, including anorexia, diarrhea, leanness, suppression of weight gain and food intake, fatty liver, splenomegaly and atrophy of ovaries. In contrast, no such abnormalities were observed in male rats except for the significant reproductive toxicity. Furthermore, the metabolism of triptolide in liver microsomes from both sexes was investigated by HPLC. A greater rate of triptolide metabolism was observed in male rat hepatic microsomes, suggesting that one of the cytochrome P450s (CYPs) responsible for triptolide metabolism is male-specific or predominant at least. The inhibition experiments with CYP inhibitors showed that CYP3A and CYP2B were mainly involved in the metabolism of triptolide. In addition, since CYP3A2 is a male-predominant form in rats, significant sex difference in the metabolism of triptolide disappeared in vitro after anti-rat CYP3A2 antibody pretreatment. Results suggested that CYP3A2 made an important contribution to the sex-related metabolism of triptolide, which may result in the sex differences in triptolide toxicity.
Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł
2015-01-01
Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.
Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming
2015-02-01
Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.
Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi
2015-07-01
Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with major, gender-specific, changes in circulating oxysterols and fatty acids. These findings suggest a metabolic link between oxysterols and fatty acids, and that oxysterols may contribute to the epidemic diseases associated with obesity and metabolic syndrome in female. Copyright © 2015 Elsevier Inc. All rights reserved.
Yoo, Soyeon; Yang, Eun-Jin; Lee, Sang Ah; Koh, Gwanpyo
2018-02-01
Metabolic syndrome increases the risk of cardiovascular disease. Recently glucagon-like peptide 1 (GLP-1) agonists proved to be effective in preventing cardiovascular disease (CVD) in patients with type 2 diabetes. We investigated the association of blood incretin levels with metabolic syndrome in patients with type 2 diabetes. This is a cross-sectional study involving 334 people with type 2 diabetes. Intact GLP-1 (iGLP-1) and intact glucose-dependent insulinotropic polypeptide (iGIP) levels were measured in a fasted state and 30 min after ingestion of a standard mixed meal. Metabolic syndrome was diagnosed based on the criteria of the International Diabetes Federation. Two hundred twenty-five (69%) of the subjects have metabolic syndrome. The fasting iGLP-1 level was no different between groups. Thirty-min postprandial iGLP-1 was non-significantly lower in the subjects who had metabolic syndrome. Incremental iGLP-1 (ΔiGLP-1, the difference between 30-min postmeal and fasting iGLP-1 levels) was significantly lower in those with metabolic syndrome. There were no significant differences in fasting iGIP, postprandial iGIP, and ΔiGIP between groups. The ΔiGLP-1, but not ΔiGIP levels decreased significantly as the number of metabolic syndrome components increased. In hierarchical logistic regression analysis, the ΔiGLP-1 level was found to be a significant contributor to metabolic syndrome even after adjusting for other covariates. Taken together, the iGLP-1 increment in the 30 min after meal ingestion is inversely associated with metabolic syndrome in patients with type 2 diabetes. This suggests that postmeal iGLP-1 increment could be useful in assessing cardiovascular risk in type 2 diabetes.
[The peculiarities of calcium metabolism regulation in different periods of growth and development].
Moĭsa, S S; Nozdrachev, A D
2014-01-01
The review contains literature data about calcium metabolism regulation in different periods of growth and development. The analyses of retrospective and current sources of information about the regulation of calcium homeostasis under the theory of functional systems, the regulation of calcium metabolism in prenatal and postnatal periods of the development, the significance of calcium metabolism disturbances in the development of pathological conditions were showed.
Evans, B W; Potteiger, J A
1995-06-01
This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.
Almeida, Sandro S; Corgosinho, Flavia C; Amorim, Carlos EN; Gregnani, Marcos F; Campos, Raquel MS; Masquio, Deborah CL; Sanches, Priscila L; Ganen, Aline P; Pesquero, João B; Dâmaso, Ana R; Mello, Marco T; Tufik, Sergio; Araújo, Ronaldo C
2017-01-01
Introduction: The main purpose of the present study was to investigate whether I/D polymorphism of the ACE gene might affect metabolic changes related to the metabolic syndrome through a long-term interdisciplinary therapy in obese adolescents. Methods: In total, 125 obese adolescents who entered the interdisciplinary obesity programme were assigned to the following two subgroups: metabolic syndrome or non-metabolic syndrome. They were evaluated at baseline and after 1 year. Genomic DNA was extracted from circulating leukocytes. Results: Subjects with the II genotype in the non-metabolic syndrome group were only to increase their fat-free mass after therapy. Regarding lipid profile, subjects with ID and DD genotypes from both groups reduced their low-density lipoprotein cholesterol levels significantly. The metabolic parameters from the ID and DD genotypes of the non-metabolic syndrome group showed a significantly improved insulin response. Conclusion: In the present study, we showed that the ACE polymorphism was able to influence the fat-free mass in the I-carry allele in the non-metabolic syndrome group positively. In addition, the I-carry allele was able to improve the insulin resistance of the metabolic syndrome group significantly. These results suggest that the ACE I/D genotypes can influence, in different ways, the specific parameters of metabolism among obese adolescents submitted for long-term interdisciplinary therapy. PMID:28504003
Metabolic syndrome in patients with severe mental illness in Gorgan
Kamkar, Mohammad Zaman; Sanagoo, Akram; Zargarani, Fatemeh; Jouybari, Leila; Marjani, Abdoljalal
2016-01-01
Background: Metabolic syndrome is commonly associated with cardiovascular diseases and psychiatric mental illness. Hence, we aimed to assess the metabolic syndrome among severe mental illness (SMI). Materials and Methods: The study included 267 patients who were referred to the psychiatric unit at 5th Azar Education Hospital of Golestan University of Medical Sciences in Gorgan, Iran. Results: The mean waist circumference, systolic and diastolic blood pressure, triglyceride and fasting blood glucose levels were significantly higher in the SMI with metabolic syndrome, but the high density lipoprotein (HDL)-cholesterol was significantly lower. The prevalence of metabolic syndrome in SMI patients was 20.60%. There were significant differences in the mean of waist circumference, systolic (except for women) and diastolic blood pressure, triglyceride, HDL-cholesterol and fasting blood glucose in men and women with metabolic syndrome when compared with subjects without metabolic syndrome. The prevalence of metabolic syndrome in SMI women was higher than men. The most age distribution was in range of 30-39 years old. The most prevalence of metabolic syndrome was in age groups 50-59 years old. The prevalence of metabolic syndrome was increased from 30 to 59 years old. Conclusion: The prevalence of metabolic syndrome in patients with SMI in Gorgan is almost similar to those observed in Asian countries. The prevalence of metabolic syndrome was lower than western countries. These observations may be due to cultural differences in the region. It should be mention that the families of mental illness subjects in our country believe that their patients must be cared better than people without mental illness. These findings of this study suggest that mental illness patients are at risk of metabolic syndrome. According to our results, risk factors such as age and gender differences may play an important role in the presence of metabolic syndrome. In our country, women do less physical activity than men; therefore, the incidence of metabolic syndrome is higher among women. PMID:27003972
Barnacle geese achieve significant energetic savings by changing posture.
Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.
Barnacle Geese Achieve Significant Energetic Savings by Changing Posture
Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672
Hurst, Susan; Loi, Cho-Ming; Brodfuehrer, Joanne; El-Kattan, Ayman
2007-08-01
The onset, intensity and duration of therapeutic response to a compound depend on the intrinsic pharmacological activity of the drug and pharmacokinetic factors related to its absorption, distribution, metabolism and elimination that are inherent to the biological system. The process of drug transfer from the site of administration to the systemic circulation and the interspecies factors that impact this process are the scope of this review. In general, the factors that influence oral drug bioavailability via absorption and metabolism can be divided into physicochemical/biopharmaceutical and physiological factors. Physicochemical and biopharmaceutical factors that influence permeability and solubility tend to be species independent. Although there are significant differences in the anatomy and physiology of the gastrointestinal tract, these are not associated with significant differences in the rate and extent of drug absorption between rats and humans. However, species differences in drug metabolism in rats and humans did result in significant species differences in bioavailability. Overall, this review provides a better understanding of the interplay between drug physicochemical/biopharmaceutical factors and species differences/similarities in the absorption and metabolism mechanisms that affect oral bioavailability in rats and humans. This will enable a more rational approach to perform projection of oral bioavailability in human using available rat in vivo data.
Carlsson, Axel C; Wändell, Per E; Halldin, Mats; de Faire, Ulf; Hellénius, Mai-Lis
2009-06-01
There are three commonly used definitions of the metabolic syndrome, making scientific studies hard to compare. The aim of this study was to investigate agreement in the prevalence of the metabolic syndrome defined by three different definitions and to analyze definition and gender differences. A population-based, cross-sectional study of a total of 4232 participants--2039 men and 2193 women, aged 60 years--was employed. Three different metabolic syndrome definitions were compared: European Group for the Study of Insulin Resistance (EGIR), International Diabetes Federation (IDF), and National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Medical history, socioeconomic information, and lifestyle data were collected by a questionnaire. A medical examination including laboratory tests was performed. Significant factors for the metabolic syndrome were calculated by multivariate logistic regression. Forty five percent of men and 30% of women met the criteria for the metabolic syndrome by any definition, but only 17% of men and 9% of women met the criteria of all three definitions. The highest agreement was found between IDF and NCEP ATP III definition. Two significant associations were identified in both men and women by the three metabolic syndrome definitions; former smokers were highly associated with the metabolic syndrome (odds ratio [OR] congruent with 1.5), and regular physical activity (OR congruent with 0.6) was inversely associated with the metabolic syndrome. Depending on the definition used, different individuals were identified as having the metabolic syndrome, which affects the reliability of interpretations to be made from scientific studies of the metabolic syndrome. Unified criteria are warranted. Physicians facing a physically inactive former smoker may consider diagnosing metabolic syndrome.
Protas, Hillary D; Chen, Kewei; Langbaum, Jessica B S; Fleisher, Adam S; Alexander, Gene E; Lee, Wendy; Bandy, Daniel; de Leon, Mony J; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W; Caselli, Richard J; Reiman, Eric M
2013-03-01
To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Academic medical center. A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease.
Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei
2014-01-01
This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729
Chen, Ke; Li, Erchao; Xu, Zhixin; Li, Tongyu; Xu, Chang; Qin, Jian G.; Chen, Liqiao
2015-01-01
RNA-seq was used to compare the transcriptomic response of hepatopancreas in juvenile Litopenaeus vannamei fed three diets with different lipid sources, including beef tallow (BT), fish oil (FO), and an equal combination of soybean oil + BT + linseed oil (SBL) for 8 weeks at 3 practical salinity unit (psu). A total of 9622 isogenes were annotated in 316 KEGG pathways and 39, 42 and 32 pathways significantly changed in the paired comparisons of FO vs SBL, BT vs SBL, or FO vs BT, respectively. The pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, and biosynthesis of unsaturated fatty acid were significantly changed in all paired comparisons between dietary lipid sources, and the pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism and glycerophospholipid metabolism significantly changed in the FO vs SBL and BT vs SBL comparisons. These pathways are associated with energy metabolism and cell membrane structure. The results indicate that lipids sources affect the adaptation of L. vannamei to low salinity by providing extra energy or specific fatty acids to change gill membrane structure and control iron balance. The results of this study lay a foundation for further understanding lipid or fatty acid metabolism in L. vannamei at low salinity. PMID:26670122
[Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].
Ji, Jian; Qian, Suyun; Yan, Jie
2016-01-01
To determine the resting energy expenditure on mechanical ventilation in pediatric intensive care unit (PICU) by indirect calorimetry, and analyze the distribution of metabolic states. The nutrition supply was assessed according to the resting energy expenditure. An observational study which was held in PICU of Beijing Children's Hospital from November 2013 to April 2014. Critically ill children with mechanical ventilation were enrolled in this study. The inclusion criteria included the following: (1) pediatric critical illness score < 90, or meet the United States PICU admission criteria; (2) age > 29 days, < 18 years old; (3) time of mechanical ventilation > 24 hours; (4) volume of mechanical ventilation > 60 ml. Resting energy expenditure was determined by US Med Graphic Company CCM/D energy metabolism test system. Predictive resting energy expenditure was calculated for each subject with age-appropriate equation (Schofield-HTWT). According to the actual energy intake records and required energy intake (10% higher than the measured value) to define the nutritional status. The selected subjects were grouped according to gender, age, types of disease and nutritional status, and compared the metabolic status and nutritional supply of different groups. Sixty-eight children were enrolled in this study, 46 were boys and 22 were girls, including 25 cases of pneumonia with respiratory failure, 23 cases of central nervous system diseases complicated with respiratory failure and 20 cases of postoperative tracheal intubation. The ratio of boys and girls was 2:1. The results showed 36 patients in a low metabolic state, accounting for 53%, 23 patients in a high metabolic state, accounting for 34% and 9 patients (13%) in the metabolism of the normal state. In the male children, 12 cases (26%) were in the high metabolism and 26 cases (57%) were in the low metabolism, and 8 cases (17%) were in the normal metabolism. In the female children, 11 cases (50%) were classified into high metabolism; 10 cases (45%) into low metabolism and 1 case (5%) was classified into normal metabolism. There was no significant difference in the distribution of metabolic status among different gender(χ(2) = 4.176, P = 0.095). In terms of ages, 15 cases (63%) were mainly in high metabolism in the patients at age < 3 years, 19 and 11 patients in 3-9 and 10-18 years age group respectively are mostly in low metabolism. As to the diseases, pneumonia complicated with respiratory failure and central nervous system diseases complicated with respiratory failure with mechanical ventilation (respectively 15 cases (60%) and 12 cases (52%)) were in low metabolism mainly; 11 cases of postoperative tracheal intubation were in high metabolism states, accounting for 55%. The distribution of metabolic status in different age and clinical diagnosis had significant difference. Thirty-one patients had normal nutrients supply, accounting for 46%, 37 patients had inappropriate nutrition supply, accounting for 54%, including insufficient supplies of nutrients in 22 cases, accounting for 32%, excessive supplies of nutrients were seen in 15 cases(22%). There were no statistically significant differences among the different types of diseases. There are differences in the metabolic state of the mechanical ventilation in critically ill patients, mainly in low metabolic state. The age and types of diseases can affect the metabolic status of patients. Empirical nutritional support is not applicable to patients.
Caries risk indicators in children with type 1 diabetes mellitus in relation to metabolic control.
El-Tekeya, Magda; El Tantawi, Maha; Fetouh, Hend; Mowafy, Ehsan; Abo Khedr, Nashwa
2012-01-01
The purpose of this study was to investigate the interaction of caries risk indicators and metabolic control in children with type 1 diabetes mellitus. The study included 50 children with type 1 DM and 50 healthy controls, all 6 to 9 years old. Diabetic children were classified into 3 groups: well, fairly, and poorly controlled based on glycosilated hemoglobin level. Personal, family data, medical and dental history were collected. Children were examined for caries experience, plaque, and gingival condition. Saliva samples were obtained for culturing mutans streptococci, lactobacilli, and Candida, and colony forming units were counted. No significant differences existed between all groups regarding caries experience or mean log count of micro-organisms. Diabetic children differed significantly from healthy children in parental occupation and education, dental visits, oral hygiene, and plaque and gingival indices, whereas no differences were observed among children with different levels of metabolic control regarding these factors. Regression analysis identified mutans streptococci as a significant variable affecting caries experience in diabetic children. Regarding the interaction of caries risk indicators and metabolic control on caries experience in diabetic children, the only variable that showed a significant effect was mutans streptococci.
[Metabolic Characteristics of Lethal Bradycardia Induced by Myocardial Ischemia].
Wu, J Y; Wang, D; Kong, J; Wang, X X; Yu, X J
2017-02-01
To explore the metabolic characteristics of lethal bradycardia induced by myocardial ischemia in rat's serum. A rat myocardial ischemia-bradycardia-sudden cardiac death (MI-B-SCD) model was established, which was compared with the sham-operation group. The metabolic profile of postmortem serum was analyzed by gas chromatography-mass spectrometry (GC-MS), coupled with the analysis of serum metabolic characteristics using metabolomics strategies. The serum metabolic profiles were significantly different between the MI-B-SCD rats and the control rats. Compared to the control rats, the MI-B-SCD rats had significantly higher levels of lysine, ornithine, purine, serine, alanine, urea and lactic acid; and significantly lower levels of succinate, hexadecanoic acid, 2-ketoadipic acid, glyceraldehyde, hexendioic acid and octanedioic acid in the serum. There were some correlations among different metabolites. There is obvious metabolic alterations in the serum of MI-B-SCD rat. Both lysine and purine have a high value in diagnosing MI-B-SCD. The results are expected to provide references for forensic and clinical applications of prevention and control of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine
Relationship between primary lesion metabolic parameters and clinical stage in lung cancer.
Sahiner, I; Atasever, T; Akdemir, U O; Ozturk, C; Memis, L
2013-01-01
The relation of PET-derived parameters as maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV) with clinical stage in lung cancer and correlation of SUVmax of primary tumor and that of metastatic lesion was studied in lung cancer patients. Patients with lung cancer who were referred for FDG PET/CT were included in the study. PET/CT scans and pathology reports of 168 patients were assessed. A total of 146 (86.9%) of these patients had a diagnosis of non-small cell lung cancer (NSCLC) and 22 (13.1%) had small cell lung cancer (SCLC). Metabolic parameters such as SUVmax, TLG and MTV showed significant differences in all the stages in NSCLC patients (p<0.001). However, after tumors sizes <25 mm were excluded, no significant differences in SUVmax between stages were observed. No significant differences were found between these metabolic parameters and limited or extended disease SCLC. Tumor diameter correlated with primary tumor SUVmax and significant correlations between primary lesion SUVmax and metastatic lesion SUVmax were found. Although differences were found regarding indices between stages of NSCLC cases, SUVmax differences between stages seem to be caused by underestimation of SUVmax in small lesions. Other glucose metabolism indexes such as MTV and TLG show promising results in terms of prognostic stratification. Future studies are needed for better understanding of their contribution to clinical cases. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
Patel, Mahesh J.; Batch, Bryan C.; Svetkey, Laura P.; Bain, James R.; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J.; Stevens, Robert D.; Newgard, Christopher B.
2013-01-01
Abstract In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, p<0.0001), factor 6 (long-chain acylcarnitines, p<0.01), and factor 2 (medium-chain dicarboxylated acylcarnitines, p<0.0001) were higher in males vs. females; factor 6 levels were higher in Caucasians vs. African Americans (p<0.0001). Significant differences were also observed in hormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones. PMID:24117402
Patel, Mahesh J; Batch, Bryan C; Svetkey, Laura P; Bain, James R; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J; Stevens, Robert D; Newgard, Christopher B; Shah, Svati H
2013-12-01
In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, p<0.0001), factor 6 (long-chain acylcarnitines, p<0.01), and factor 2 (medium-chain dicarboxylated acylcarnitines, p<0.0001) were higher in males vs. females; factor 6 levels were higher in Caucasians vs. African Americans (p<0.0001). Significant differences were also observed in hormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones.
Li, X H; Ji, J; Qian, S Y
2018-01-02
Objective: To analyze the resting energy expenditure and optimal energy supply in different age groups of critically ill children on mechanical ventilation in pediatric intensive care unit (PICU). Methods: Patients on mechanical ventilation hospitalized in PICU of Beijing Children's Hospital from March 2015 to March 2016 were enrolled prospectively. Resting energy expenditure of patients was calculated by US Med Graphic company critical care management (CCM) energy metabolism test system after mechanical ventilation. Patients were divided into three groups:<3 years, 3-10 years, and >10 years. The relationship between the measured and predictive resting energy expenditure was analyzed with correlation analysis; while the metabolism status and the optimal energy supply in different age groups were analyzed with chi square test and variance analysis. Results: A total of 102 patients were enrolled, the measured resting energy expenditure all correlated with predictive resting energy expenditure in different age groups (<3 years ( r= 0.3, P= 0.0) ; 3~10 years ( r= 0.6, P= 0.0) ;>10 years ( r= 0.5, P= 0.0) ) . A total of 40 cases in < 3 years group, including: 14 cases of low metabolism (35%), 14 cases of normal metabolism (35%), and 12 cases of high metabolism (30%); 45 cases in 3-10 years group, including: 22 cases of low metabolism (49%), 19 cases of normal metabolism (42%), 4 cases of high metabolism (9%); 17 cases in > 10 years group, including: 12 cases of low metabolism (71%), 4 cases of normal metabolism (23%), 1 case of high metabolism (6%). Metabolism status showed significant differences between different age groups ( χ (2)=11.30, P <0.01, r= -0.01). Infants had higher metabolic status, which lessened with aging. The total average actual energy requirement was (210±84) kJ/ (kg⋅d) . There were significant differences in actual energy requirement between age groups ( F= 46.57, P< 0.001), with (277±77) kJ/ (kg⋅d) in < 3 years group, (184±53) kJ/ (kg⋅d) in 3-10 years group, and (120±30) kJ/ (kg⋅d) in > 10 years group. Conclusion: The resting energy metabolism of the critically ill children on mechanical ventilation is negatively related to the age. The actual energy requirement should be calculated according to different ages.
Lai, Stefano; Cagetti, Maria Grazia; Cocco, Fabio; Cossellu, Dina; Meloni, Gianfranco; Lingström, Peter
2017-01-01
Aim To evaluate the caries prevalence and related variables in Type 1 diabetic and non-diabetic children and among the diabetic children according to their metabolic status. Methods Sixty-eight diabetic and 136 non-diabetic children, matching by gender and age (4–14 years) were enrolled. The diabetic children were divided: a) 20 children in good metabolic control (Hb1ac≤7.5) and b) 48 children in bad metabolic control (Hb1ac>7.5). Dietary and oral hygiene habits were investigated. Caries status was registered using the International Caries Detection and Assessment System. Oral microflora was analysed using the checkerboard DNA-DNA hybridisation method. Plaque acidogenicity was recorded after a sucrose rinse. Results Sugared beverage and snack intake was higher in diabetic group compared to non-diabetic group (p = 0.03 and p = 0.04, respectively) and in subjects in bad metabolic control (p = 0.03 and p<0.01, respectively). Oral hygiene habits were similar, except for the use of fluoridated adjuvants, higher in non-diabetic children (p = 0.04). No statistically significant differences were observed regarding caries figures, but a higher number of caries free subjects was found in diabetic subjects in good metabolic control (p<0.01). Significant difference for the main cariogenic bacteria was found between diabetic and non-diabetic subjects (p<0.05). The pH values showed statistically significant differences between diabetic and non-diabetic subjects and between diabetic subjects in good and bad metabolic control (p<0.01). Conclusions Diabetic children in good metabolic control might even be considered at low caries risk, while those in bad metabolic control showed an oral environment prone to a high caries risk. PMID:29190700
Jurado Campos, Jerónimo; Caula Ros, Jacint A; Hernández Anguera, Josep M; Juvinyà Canal, Dolors; Pou Torelló, José M
2009-12-01
To evaluate the possible relationships between a health policy decision, in relation to the diabetes education strategies and the metabolic control outcomes. Longitudinal prospective cohort study. A random cohort sample of 276 type II diabetes mellitus subjects. All primary care centres in three regions of Catalonia. Patients were classified as specialised (n=59) or non-specialised (n=217) groups, as regards whether having received previous diabetes education before the start of the study. HbA1c values were evaluated in all subjects at baseline and after 5 years after receiving only conventional education. Baseline evaluation showed a better metabolic control in the specialised group (P=0.009). The final evaluation showed no significant differences in outcomes between the two groups (P=0.679). When baseline and outcomes values were compared, significant differences were observed in all subjects (P=0.001), the specialised group showed significantly poorer metabolic control (P<0.001), but in the group with previous conventional education no significant differences were observed (P=0.058). Our results suggest that the withdrawal of higher levels of diabetes education may play a major role in poor metabolic control, and that conventional diabetes education does not improve outcomes. Health policy in Primary Care should consider improving the level of diabetes education.
Dubois, Romain; Paillard, Thierry; Lyons, Mark; McGrath, David; Maurelli, Olivier; Prioux, Jacques
2017-01-01
The aims of this study were (1) to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2) to explore the relationship between these methods and (3) to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y), over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax) were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01) while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05) in moderate-speed zone (10-14.4 km·h-1). However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001) between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98). Furthermore, there is a strong association (r = 0.93) between the high-speed running distance (assessed using the traditional approach) and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high-intensity thresholds demonstrates that the metabolic power approach may represent an interesting alternative to the traditional approaches used in evaluating the high-intensity running efforts required in rugby union games. Key points Elite/professional rugby union players Heart rate monitoring during official games Metabolic power approach PMID:28344455
Sgueo, Carrie; Wells, Marion E; Russell, David E; Schaeffer, Paul J
2012-07-15
Northern cardinals (Cardinalis cardinalis) are faced with energetically expensive seasonal challenges that must be met to ensure survival, including thermoregulation in winter and reproductive activities in summer. Contrary to predictions of life history theory that suggest breeding metabolic rate should be the apex of energetic effort, winter metabolism exceeds that during breeding in several temperate resident bird species. By examining whole-animal, tissue and cellular function, we ask whether seasonal acclimatization is accomplished by coordinated phenotypic plasticity of metabolic systems. We measured summit metabolism (V(O(2),sum)), daily energy expenditure (DEE) and muscle oxidative capacity under both winter (December to January) and breeding (May to June) conditions. We hypothesize that: (1) rates of energy utilization will be highest in the winter, contrary to predictions based on life history theory, and (2) acclimatization of metabolism will occur at multiple levels of organization such that birds operate with a similar metabolic ceiling during different seasons. We measured field metabolic rates using heart rate telemetry and report the first daily patterns in avian field metabolic rate. Patterns of daily energy use differed seasonally, primarily as birds maintain high metabolic rates throughout the winter daylight hours. We found that DEE and V(O(2),sum) were significantly greater and DEE occurred at a higher fraction of maximum metabolic capacity during winter, indicating an elevation of the metabolic ceiling. Surprisingly, there were no significant differences in mass or oxidative capacity of skeletal muscle. These data, highlighting the importance of examining energetic responses to seasonal challenges at multiple levels, clearly reject life history predictions that breeding is the primary energetic challenge for temperate zone residents. Further, they indicate that metabolic ceilings are seasonally flexible as metabolic effort during winter thermoregulation exceeds that of breeding.
Findlay, S; Sinsabaugh, R L
2006-10-01
We examined bacterial metabolic activity and community similarity in shallow subsurface stream sediments distributed across three regions of the eastern United States to assess whether there were parallel changes in functional and structural attributes at this large scale. Bacterial growth, oxygen consumption, and a suite of extracellular enzyme activities were assayed to describe functional variability. Community similarity was assessed using randomly amplified polymorphic DNA (RAPD) patterns. There were significant differences in streamwater chemistry, metabolic activity, and bacterial growth among regions with, for instance, twofold higher bacterial production in streams near Baltimore, MD, compared to Hubbard Brook, NH. Five of eight extracellular enzymes showed significant differences among regions. Cluster analyses of individual streams by metabolic variables showed clear groups with significant differences in representation of sites from different regions among groups. Clustering of sites based on randomly amplified polymorphic DNA banding resulted in groups with generally less internal similarity although there were still differences in distribution of regional sites. There was a marginally significant (p = 0.09) association between patterns based on functional and structural variables. There were statistically significant but weak (r2 approximately 30%) associations between landcover and measures of both structure and function. These patterns imply a large-scale organization of biofilm communities and this structure may be imposed by factor(s) such as landcover and covariates such as nutrient concentrations, which are known to also cause differences in macrobiota of stream ecosystems.
C-reactive protein and reactive oxygen metabolites in subjects with metabolic syndrome.
Kotani, K; Sakane, N
2012-01-01
This cross-sectional study investigated the correlation between diacron reactive oxygen metabolites (d-ROMs) and high-sensitivity C-reactive protein (hs-CRP) in subjects with or without metabolic syndrome. Cardiometabolic risk factors, d-ROMs and hs-CRP were determined in 457 women: 123 with metabolic syndrome and 334 without metabolic syndrome. The correlation between d-ROMs and hs-CRP levels was compared between the two groups. The group with metabolic syndrome had significantly higher d-ROMs and hs-CRP levels than the group without metabolic syndrome. While the d-ROMs level was significantly and positively correlated with the hs-CRP level in both groups, the correlation level between the two groups was significantly different. Multiple linear regression analysis adjusted for other cardiometabolic risk factors also showed significant positive correlation between dROMs and hs-CRP levels in both groups. Subjects with metabolic syndrome may have a closer relationship between inflammation and oxidative stress than subjects without metabolic syndrome, possibly reflecting their increased predisposition to atherosclerosis. Further studies are necessary to confirm the observed relationship.
Mahamad Maifiah, Mohd Hafidz; Cheah, Soon-Ee; Johnson, Matthew D.; Han, Mei-Ling; Boyce, John D.; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S.; Hertzog, Paul; Purcell, Anthony W.; Song, Jiangning; Velkov, Tony; Creek, Darren J.; Li, Jian
2016-01-01
Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03–149.1 (polymyxin-susceptible) and 03–149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii. PMID:26924392
Maifiah, Mohd Hafidz Mahamad; Cheah, Soon-Ee; Johnson, Matthew D; Han, Mei-Ling; Boyce, John D; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S; Hertzog, Paul; Purcell, Anthony W; Song, Jiangning; Velkov, Tony; Creek, Darren J; Li, Jian
2016-02-29
Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii.
Vázquez-Bourgon, Javier; Pérez-Iglesias, Rocío; Ortiz-García de la Foz, Víctor; Suárez Pinilla, Paula; Díaz Martínez, Álvaro; Crespo-Facorro, Benedicto
2018-01-01
The use of second-generation antipsychotics (SGA) has been associated with metabolic changes. However, there are differences in the metabolic profile between SGAs. We have previously observed that ziprasidone had a more benign early metabolic profile compared to aripiprazole and quetiapine. However, a long-term follow-up is preferred to detect clinically relevant impairment in metabolic parameters. We aimed to compare the effect of aripiprazole, ziprasidone, and quetiapine on metabolic measures in first-episode non-affective psychosis patients after 1 year of treatment. One hundred and sixty-five drug-naïve patients, suffering from a first episode of non-affective psychosis, were randomly assigned to receive quetiapine, ziprasidone, or aripiprazole. Weight and glycemic/lipid parameters were recorded at baseline and after 1 year of treatment. After 1 year of antipsychotic treatment, we found significant increments in weight, BMI, total cholesterol, LDL-cholesterol, triglycerides, and the triglyceride/HDL index in the sample as a whole. These changes produced a significant rise in the percentage of patients with obesity, hypercholesterolemia, and hypertriglyceridemia. However, when comparing the differential effect of each antipsychotic medication, we found no significant differences in any of the metabolic parameters between antipsychotics groups after 1 year of treatment. We concluded that the antipsychotics studied present similar metabolic profiles. However, the primary exposure to SGAs during the first year of psychosis was associated with significant increases in weight and metabolic parameters, leading to increments in obesity, hypertriglyceridemia, and hypercholesterolemia.
Effects of cell phone radiofrequency signal exposure on brain glucose metabolism.
Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-02-23
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.
Na, Wei; Wu, Yuan-Yuan; Gong, Peng-Fei; Wu, Chun-Yan; Cheng, Bo-Han; Wang, Yu-Xiang; Wang, Ning; Du, Zhi-Qiang; Li, Hui
2018-05-23
In avian species, liver is the main site of de novo lipogenesis, and hepatic lipid metabolism relates closely to adipose fat deposition. Using our fat and lean chicken lines of striking differences in abdominal fat content, post-hatch lipid metabolism in both liver and adipose tissues has been studied extensively. However, whether molecular discrepancy for hepatic lipid metabolism exists in chicken embryos remains obscure. We performed transcriptome and proteome profiling on chicken livers at five embryonic stages (E7, E12, E14, E17 and E21) between the fat and lean chicken lines. At each stage, 521, 141, 882, 979 and 169 differentially expressed genes were found by the digital gene expression, respectively, which were significantly enriched in the metabolic, PPAR signaling and fatty acid metabolism pathways. Quantitative proteomics analysis found 20 differentially expressed proteins related to lipid metabolism, PPAR signaling, fat digestion and absorption, and oxidative phosphorylation pathways. Combined analysis showed that genes and proteins related to lipid transport (intestinal fatty acid-binding protein, nucleoside diphosphate kinase, and apolipoprotein A-I), lipid clearance (heat shock protein beta-1) and energy metabolism (NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and succinate dehydrogenase flavoprotein subunit) were significantly differentially expressed between the two lines. For hepatic lipid metabolism at embryonic stages, molecular differences related to lipid transport, lipid clearance and energy metabolism exist between the fat and lean chicken lines, which might contribute to the striking differences of abdominal fat deposition at post-hatch stages.
Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A
2018-01-05
The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.
Metabolic drift in the aging brain
Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary
2016-01-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841
Metabolic drift in the aging brain.
Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary
2016-05-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.
Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.
2013-01-01
Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease. PMID:23599929
Yang, Liu; Yu, Qing-Tao; Ge, Ya-Zhong; Zhang, Wen-Song; Fan, Yong; Ma, Chung-Wah; Liu, Qun; Qi, Lian-Wen
2016-01-01
Ginseng occupies a prominent position in the list of best-selling natural products worldwide. Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) show different properties and medicinal applications in pharmacology, even though the main active constituents of them are both thought to be ginsenosides. Metabolomics is a promising method to profile entire endogenous metabolites and monitor their fluctuations related to exogenous stimulus. Herein, an untargeted metabolomics approach was applied to study the overall urine metabolic differences between Asian ginseng and American ginseng in mice. Metabolomics analyses were performed using gas chromatography-mass spectrometry (GC-MS) together with multivariate statistical data analysis. A total of 21 metabolites related to D-glutamine and D-glutamate metabolism, glutathione metabolism, TCA cycle and glyoxylate and dicarboxylate metabolism, differed significantly under the Asian ginseng treatment; 34 metabolites mainly associated with glyoxylate and dicarboxylate metabolism, TCA cycle and taurine and hypotaurine metabolism, were significantly altered after American ginseng treatment. Urinary metabolomics reveal that Asian ginseng and American ginseng can benefit organism physiological and biological functions via regulating multiple metabolic pathways. The important pathways identified from Asian ginseng and American ginseng can also help to explore new therapeutic effects or action targets so as to broad application of these two ginsengs. PMID:27991533
Bhute, Vijesh J.; Palecek, Sean P.
2015-01-01
Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723
Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children
Martin, Francois-Pierre; Su, Ming-Ming; Xie, Guo-Xiang; Guiraud, Seu Ping; Kussmann, Martin; Godin, Jean-Philippe; Jia, Wei; Nydegger, Andreas
2017-01-01
AIM To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. METHODS We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. RESULTS urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. CONCLUSION The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status. PMID:28611517
Dubois, Romain; Paillard, Thierry; Lyons, Mark; McGrath, David; Maurelli, Olivier; Prioux, Jacques
2017-03-01
The aims of this study were (1) to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2) to explore the relationship between these methods and (3) to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y), over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h -1 , 20 W.kg -1 and 85% of maximal heart rate (HR max ) were set for high-intensity efforts across the three methods. The mean % of HR max was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HR max with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01) while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05) in moderate-speed zone (10-14.4 km·h -1 ). However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001) between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98). Furthermore, there is a strong association (r = 0.93) between the high-speed running distance (assessed using the traditional approach) and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high-intensity thresholds demonstrates that the metabolic power approach may represent an interesting alternative to the traditional approaches used in evaluating the high-intensity running efforts required in rugby union games.
Astrocytes and energy metabolism.
Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko
2011-05-01
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.
Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N
2012-10-01
The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.
Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo
2014-04-01
Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.
Skovran, Elizabeth; Crowther, Gregory J.; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E.
2010-01-01
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints. PMID:21124828
Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles)
McClune, David W.; Kostka, Berit; Delahay, Richard J.; Montgomery, W. Ian; Marks, Nikki J.; Scantlebury, David M.
2015-01-01
Resting metabolic rate (RMR) is a measure of the minimum energy requirements of an animal at rest, and can give an indication of the costs of somatic maintenance. We measured RMR of free-ranging European badgers (Meles meles) to determine whether differences were related to sex, age and season. Badgers were captured in live-traps and placed individually within a metabolic chamber maintained at 20 ± 1°C. Resting metabolic rate was determined using an open-circuit respirometry system. Season was significantly correlated with RMR, but no effects of age or sex were detected. Summer RMR values were significantly higher than winter values (mass-adjusted mean ± standard error: 2366 ± 70 kJ⋅d−1; 1845 ± 109 kJ⋅d−1, respectively), with the percentage difference being 24.7%. While under the influence of anaesthesia, RMR was estimated to be 25.5% lower than the combined average value before administration, and after recovery from anaesthesia. Resting metabolic rate during the autumn and winter was not significantly different to allometric predictions of basal metabolic rate for mustelid species weighing 1 kg or greater, but badgers measured in the summer had values that were higher than predicted. Results suggest that a seasonal reduction in RMR coincides with apparent reductions in physical activity and body temperature as part of the overwintering strategy (‘winter lethargy’) in badgers. This study contributes to an expanding dataset on the ecophysiology of medium-sized carnivores, and emphasises the importance of considering season when making predictions of metabolic rate. PMID:26352150
Maruenda, Helena; Cabrera, Rodrigo; Cañari-Chumpitaz, Cristhian; Lopez, Juan M; Toubiana, David
2018-10-01
The berry of Physalis peruviana L. (Solanaceae) represents an important socio-economical commodity for Latin America. The absence of a clear phenotype renders it difficult to trace its place of origin. In this study, Cape gooseberries from eight different regions within the Peruvian Andes were profiled for their metabolism implementing a NMR platform. Twenty-four compounds could be unequivocally identified and sixteen quantified. One-way ANOVA and post-hoc Tukey test revealed that all of the quantified metabolites changed significantly among regions: Bambamarca I showed the most accumulated significant differences. The coefficient of variation demonstrated high phenotypic plasticity for amino acids, while sugars displayed low phenotypic plasticity. Correlation analysis highlighted the closely coordinated behavior of the amino acid profile. Finally, PLS-DA revealed a clear separation among the regions based on their metabolic profiles, accentuating the discriminatory capacity of NMR in establishing significant phytochemical differences between producing regions of the fruit of P. peruviana L. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen
2017-06-17
Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.
Siemińska, Lucyna; Wojciechowska, Celina; Walczak, Krzysztof; Borowski, Artur; Marek, Bogdan; Nowak, Mariusz; Kajdaniuk, Dariusz; Foltyn, Wanda; Kos-Kudła, Beata
2015-01-01
The prevalence of metabolic syndrome increases after menopause; however, the role of concomitant subclinical hypothyroidism has not been completely elucidated. The aim of the study was to identify associations between thyrotropin, immune status, inflammation, and metabolic syndrome in postmenopausal women. The specific goals were: to assess thyrotropin (TSH) and interleukin-6 (IL-6) concentrations in the serum of subclinical hypothyroid postmenopausal women with and without metabolic syndrome and compare them with euthyroid controls; to test whether immune status is related to metabolic syndrome in postmenopausal women and determine the role of IL-6; to examine the relationships between TSH and different features of metabolic syndrome: insulin resistance, waist circumferences, waist-to-hip ratio (WHR), BMI, metabolic parameters (triglycerides, total cholesterol and high-density lipoprotein cholesterol), and inflammatory cytokines (IL-6). Three hundred and seventy-two postmenopausal women were included in the study: 114 women had subclinical hypothyroidism (10.0 uIU/mL > TSH ≥ 4.5 uIU/mL, normal fT4), and 258 women were in euthyreosis (TSH 0.35-4.5 uIU/mL, normal fT4); both groups were matched by age. Anthropometric measurements were conducted (BMI, waist circumference, WHR) and blood pressure was measured. In all subjects the following were assessed in serum: lipid profile, glucose, insulin, TSH, fT4, thyroid antibodies (T-Abs) - TPO-Abs, TG-Abs, and IL-6 concentrations. The prevalence of metabolic syndrome was 49.12% in subclinical hypothyroid women and 46.89% in euthyroid women. However, the proportion of subjects with one or two abnormalities was significantly higher in the subclinical hypothyroid group (45.61%) than in the euthyroid group (32.17%). When we compared subclinical hypothyroid women with and without metabolic syndrome, subjects with metabolic syndrome had higher BMI, abdominal circumferences, WHR, and HOMA-I. They presented higher systolic and diastolic blood pressure. Serum concentrations of cholesterol, triglycerides, fasting glucose, IL-6, TSH, T-Abs were also higher and serum cHDL was lower. There were no significant differences in fT4 concentrations. A similar comparison was made for euthyroid women with and without metabolic syndrome. Higher BMI, waist circumference, WHR, HOMA-I, and systolic blood pressure were observed in subjects with metabolic syndrome. Serum concentrations of TSH, triglycerides, glucose, and IL-6 were also higher, but the concentration of cHDL was significantly lower. There were no significant differences in fT4, T-Abs, cholesterol levels, and diastolic pressure. When we compared euthyroid women T-Abs (+) and T-Abs (-), the prevalence of metabolic syndrome was similar (48.68% vs. 46.15%). There were no differences in BMI, waist circumference, WHR, lipid profile, glucose, and HOMA-I, fT4. However, thyroid autoimmunity was associated with elevated TSH and IL-6 levels. When we analysed subclinical hypothyroid women with and without thyroid autoimmunity, there were no significant differences in glucose and lipid profile. However, Hashimoto`s subjects were more obese, had higher waist circumference, WHR, HOMA-I, and higher prevalence of metabolic syndrome. Serum concentrations of TSH and IL-6 were also higher and fT4 was lower. Among all of the women, serum TSH concentration was significantly correlated with BMI, waist circumference, WHR, systolic blood pressure, cholesterol, triglycerides, and TPO-Abs. When the variables of subjects with upper quartile of TSH were compared with lower quartile of TSH, we found significantly higher BMI, waist circumference, WHR, increased concentration of IL-6, cholesterol, triglycerides, and T-Abs, and concentrations of cHDL and fT4 were lower. OR for metabolic syndrome in subjects with upper quartile TSH vs. lower quartile was 1.35 (95% confidence interval [CI] 1.10-1.60). Our study confirms that metabolic syndrome in both euthyroid and subclinical hypothyroid women is connected with obesity, visceral fat accumulation, and higher TSH and IL-6 concentrations. Immune thyroiditis is associated with higher TSH and IL-6 levels. Obese subclinical hypothyroid women with Hashimoto`s thyroditis have a higher prevalence of metabolic syndrome when compared with subclinical hypothyroid women without thyroid autoimmunity. It is possible that in the crosstalking between subclinical hypothyroidism and metabolic syndrome, enhanced proinflammatory cytokine release in the course of immunological thyroiditis plays a role.
Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang
2017-08-01
Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Ortner, Marion; Kurz, Alexander; Alexopoulos, Panagiotis; Auer, Florian; Diehl-Schmid, Janine; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Perneczky, Robert; Sorg, Christian; Yousefi, Behrooz H; Grimmer, Timo
2015-04-15
There is controversy concerning whether Alzheimer's disease (AD) with early onset is distinct from AD with late onset with regard to amyloid pathology and neuronal metabolic deficit. We hypothesized that compared with patients with early-onset AD, patients with late-onset AD have more comorbid small vessel disease (SVD) contributing to clinical severity, whereas there are no differences in amyloid pathology and neuronal metabolic deficit. The study included two groups of patients with probable AD dementia with evidence of the AD pathophysiologic process: 24 patients with age at onset <60 years old and 36 patients with age at onset >70 years old. Amyloid deposition was assessed using carbon-11-labeled Pittsburgh compound B positron emission tomography, comorbid SVD was assessed using magnetic resonance imaging, and neuronal metabolic deficit was assessed using fluorodeoxyglucose positron emission tomography. Group differences of global and regional distribution of pathology were explored using region of interest and voxel-based analyses, respectively, carefully controlling for the influence of dementia severity, apolipoprotein E genotype, and in particular SVD. The pattern of cognitive impairment was determined using z scores of the subtests of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery. Patients with late-onset AD showed a significantly greater amount of SVD. No statistically significant differences in global or regional amyloid deposition or neuronal metabolic deficit between the two groups were revealed. However, when not controlling for SVD, subtle differences in fluorodeoxyglucose uptake between early-onset AD and late-onset AD groups were detectable. There were no significant differences regarding cognitive functioning. Age at onset does not influence amyloid deposition or neuronal metabolic deficit in AD. The greater extent of SVD in late-onset AD influences the association between neuronal metabolic deficit and clinical symptoms. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice,more » once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.« less
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-01-01
Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). Conclusions In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance. PMID:21343580
Marden, James H
2013-12-01
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. © 2013 John Wiley & Sons Ltd.
Metabolic demands of law enforcement personal protective equipment during exercise tasks.
DiVencenzo, Hannah R; Morgan, Amy L; Laurent, C Matt; Keylock, K Todd
2014-01-01
Many occupations require the use of personal protective equipment (PPE) but the added metabolic demands are unknown for certain professions. The purpose of this study was to quantify metabolic and perceptual differences between activity with and without the PPE ensemble required for police officers. Twelve participants were asked to complete experimental and control exercise sessions consisting of three modes of exercise (walking, jogging and stepping). A significant main effect (p < 0.01) for gear was found for heart rate (beats per minute) and VO2 (L/min) between conditions. Dependent t-tests revealed significant differences for perceived effort, discomfort and session rating of perceived exertion between trials. Medium to large effect sizes for all variables with significant main effects between modes (p < 0.01, η2 = 0.51-0.96, 1-β = 0.98-1.0, d = 0.42-2.7) were observed. These findings help to increase awareness of how PPE affects metabolic demands and perception of discomfort during exercise.
Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo
2009-01-01
A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.
NASA Astrophysics Data System (ADS)
Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo
2009-07-01
A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.
Franklin, Samuel Patrick; Stoker, Aaron M; Cockrell, Mary K; Pfeiffer, Ferris M; Sonny Bal, B; Cook, James L
2012-01-01
Our objective was to determine whether low-temperature hydrogen peroxide (H2O2) gas plasma sterilization of porous three-dimensional poly(ϵ-caprolactone) (PCL) constructs significantly inhibits cellular metabolism of canine chondrocytes. Porous cylindrical constructs were fabricated using fused deposition modeling and divided into four sterilization groups. Two groups were sterilized with low-temperature H2O2 gas plasma (LTGP) and constructs from one of those groups were subsequently rinsed with Dulbecco's Modified Essential Media (LTGPDM). Constructs in the other two groups were disinfected with either 70% isopropyl alcohol or exposure to UV light. Canine chondrocytes were seeded in 6-well tissue-culture plates and allowed to adhere prior to addition of PCL. Cellular metabolism was assessed by adding resazurin to the tissue-culture wells and assessing conversion of this substrate by viable cells to the fluorescent die resorufin. This process was performed at three times prior to addition of PCL and at four times after addition of PCL to the tissue-culture wells. Metabolism was not significantly different among the different tissue-culture wells at any of the 3 times prior to addition of PCL. Metabolism was significantly different among the treatment groups at 3 of 4 times after addition of PCL to the tissue culture wells. Metabolism was significantly lower with constructs sterilized by LTGP than all other treatment groups at all 3 of these times. We conclude that LTGP sterilization of PCL constructs resulted in significant cytotoxicity to canine chondrocytes when compared to PCL constructs disinfected with either UV light exposure or 70% isopropyl alcohol.
Ruhal, Rohit; Kataria, Rashmi; Choudhury, Bijan
2013-01-01
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation. PMID:23302511
Barnes, Rachel D; Barber, Jessica A
2017-08-01
Motivational interviewing (MI) treatment for weight loss is being studied in primary care. The effect of such interventions on metabolic syndrome or binge eating disorder (BED), both highly related to excess weight, has not been examined in primary care. This study conducted secondary analyses from a randomized controlled trial to test the impact of MI for weight loss in primary care on metabolic syndrome. 74 adult participants with overweight/obesity recruited through primary care were randomized to 12weeks of either MI, an attentional control, or usual care. Participants completed measurements for metabolic syndrome at pre- and post-treatment. There were no statistically significant differences in metabolic syndrome rates at pre-, X 2 (2)=0.16, p=0.921, or post-, X 2 (2)=0.852, p=0.653 treatment. The rates in metabolic syndrome, however, decreased for MI (10.2%) and attentional control (13.8%) participants, but not for usual care. At baseline, metabolic syndrome rates did not differ significantly between participants with BED or without BED across treatments. At post-treatment, participants with BED were significantly more likely to meet criteria for metabolic syndrome than participants without BED, X 2 (1)=5.145, p=0.023, phi=0.273. Across treatments, metabolic syndrome remitted for almost a quarter of participants without BED (23.1%) but for 0% of those with BED. These preliminary results are based on a small sample and should be interpreted with caution, but they are the first to suggest that relatively low intensity MI weight loss interventions in primary care may decrease metabolic syndrome rates but not for individuals with BED. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chularojanamontri, Leena; Wongpraparut, Chanisada; Silpa-Archa, Narumol; Chaweekulrat, Pichanee
2016-12-01
Although studies regarding prevalence of metabolic syndrome (MS) in Asian psoriatic patients are limited and show varying results, a previous report describes a significant increase in prevalence of MS in Thai psoriatic patients, as compared with rates in the general population. However, no significant association between MS and psoriasis severity using the Psoriasis Area and Severity Index (PASI) was found, which differs from the findings of Korean and Japanese studies. This study aimed at re-evaluating the association between MS and psoriasis severity in Thai patients using current assessment (PASI) and chronological assessment (historical course and interventions). A total of 273 psoriatic patients were recruited. After controlling for age and sex, 96 patients were assigned to the MS group and 96 patients to the non-MS group. Similar to the previous study, no significant differences were identified between metabolic and non-metabolic patients regarding PASI, age of onset, disease duration and family history of psoriasis. However, the numbers of hospitalizations (P = 0.018) and interventions (P = 0.028) were significantly higher in metabolic patients than in non-metabolic patients. Further, a greater number of metabolic components was significantly associated with a higher number of hospitalizations (P = 0.012), pustular or erythrodermic psoriasis episodes (P = 0.049), and interventions (P = 0.005). Body mass index of 23 kg/m 2 or more, abdominal obesity and high blood pressure were associated with an increased risk of treatment failure. Using chronological assessment, our study supported that MS negatively affects psoriasis severity and treatment outcomes. Screening for MS is highly recommended for psoriatic patients. © 2016 Japanese Dermatological Association.
Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra
2014-02-15
The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.
Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers.
Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Wong, C; Logan, J
2001-03-01
Methamphetamine has raised concerns because it may be neurotoxic to the human brain. Although prior work has focused primarily on the effects of methamphetamine on dopamine cells, there is evidence that other neuronal types are affected. The authors measured regional brain glucose metabolism, which serves as a marker of brain function, to assess if there is evidence of functional changes in methamphetamine abusers in regions other than those innervated by dopamine cells. Fifteen detoxified methamphetamine abusers and 21 comparison subjects underwent positron emission tomography following administration of [(18)F]fluorodeoxyglucose. Whole brain metabolism in the methamphetamine abusers was 14% higher than that of comparison subjects; the differences were most accentuated in the parietal cortex (20%). After normalization for whole brain metabolism, methamphetamine abusers exhibited significantly lower metabolism in the thalamus (17% difference) and striatum (where the differences were larger for the caudate [12%] than for the putamen [6%]). Statistical parametric mapping analyses corroborated these findings, revealing higher metabolism in the parietal cortex and lower metabolism in the thalamus and striatum of methamphetamine abusers. The fact that the parietal cortex is a region devoid of any significant dopaminergic innervation suggests that the higher metabolism seen in this region in the methamphetamine abusers is the result of methamphetamine effects in circuits other than those modulated by dopamine. In addition, the lower metabolism in the striatum and thalamus (major outputs of dopamine signals into the cortex) is likely to reflect the functional consequence of methamphetamine in dopaminergic circuits. These results provide evidence that, in humans, methamphetamine abuse results in changes in function of dopamine- and nondopamine-innervated brain regions.
White, Andrea T; Davis, Scott L; Wilson, Thad E
2003-03-01
The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI.
de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K
2016-01-01
The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses.
de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.
2016-01-01
The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses. PMID:27559337
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan
2011-01-01
Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure. PMID:22125607
Variability of Respiration and Metabolism: Responses to Submaximal Cycling and Running.
ERIC Educational Resources Information Center
Armstrong, Lawrence E.; Costill, David L.
1985-01-01
This investigation examined day-to-day variations in metabolic measurements during submaximal running and cycling. Significant differences were found in the oxygen uptake (VO2) of runners and cyclists and the minute ventilation (VE) of cyclists while running, but blood lactic acid (HLA) did not differ day to day. (Author/MT)
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.
1993-01-01
The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.
Lamb, Joseph J; Holick, Michael F; Lerman, Robert H; Konda, Veera R; Minich, Deanna M; Desai, Anuradha; Chen, Tai C; Austin, Melissa; Kornberg, Jacob; Chang, Jyh-Lurn; Hsi, Alex; Bland, Jeffrey S; Tripp, Matthew L
2011-05-01
Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P < .001) in serum osteocalcin (indicative of bone turnover), whereas the placebo arm exhibited a 21% increase (P = .003). Serum 25-hydroxyvitamin D increased 23% (P = .001) in the intervention arm and decreased 12% (P = .03) in the placebo arm. The between-arm differences for osteocalcin and 25-hydroxyvitamin D were statistically significant. Serum insulin-like growth factor I was statistically increased in both arms, but the between-arm differences were not statistically significant. Subanalysis showed that among those in the highest tertile of baseline insulin-like growth factor I, the intervention arm exhibited a significant increase in amino-terminal propeptide of type I collagen, whereas the placebo arm showed a significant decrease at 14 weeks. Treatment with rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.
Ito, Keiichi; Asano, Yoshitaka; Ikegame, Yuka; Shinoda, Jun
2016-01-01
Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage.
Adverse metabolic risk profiles in Greenlandic Inuit children compared to Danish children.
Munch-Andersen, T; Sorensen, K; Andersen, L B; Aachmann-Andersen, N J; Aksglaede, L; Juul, A; Helge, J W
2013-06-01
During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic profiles in Greenlandic Inuit children from the capital in the southern and from the northern most villages 187 Inuit and 132 Danish children were examined with anthropometrics, pubertal staging, fasting blood samples, and a maximal aerobic test. Both Inuit children living in Nuuk and the northern villages had significantly higher glucose, total cholesterol, apolipoprotein A1 levels, and diastolic blood pressure compared with Danish children after adjustment for differences in adiposity and aerobic fitness levels. The Inuit children living in Nuuk had significantly higher BMI, body fat %, HbA1 c, and significantly lower aerobic fitness and ApoA1 levels than northern living Inuit children. Greenlandic Inuit children had adverse metabolic health profile compared to the Danish children, the differences where more pronounced in Inuit children living in Nuuk. The tendencies toward higher prevalence of diabetes and metabolic morbidity in the adult Greenlandic Inuit population may also be present in the Inuit children population. Copyright © 2013 The Obesity Society.
Oral Arginine Metabolism May Decrease the Risk for Dental Caries in Children
Nascimento, M.M.; Liu, Y.; Kalra, R.; Perry, S.; Adewumi, A.; Xu, X.; Primosch, R.E.; Burne, R.A.
2013-01-01
Arginine metabolism by oral bacteria via the arginine deiminase system (ADS) increases the local pH, which can neutralize the effects of acidification from sugar metabolism and reduce the cariogenicity of oral biofilms. To explore the relationship between oral arginine metabolism and dental caries experience in children, we measured ADS activity in oral samples from 100 children and correlated it with their caries status and type of dentition. Supragingival dental plaque was collected from tooth surfaces that were caries-lesion-free (PF) and from dentinal (PD) and enamel (PE) caries lesions. Regardless of children’s caries status or type of dentition, PF (378.6) had significantly higher ADS activity compared with PD (208.4; p < .001) and PE (194.8; p = .005). There was no significant difference in the salivary arginolytic activity among children with different caries status. Mixed-model analysis showed that plaque caries status is significantly associated with ADS activity despite children’s age, caries status, and dentition (p < .001), with healthy plaque predicting higher ADS activity compared with diseased plaque. Plaque arginine metabolism varies greatly among children and tooth sites, which may affect their susceptibility to caries. PMID:23640952
Byun, A Ri; Kwon, Seungwon; Lee, Sang Wha; Shim, Kyung Won; Lee, Hong Soo
2016-01-01
Abstract Mounting evidence suggests that not all obese subjects are at increased cardiovascular risk. However, the relationship between the metabolically healthy obese (MHO) phenotype and cardiovascular diseases (CVDs) or stroke remains unclear. Therefore, we retrospectively investigated the prevalence of CVDs or stroke according to metabolic health with obese. We studied 3695 subjects (40–85 years) from the Fifth Korean National Health and Nutrition Examination Survey. Participants were divided into 2 groups and 6 subgroups based on the body mass index (BMI) and metabolic syndrome (MetS) components: healthy (exhibiting none of the 5 MetS components) with the followings: healthy-normal weight (BMI < 23 kg/m2), healthy-overweight (BMI = 23–24.9 kg/m2), and healthy-obese (BMI ≥ 25 kg/m2); and unhealthy (exhibiting 2 or more MetS components) with the followings: unhealthy-normal weight, unhealthy-overweight, and unhealthy-obese. In the healthy group (n = 1726), there were 76 CVDs or stroke patients (4.4%), whereas in the unhealthy group (n = 1969), there were 170 (8.6%). The prevalence was significantly different between the 2 groups (P < 0.001). However, the prevalence was not significantly different among healthy subgroups (P = 0.4072). The prevalence in unhealthy subgroups also demonstrated no statistically significant difference (P = 0.3798). We suggest that the prevalence of CVDs or stroke is different between metabolically healthy and unhealthy phenotype. Furthermore, MHO did not reveal higher CVDs or stroke prevalence rather than metabolically healthy other groups. Additional cohort studies are needed to explain causality between CVDs or stroke incidence and subjects exhibiting the MHO phenotype. PMID:27310991
Guo, Junguo; Yan, Tingqin; Bi, Hongsheng; Xie, Xiaofeng; Wang, Xingrong; Guo, Dadong; Jiang, Haiqiang
2014-06-01
The identification of the biomarkers of patients with acute anterior uveitis (AAU) may allow for a less invasive and more accurate diagnosis, as well as serving as a predictor in AAU progression and treatment response. The aim of this study was to identify the potential biomarkers and the metabolic pathways from plasma in patients with AAU. Both plasma metabolic biomarkers and metabolic pathways in the AAU patients versus healthy volunteers were investigated using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and a metabonomics approach. The principal component analysis (PCA) was used to separate AAU patients from healthy volunteers as well as to identify the different biomarkers between the two groups. Metabolic compounds were matched to the KEGG, METLIN, and HMDB databases, and metabolic pathways associated with AAU were identified. The PCA for UPLC-MS data shows that the metabolites in AAU patients were significantly different from those of healthy volunteers. Of the 4,396 total features detected by UPLC-MS, 102 features were significantly different between AAU patients and healthy volunteers according to the variable importance plot (VIP) values (greater than two) of partial least squares discriminate analysis (PLS-DA). Thirty-three metabolic compounds were identified and were considered as potential biomarkers. Meanwhile, ten metabolic pathways were found that were related to the AAU according to the identified biomarkers. These data suggest that metabolomics study can identify potential metabolites that differ between AAU patients and healthy volunteers. Based on the PCA, PLS-DA, several potential metabolic biomarkers and pathways in AAU patients were found and identified. In addition, the UPLC-MS technique combined with metabonomics could be a suitable systematic biology tool in research in clinical problems in ophthalmology, and can provide further insight into the pathophysiology of AAU.
Regional differences in brain glucose metabolism determined by imaging mass spectrometry.
Kleinridders, André; Ferris, Heather A; Reyzer, Michelle L; Rath, Michaela; Soto, Marion; Manier, M Lisa; Spraggins, Jeffrey; Yang, Zhihong; Stanton, Robert C; Caprioli, Richard M; Kahn, C Ronald
2018-06-01
Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Beckmann, Manfred; Enot, David P; Overy, David P; Scott, Ian M; Jones, Paul G; Allaway, David; Draper, John
2010-04-01
Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently, a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from 'spot' urine samples using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest (a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides, animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons between large and smaller breeds.
Metabolic syndrome and nutrition in a Granada's tropical coast population.
Millán, S; Samaniego-Sánchez, C; Romero, A; Quesada-Granados, J J; López-García de la Serrana, H
2013-01-01
The metabolic syndrome (MS) is described as an association of health problems that a given person may simultaneously or successively develop, and it is considered a serious condition because it is related to a significantly increased risk of suffering diabetes, coronary disease and brain damage. Nutrition, along with other factors such as physical activity and genetic inheritance, has an influence on preventing MS. The aim of this research is to demonstrate important aspects concerning the diagnosis, the prevalence, and the prevention of metabolic syndrome among the population of the tropical coast of Granada. 119 individuals from the tropical coast of Granada were studied to collect personal data such as their body mass index, body fat percentage, glycaemia, total cholesterol, HDL cholesterol, LDL cholesterol, and food intake (through nutritional survey). As a result of this research, a metabolic syndrome prevalence of 20,2% was obtained, 58,3% of which was related to women. The results obtained show significant statistical differences between individuals having metabolic syndrome and the control group. Particularly, these differences can be noted in parameters such as the BMI or the % of body fat. Nevertheless, there are no significant differences between the two groups concerning parameters related to nutrition such as % of fat, carbohydrates, proteins and kcal/day. As a conclusion from the research, we can state that the metabolic syndrome prevalence among the population of the tropical coast of Granada is similar to the figure obtained for the population in the US and in other areas of Spain. In addition, this research shows that metabolic syndrome is more frequent among individuals whose BMI and % of body fat is higher than 30. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer.
Jung, Yoon Yang; Kim, Hye Min; Koo, Ja Seung
2015-01-01
The tumor biology of metastatic breast cancers differ according to the metastatic sites, and the features of cancer metabolism may also be different. The aim of this study is to investigate the expression of lipid metabolism-related proteins in metastatic breast cancer according to metastatic site and discuss the clinical significance thereof. Immunohistochemical staining for lipid metabolism-related proteins [fatty acid synthase (FASN), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX1), fatty acid binding protein 4 (FABP4,) and perilipin 1 (PLIN1)] was performed using a tissue microarray of 149 cases of metastatic breast cancer (bone metastasis = 39, brain metastasis = 37, liver metastasis = 21, and lung metastasis = 52). The expression levels of ACOX1 (p = 0.009) and FASN (p = 0.007) varied significantly according to metastatic site, with the highest expression in brain metastasis and the lowest expression in liver metastasis. ACOX1 positivity (p = 0.005) and FASN positivity (p = 0.003) correlated with HER-2 positivity. The expression of FASN was significantly higher in HER-2 type breast cancer, and lower in luminal A and TNBC type breast cancer (p<0.001). Among lipid metabolism-related proteins, PLIN1 positivity was found to be an independent poor prognostic factor on multivariate analysis (Hazard ratio: 4.979, 95% CI: 1.054-22.59, p = 0.043). Different expression levels of lipid metabolism-related proteins were observed according to metastatic site. The expression of ACOX1 and FASN was highest in brain metastasis. These results suggest that the metastatic site should be considered when using lipid metabolism inhibitors for targeted therapy.
2013-01-01
Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642
Organ-specific metabolic responses to drought in Pinus pinaster Ait.
de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa
2016-05-01
Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Emerging Drugs and Indications for Cardio-Metabolic Disorders in People with Severe Mental Illness.
Kouidrat, Youssef; Amad, Ali; De Hert, Marc
2015-01-01
Patients with severe mental illnesses, such as schizophrenia and bipolar disorder, are at increased risk of developing metabolic disorders including obesity, diabetes, and dyslipidemia. All of these comorbidities increase the risk of cardiovascular disease and mortality. Different approaches, including diet and lifestyle modifications, behavioral therapy and switching antipsychotic agents, have been proposed to manage these metabolic abnormalities. However, these interventions may be insufficient, impractical or fail to counteract the metabolic dysregulation. Consequently, a variety of pharmacological agents such as antidiabetic drugs, have been studied in an attempt to reverse the weight gain and metabolic abnormalities evident in these patients. Despite a significant effect, many of these treatments are used off-label. This qualitative review focuses on pharmacological agents that could offer significant benefits in the management of cardio-metabolic disorders associated with serious mental illness.
Postprandial metabolism in resistance-trained versus sedentary males.
Thyfault, John P; Richmond, Scott R; Carper, Michael J; Potteiger, Jeffrey A; Hulver, Matthew W
2004-04-01
This investigation examined if postprandial metabolism differed between resistance-trained [(RT), N = 12] and sedentary [(SED), N = 12] males. A secondary objective was to determine whether different resistance-training programs [bodybuilding (BB), N = 8 and power/weight-lifting (PL), N = 8] resulted in disparate effects on postprandial energy metabolism. Moderate fat [(MF), 37% carbohydrate, 18% protein, and 45% fat] and high carbohydrate [(HC), 79% carbohydrate, 20% protein, and 1% fat] meals were randomly administered, and postprandial metabolism was measured for 240 min. Carbohydrate oxidation, fat oxidation, diet-induced thermogenesis (DIT), and glucose and insulin areas under the curve (AUC) were calculated. Fat oxidization/lean body mass (LBM) was significantly greater in SED after the HC (RT, 0.27 +/- 0.02 g vs SED, 0.33 +/- 0.02 g, P = 0.017) and MF (RT, 0.34 +/- 0.02 g vs SED, 0.39 +/- 0.02 g, P = 0.036) meals. Carbohydrate oxidation/LBM was significantly greater in RT after the HC meal (RT, 0.87 +/- 0.03 g vs SED, 0.74 +/- 0.04 g, P = 0.017) only. DIT and DIT/LBM were significantly greater in RT compared with SED after the HC meal (DIT: RT, 351 +/- 21 kJ vs SED, 231 +/- 23 kJ, P = 0.001; DIT/LBM: RT, 5.25 +/- 0.028 kJ vs SED, 3.92 +/- 0.37 kJ, P = 0.009). The AUC for both glucose and insulin were significantly greater in SED compared with RT in response to the HC meal but not the MF meal. There were no differences in the BB and PL groups for any measured variables in response to either the HC or MF meals. These data indicate that postprandial metabolism is different between resistance-trained and sedentary males but that no such differences exist with different resistance training styles.
Tyagi, Anupama; Cohen, Marc; Reece, John; Telles, Shirley
2014-11-15
Stress places a metabolic burden on homeostasis and is linked to heightened sympathetic activity, increased energy expenditure and pathology. The yogic state is a hypometabolic state that corresponds with mind-body coherence and reduced stress. This study aimed to investigate metabolic responses to stress and different yoga practices in regular yoga practitioners (YP), non-yoga practitioners (NY) and metabolic syndrome patients (MS). YP (n = 16), NY (n = 15) and MS (n = 15) subjects underwent an experimental protocol that comprised of different 5-minute interventions including mental arithmetic stress test (MAST), alternate nostril breathing (ANB), Kapabhati breathing (KB) and meditation (Med) interspersed with 5 minutes of quiet resting (neutral condition (NC)). During the intervention periods continuous body weight adjusted oxygen consumption (VO2ml/min/kg) was measured using open circuit indirect calorimetry with a canopy hood. This is the first study to report oxygen consumption (OC) in yoga practitioners during and after MAST and the first to report both within and between different populations. The results were analysed with SPSS 16 using 3X9 mixed factorial ANOVAs. The single between-subject factor was group (YP, NY and MS), the single within-subject factor was made up of the nine intervention phases (NC1, MAST, NC2, ANB, NC3, KB, NC4, Med, NC5). The results demonstrated that the regular YP group had significantly less OC and greater variability in their OC across all phases compared to the MS group (p = .003) and NY group (p = .01). All groups significantly raised their OC during the mental arithmetic stress, however the MS group had a significantly blunted post-stress recovery whereas the YP group rapidly recovered back to baseline levels with post stress recovery being greater than either the NY group or MS group. Yoga practitioners have greater metabolic variability compared to non-yoga practitioners and metabolic syndrome patients with reduced oxygen requirements during resting conditions and more rapid post-stress recovery. OC in metabolic syndrome patients displays significantly blunted post-stress recovery demonstrating reduced metabolic resilience. Our results support the findings of previous randomised trials that suggest regular yoga practice may mitigate against the effects of metabolic syndrome. ACTRN12614001075673; Date of Registration: 07/10/2014.
Alterations in energy substrate metabolism in mice with different degrees of sepsis.
Irahara, Takayuki; Sato, Norio; Otake, Kosuke; Matsumura, Shigenobu; Inoue, Kazuo; Ishihara, Kengo; Fushiki, Tohru; Yokota, Hiroyuki
2018-07-01
Nutritional management is crucial during the acute phase of severe illnesses. However, the appropriate nutritional requirements for patients with sepsis are poorly understood. We investigated alterations in carbohydrate, fat, and protein metabolism in mice with different degrees of sepsis. C57BL/6 mice were divided into three groups: control mice group, administered with saline, and low- and high-dose lipopolysaccharide (LPS) groups, intraperitoneally administered with 1 and 5 mg of LPS/kg, respectively. Rectal temperature, food intake, body weight, and spontaneous motor activity were measured. Indirect calorimetry was performed using a respiratory gas analysis for 120 h, after which carbohydrate oxidation and fatty acid oxidation were calculated. Urinary nitrogen excretion was measured to evaluate protein metabolism. The substrate utilization ratio was recalculated. Plasma and liver carbohydrate and lipid levels were evaluated at 24, 72, and 120 h after LPS administration. Biological reactions decreased significantly in the low- and high-LPS groups. Fatty acid oxidation and protein oxidation increased significantly 24 h after LPS administration, whereas carbohydrate oxidation decreased significantly. Energy substrate metabolism changed from glucose to predominantly lipid metabolism depending on the degree of sepsis, and protein metabolism was low. Plasma lipid levels decreased, whereas liver lipid levels increased at 24 h, suggesting that lipids were transported to the liver as the energy source. Our findings revealed that energy substrate metabolism changed depending on the degree of sepsis. Therefore, in nutritional management, such metabolic alterations must be considered, and further studies on the optimum nutritional intervention during severe sepsis are necessary. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yerlikaya, Emrah; Karageçili, Hasan; Aydin, Ruken Zeynep
2016-04-01
Obesity is a key risk for the development of hyperglycemia, hypertension, hyperlipidemia, insulin resistance and is totally referred to as the metabolic disorders. Diabetes mellitus, a metabolic disorder, is related with hyperglycemia, altered metabolism of lipids, carbohydrates and proteins. The minimum defining characteristic feature to identify diabetes mellitus is chronic and substantiated elevation of circulating glucose concentration. In this study, it is aimed to determine the body composition analyze of obese and (obese+diabetes) patients.We studied the datas taken from three independent groups with the body composition analyzer instrument. The body composition analyzer calculates body parameters, such as body fat ratio, body fat mass, fat free mass, estimated muscle mass, and base metabolic rate on the basis of data obtained by Dual Energy X-ray Absorptiometry using Bioelectrical Impedance Analysis. All patients and healthy subjects applied to Siirt University Medico and their datas were taken. The Statistical Package for Social Sciences version 21 was used for descriptive data analysis. When we compared and analyzed three groups datas, we found statistically significant difference between obese, (obese+diabetes) and control groups values. Anova test and tukey test are used to analyze the difference between groups and to do multiple comparisons. T test is also used to analyze the difference between genders. We observed the statistically significant difference in age and mineral amount p<0.00 between (diabetes+obese) and obese groups. Besides, when these patient groups and control group were analyzed, there were significant difference between most parameters. In terms of education level among the illiterate and university graduates; fat mass kg, fat percentage, internal lubrication, body mass index, water percentage, protein mass percentage, mineral percentage p<0.05, significant statistically difference were observed. This difference especially may result of a sedentary lifestyle.
Masukagami, Y; De Souza, D P; Dayalan, S; Bowen, C; O'Callaghan, S; Kouremenos, K; Nijagal, B; Tull, D; Tivendale, K A; Markham, P F; McConville, M J; Browning, G F; Sansom, F M
2017-01-01
Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum , which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13 C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum , which may reflect differing host nutrient availabilities. The 13 C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis . This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.
McNerney, Monica P.; Watstein, Daniel M.; Styczynski, Mark P.
2015-01-01
Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed “precision metabolic engineering,” involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. PMID:26189665
Bellomo-Brandao, Maria Angela; Escanhoela, Cecilia AF; Meirelles, Luciana R; Porta, Gilda; Hessel, Gabriel
2009-01-01
AIM: To compare the histologic features of the liver in intrahepatic neonatal cholestasis (IHNC) with infectious, genetic-endocrine-metabolic, and idiopathic etiologies. METHODS: Liver biopsies from 86 infants with IHNC were evaluated. The inclusion criteria consisted of jaundice beginning at 3 mo of age and a hepatic biopsy during the 1st year of life. The following histologic features were evaluated: cholestasis, eosinophilia, giant cells, erythropoiesis, siderosis, portal fibrosis, and the presence of a septum. RESULTS: Based on the diagnosis, patients were classified into three groups: group 1 (infectious; n = 18), group 2 (genetic-endocrine-metabolic; n = 18), and group 3 (idiopathic; n = 50). There were no significant differences with respect to the following variables: cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and presence of a septum. A significant difference was observed with respect to erythropoiesis, which was more severe in group 1 (Fisher’s exact test, P = 0.016). CONCLUSION: A significant difference was observed in IHNC of infectious etiology, in which erythropoiesis was more severe than that in genetic-endocrine-metabolic and idiopathic etiologies, whereas there were no significant differences among cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and the presence of a septum. PMID:19152454
Truthmann, Julia; Mensink, Gert B M; Bosy-Westphal, Anja; Hapke, Ulfert; Scheidt-Nave, Christa; Schienkiewitz, Anja
2017-06-10
This study examined sex-specific differences in physical health-related quality of life (HRQoL) across subgroups of metabolic health and obesity. We specifically asked whether (1) obesity is related to lower HRQoL independent of metabolic health status and potential confounders, and (2) whether associations are similar in men and women. We used cross-sectional data from the German Health Interview and Examination Survey 2008-11. Physical HRQoL was measured using the Short Form-36 version 2 physical component summary (PCS) score. Based on harmonized ATPIII criteria for the definition of the metabolic health and a body mass index ≥ 30 kg/m 2 to define obesity, individuals were classified as metabolically healthy non-obese (MHNO), metabolically unhealthy non-obese (MUNO), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO). Sex-specific analyses including multivariable linear regression analyses were based on PCS as the dependent variable, metabolic health and obesity category as the independent variable with three categories and MHNO as the reference, and age, education, lifestyle and comorbidities as confounders. This study included 6860 participants (3298 men, 3562 women). Compared to MHNO, all other metabolic health and obesity categories had significantly lower PCS in both sexes. As reflected by the beta coefficients [95% confidence interval] from bivariable linear regression models, a significant inverse association with PCS was strongest for MUO (men: -7.0 [-8.2; -5.8]; women: -9.0 [-10.2; -7.9]), intermediate for MUNO (men: -4.2 [-5.3; -3.1]; women: -5.6 [-6.8; -4.4]) and least pronounced for MHO (men: -2.2 [-3.6; -0.8]; women -3.9 [-5.4; -2.5]). Differences in relation to MHNO remained statistically significant for all groups after adjusting for confounders, but decreased in particular for MUNO (men:-1.3 [-2.3; -0.3]; women: -1.5 [-2.7; -0.3]. Obesity was significantly related to lower physical HRQoL, independent of metabolic health status. Potential confounders including age, educational status, health-related behaviors, and comorbidities explained parts of the inverse relationship. Associations were evident in both sexes and consistently more pronounced among women than men.
Association of metabolic acidosis with bovine milk-based human milk fortifiers.
Cibulskis, C C; Armbrecht, E S
2015-02-01
To compare the incidence of metabolic acidosis and feeding intolerance associated with powdered or acidified liquid human milk fortifier (HMF). This retrospective study evaluated infants ⩽ 32 weeks gestational age or ⩽ 1500 g birth weight who received human milk with either powdered or acidified liquid HMF (50 consecutively born infants per group). Primary outcomes tracked were metabolic acidosis (base excess less than -4 mmol l(-1) or bicarbonate less than 18 mmol l(-1)), feeding intolerance (gastric residual > 50% feed volume, > 3 loose stools or emesis per day, abdominal tenderness or distention), necrotizing enterocolitis, late-onset infection, death, length of hospital stay and ability to remain on HMF. Demographics, feeding practices, growth parameters and laboratory data were also collected. Significantly more infants who received acidified liquid HMF developed metabolic acidosis (P < 0.001). Base excess and bicarbonate were both significantly decreased after HMF addition in the liquid HMF group (base excess P = 0.006, bicarbonate P < 0.001). More infants were switched off liquid HMF due to metabolic acidosis or feeding intolerance than those on powdered HMF (P < 0.001). Despite increased protein intake in the liquid HMF group (P = 0.009), both groups had similar enteral caloric intakes with no difference in growth rates between the two groups. There was no significant difference in any of the other primary outcomes. Infants receiving acidified liquid human milk fortifier were more likely to develop metabolic acidosis and to be switched off HMF than those who received powdered HMF. Growth in the liquid HMF group was no different than the powdered group, despite higher protein intake.
Skovran, Elizabeth; Crowther, Gregory J; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E
2010-11-24
When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This "downstream priming" mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Budzinski, Ilara Gabriela Frasson; Moon, David H; Morosini, Júlia Silva; Lindén, Pernilla; Bragatto, Juliano; Moritz, Thomaz; Labate, Carlos Alberto
2016-07-01
Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.
Feng, Jin-Ge; Guo, Yan; Ma, Li-Ang; Xing, Jin; Sun, Rui-Feng; Zhu, Wei
2018-06-01
Cutaneous features of hyperandrogenism in polycystic ovary syndrome (PCOS) include acne, hirsutism, seborrhea, androgenic alopecia (AGA), and acanthosis nigricans (AN). However, the relationships have not been well known broadly in terms of clinical hyperandrogenism and biochemical markers. The aim of this study was to investigate biochemical and metabolic parameters in relation to cutaneous characters women in with and without PCOS. This was a cross-sectional retrospective study including 186 women with PCOS and 113 age-matched without PCOS women. Acne grade, hirsutism, seborrhea, AGA, and AN were recorded. Hormonal and metabolic parameters were measured. The most common finding was acne, and AN was the least dermatological manifestations between PCOS and non-PCOS groups. The severity location and type of acne did not differ in PCOS women compared to non-PCOS women. Significant differences were found with respect to free androgen index (FAI) (P = .036), sex hormone-binding globulin (SHBG) (P = .023), and body mass index (BMI) (P = .001) between PCOS with acne and PCOS without acne groups. Overall, age (P = .005) was significantly decreased, while BMI (P = .004) was significantly higher in PCOS with hirsutism. The mean serum total testosterone (TT), dehydroepiandrosterone sulfate, and FAI were significantly elevated, but SHBG was decreased between PCOS with and without hirsutism groups. There were significantly different BMI (P = .018) and triglyceride (P = .024) except other hormonal parameter of without AGA group. This study indicated a strong correlation between hirsutism and metabolic abnormalities. Hirsutism is the most common cutaneous finding in PCOS women. Acne and AGA are associated with other manifestations of clinical hyperandrogenism, but not obvious markers of biochemical hyperandrogenemia and metabolic dysfunction. © 2017 Wiley Periodicals, Inc.
Furuta, K; Adachi, K; Ohara, S; Morita, T; Tanimura, T; Koshino, K; Kinoshita, Y
2010-01-01
This two-way crossover study investigated possible differences between the proton pump inhibitors, omeprazole and rabeprazole, in their effect on gastric acid secretion in Japanese subjects with differing cytochrome P450, family 2, subfamily C, polypeptide 19 (CYP2C19) genotypes. A total of 23 Helicobacter pylori-negative healthy volunteers received omeprazole 20 mg/day and rabeprazole 10 mg/day. Each drug treatment was given for a continuous 7-day period allocated in random order, with an interval of at least 1 week between drug treatment periods to allow for wash-out. Intragastric pH was measured on days 1 and 7. Overall median intragastric pH levels at 7 and 8 h after the first administration were significantly higher with omeprazole. There was no significant difference in intragastric pH in homozygous extensive metabolizers, whereas intragastric pH was significantly higher with omeprazole in combined data from heterozygous extensive metabolizers and poor metabolizers at 6, 7 and 8 h after the first drug administration. There were no significant differences in intragastric pH between omeprazole and rabeprazole irrespective of genotype on day 7 of administration. In conclusion, on day 1 the time to onset of the antisecretory action of 20 mg/day omeprazole was more rapid than that of 10 mg/day rabeprazole in Japanese individuals who have a higher incidence of the CYP2C19 poor metabolizer genotype, however by day 7 no difference in antisecretory effect was found, regardless of genotype.
Metabolic syndrome among overweight and obese adults in Palestinian refugee camps.
Damiri, Basma; Abualsoud, Mohammed S; Samara, Amjad M; Salameh, Sakhaa K
2018-01-01
Metabolic syndrome (MetS) is one of the main reasons for elevated cardiovascular morbidity and mortality worldwide. Obese and overweight individuals are at high risk of developing these chronic diseases. The aim of this study was to characterize and establish sex-adjusted prevalence of metabolic syndrome and its components. A cross-sectional study was conducted in 2015, 689 (329 men and 360 women) aged 18-65 years from three refugee camps in the West Bank. International Diabetes Federation and modified National Cholesterol Education Program-Third Adult Treatment Panel definitions were used to identify MetS. The overall prevalence of obesity and overweight was high, 63.1%; Obesity (42 and 29.2% in women men; respectively and overweight 25.8 and 28.9% in women and men; respectively. The prevalence of MetS among obese and overweight was significantly higher (69.4%) according to IDF than NCEP definition (52%) ( p < 0.002) with no significant differences between men and women using both definitions; (IDF; 71.8% men vs. 67.6% women, and (NCEP/ATP III; 51.9% men vs. 52.2% women). The prevalence of MetS increased significantly with increasing obesity and age when NCEP criterion is applied but not IDF. The prevalence of individual MetS components was: high waist circumference 81.3% according to IDF and 56.5% according to NCEP, elevated FBS 65.3% according to IDF and 56% according to NCEP, elevated blood pressure 48%, decreased HDL 65.8%, and elevated triglycerides 31.7%. Based on gender differences, waist circumferences were significantly higher in women according to both criteria and only elevated FBS was higher in women according to IDF criteria. Physical activity was inversely associated with MetS prevalence according to NCEP but not IDF. No significant associations were found with gender, smoking, TV watching, and family history of hypertension or diabetes mellitus. In this study, irrespective of the definition used, metabolic syndrome is highly prevalent in obese and overweight Palestinian adults with no gender-based differences. The contribution of the metabolic components to the metabolic syndrome is different in men and women. With the increase of age and obesity, the clustering of metabolic syndrome components increased remarkably. More attention through health care providers should, therefore, be given to the adult population at risk to reduce adulthood obesity and subsequent cardiovascular diseases.
Urodynamic measurements reflect physiological bladder function in rats.
Schneider, Marc P; Sartori, Andrea M; Tampé, Juliane; Moors, Selina; Engmann, Anne K; Ineichen, Benjamin V; Hofer, Anna-Sophie; Schwab, Martin E; Kessler, Thomas M
2018-04-01
Our objective was to investigate and compare bladder function in rats assessed by metabolic cage and by urodynamic measurements in fully awake animals. Bladder function of female Lewis rats was investigated in naïve animals by metabolic cage at baseline, 14-16 days after bladder catheter and external urethral sphincter electromyography electrode implantation in fully awake animals by urodynamics, and again by metabolic cage. Investigating the same animals (n = 8), voided volume, average flow, and duration of voiding were similar (P > 0.05) in naïve animals measured by metabolic cage and after catheter implantation by urodynamic measurements and by metabolic cage. In naïve animals measured by metabolic cage, voided volumes were significantly different in the light (resting phase) versus the dark (active phase) part of the 24 h cycle (mean difference 0.14 mL, 21%, P = 0.004, n = 27). Lower urinary tract function assessed by metabolic cage or by urodynamic meaurements in fully awake rats was indistinguishable. Thus, catheter implantation did not significantly change physiological bladder function. This shows that urodynamic measurements in awake animals are an appropriate approach to study lower urinary tract function in health and disease in animal models, directly paralleling the human diagnostic procedures. © 2017 Wiley Periodicals, Inc.
Parcina, Marijo; Brune, Maik; Kaese, Vareska; Zorn, Markus; Spiegel, Rainer; Vojvoda, Valerija; Fleming, Thomas; Rudofsky, Gottfried; Paul Nawroth, Peter
2015-04-01
This study addressed the question whether the composition of supposedly 'healthy' or 'unhealthy' dietary regimes has a calorie-independent short-term effect on biomarkers of metabolic stress and vascular risk in healthy individuals. Healthy male volunteers (age 29.5 ± 5.9 years, n = 39) were given a standardized baseline diet for two weeks before randomization into three groups of different dietary regimes: fast food, Mediterranean and German cooking style. Importantly, the amount of calories consumed per day was identical in all three groups. Blood samples were analyzed for biomarkers of cardiovascular risk and metabolic stress after two weeks of the baseline diet and after two weeks of the assigned dietary regime. No dietary intervention affected the metabolic or cardiovascular risk profile when compared in-between groups or compared to baseline. Subjects applied to the Mediterranean diet showed a statistically significant increase of uric acid compared to baseline and compared to the German diet group. Plasma concentrations of urea were significantly higher in both the fast food group and the Mediterranean group, when compared to baseline and compared to the German diet group. No significant differences were detected for the levels of vitamins, trace elements or metabolic stress markers (8-hydroxy-2-deoxyguanosine, malondialdehyde and methylglyoxal, a potent glycating agent). Established parameters of vascular risk (e.g. LDL-cholesterol, lipoprotein(a), homocysteine) were not significantly changed in-between groups or compared to baseline during the intervention period. The calorie-controlled dietary intervention caused neither protective nor harmful short-term effects regarding established biomarkers of vascular or metabolic risk. When avoiding the noxious effects of overfeeding, healthy individuals can possess the metabolic capacity to compensate for a potentially disadvantageous composition of a certain diet.
Yang, Shupeng; Zhang, Huiyan; Sun, Feifei; De Ruyck, Karl; Zhang, Jinzhen; Jin, Yue; Li, Yanshen; Wang, Zhanhui; Zhang, Suxia; De Saeger, Sarah; Zhou, Jinhui; Li, Yi; De Boevre, Marthe
2017-12-27
To explore differences of zearalenone (ZEN) metabolism between various species, phase I and II metabolism by liver microsomes of animals and human were investigated using ultra high-pressure liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-Q/TOF MS). A total of 24 metabolites were identified, among which 12 were reported for the first time. Reduction, hydroxylation, and glucuronidation were the major metabolic pathways of ZEN, and significant differences in various species were also observed. Reduction was the main reaction in swine and human, whereas hydroxylation was predominant in rats, chickens, goats, and cows in in vitro systems. Furthemore, in vivo metabolism of ZEN in rats and chickens was investigated, and 23 and 6 metabolites were identified in each species, respectively. Reduction, hydroxylation, and glucuronidation were the major metabolic pathways in rats, while reduction and sulfation predominated in chickens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans.
USDA-ARS?s Scientific Manuscript database
Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...
Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing
2016-08-04
Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution ¹H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.
Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing
2016-01-01
Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats. PMID:27527211
2011-01-01
Background A gene's position in regulatory, protein interaction or metabolic networks can be predictive of the strength of purifying selection acting on it, but these relationships are neither universal nor invariably strong. Following work in bacteria, fungi and invertebrate animals, we explore the relationship between selective constraint and metabolic function in mammals. Results We measure the association between selective constraint, estimated by the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, and several, primarily metabolic, measures of gene function. We find significant differences between the selective constraints acting on enzyme-coding genes from different cellular compartments, with the nucleus showing higher constraint than genes from either the cytoplasm or the mitochondria. Among metabolic genes, the centrality of an enzyme in the metabolic network is significantly correlated with Ka/Ks. In contrast to yeasts, gene expression magnitude does not appear to be the primary predictor of selective constraint in these organisms. Conclusions Our results imply that the relationship between selective constraint and enzyme centrality is complex: the strength of selective constraint acting on mammalian genes is quite variable and does not appear to exclusively follow patterns seen in other organisms. PMID:21470417
Current knowledge of microRNA-mediated regulation of drug metabolism in humans.
Nakano, Masataka; Nakajima, Miki
2018-05-01
Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.
Jiang, Zhenhong; He, Fei; Zhang, Ziding
2017-07-01
Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.
Thyroid function in adult Nigerians with metabolic syndrome.
Udenze, Ifeoma; Nnaji, Ilochi; Oshodi, Temitope
2014-01-01
Metabolic syndrome and thyroid dysfunction are two common disorders encountered in the metabolic clinic. Recently, there has been increased interest in the association between the two disorders because of the similarities between symptoms of hypothyroidism and components of the metabolic syndrome. While some reports suggest that metabolic syndrome is associated with subclinical hypothyroidism, this concept is largely under investigated in Nigerian adults with metabolic syndrome. The aim of this study is to determine the thyroid function status of adult Nigerians with metabolic syndrome and determine the association, if any, between metabolic syndrome and thyroid function. This was a cross sectional study of one hundred and fifty adults, members of staff of the College of Medicine of the University of Lagos. The participants were recruited using a cluster random sampling method. The Ethical Research & Review Committee of the institution approved the study protocol and signed informed consent was obtained from the participants. The statistics was analysed using the IBM SPSS Software of version 19.0. The Student's t test, Chi square test and multivariate regression analysis were employed for the analysis. Statistical significance was set at p < 0.05. Thirty nine (twenty-six percent) of the study participants had metabolic syndrome and one hundred and eleven (seventy-four percent) of the study participants did not have metabolic syndrome, served as controls. Those who had metabolic syndrome group were significantly older (p = 0.03), metabolic syndrome was significantly associated with the female gender (p = 0.0002), higher systolic blood pressure (p = 0.0034), diastolic blood pressure (p = 0.0009), waist circumference (p < 0.0001), body mass index (p < 0.0001), waist-hip ratio (p = 0.003), fasting serum glucose (p = 0.0457) and free thyroxine (fT4) levels (p = 0.0496). Those with metabolic syndrome had significantly lower HDL (P = 0.004) and free triiodothyronine (fT3) levels (p = 0.037). There was no statistically significant difference in the thyroid stimulating hormone (TSH) levels between individuals with and without metabolic syndrome. Thirty-three percent of the metabolic syndrome cases had sick euthyroid syndrome (p= < 0.0001). In multivariate regression, waist circumference was significantly and inversely associated with the sick euthyroid syndrome (p = 0.011). Metabolic syndrome is associated with the sick euthyroid syndrome in adult Nigerians. Abdominal obesity appears to be the link between metabolic syndrome and the sick euthyroid syndrome.
Du, Guo-Li; Su, Yin-Xia; Yao, Hua; Zhu, Jun; Ma, Qi; Tuerdi, Ablikm; He, Xiao-Dong; Wang, Li; Wang, Zhi-Qiang; Xiao, Shan; Wang, Shu-Xia; Su, Li-Ping
2016-01-01
Diabetes is a major global public health problem driven by a high prevalence of metabolic risk factors. To describe the differences of metabolic risk factors of type 2 diabetes, as well as glycemic control and complicated diabetic complications between rural and urban Uygur residents in Xinjiang Uygur Autonomous Region of China. This comparative cross-sectional study, conducted among 2879 urban and 918 rural participants in Xinjiang, China, assessed the metabolic risk factors of diabetes and related complications differences between urban and rural settlements. Compared to rural areas, urban participants had higher education level and more average income, little physical activity, less triglycerides and higher HDL-c (p < 0.05 respectively). Differences in metabolic risk factors by urban/rural residence included overweight or obesity, triglycerides (≥1.71mmol/l), HDL-c (< 1.04 mmol/l), alcohol intake, and physical inactivity (p < 0.01 respectively). There was significant difference regarding the prevalence of HbA1c >8% (48.1% versus 54.5%, p = 0.019) between rural and urban diabetic participants. No significant difference in the prevalence of type 2 diabetic complications between urban and rural participants (74.9% versus 72.2%; p = 0.263) was detected. Compared to rural participants, the most prevalent modifiable risk factors associated with diabetic complications in urban participants were obesity (BMI ≥ 28 Kg/m2), HDL-c (< 1.04 mmol/l), physical inactivity and irregular eating habits (p = 0.035, p = 0.001, p < 0.001, and p = 0.013, respectively). Urban settlers were significantly more likely to have metabolic risk factors highlighting the need for public health efforts to improve health outcomes for these vulnerable populations. Diabetes related complications risk factors were prevalent amongst rural and urban diabetes settlers.
Metabolic Imaging in Multiple Time Scales
Ramanujan, V Krishnan
2013-01-01
We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from milliseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics. PMID:24013043
Eroğlu, Hüseyin; Senel, Omer; Güzel, Nevin A
2008-04-01
Purpose of this study is to research the effects of acute L-Carnitine intake on badminton players' metabolic and blood lactate values. A total of 16 Turkish national badminton players (8 male, 8 female) were voluntarily participated into study. MaxVO2, MET, energy consumption, HR (heart rate), VE (minute ventilation), R (respiratory exchange ratio), AT (anaerobic threshold), oxygen pulse and blood lactate (LA) of subjects were measured by Sensormedics VmaxST and Accutrend Lactate Analyzer. The participants were subjected to the test protocol twice before and after 2g of L-Carnitine intake. The data were evaluated by the use of SPSS 13.0 for Windows. No significant differences were found between 1st. (without L-Carnitine intake) and 2nd. (with L-Carnitine intake) measurements of female participants as regards to all measured parameters. There was a significant difference in EMHR (exercise maximum heart rate) of males between two measurements (p<0.05). However the differences in other parameters were not significant. AT values of female subjects were not significant difference (p>0.05). Respiratory exchange ratio of males was significantly different at anaerobic threshold (p<0.05). Results of this study show that L-carnitine intake one hour prior to the exercise has no effect on the metabolic and blood lactate values of badminton players.
Pistole, David H; Peles, John D; Taylor, Kelly
2008-07-01
Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.
Hebrani, Paria; Manteghi, Ali Akhoundpour; Behdani, Fatemeh; Hessami, Elham; Rezayat, Kambiz Akhavan; Marvast, Majid Nabizadeh; Rezayat, Amir Akhavan
2015-04-01
One of the major causes of death in schizophrenia is a metabolic syndrome. The clozapine has the highest rate of weight gain among antipsychotics. It has been shown that metformin can promote weight loss. We aimed to investigate the effect of metformin as an adjunctive therapy with clozapine to prevent metabolic syndrome in patients with schizophrenia. A total of 37 patients consisting metformin group (19 cases) and a group of placebo consisting of 18 cases were evaluated. A brief psychiatric rating scale score (BPRS) and metabolic profiles was determined for all patients. All of the variables were also determined at 2, 8, 16, and 20 weeks after the onset of the study. The mean age of the group of metformin was 47.2 ± 10.4 compared with 45.8 ± 10.2 for the group of placebo. The difference in mean waist circumference and serum level of triglyceride at baseline compared with the end of study showed a statistically significant difference between two groups (P = 0. 000). A statistically significant difference was also observed in a comparison of mean difference of weight and body mass index at baseline compared with end of study (P = 0. 000). There was a statistically significant difference of fasting blood sugar (P = 0.011) and serum high-density lipoprotein (P = 0.000) between two groups but this difference was not significant for mean BPRS scores, mean systolic and diastolic blood pressure, serum level of triiodothyronine, thyroxin and thyroid stimulating hormone, serum low-density lipoprotein and serum cholesterol. Metformin could be considered an adjunctive therapy with clozapine to prevent metabolic syndrome in schizophrenic patients.
Bertoli, Simona; Laureati, Monica; Battezzati, Alberto; Bergamaschi, Valentina; Cereda, Emanuele; Spadafranca, Angela; Vignati, Laila; Pagliarini, Ella
2014-01-01
AIM: We investigated the relationship between taste sensitivity, nutritional status and metabolic syndrome and possible implications on weight loss dietary program. METHODS: Sensitivity for bitter, sweet, salty and sour tastes was assessed by the three-Alternative-Forced-Choice method in 41 overweight (OW), 52 obese (OB) patients and 56 normal-weight matched controls. OW and OB were assessed also for body composition (by impedence), resting energy expenditure (by indirect calorimetry) and presence of metabolic syndrome (MetS) and were prescribed a weight loss diet. Compliance to the weight loss dietary program was defined as adherence to control visits and weight loss ≥ 5% in 3 mo. RESULTS: Sex and age-adjusted multiple regression models revealed a significant association between body mass index (BMI) and both sour taste (P < 0.05) and global taste acuity score (GTAS) (P < 0.05), with lower sensitivity with increasing BMI. This trend in sensitivity for sour taste was also confirmed by the model refitted on the OW/OB group while the association with GTAS was marginally significant (P = 0.06). MetS+ subjects presented higher thresholds for salty taste when compared to MetS- patients while no significant difference was detected for the other tastes and GTAS. As assessed by multiple regression model, the association between salty taste and MetS appeared to be independent of sex, age and BMI. Patients continuing the program (n = 37) did not show any difference in baseline taste sensitivity when compared to drop-outs (n = 29). Similarly, no significant difference was detected between patients reporting and not reporting a weight loss ≥ 5% of the initial body weight. No significant difference in taste sensitivity was detected even after dividing patients on the basis of nutritional (OW and OB) or metabolic status (MetS+ and MetS-). CONCLUSION: There is no cause-effect relationship between overweight and metabolic derangements. Taste thresholds assessment is not useful in predicting the outcome of a diet-induced weight loss program. PMID:25317249
Zhao, Yan; Zhong, Wen-Jie; Xun, Zhe; Zhang, Qian; Song, Ye-Qing; Liu, Yun-Song; Chen, Feng
2017-01-01
Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral microbiomes, further comprehension of this microbial community’s ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities.
USDA-ARS?s Scientific Manuscript database
The compositions of bovine and murine milk differ significantly with respect to the proportions of lactose, protein, and fat. To better understand the metabolic origins of this difference, we interrogated the crossroads of glycolysis and the Krebs cycle in the mammary gland of cows and mice using a ...
Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.
Bledsoe, C S
1978-11-01
The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.
Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1
Bledsoe, Caroline S.; Ross, Cleon W.
1978-01-01
The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583
Kieffer, James D; Penny, Faith M; Papadopoulos, Vasoula
2014-04-01
This study examined the effects of acclimation temperature (10, 15, 20, or 25 °C) and an acute exposure to various temperatures on the routine metabolism of juvenile (~11 g) shortnose sturgeon (Acipenser brevirostrum). For the acclimation experiment, the minimum, mean, and maximum routine metabolic rates were established for sturgeon at each temperature. Mean routine metabolic rates for 10, 15, 20, and 25 °C were 134, 277, 313, and 309 mg O2 kg(-1) h(-1), respectively, with significant differences occurring between 10 and 15, 10 and 20, and 10 and 25 °C. For the acute exposure, similar patterns and significant differences were observed. Temperature quotient (Q 10) values indicate that the greatest effect of temperature occurred between 10 and 15 °C for both the acclimation and acute temperature experiments. In addition, the effect of temperature on the metabolic rate of sturgeon was nearly negligible between 15 and 25 °C. These results suggest that juvenile shortnose sturgeon are sensitive to temperature changes at the lower end of the range, and less sensitive in the mid-to-upper temperature range.
Apollo 16 time and motion study
NASA Technical Reports Server (NTRS)
Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Barnes, J. E.; Saxon, S. C.
1972-01-01
A time and motion study is presented of astronaut lunar surface activity on Apollo 16 which consists of five distinct analyses: an evaluation of lunar mobility, a comparison of task performance in 1-g training and lunar EVA, a study of metabolic costs and adaptation, a discussion of falls, and retrieval of fallen objects. Two basic mobility patterns, the hop or canter and the traditional walking gait, were consistently utilized in longer traverses. The metabolic rates associated with these two mobility types, each used by a different astronaut, were relatively equivalent. The time to perform tasks on the lunar surface was significantly longer (on the order of 70%) than the time to perform the same tasks during the last 1-g training session. These results corroborated the findings on Apollo 15 and were not significantly different from them. There was general improvement in lunar EVA performance upon repetition of tasks. Metabolic rate (BTU/hr.) and metabolic cost (BTU) decreased over successive EVAs. Specifically, the metabolic rate associated with riding the lunar roving vehicle (LRV) decreased by approximately 18% from EVA 1 to EVA 2 and by 15% from EVA 2 to EVA 3.
McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P
2015-09-01
Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Amiri, P; Deihim, T; Hosseinpanah, F; Barzin, M; Hasheminia, M; Montazeri, A; Azizi, F
2014-07-01
This study aimed to compare the diagnostic impact of four definitions of the metabolic syndrome for detection of poor health status in adults without diabetes living in Tehran. A representative sample of 950 individuals (64% women), aged ≥ 20 years, participants of the Tehran Lipid and Glucose Study in 2005-2007, were recruited for the study. Health status was assessed using the Iranian version of the 36-item Short Form Health Survey. We assessed the detectability of poor health status by definitions of the National Cholesterol Education Program Adult Treatment Panel III, the International Diabetes Federation, the American Heart Association/National Heart, Lung, and the Blood Institute and the Joint Interim Statement. Compared with other definitions, the Joint Interim Statement identified more participants (46.9%) having the metabolic syndrome. Using the National Cholesterol Education Program Adult Treatment Panel III, the International Diabetes Federation and the Joint Interim Statement, the metabolic syndrome was significantly related to poor physical health status, even after adjustment for confounding variables, in women, but not in men. None of the four definitions of the metabolic syndrome was related to the mental health status in either gender. The receiver operating characteristic curves showed no significant difference in the discriminative power of the metabolic syndrome definitions in detecting poor health status in either gender. However, women showed a higher area under the curve for all definitions, in comparison with men. There was no difference in the four different definitions of the metabolic syndrome in detecting poor health status among Iranian adults. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Matoušková, Petra; Vokřál, Ivan; Lamka, Jiří; Skálová, Lenka
2016-06-01
Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X
2015-12-22
The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.
Biochemical and nutritional markers and antioxidant activity in metabolic syndrome.
Bernabé García, Juana; Zafrilla Rentero, Pilar; Mulero Cánovas, Juana; Gómez Jara, Purificación; Leal Hernández, Mariano; Abellán Alemán, José
2014-01-01
1) Nutritional assessment of the diet followed by patients with metabolic syndrome, and 2) biochemical analysis of the oxidation-reduction level in patients with metabolic syndrome. A cross-sectional study was conducted in patients with metabolic syndrome in Murcia. Fifty-three patients, 33 with and 20 without (control group) metabolic syndrome, were selected. The intervention consisted of completion of a recall survey and a test to nutritionally assess dietary intake. Anthropometric and laboratory variables, including those related to antioxidant activity, were also tested. Antioxidant activity was within normal limits in both groups (1.7 ± 0.2 mmol/L in the control group and 1.8 ± 0.1 mmol/L in the metabolic syndrome group) (NS). Superoxide dismutase levels were not significantly different between the groups. Mean glutathione reductase levels (U/L) were higher in the control group as compared to patients with metabolic syndrome (P<.05). As regards oxidative stress biomarkers, mean isoprostane levels were higher in the control group (4.9 ± 6.2 ng/mL) than in metabolic syndrome patients (3.5 ± 3.9 ng/mL) (P<.05). Oxidized LDL values tended to be higher in metabolic syndrome patients (96 ± 23.2U/L) as compared to the control group (86.2 ± 17.3 U/L), but differences were not significant. There is a trend to a poorer nutritional and biochemical profile in patients with metabolic syndrome, who also tend to have a greater degree of oxidative stress. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.
Li, Huihui; An, Yanpeng; Zhang, Lulu; Lei, Hehua; Zhang, Limin; Wang, Yulan; Tang, Huiru
2013-12-06
Inflammation is closely associated with pathogenesis of various metabolic disorders, cardiovascular diseases, and cancers. To understand the systems responses to localized inflammation, we analyzed the dynamic metabolic changes in rat plasma and urine associated with the carrageenan-induced self-limiting pleurisy using NMR spectroscopy in conjunction with multivariate data analysis. Fatty acids in plasma were also analyzed using GC-FID/MS with the data from clinical chemistry and histopathology as complementary information. We found that in the acute phase of inflammation rats with pleurisy had significantly lower levels in serum albumin, fatty acids, and lipoproteins but higher globulin level and larger quantity of pleural exudate than controls. The carrageenan-induced inflammation was accompanied by significant metabolic alterations involving TCA cycle, glycolysis, biosyntheses of acute phase proteins, and metabolisms of amino acids, fatty acids, ketone bodies, and choline in acute phase. The resolution process of pleurisy was heterogeneous, and two subgroups were observed for the inflammatory rats at day-6 post treatment with different metabolic features together with the quantity of pleural exudate and weights of thymus and spleen. The metabolic differences between these subgroups were reflected in the levels of albumin and acute-phase proteins, the degree of returning to normality for multiple metabolic pathways including glycolysis, TCA cycle, gut microbiota functions, and metabolisms of lipids, choline and vitamin B3. These findings provided some essential details for the dynamic metabolic changes associated with the carrageenan-induced self-limiting inflammation and demonstrated the combined NMR and GC-FID/MS analysis as a powerful approach for understanding biochemical aspects of inflammation.
[Effect of vinegar-processed Curcumae Rhizoma on bile metabolism in rats].
Gu, Wei; Lu, Tu-Lin; Li, Jin-Ci; Wang, Qiao-Han; Pan, Zi-Hao; Ji, De; Li, Lin; Zhang, Ji; Mao, Chun-Qin
2016-04-01
To explore the effect of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile by investigating the endogenous metabolites difference in bile before and after Curcumae Rhizoma was processed with vinegar. Alcohol extracts of crude and vinegar-processed Curcumae Rhizoma, as well as normal saline were prepared respectively, which were then given to the rats by intragastric administration for 0.5 h. Then common bile duct intubation drainage was conducted to collect 12 h bile of the rats. UPLC-TOF-MS analysis of bile samples was applied after 1∶3 acetonitrile protein precipitation; unidimensional statistics were combined with multivariate statistics and PeakView software was compared with network database to identify the potential biomarkers. Vinegar-processed Curcumae Rhizoma extracts had significant effects on metabolites spectrum in bile of the rats. With the boundaries of P<0.05, 13 metabolites with significant differences were found in bile of crude and vinegar-processed Curcumae Rhizoma groups, and 8 of them were identified when considering the network database. T-test unidimensional statistical analysis was applied between administration groups and blank group to obtain 7 metabolites with significant differences and identify them as potential biomarkers. 6 of the potential biomarkers were up-regulated in vinegar-processed group, which were related to the metabolism regulation of phospholipid metabolism, fat metabolism, bile acid metabolism, and N-acylethanolamine hydrolysis reaction balance, indicating the mechanism of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile of the rats. Copyright© by the Chinese Pharmaceutical Association.
Kamath, Ashwin; Rather, Zahoor Ahmad
2018-01-01
The objective of our study was to determine the effect of melatonin administration on atypical antipsychotic-induced metabolic adverse effects in patients with psychiatric disorders. A systematic search was performed in PUBMED, Cochrane Library, Scopus, Web of Science, and EBSCOhost electronic databases. Randomized controlled trials studying the effect of melatonin on antipsychotic-induced metabolic adverse effects were identified and subjected to meta-analysis. Four studies were included in the meta-analysis, including 57 patients on melatonin and 61 patients on placebo. Melatonin produced a significant decrease in the diastolic blood pressure compared with placebo (mean difference = -4.44 [95% CI, -7.00 to -1.88]; p = 0.0007; I 2 = 13%), but not the systolic blood pressure (mean difference = -4.23 [95% CI, -8.11 to -0.36]; p = 0.03; I 2 = 0%). Although a decrease in the body mass index was seen in the melatonin group, the difference was not significant in the random-effects analysis model. To conclude, in patients on atypical antipsychotics, melatonin at a dose of up to 5 mg/day for a treatment duration of up to 12 weeks attenuated the rise in diastolic blood pressure compared with placebo but had no significant effects on other metabolic parameters.
Effect of metformin on exercise capacity in metabolic syndrome.
Paul, Abi Albon; Dkhar, Steven Aibor; Kamalanathan, Sadishkumar; Thabah, Molly Mary; George, Melvin; Chandrasekaran, Indumathi; Gunaseelan, Vikneswaran; Selvarajan, Sandhiya
2017-11-01
Metabolic syndrome is a constellation of risk factors with increased predilection towards occurrence of cardiovascular diseases. Currently physical exercise and management with metformin are the prevailing treatment modalities for metabolic syndrome. Patients with metabolic syndrome have been found to have reduced exercise capacity over a period of time. Likewise metformin has been shown to decrease exercise capacity among healthy volunteers. Hence this study aims to evaluate the effect of metformin on the exercise capacity of patients with metabolic syndrome. Prospective study with 6 weeks follow up. Newly diagnosed patients with metabolic syndrome and to be started on Table Metformin 500mg twice a day were recruited for the study after obtaining written informed consent. Cardiopulmonary Exercise Testing (CPET) was done at baseline before the subjects were started on metformin and after 6 weeks of treatment using cardiopulmonary exercise testing apparatus (ZAN600). Fifteen treatment naïve patients with metabolic syndrome completed six weeks of therapy with metformin. In these patients oxygen uptake [VO2] showed statistically significant decrease from 1.10±0.44 at baseline to 0.9±0.39 (l/min) after six weeks of treatment with metformin [mean difference of -0.20 (-0.31 to -0.09); P=0.001]. Similarly oxygen uptake/kg body weight [VO2/Kg] showed a significant decrease from 14.10±4.73 to 11.44±3.81 (mlkg -1 min -1 ) at the end of six weeks of treatment [mean difference of -2.66 (-4.06 to -1.26); P=0.001]. Six weeks of treatment with metformin significantly decreases exercise capacity in newly diagnosed patients with metabolic syndrome. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Maggi, Adriana; Della Torre, Sara
2018-02-27
Epidemiological and clinical studies have largely demonstrated major differences in the prevalence of metabolic disorders in males and females, but the biological cause of these dissimilarities remain to be elucidated. Mammals are characterized by a major change in reproductive strategies and it is conceivable that these changes subjected females to a significant evolutionary pressure that perfected the coupling between energy metabolism and reproduction. This review will address the plausibility that female liver functions diverged significantly from males given the role of liver in the control of metabolism. Indeed, it is well known that the liver is sexually dimorphic, and this might be relevant to explain the lower susceptibility to hepatic diseases and liver-derived metabolic disturbances (such as the cardiovascular diseases) characteristic of females during their fertile period. Furthermore, estrogens and the hepatic ERα play a significant role in liver sexual-specific functions and in the control of metabolic functions. A better grasp of the role of male and female sex steroids in the liver of the two sexes may therefore represent an important element to conceive novel treatments aimed at preventing metabolic diseases particularly in ageing women or limiting undesired side effect in the treatment of gender dysphoria. Copyright © 2018. Published by Elsevier GmbH.
Clinical and metabolic characteristics of Turkish adolescents with polycystic ovary syndrome.
Ates, Seda; Aydın, Serdar; Ozcan, Pinar; Soyman, Zeynep; Gokmen Karasu, Ayse Filiz; Sevket, Osman
2018-02-01
The aim of this study was to investigate the clinical, endocrine, metabolic features and prevalence of metabolic syndrome (MBS) in Turkish adolescents with polycystic ovary syndrome (PCOS) and the differences in metabolic parameters between adolescent PCOS with or without the presence of polycystic ovaries (PCO) on ultrasound. Subjects (n = 77) were classified into two groups: oligomenorrhea (O) and clinical and/or biochemical hyperandrogenism (HA) (n = 38), without PCO and O + HA with PCO (n = 39). The control group consisted of 33 age-matched adolescents. Adolescents with PCOS had a significantly higher body mass index (BMI), waist circumference and levels of LH, LH/FSH ratio, triglyceride, insulin, HOMA-IR, free androgen index and lower levels of SHBG and FSH. After adjustment for BMI, LH, LH: FSH ratio remained significantly higher. Adolescents with PCOS had a higher prevalence of MBS. No significant differences in lipid profiles, insulin levels and insulin sensitivity in both the PCOS groups were seen. HDL-C levels were lower in the O + HA + PCO group compared to the controls. BMI may be the major contributing factor in the development of metabolic abnormalities in adolescents with PCOS. Impact statement Many studies have investigated the effect of PCOS on metabolic and cardiovascular risks. It is thought that PCOS increases metabolic and cardiovascular risks. Increase in metabolic and cardiovascular risks associated with PCOS may be handled with early diagnosis and early intervention of PCOS in adolescents, although the diagnosis of PCOS in adolescents could be hard because of the features of PCOS overlapping normal pubertal physiological events. However, early identification of adolescent girls with PCOS may provide opportunities for prevention of well-known health risks associated with this syndrome and reduction of long-term health consequences of PCOS by reducing androgen levels and improving metabolic profile. Our results also support that BMI may be the major contributing factor in the development of metabolic abnormalities in adolescents with PCOS.
Liu, Xiuxia; Yang, Sun; Wang, Fen; Dai, Xiaofeng; Yang, Yankun; Bai, Zhonghu
2017-02-01
The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD + availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.
Estradiol to testosterone ratio in metabolic syndrome men aged started 40 years above
NASA Astrophysics Data System (ADS)
Kusuma, R.; Siregar, Y.; Mardianto
2018-03-01
Disruption of adipose tissue, an endocrine organ, could turn out into the so-called metabolic syndrome. Aging men with lowering testosterone were related to metabolic syndrome and excessive aromatase activity in adipose tissue would increase estradiol level. This study hypothesized that estradiol to testosterone ratio is increasedin aging, metabolic syndrome men. A total of 52 men were randomly recruited for this study. A blood samplewas drawn before 11.00 AM after 10 hoursof overnight fasting, then aliquot serum kept in -20°C pending the research. Subjects were divided evenly into the metabolic syndrome and nonmetabolicsyndrome group. The hormonal assaywas measured on the day of research. Then examined with student t-test. Estradiol level in metabolic syndrome group was increased, but insignificant differ to the other group. Testosterone level decreased and significantly different between groups. In conclusion, estradiol to testosterone ratio was increased in themetabolic syndrome group but insignificant.
Chinapaw, Mai J M; Yildirim, Mine; Altenburg, Teatske M; Singh, Amika S; Kovács, Eva; Molnár, Dénes; Brug, Johannes
2012-01-01
The association between objectively assessed sedentary time and metabolic risk factors in childhood have rarely been studied. Therefore, we examined the independent relationship between objectively assessed and self-rated sedentary time and indicators of metabolic health in Dutch and Hungarian 10-12 year olds. We performed a cross-sectional survey in primary schools. Participants were Dutch and Hungarian girls (n = 73, aged 12.2 ± 0.6 years, 18% overweight/obese) and boys (n = 69, aged 12.2 ± 0.7 years, 38% overweight/obese). Sedentary time and physical activity were assessed by the Actigraph accelerometer. TV and PC time were assessed by self-report. Adiposity indicators included body weight, height, and waist circumference (WC). Fasting plasma glucose, C-peptide, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, and triglycerides were determined in capillary blood and summed into a metabolic risk score. Linear regression analyses were adjusted for physical activity, number of sedentary bouts and WC. Children spent on average 7.6 hours of their daily waking time in sedentary behavior and self-reported 116 ± 64 min/day watching TV and 85 ± 57 min/day using the computer. Comparing the 1(st) and 4(th) quartile of objectively assessed sedentary time, C-Peptide levels, WC and BMI were significantly higher in the most sedentary quartile, while the difference in metabolic risk score was borderline significant (p = 0.09). Comparing the 1(st) and 4(th) quartile of TV time, BMI was significantly higher in the most sedentary quartile, while the difference in WC score was borderline significant (p = 0.06). In the adjusted linear regression analysis we found no significant association of sedentary time with metabolic risk. Although BMI and WC were higher in the most sedentary versus the least sedentary children; we found no further evidence that more sedentary children were at increased metabolic risk.
Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long
2015-07-07
It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.
NASA Astrophysics Data System (ADS)
Hinrichs, S.; Patten, N. L.; Allcock, R. J. N.; Saunders, S. M.; Strickland, D.; Waite, A. M.
2013-09-01
Seasonal variations in coral health indices reflecting autotrophic activity (chlorophyll a and zooxanthellae density), metabolic rates (RNA/DNA ratio and protein) and energy storage (ratio of storage: structural lipids or lipid ratios) were examined for two dominant Acropora species [ Acropora digitifera ( AD) and Acropora spicifera ( AS)] at Ningaloo Reef (north-western Australia). Such detailed investigation of metabolic processes is important background, with regard to understanding the vulnerability of corals to environmental change. Health indices in AD and AS were measured before and after spawning in austral autumn and winter 2010, and austral summer 2011 at six stations. Health indices showed seasonal and species-specific differences but negligible spatial differences across a reef section. For AD, autotrophic indices were negatively correlated with lipid ratios and metabolic indices. Metabolic indices were significantly higher in AS than AD. No correlation was observed between RNA/DNA ratios and lipid ratios with any autotrophic indices for AS. Lipid ratios were stable throughout the year for AS while they changed significantly for AD. For both species, indices of metabolic activity were highest during autumn, while autotrophic indices were highest in winter and summer. Results suggest that the impact of the broadcast spawning event on coral health indices at Ningaloo Reef occurred only as a backdrop to massive seasonal changes in coral physiology. The La Niña summer pattern resulted in high autotrophic indices and low metabolic indices and energy stores. Our results imply different metabolic processes in A. digitifera and A. spicifera as well as a strong impact of extreme events on coral physiology.
Laiakis, Evagelia C; Trani, Daniela; Moon, Bo-Hyun; Strawn, Steven J; Fornace, Albert J
2015-04-01
As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individual's risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities.
Laiakis, Evagelia C.; Trani, Daniela; Moon, Bo-Hyun; Strawn, Steven J.; Fornace, Albert J.
2015-01-01
As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individual’s risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities. PMID:25768838
Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
van Oevelen, Dick
2018-01-01
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403
Girisha, Banavasi S; Thomas, Neetha
2017-02-01
Psoriasis is a chronic inflammatory disease of the skin associated with increased cardiovascular morbidity. Metabolic syndrome is a significant forecaster of cardiovascular events. To assess the association of metabolic syndrome and its components in patients with psoriasis and to compare it with the age and sex matched control group. We conducted a hospital based case-control study on 156 adult patients with chronic plaque psoriasis and 156 patients with skin diseases other than psoriasis. Height, weight, BMI, blood pressure and waist circumference were documented in all the subjects. Fasting levels of serum glucose, serum triglycerides and serum HDL were estimated by automated clinical chemistry analyzer. The South Asian modified NCEP ATP criterion was used for the diagnosis of metabolic syndrome. Statistical analysis of the data was done using statistical processing software (SPSS-17). Metabolic syndrome was significantly more common in psoriatic patients than in controls (28.8% vs 16.7%, p=0.01). Hypertriglyceridemia was significantly more prevalent in cases than in controls (34% vs 20.5%, p=0.008). The reduced HDL levels also showed a significantly high occurrence among cases (27.6% vs 13.5%, p=0.002). Moderate increase of blood pressure was seen among cases as compared to controls but the difference was not statistically significant (p=0.1). Impaired blood glucose and abdominal obesity were similar in both groups. Smoking and alcoholism did not influence the association of metabolic syndrome with psoriasis. There was no correlation of metabolic syndrome with severity and duration of psoriasis. Our findings suggest that metabolic syndrome as well as dyslipidemia is common in psoriasis patients among urban South Indians. This study highlights the need for screening at diagnosis and regular follow up of the metabolic aspects of the disease along with the skin lesions.
Preuss, Harry G; Mrvichin, Nate; Clouatre, Dallas; Bagchi, Debasis; Preuss, Jeffrey M; Perricone, Nicholas V; Swaroop, Anand; Kaats, Gilbert R
2017-01-01
Insulin resistance and advancing age are well-recognized risk factors for metabolic syndrome. Recent reports indicate that fasting glucose levels in non-diabetic patients correlate appropriately with the development of certain elements in metabolic syndrome, which suggest a cause-effect relationship with insulin resistance. The present investigation assessed whether a significant association exists between chronological age and various elements of metabolic syndrome in this same group of subjects possessing non-diabetic fasting glucose levels. Baseline data were taken from 288 subjects (age 17-87 years) with fasting glucose levels ≤ 125 mg/dl. Correlations between chronological age and different metabolic parameters were assessed to determine any statistically significant relationships and compare these with previously demonstrated metabolic parameters. With the exception of systolic blood pressure, the following correlations between age and components of metabolic syndrome were not significant or even significant in the opposite direction compared to those found in the same population using fasting glucose as the independent variable: body weight, body fat, diastolic blood pressure, white blood cell count (WBC)/neutrophil count, and circulating levels of insulin, high-density lipoprotein (HDL) cholesterol, triglycerides, high-sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Although systolic blood pressure still increased, it was to a lesser extent than might be expected. In the present investigation, a cross-sectional analysis was carried out over a wide age range of subjects. It is noteworthy that fasting glucose levels and the other major elements of metabolic syndrome did not change significantly with advancing age. These results demonstrate that decreasing insulin resistance and fasting glucose levels may be an important way to overcome the adverse effects and perturbations of advancing age-induced consequences of metabolic syndrome.
Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces.
Xing, Jian-feng; You, Hai-sheng; Dong, Ya-lin; Lu, Jun; Chen, Si-ying; Zhu, Hui-fang; Dong, Qian; Wang, Mao-yi; Dong, Wei-hua
2011-05-01
To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, t(max2) and C(max2) for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t(1/2) and CL(int) value for scutellarin in male rats was significantly higher than that in female rats. The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CL(int) and lower absorption in male rats.
Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces
Xing, Jian-feng; You, Hai-sheng; Dong, Ya-lin; Lu, Jun; Chen, Si-ying; Zhu, Hui-fang; Dong, Qian; Wang, Mao-yi; Dong, Wei-hua
2011-01-01
Aim: To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. Methods: HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. Results: After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, tmax2 and Cmax2 for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t1/2 and CLint value for scutellarin in male rats was significantly higher than that in female rats. Conclusion: The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CLint and lower absorption in male rats. PMID:21516133
Bachlechner, Stephan; Denzer-Lippmann, Melanie Y.; Wielopolski, Jan; Fischer, Marie; Buettner, Andrea; Doerfler, Arndt; Schöfl, Christof; Münch, Gerald; Kornhuber, Johannes; Thürauf, Norbert
2017-01-01
Food intake influences human cognition, olfaction, hunger, and food craving. However, little research has been done in this field to elucidate the effects of different nutrients. Thus, the goal of our study was to investigate the effects of oral ingestion of different nutrient solutions on olfactory, cognitive, metabolic and psychophysical function. Twenty healthy men participated in our study employing a double-blind, cross-over, repeated measurement design. Participants were tested on four different study days. Each day participants received, in randomized order, one of three isocaloric (protein, carbohydrate or fat 600 kcal, 1,500 mL) solutions or a placebo. Olfactory and cognitive tests (monitoring only) were conducted three times, i.e., 60 min before the beginning of nutrient intake, following oral ingestion of the solution and 60, and 240 min after. Psychophysical and metabolic function tests (active grehlin, desacyl ghrelin, insulin, glucagon, glucose, triglyceride, urea) were performed 7 times on each examination day (observation period: −60 min, 0 = solution intake, +60, +120, +180, +240, and +300 min). Ratings of hunger and food craving significantly differed over the observation period with lowest ratings following application of the protein solution. Highest ratings of craving were found following placebo intake. We further observed a significant positive correlation of active grehlin with hunger and fat, protein and sweets craving for each nutrient solution. Active grehlin significantly correlated with carbohydrate craving for carbohydrate and fat solution and with vegetable craving for fat solution only. Hunger hormone levels, hunger and food craving ratings demonstrated that the hierarchical order that appears in satiating efficiencies of isovolumetric-isocaloric ingested macronutrients is protein > fat > carbohydrate. Our study reveals that the type of nutrient exerts a significant influence on metabolic parameters, hunger and food craving. PMID:29218021
Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo
2016-01-01
Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.
Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan
2016-01-01
To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p < 0.001), while the prevalence of IR between the two groups was not significantly different. IgAN patients have significantly higher fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.
Whole-animal metabolic rate is a repeatable trait: a meta-analysis.
Nespolo, Roberto F; Franco, Marcela
2007-06-01
Repeatability studies are gaining considerable interest among physiological ecologists, particularly in traits affected by high environmental/residual variance, such as whole-animal metabolic rate (MR). The original definition of repeatability, known as the intraclass correlation coefficient, is computed from the components of variance obtained in a one-way ANOVA on several individuals from which two or more measurements are performed. An alternative estimation of repeatability, popular among physiological ecologists, is the Pearson product-moment correlation between two consecutive measurements. However, despite the more than 30 studies reporting repeatability of MR, so far there is not a definite synthesis indicating: (1) whether repeatability changes in different types of animals; (2) whether some kinds of metabolism are more repeatable than others; and most important, (3) whether metabolic rate is significantly repeatable. We performed a meta-analysis to address these questions, as well as to explore the historical trend in repeatability studies. Our results show that metabolic rate is significantly repeatable and its effect size is not statistically affected by any of the mentioned factors (i.e. repeatability of MR does not change in different species, type of metabolism, time between measurements, and number of individuals). The cumulative meta-analysis revealed that repeatability studies in MR have already reached an asymptotical effect size with no further change either in its magnitude and/or variance (i.e. additional studies will not contribute significantly to the estimator). There was no evidence of strong publication bias.
Sutton-McDowall, Melanie L; Gosnell, Martin; Anwer, Ayad G; White, Melissa; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; Thompson, Jeremy G
2017-10-01
Can we separate embryos cultured under either 7% or 20% oxygen atmospheres by measuring their metabolic heterogeneity? Metabolic heterogeneity and changes in metabolic profiles in morula exposed to two different oxygen concentrations were not detectable using traditional fluorophore and two-channel autofluorescence but were detectable using hyperspectral microscopy. Increased genetic and morphological blastomere heterogeneity is associated with compromised developmental competence of embryos and currently forms the basis for embryo scoring within the clinic. However, there remains uncertainty over the accuracy of current techniques, such as PGS and time-lapse microscopy, to predict subsequent pregnancy establishment. The impact of two oxygen concentrations (7% = optimal and 20% = stressed) during post-fertilisation embryo culture was assessed. Cattle embryos were exposed to the different oxygen concentrations for 8 days (D8; embryo developmental competence) or 5 days (D5; metabolism measurements). Between 3 and 4 experimental replicates were performed, with 40-50 embryos per replicate used for the developmental competency experiment, 10-20 embryos per replicate for the fluorophore and two-channel autofluorescence experiments and a total of 21-22 embryos used for the hyperspectral microscopy study. In-vitro produced (IVP) cattle embryos were utilised for this study. Post-fertilisation, embryos were exposed to 7% or 20% oxygen. To determine impact of oxygen concentrations on embryo viability, blastocyst development was assessed on D8. On D5, metabolic heterogeneity was assessed in morula (on-time) embryos using fluorophores probes (active mitochondria, hydrogen peroxide and reduced glutathione), two-channel autofluorescence (FAD and NAD(P)H) and 18-channel hyperspectral microscopy. Exposure to 20% oxygen following fertilisation significantly reduced total blastocyst, expanded and hatched blastocyst rates by 1.4-, 1.9- and 2.8-fold, respectively, compared to 7% oxygen (P < 0.05), demonstrating that atmospheric oxygen was a viable model for studying mild metabolic stress. The metabolic profiles of D5 embryos was determined and although metabolic heterogeneity was evident within the cleavage stage (i.e. arrested) embryos exposed to fluorophores, there were no detectable difference in fluorescence intensity and pattern localisation in morula exposed to the two different oxygen concentrations (P > 0.05). While there were no significant differences in two-channel autofluorescent profiles of morula exposed to 7% and 20% oxygen (main effect, P > 0.05), morula that subsequently progressed to the blastocyst stage had significantly higher levels of FAD and NAD(P)H fluorescence compared to arrested morula (P < 0.05), with no change in the redox ratio. Hyperspectral autofluorescence imaging (in 18-spectral channels) of the D5 morula revealed highly significant differences in four features of the metabolic profiles of morula exposed to the two different oxygen concentrations (P < 0.001). These four features were weighted and their linear combination revealed clear discrimination between the two treatment groups. Metabolic profiles were assessed at a single time point (morula), and as such further investigation is required to determine if differences in hyperspectral signatures can be detected in pre-compaction embryos and oocytes, using both cattle and subsequently human models. Furthermore, embryo transfers should be performed to determine the relationship between metabolic profiles and pregnancy success. Advanced autofluorescence imaging techniques, such as hyperspectral microscopy, may provide clinics with additional tools to improve the assessment of embryos prior to transfer. This study was funded by the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. The authors declare there are no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
2013-01-01
Background Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Results Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer. Conclusions Metabolic networks generated for each cell line were compared to identify conserved metabolite pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general application within metabolomics. PMID:24153255
Mulero, Juana; Bernabé, Juana; Cerdá, Begoña; García-Viguera, Cristina; Moreno, Diego A; Albaladejo, Maria Dolores; Avilés, Francisco; Parra, Soledad; Abellán, José; Zafrilla, Pilar
2012-06-01
Inflammation and oxidative stress plays a critical role in cardiovascular disease and metabolic syndrome often occurs with these two variables. The aim of the study is to estimate variations on cardiovascular risk factors in Metabolic Syndrome patients after consume of a citrus-based juice compared with control groups. The study comprised 20 healthy subjects and 33 patients with Metabolic Syndrome. 18 patients consume daily 300 mL of a citrus-based juice during 6 month and 15 patients consume 300 mL of a placebo beverage. The control group consumes a citrus-based juice. Before, at fourth month and at sixth month after treatment the following parameters were determined: lipid profile, oxidized LDL, C-Reactive Protein and Homocysteine. The study was carried out in accordance with the Helsinki Declaration, and the Ethical Committee of the San Antonio Catholic University and approved the protocol (6 November 2006, register number: 1424). After six months of citrus-based juice consuming, there is significant differences at 95% confidence in oxidized LDL, C-Reactive Protein, and Homocysteine in Metabolic Syndrome patients who consume citrus-based juice. We have not found significant differences in other groups. Consume of citrus-based juice improve lipid profile and inflammation markers in Metabolic Syndrome patients. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Biochemical Association of Metabolic Profile and Microbiome in Chronic Pressure Ulcer Wounds
Ammons, Mary Cloud B.; Morrissey, Kathryn; Tripet, Brian P.; Van Leuven, James T.; Han, Anne; Lazarus, Gerald S.; Zenilman, Jonathan M.; Stewart, Philip S.; James, Garth A.; Copié, Valérie
2015-01-01
Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment. PMID:25978400
Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su
2018-01-01
Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.
Impact of CYP2D6 polymorphisms on clinical efficacy & tolerability of metoprolol tartrate
Hamadeh, Issam S.; Langaee, Taimour Y.; Dwivedi, Ruti; Garcia, Sofia; Burkley, Ben M.; Chapman, Arlene B.; Gums, John G.; Turner, Stephen T.; Gong, Yan; Cooper-DeHoff, Rhonda M.; Johnson, Julie A.
2014-01-01
Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme, CYP2D6. Our objective was to investigate the influence of CYP2D6 polymorphisms on efficacy and tolerability of metoprolol tartrate. 281 study participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes by using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (p-value <0.0001) with poor metabolizers & intermediate metabolizers showing greater HR reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not a determinant of the variability in response or tolerability to metoprolol. PMID:24637943
Trapezius muscle metabolism measured with NIRS in helicopter pilots flying a simulator.
Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Dan W; McKenzie, Neil P; Croll, James C
2007-02-01
This study examined metabolic and hemodynamic responses during night vision goggle (NVG) induced neck strain among military helicopter pilots. We hypothesized that near infrared spectroscopy (NIRS) would be capable of identifying metabolic differences in the trapezius muscles of pilots between simulated flights with and without NVG. There were 33 pilots who were monitored on consecutive days during Day and NVG flight simulator missions. NIRS probes were attached bilaterally to the trapezius muscles at the C7 level to record total oxygenation index (TOI, %), total hemoglobin (tHb), oxyhemoglobin (HbO2), and deoxyhemoglobin (HHb). Significant differences in tHb were found between Day (0.51+/-2.31 micromol x cm (-1)) and NVG (4.14 +/- 2.74 micromol x cm(-1)) missions, and for HbO2 (Dayend 2.63+/-1.64 micromol x cm(-1); NVGend 5.77+/-1.98 micromol x cm(-1)). Significant left and right side differences between Day and NVG were found for tHb (NVGleit -1.83+/-2.55; NVGright 10.45+/-2.86 micromol x cm(-1)), HbO2 (NVGleft 1.77+/-1.90; NVGright 9.95+/-2.07 micromol x cm(-1)), and HHb (Dayleft -1.84+/-0.95; Dayright -2.32+/-0.87 micromol x cm (-1); NVGleft -3.60+/-1.05 micromol x cm(-1); NVGright 0.49+/-1.16 micromol x cm(-1). These results support NIRS's utility in assessing the significant metabolic and hemodynamic effects of NVG on neck musculature during real-time missions for 1) left and right side differences; and 2) Day vs. NVG missions. The additional mass of the NVG equipment does increase the metabolic stress of these muscles during simulated missions.
Immediate metabolic effects of different nutritional regimens in critically ill medical patients.
Müller, T F; Müller, A; Bachem, M G; Lange, H
1995-07-01
Metabolic effects of different caloric regimens were investigated in nonsurgical, medical patients with multiple-organ failure (MOF). Seven total parenteral nutrition (TPN) regimens were administered, differing in amount (14, 28, and 56 kcal/kg per day, i.e., hypo-, iso-, and hypercaloric nutrition, respectively) and distribution [carbohydrates (COH), amino acids (AA), long-chain and medium-chain triglycerides (LCT/MCT)] of calories. Each regimen was administered over 12 h. Metabolism was monitored by energy expenditure (EE), body temperature (BT), protein breakdown (PB), and blood glucose and serum lactate levels. Measurements were started within 2 days of MOF onset. The study was conducted in a medical intensive care unit. Twenty patients with MOF on mechanical ventilation (mean Apache II score x = 26) were investigated. The mean values of the EE (x = 31 kcal/kg per day), BT (x = 38 degrees C), PB (x = 1.5 g/kg per day), and lactate (x = 2.0 mmol/l) and glucose level (x = 222 mg/dl) parameters were elevated. EE, BT, and lactate and glucose levels were significantly lower under hypocaloric nutrition than during iso- and hypercaloric nutrition (p < 0.01). Differences in the metabolic effects of LCT and MCT were not significant. PB was significantly elevated under hypercaloric nutrition (p < 0.01). Protein balance was positive under hypercaloric nutrition, and negative under iso- and hypocaloric nutrition. In nonsurgical, medical patients neither hypercaloric nor isocaloric nutritional support prevented protein catabolism; in contrast, they enhanced the metabolic burden measured by EE, thermogenesis, urea production rate, and glucose and lactate levels. A hypocaloric regimen is therefore recommended for these patients during the early phase of MOF.
Xie, Ying; Miranda, Sonia R; Hoskins, Janelle M; Hawke, Roy L
2017-01-15
Silymarin is the most commonly used herbal medicine by patients with chronic liver disease. Silymarin flavonolignans undergo rapid first-pass metabolism primarily by glucuronidation. The aims of this investigation were: (1) to determine the association of UGT1A1*28 polymorphism with the area under the plasma concentration-time curves (AUCs) for silybin A (SA) and silybin B (SB); (2) to evaluate the effect of UGT1A1*28 polymorphism on the profile of flavonolignan glucuronide conjugates found in the plasma; and (3) to investigate the role of UGT1A1 enzyme kinetics on the pharmacokinetics of SA and SB. AUCs and metabolic ratios for thirty-three patients with chronic liver disease administered oral doses of silymarin were compared between different UGT1A1*28 genotypes. The AUCs, metabolic ratios, and the profiles of major SA and SB glucuronides did not differ significantly among the three UGT1A1 genotypes. In contrast, an increase in the proportion of sulfated flavonolignan conjugates in plasma was observed in subjects with UGT1A1*28/*28 genotype compared to subjects carrying wild type alleles. Differences in SA and SB in vitro intrinsic clearance estimates for UGTIA1 correlated inversely with SA and SB exposures observed in vivo indicating a major role for UGT1A1 in silymarin metabolism. In addition, a significant difference in the metabolic ratio observed between patients with NAFLD and HCV suggests that any effect of UGT1A1 polymorphism may be obscured by a greater effect of liver disease on the pharmacokinetics of silymarin. Taken together, these results suggest the presence of the UGT1A1*28 allele does not contribute significantly to a large inter-subject variability in the pharmacokinetics of silybin A and silybin B which may obscure the ability to detect beneficial effects of silymarin in patients with liver disease.
Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R
2013-01-01
Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001) for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.
Secor, Stephen M; Taylor, Josi R; Grosell, Martin
2012-01-01
Snakes exhibit an apparent dichotomy in the regulation of gastrointestinal (GI) performance with feeding and fasting; frequently feeding species modestly regulate intestinal function whereas infrequently feeding species rapidly upregulate and downregulate intestinal function with the start and completion of each meal, respectively. The downregulatory response with fasting for infrequently feeding snakes is hypothesized to be a selective attribute that reduces energy expenditure between meals. To ascertain the links between feeding habit, whole-animal metabolism, and GI function and metabolism, we measured preprandial and postprandial metabolic rates and gastric and intestinal acid-base secretion, epithelial conductance and oxygen consumption for the frequently feeding diamondback water snake (Nerodia rhombifer) and the infrequently feeding Burmese python (Python molurus). Independent of body mass, Burmese pythons possess a significantly lower standard metabolic rate and respond to feeding with a much larger metabolic response compared with water snakes. While fasting, pythons cease gastric acid and intestinal base secretion, both of which are stimulated with feeding. In contrast, fasted water snakes secreted gastric acid and intestinal base at rates similar to those of digesting snakes. We observed no difference between fasted and fed individuals for either species in gastric or intestinal transepithelial potential and conductance, with the exception of a significantly greater gastric transepithelial potential for fed pythons at the start of titration. Water snakes experienced no significant change in gastric or intestinal metabolism with feeding. Fed pythons, in contrast, experienced a near-doubling of gastric metabolism and a tripling of intestinal metabolic rate. For fasted individuals, the metabolic rate of the stomach and small intestine was significantly lower for pythons than for water snakes. The fasting downregulation of digestive function for pythons is manifested in a depressed gastric and intestinal metabolism, which selectively serves to reduce basal metabolism and hence promote survival between infrequent meals. By maintaining elevated GI performance between meals, fasted water snakes incur the additional cost of tissue activity, which is expressed in a higher standard metabolic rate.
Chen, Jie; Xing, Haijiao; Li, Qing; Li, Mei; Wang, Shaojin
2017-04-12
To observe the regulative effects of the acupuncture on glucose and lipid metabolism disorder in the patients of metabolic syndrome. Seventy-six patients of metabolic syndrome were rando-mized into an acupuncture plus western medicine group (37 cases) and a western medicine group (39 cases). In the western medicine group, the conventional western medication was used for 40 days. In the acupuncture plus western medicine group, the acupuncture was combined on the basis of the treatment as the western medicine group, the acupoints were Danzhong (CV 17), Zhongwan (CV 12), Tianshu (ST 25), etc. Ten treatments were as one session. There were 3 to 5 days of intervals between the sessions and totally 30 treatments were required. The body mass index (BMI), blood lipid, blood glucose, and comprehensive therapeutic effects were compared before and after treatment in the two groups. Before and after treatment, the differences were all significant in BMI, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), plasma glucose of 2 hours post glucose-load (2 hPG), fasting insulin (FINS) and insulin resistance index (HOMA-IR) (all P <0.05) in the acupuncture plus western medicine group, and the results after treatment were superior to those before treatment; the difference was not significant in BMI ( P >0.05) and those were all significant statistically in TG, TC, LDL-C, HDL-C, FBG, 2 hPG, FINS, HOMA-IR (all P <0.05) in the western medicine group, and the results after treatment were superior to those before treatment. After treatment, in comparison of the two groups, the results in the acupuncture plus western medicine group were better than those in the western medicine group. The differences were all signif-icant sta-tistically in BMI, TG, TC, LDL-C, HDL-C, FBG, 2 hPG, FINS, HOMA-IR (all P <0.05). On the basis of the conventional western medicine, the acupuncture relieves apparently the clinical symptoms and rectifies glucose and lipid metabolism disorder in the patients of metabolic syndrome.
Selecting Tasks for Evaluating Human Performance as a Function of Gravity
NASA Technical Reports Server (NTRS)
Norcross, J. R.; Gernhardt, M. L.
2010-01-01
A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction and maintenance type tasks, for which it is difficult to measure steady-state-workloads. To evaluate human performance in reduced gravity, we have collected metabolic, biomechanical and subjective data for different tasks at varied gravity levels. Methods: Ten subjects completed 5 different tasks including weight transfer, shoveling, treadmill walking, treadmill running and treadmill incline walking. All tasks were performed shirt-sleeved at 1-g, 3/8-g and 1/6-g. Off-loaded conditions were achieved via the Active Response Gravity Offload System. Treadmill tasks were performed for 3 minutes with reported oxygen consumption (VO2) averaged over the last 2 minutes. Shoveling was performed for 3 minutes with metabolic cost reported as ml O2 consumed per kg material shoveled. Weight transfer reports metabolic cost as liters O2 consumed to complete the task. Statistical analysis was performed via repeated measures ANOVA. Results: Statistically significant metabolic differences were noted between all 3 gravity levels for treadmill running and incline walking. For the other 3 tasks, there were significant differences between 1-g and each reduced gravity, but not between 1/6-g and 3/8-g. For weight transfer, significant differences were seen between gravities in both trial-average VO2 and time-to-completion with noted differences in strategy for task completion. Conclusion: To determine if gravity has a metabolic effect on human performance, this research may indicate that tasks should be selected that require the subject to work vertically against the force of gravity.
Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu
2014-06-01
Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P < 0.01) and a significant treatment × time effect (P < 0.05). RWB produced higher postprandial concentrations of leucine (geometric mean: 224; 95% CI: 196, 257) and isoleucine (mean ± SD: 111 ± 31.5) compared with RRB (geometric mean: 165; 95% CI: 147, 186; mean ± SD: 84.2 ± 22.9) and WRB (geometric mean: 190; 95% CI: 174, 207; mean ± SD: 95.8 ± 17.3) at 60 min respectively (P < 0.001). In addition, 2 metabolic subgroups were identified using multivariate models based on the association between fasting metabolic profile and the postprandial concentration of insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which suggests that additional consideration should be given to bread proteins in understanding the beneficial health effects of different kinds of breads. The present study suggests that the fasting metabolic profile can be used to characterize the postprandial insulin demand in individuals with normal glucose metabolism that can be used for establishing strategies for the stratification of individuals in personalized nutrition. © 2014 American Society for Nutrition.
Statistical inference methods for sparse biological time series data.
Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita
2011-04-25
Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.
Metabolic rate measurements comparing supine with upright upper-body exercises
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.; Greenisen, Michael C.; Loftin, Karin C.; Beene, Donya; Freeman-Perez, Sondra; Hnatt, Linda
1993-01-01
The ground-based study that tested the hypothesis that metabolic rates during supine and upright upper-body exercises are similar (mean value of 200 kcal/h) is presented. Six subjects each performed supine or upright exercise at three exercise stations, a hand-cycle ergometer, a rope-pull device, and a torque wrench. After a baseline measurement of the metabolic rate at rest, the metabolic rate was measured twice at each exercise station. The mean metabolic rates (kcal/h) during supine (n = 6) and upright control (n = 4) exercise stations were not significantly different except for the rope-pull station, 153.5 +/- 16.6 (supine) as compared to 247.0 +/- 21.7 (upright), p is less than 0.05. This difference may be due in part to an increased mechanical efficiency of supine exercises (15.0 +/- 0.7 percent) as compared to that of upright exercises (11.0 +/- 1.08 percent), p is less than 0.05. The net energy input was significantly smaller for the supine rope-pull exercise (64 +/- 18) as compared to upright (176 +/- 20). The relationship between best-rest exercises, metabolic rates, and the incidence of decompression sickness (DCS) should be examined to determine the true risk of DCS in spaceflight extravehicular activities.
Metabolic syndrome prevalence in a multicultural population in Auckland, New Zealand.
Gentles, Dudley; Metcalf, Patricia; Dyall, Lorna; Sundborn, Gerhard; Schaaf, David; Black, Peter; Scragg, Robert; Jackson, Rodney
2007-01-26
To estimate ethnic-specific metabolic syndrome prevalence in the Auckland region and to identify the main reasons for the differences. A cross-sectional survey of adults aged between 35-74 years within the Auckland area using a dual sampling frame with both cluster sampling and random selection from electoral rolls. Participants included 1006 Maori, 996 Pacific people, and 2020 of other ethnicity (mainly Europeans). The prevalence of metabolic syndrome (using the 2001 ATPIII definition, age and gender adjusted) were: Maori 32%, Pacific people 39%, and Others 16%. Maori were twice as likely as others (OR=2.01, 95% CI: 1.53 to 2.64) to have the metabolic syndrome while Pacific people were two and a half times as likely (OR=2.54, 95% CI: 1.93 to 3.35), after adjusting for multiple CVD risk factors other than the components of the syndrome. Adjusting these ethnic differences in prevalences for each of the components of the syndrome separately indicated that most of the differences could be accounted for by differences in obesity. In addition, more than a third of people with diabetes did not have the metabolic syndrome. The prevalences of metabolic syndrome were significantly higher in Pacific people and Maori compared to Others and measures of obesity accounted for most of the ethnic differences.
Holtenius, K; Persson Waller, K; Essén-Gustavsson, B; Holtenius, P; Hallén Sandgren, C
2004-07-01
The objective of this study was to determine whether there were differences in metabolic parameters and blood leukocyte profiles between cows in herds with high or low yearly mastitis incidence. In this study, 271 cows from 20 high yielding dairy herds were examined. According to the selection criteria, all herds had low somatic cell counts. Ten of the selected herds represented low mastitis treatment incidence (LMI) and ten herds had high mastitis treatment incidence (HMI). The farms were visited once and blood samples were taken from each cow that was in the interval from three weeks before to 15 weeks after parturition. The eosinophil count was significantly lower among cows from the HMI herds in the period from four weeks to 15 weeks after parturition. The plasma concentrations of beta-hydroxybutyrate, glucose, insulin and urea did not differ between groups, but the concentration of nonesterified fatty acids was significantly higher among HMI cows during the period three weeks after parturition. The concentration of the amino acid tryptophan in plasma was significantly lower among the HMI cows prior to parturition. Glutamine was significantly lower in cows from HMI herds during the first three weeks after parturition. Arginine was consistently lower in HMI cows, although the decrease was only significant during the period from four to fifteen weeks after parturition. The results suggest that there were differences in the metabolism and immune status between herds with high or low yearly mastitis treatment incidence indicating an increased metabolic stress in HMI cows.
Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong
2016-01-01
Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4–1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065
Gupta Jain, Sonal; Puri, Seema; Misra, Anoop; Gulati, Seema; Mani, Kalaivani
2017-06-12
Nutritional modulation remains central to the management of metabolic syndrome. Intervention with cinnamon in individuals with metabolic syndrome remains sparsely researched. We investigated the effect of oral cinnamon consumption on body composition and metabolic parameters of Asian Indians with metabolic syndrome. In this 16-week double blind randomized control trial, 116 individuals with metabolic syndrome were randomized to two dietary intervention groups, cinnamon [6 capsules (3 g) daily] or wheat flour [6 capsules (2.5 g) daily]. Body composition, blood pressure and metabolic parameters were assessed. Significantly greater decrease [difference between means, (95% CI)] in fasting blood glucose (mmol/L) [0.3 (0.2, 0.5) p = 0.001], glycosylated haemoglobin (mmol/mol) [2.6 (0.4, 4.9) p = 0.023], waist circumference (cm) [4.8 (1.9, 7.7) p = 0.002] and body mass index (kg/m2 ) [1.3 (0.9, 1.5) p = 0.001] was observed in the cinnamon group compared to placebo group. Other parameters which showed significantly greater improvement were: waist-hip ratio, blood pressure, serum total cholesterol, low-density lipoprotein cholesterol, serum triglycerides, and high-density lipoprotein cholesterol. Prevalence of defined metabolic syndrome was significantly reduced in the intervention group (34.5%) vs. the placebo group (5.2%). A single supplement intervention with 3 g cinnamon for 16 weeks resulted in significant improvements in all components of metabolic syndrome in a sample of Asian Indians in north India. The clinical trial was retrospectively registered (after the recruitment of the participants) in ClinicalTrial.gov under the identification number: NCT02455778 on 25th May 2015.
Racial and Ethnic Differences in the Polycystic Ovary Syndrome (PCOS) Metabolic Phenotype
Engmann, Lawrence; Jin, Susan; Sun, Fangbai; Legro, Richard S; Polotsky, Alex J.; Hansen, Karl R; Coutifaris, Christos; Diamond, Michael P; Eisenberg, Esther; Zhang, Heping; Santoro, Nanette
2017-01-01
Background Women with polycystic ovarian syndrome have a high prevalence of metabolic syndrome and type 2 diabetes mellitus. Blacks and Hispanics have a high morbidity and mortality due to cardiovascular disease and diabetes mellitus in the general population. Since metabolic syndrome is a risk factor for development of type 2 diabetes and cardiovascular disease, understanding any racial and ethnic differences in metabolic syndrome amongst women with polycystic ovarian syndrome is important for prevention strategies. However, data regarding racial/ethnic differences in metabolic phenotype amongst women with polycystic ovary syndrome is inconsistent. Objective To determine if there are racial/ethnic differences in insulin resistance, metabolic syndrome and hyperandrogenemia in women with polycystic ovarian syndrome. Study Design Secondary data analysis of a prospective multicenter, double blind controlled clinical trial, the Pregnancy in Polycystic Ovary Syndrome II study, conducted in 11 academic health centers. Data on 702 women with polycystic ovarian syndrome aged 18-40 years who met modified Rotterdam criteria for the syndrome and wished to conceive were included in the study. Women were grouped into racial/ethnic categories Non-Hispanic Whites, non-Hispanic Blacks and Hispanic. The main outcomes were the prevalence of insulin resistance, metabolic syndrome and hyperandrogenemia in the different racial/ethnic groups. Results BMI (35.1 ± 9.8 vs. 35.7 ± 7.9 vs. 36.4 ± 7.9 kg/m2) and waist circumference (106.5 ± 21.6 vs. 104.9 ± 16.4 vs. 108.7 ± 7.3 cm) did not differ significantly between non-Hispanic White, non-Hispanic Black and Hispanic women. Hispanic women with PCOS had a significantly higher prevalence of hirsutism (93.8 vs. 86.8%), abnormal free androgen index (FAI) (75.8 vs. 56.5%), abnormal homeostasis model assessment (HOMA) (52.3 vs. 38.4%) and hyperglycemia (14.8 vs. 6.5%), as well as lower sex hormone binding globulin compared to non-Hispanic Whites. Non-Hispanic Black women had a significantly lower prevalence of metabolic syndrome (24.5 vs. 42.2%) compared with Hispanic women, and lower serum triglyceride levels compared to both Hispanics and non-Hispanic Whites (85.7 ± 37.3 vs. 130.2 ± 57.0 vs. 120.1 ± 60.5 vs. mg/dL, p<0.01), with a markedly lower prevalence of hypertriglyceridemia (5.1 vs. 28.3 vs. 30.5%, p<0.01) compared to the other two groups. Comment Hispanic women with PCOS have the most severe phenotype, both in terms of hyperandrogenism and metabolic criteria. Non-Hispanic Black women have an overall milder polycystic ovarian syndrome phenotype than Hispanics and in some respects, than Non-Hispanic White women. PMID:28104402
Racial and ethnic differences in the polycystic ovary syndrome metabolic phenotype.
Engmann, Lawrence; Jin, Susan; Sun, Fangbai; Legro, Richard S; Polotsky, Alex J; Hansen, Karl R; Coutifaris, Christos; Diamond, Michael P; Eisenberg, Esther; Zhang, Heping; Santoro, Nanette
2017-05-01
Women with polycystic ovarian syndrome have a high prevalence of metabolic syndrome and type 2 diabetes mellitus. Blacks and Hispanics have a high morbidity and mortality due to cardiovascular disease and diabetes mellitus in the general population. Since metabolic syndrome is a risk factor for development of type 2 diabetes and cardiovascular disease, understanding any racial and ethnic differences in metabolic syndrome among women with polycystic ovarian syndrome is important for prevention strategies. However, data regarding racial/ethnic differences in metabolic phenotype among women with polycystic ovary syndrome are inconsistent. We sought to determine if there are racial/ethnic differences in insulin resistance, metabolic syndrome, and hyperandrogenemia in women with polycystic ovarian syndrome. We conducted secondary data analysis of a prospective multicenter, double-blind controlled clinical trial, the Pregnancy in Polycystic Ovary Syndrome II study, conducted in 11 academic health centers. Data on 702 women with polycystic ovarian syndrome aged 18-40 years who met modified Rotterdam criteria for the syndrome and wished to conceive were included in the study. Women were grouped into racial/ethnic categories: non-Hispanic whites, non-Hispanic blacks, and Hispanic. The main outcomes were the prevalence of insulin resistance, metabolic syndrome, and hyperandrogenemia in the different racial/ethnic groups. Body mass index (35.1 ± 9.8 vs 35.7 ± 7.9 vs 36.4 ± 7.9 kg/m 2 ) and waist circumference (106.5 ± 21.6 vs 104.9 ± 16.4 vs 108.7 ± 7.3 cm) did not differ significantly between non-Hispanic white, non-Hispanic black, and Hispanic women. Hispanic women with polycystic ovarian syndrome had a significantly higher prevalence of hirsutism (93.8% vs 86.8%), abnormal free androgen index (75.8% vs 56.5%), abnormal homeostasis model assessment (52.3% vs 38.4%), and hyperglycemia (14.8% vs 6.5%), as well as lower sex hormone binding globulin compared to non-Hispanic whites. Non-Hispanic black women had a significantly lower prevalence of metabolic syndrome (24.5% vs 42.2%) compared with Hispanic women, and lower serum triglyceride levels compared to both Hispanics and non-Hispanic whites (85.7 ± 37.3 vs 130.2 ± 57.0 vs 120.1 ± 60.5 mg/dL, P < .01), with a markedly lower prevalence of hypertriglyceridemia (5.1% vs 28.3% vs 30.5%, P < .01) compared to the other 2 groups. Hispanic women with polycystic ovarian syndrome have the most severe phenotype, both in terms of hyperandrogenism and metabolic criteria. Non-Hispanic black women have an overall milder polycystic ovarian syndrome phenotype than Hispanics and in some respects, than non-Hispanic white women. Copyright © 2017 Elsevier Inc. All rights reserved.
Cui, W; Wang, H; Wu, T; Ouyang, Q; Hu, S; Zhu, Y
2017-03-01
Passengers in aircraft cabins are exposed to low-pressure environments. One of the missing links in the research on thermal comfort under cabin conditions is the influence of low air pressure on the metabolic rate. In this research, we simulated the cabin pressure regime in a chamber in which the pressure level could be controlled. Three pressure levels (101/85/70 kPa) were tested to investigate how metabolic rate changed at different pressure levels. The results show that as pressure decreased, the respiratory flow rate (RFR) at standard condition (STPD: 0°C, 101 kPa) significantly decreased. Yet the oxygen (O 2 ) consumption and carbon dioxide (CO 2 ) production significantly increased, as reflected in the larger concentration difference between inhaled and exhaled air. A significant increase in the respiratory quotient (RQ) was also observed. For metabolic rate, no significant increase (P > 0.05) was detected when pressure decreased from 101 kPa to 85 kPa; however, the increase associated with a pressure decrease from 85 kPa to 70kPa was significant (P < 0.05). Empirical equations describing the above parameters are provided, which can be helpful for thermal comfort assessment in short-haul flights. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong
2016-08-17
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C
2015-01-01
Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans. PMID:26511225
Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C
2015-12-01
Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate-controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans.
Ma, Jinbo; Wang, Zhaoyang; Wang, Chengde; Chen, Ercheng; Dong, Yaozong; Song, Yipeng; Wang, Wei; You, Dong; Jiang, Wei; Zang, Rukun
2017-02-01
To determine whether individualized radiation dose escalation after planned chemoradiation based on the decrease in tumor and normal tissue constraints can improve survival in patients with esophageal carcinoma. From August 2005 to December 2010, 112 patients with squamous esophageal carcinoma were treated with radical concurrent chemoradiation. Patients received positron emission tomography-computer tomography scan twice, before radiation and after radiation dose of 50.4 Gy. All patients were noncomplete metabolic response groups according to the Response Evaluation Criteria in solid tumors. Only 52 patients with noncomplete metabolic response received individualized dose escalation based on tumor and normal tissue constraints. Survival and treatment failure were observed and analyzed using SPSS (13.0). The rate of complete metabolic response for patients with noncomplete metabolic response after dose escalation reached 17.3% (9 of 52). The 2-year overall survival rates for patients with noncomplete metabolic response in the conventional and dose-escalation groups were 20.5% and 42.8%, respectively( P = .001). The 2-year local control rates for patients were 35.7% and 76.2%, respectively ( P = .002). When patients were classified into partial metabolic response and no metabolic response, 2-year overall survival rates for patients with partial metabolic response were significantly different in conventional and dose-escalation groups (33.8% vs 78.4%; P = .000). The 2-year overall survival rates for patients with no metabolic response in two groups (8.6% vs 15.1%) did not significantly differ ( P = .917). Individualized radiation dose escalation has the potential to improve survival in patients with esophageal carcinoma according to increased rate of complete metabolic response. However, further trials are needed to confirm this and to identify patients who may benefit from dose escalation.
Effects of Various Suspending Media on Plaque Formation by Rickettsiae in Tissue Culture
Wike, David A.; Ormsbee, Richard A.; Tallent, George; Peacock, Marius G.
1972-01-01
Effects of some media used for suspending rickettsiae during purification, for metabolic studies, and in titrations of infectious rickettsiae were examined with respect to the plaque-forming ability of Rickettsia rickettsi and R. typhi in primary chicken embryo tissue cultures and the infectivity of R. typhi in mice. Brain heart infusion broth (BHI) was found superior to all other media tested in preventing both a significant decrease in plaque-forming units (PFU) and a delay in plaque formation. Skim milk, egg yolk, and some metabolic media were effective in maintaining PFU at 0 C, but did not prevent a significant delay in plaque formation. However, infectivity of R. typhi for tissue culture and mice was markedly decreased when suspended in metabolic media at 26 C. Addition of BHI to the routine tissue culture overlay reversed the deleterious effects of sucrose-phosphate solutions. The effects of Mg2+, Mn2+, K+, Na+, sucrose, and glutamate were also examined. No significant differences were observed between R. rickettsi and R. typhi in their responses to different media. The results of this study suggest the necessity for a reappraisal of previous studies of metabolism and infectivity of rickettsiae in these media. Images PMID:4673757
Wopereis, Suzan; Stroeve, Johanna H M; Stafleu, Annette; Bakker, Gertruud C M; Burggraaf, Jacobus; van Erk, Marjan J; Pellis, Linette; Boessen, Ruud; Kardinaal, Alwine A F; van Ommen, Ben
2017-01-01
A key feature of metabolic health is the ability to adapt upon dietary perturbations. Recently, it was shown that metabolic challenge tests in combination with the new generation biomarkers allow the simultaneous quantification of major metabolic health processes. Currently, applied challenge tests are largely non-standardized. A systematic review defined an optimal nutritional challenge test, the "PhenFlex test" (PFT). This study aimed to prove that PFT modulates all relevant processes governing metabolic health thereby allowing to distinguish subjects with different metabolic health status. Therefore, 20 healthy and 20 type 2 diabetic (T2D) male subjects were challenged both by PFT and oral glucose tolerance test (OGTT). During the 8-h response time course, 132 parameters were quantified that report on 26 metabolic processes distributed over 7 organs (gut, liver, adipose, pancreas, vasculature, muscle, kidney) and systemic stress. In healthy subjects, 110 of the 132 parameters showed a time course response. Patients with T2D showed 18 parameters to be significantly different after overnight fasting compared to healthy subjects, while 58 parameters were different in the post-challenge time course after the PFT. This demonstrates the added value of PFT in distinguishing subjects with different health status. The OGTT and PFT response was highly comparable for glucose metabolism as identical amounts of glucose were present in both challenge tests. Yet the PFT reports on additional processes, including vasculature, systemic stress, and metabolic flexibility. The PFT enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of metabolic health. Studying both healthy subjects and subjects with impaired metabolic health showed that the PFT revealed new processes laying underneath health. This study provides the first evidence towards adopting the PFT as gold standard in nutrition research.
Li, Chunjian; Li, Xuexian
2012-01-01
Optimal nitrogen (N) supply is critical for achieving high grain yield of maize. It is well established that N deficiency significantly reduces grain yield and N oversupply reduces N use efficiency without significant yield increase. However, the underlying proteomic mechanism remains poorly understood. The present field study showed that N deficiency significantly reduced ear size and dry matter accumulation in the cob and grain, directly resulting in a significant decrease in grain yield. The N content, biomass accumulation, and proteomic variations were further analysed in young ears at the silking stage under different N regimes. N deficiency significantly reduced N content and biomass accumulation in young ears of maize plants. Proteomic analysis identified 47 proteins with significant differential accumulation in young ears under different N treatments. Eighteen proteins also responded to other abiotic and biotic stresses, suggesting that N nutritional imbalance triggered a general stress response. Importantly, 24 proteins are involved in regulation of hormonal metabolism and functions, ear development, and C/N metabolism in young ears, indicating profound impacts of N nutrition on ear growth and grain yield at the proteomic level. PMID:22936831
Xu, Jing; Nie, Hong-gang; Zhang, Xiao-dong; Tian, Ye; Yu, Bo
2011-08-01
The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism-the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.
Ethnic disparities in metabolic syndrome in malaysia: an analysis by risk factors.
Tan, Andrew K G; Dunn, Richard A; Yen, Steven T
2011-12-01
This study investigates ethnic disparities in metabolic syndrome in Malaysia. Data were obtained from the Malaysia Non-Communicable Disease Surveillance-1 (2005/2006). Logistic regressions of metabolic syndrome health risks on sociodemographic and health-lifestyle factors were conducted using a multiracial (Malay, Chinese, and Indian and other ethnic groups) sample of 2,366 individuals. Among both males and females, the prevalence of metabolic syndrome amongst Indians was larger compared to both Malays and Chinese because Indians are more likely to exhibit central obesity, elevated fasting blood glucose, and low high-density lipoprotein cholesterol. We also found that Indians tend to engage in less physical activity and consume fewer fruits and vegetables than Malays and Chinese. Although education and family history of chronic disease are associated with metabolic syndrome status, differences in socioeconomic attributes do not explain ethnic disparities in metabolic syndrome incidence. The difference in metabolic syndrome prevalence between Chinese and Malays was not statistically significant. Whereas both groups exhibited similar obesity rates, ethnic Chinese were less likely to suffer from high fasting blood glucose. Metabolic syndrome disproportionately affects Indians in Malaysia. Additionally, fasting blood glucose rates differ dramatically amongst ethnic groups. Attempts to decrease health disparities among ethnic groups in Malaysia will require greater attention to improving the metabolic health of Malays, especially Indians, by encouraging healthful lifestyle changes.
Ethnic Disparities in Metabolic Syndrome in Malaysia: An Analysis by Risk Factors
Dunn, Richard A.; Yen, Steven T.
2011-01-01
Abstract Background This study investigates ethnic disparities in metabolic syndrome in Malaysia. Methods Data were obtained from the Malaysia Non-Communicable Disease Surveillance-1 (2005/2006). Logistic regressions of metabolic syndrome health risks on sociodemographic and health–lifestyle factors were conducted using a multiracial (Malay, Chinese, and Indian and other ethnic groups) sample of 2,366 individuals. Results Among both males and females, the prevalence of metabolic syndrome amongst Indians was larger compared to both Malays and Chinese because Indians are more likely to exhibit central obesity, elevated fasting blood glucose, and low high-density lipoprotein cholesterol. We also found that Indians tend to engage in less physical activity and consume fewer fruits and vegetables than Malays and Chinese. Although education and family history of chronic disease are associated with metabolic syndrome status, differences in socioeconomic attributes do not explain ethnic disparities in metabolic syndrome incidence. The difference in metabolic syndrome prevalence between Chinese and Malays was not statistically significant. Whereas both groups exhibited similar obesity rates, ethnic Chinese were less likely to suffer from high fasting blood glucose. Conclusions Metabolic syndrome disproportionately affects Indians in Malaysia. Additionally, fasting blood glucose rates differ dramatically amongst ethnic groups. Attempts to decrease health disparities among ethnic groups in Malaysia will require greater attention to improving the metabolic health of Malays, especially Indians, by encouraging healthful lifestyle changes. PMID:21815810
Buchwald, Peter; Tamayo-Garcia, Alejandro; Ramamoorthy, Sivapriya; Garcia-Contreras, Marta; Mendez, Armando J; Ricordi, Camillo
2017-10-06
A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.
Pang, Xu; Cao, Zhen-Dong; Fu, Shi-Jian
2011-07-01
To test whether the effects of temperature on the metabolic mode changed among different fish species, we investigated the specific dynamic action (SDA) and swimming performance of fasting and fed fish at 15 and 25°C in three juvenile Cyprinidae fish species: goldfish (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis). Both taxon and temperature had significant effects on the resting oxygen consumption rate (M˙O(rest)), SDA and swimming performance (p<0.05). In addition, the effect of temperature differed significantly among the different species (interaction effect, p<0.05). Under the low temperature condition, digestion had no effect on either critical swimming speed (U(crit)) or the active MO(2) (MO(active)) for all fish species (additive metabolic mode). When the temperature was increased from 15 to 25°C, the metabolic scope (MS) for digestion increased approximately 182, 49 and 17%, and the MS for locomotion increased approximately 129, 58 and 138% in goldfish, common carp and qingbo, respectively. The total metabolic demands for both digestion and locomotion (i.e., the sum of digestive MS and locomotive MS) increased approximately 143, 56 and 112% in goldfish, common carp and qingbo, respectively. The total MS for both digestion and locomotion (the difference between MO(active) in fed fish and MO(rest) in fasting fish) increased approximately 106, 58 and 78% in goldfish, common carp and qingbo, respectively. Thus, the MS for locomotion in fed goldfish decreased due to the large increase in digestive function at the high temperature, and the U(crit) of fed goldfish decreased by 11% compared to that of fasting fish (p<0.05) (digestion-priory metabolic mode). The metabolic mode of qingbo changed to locomotion-priority mode, as illustrated by the large increase in locomotive MS in response to the increase in temperature. In the common carp, temperature had no effect on metabolic mode as illustrated by the parallel increases in cardio-respiratory capacity and metabolic capacity of digestive and locomotive organs. A discussion on the changes in metabolic mode in response to temperature and its possible relationship with the metabolic characteristics of a given fish species was also documented in this paper. Copyright © 2011 Elsevier Inc. All rights reserved.
Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk
Morton, Allyson M.; Koch, Manja; Mendivil, Carlos O.; Furtado, Jeremy D.; Tjønneland, Anne; Overvad, Kim; Wang, Liyun; Jensen, Majken K.; Sacks, Frank M.
2018-01-01
BACKGROUND. Subspecies of HDL contain apolipoprotein E (apoE) and/or apoCIII. Both proteins have properties that could affect HDL metabolism. The relation between HDL metabolism and risk of coronary heart disease (CHD) is not well understood. METHODS. Eighteen participants were given a bolus infusion of [D3]L-leucine to label endogenous proteins on HDL. HDL was separated into subspecies containing apoE and/or apoCIII and then into 4 sizes. Metabolic rates for apoA-I in HDL subspecies and sizes were determined by interactive modeling. The concentrations of apoE in HDL that contain or lack apoCIII were measured in a prospective study in Denmark including 1,949 incident CHD cases during 9 years. RESULTS. HDL containing apoE but not apoCIII is disproportionately secreted into the circulation, actively expands while circulating, and is quickly cleared. These are key metabolic steps in reverse cholesterol transport, which may protect against atherosclerosis. ApoCIII on HDL strongly attenuates these metabolic actions of HDL apoE. In the epidemiological study, the relation between HDL apoE concentration and CHD significantly differed depending on whether apoCIII was present. HDL apoE was associated significantly with lower risk of CHD only in the HDL subspecies lacking apoCIII. CONCLUSIONS. ApoE and apoCIII on HDL interact to affect metabolism and CHD. ApoE promotes metabolic steps in reverse cholesterol transport and is associated with lower risk of CHD. ApoCIII, when coexisting with apoE on HDL, abolishes these benefits. Therefore, differences in metabolism of HDL subspecies pertaining to reverse cholesterol transport are reflected in differences in association with CHD. TRIAL REGISTRATION. Clinicaltrials.gov NCT01399632. FUNDING. This work was supported by NIH grant R01HL095964 to FMS and by a grant to the Harvard Clinical and Translational Science Center (8UL1TR0001750) from the National Center for Advancing Translational Science. PMID:29467335
Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes
2016-01-01
Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253
Oxidative status and lipid profile in metabolic syndrome: gender differences.
Kaya, Aysem; Uzunhasan, Isil; Baskurt, Murat; Ozkan, Alev; Ataoglu, Esra; Okcun, Baris; Yigit, Zerrin
2010-02-01
Metabolic syndrome is associated with cardiovascular disease and oxidative stress. The aim of this study was to investigate the differences of novel oxidative stress parameters and lipid profiles in men and women with metabolic syndrome. The study population included 88 patients with metabolic syndrome, consisting of 48 postmenauposal women (group I) and 40 men (group II). Premenauposal women were excluded. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using the Erel automated measurement method, and oxidative stress index (OSI) was calculated. To perform the calculation, the resulting unit of TAS, mmol Trolox equivalent/L, was converted to micromol equivalent/L and the OSI value was calculated as: OSI = [(TOS, micromol/L)/(TAS, mmol Trolox equivalent/L) x 100]. The Student t-test, Mann-Whitney-U test, and chi-squared test were used for statistical analysis; the Pearson correlation coefficient and Spearman rank test were used for correlation analysis. P < or = 0.05 was considered to be statistically significant. Both women and men had similar properties regarding demographic characteristics and biochemical work up. Group II had significantly lower levels of antioxidant levels of TAS and lower levels of TOS and OSI compared with group I (P = 0.0001, P = 0.0035, and P = 0,0001). Apolipoprotein A (ApoA) levels were significantly higher in group I compared with group II. Our findings indicate that women with metabolic syndrome have a better antioxidant status and higher ApoA levels compared with men. Our findings suggest the existence of a higher oxidative stress index in men with metabolic syndrome. Considering the higher risk of atherosclerosis associated with men, these novel oxidative stress parameters may be valuable in the evaluation of patients with metabolic sydrome.
Park, Shin-Ae; Park, Woo-Chul; Kwon, Yu-Jin; Shim, Jae-Yong
2017-05-01
Several studies have shown that family meals promote a well-balanced and healthier diet and weight status. Metabolic syndrome is related to eating behavior. This study investigated the association between eating family meals and the prevalence of metabolic syndrome. This cross-sectional study included 4,529 subjects who participated in the Korea National Health and Nutrition Examination Survey IV and V (2007-2012). A self-reported questionnaire was used to assess dietary status. Metabolic syndrome was defined according to the guidelines of the modified version of the National Cholesterol Education Program Adult Treatment Panel III. We compared the overall quality of dietary intake in family meal. Nutritional adequacy ratios for energy, protein, calcium, vitamin A, vitamin B 1 , vitamin B 2 , vitamin C, niacin, and potassium, and the mean adequacy ratio were significantly higher in the family meal group (P<0.05). The prevalence of metabolic syndrome was lower in the family meal group (P<0.05). However, we observed no significant association between eating family meals and the prevalence of metabolic syndrome. This study demonstrated that eating family meals appeared to be associated with nutrient adequacy. However, we observed no significant differences in prevalence of metabolic syndrome between the 2 groups.
Sun, Dongbo; Li, Chunqiu; Gu, Cheng; Chen, Jianfei; Qu, Yongli; Wang, Xinyu; Gao, Jing; Wei, Shan; Wang, Jianfa; Wu, Rui; Guo, Donghua
2015-12-01
In the plasma of dairy cows with 1-5 points of lameness, the mineral elements [calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), iodine (I), selenium (Se), molybdenum (Mo), and chromium (Cr)], the energy metabolic indicators [triglyceride (TG), glucose (Glu), total cholesterol (CHO), nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), lactate (LA), and blood urea nitrogen (BUN)], and inflammatory indexes [bovine haptoglobin (BoHp), histamine (HIS), and immunoglobulin G (IgG)] were measured, respectively. Furthermore, the correlations of the measured indicators with the degrees of lameness were analyzed. The results showed that in the plasma of dairy cows with 2/3-5 points of lameness, for the mineral elements' levels, Ca, Cu, I, Se, and Fe significantly decreased, Cr significantly increased, and Mo showed a decreasing trend; for levels of the energy metabolism indicators, NEFA and BHBA significantly decreased, BUN and LA significantly increased, and Glu, CHO, and TG showed an increasing trend; for inflammation indexes, the concentrations of HIS, BoHp, and IgG all significantly increased; and further analysis indicated that the Mo, Fe, NEFA, BUN, BHBA, IgG, Ca, and Se had a significant correlation with the degrees of lameness. Resulting data revealed the changes of mineral elements, metabolism, and inflammation indexes in the plasma of dairy cows suffering from different degrees of lameness, which will provided basic knowledge for in-depth understanding of lameness in dairy cows.
Physical Activity, Metabolic Syndrome, and Overweight in Rural Youth
ERIC Educational Resources Information Center
Moore, Justin B.; Davis, Catherine L.; Baxter, Suzanne Domel; Lewis, Richard D.; Yin, Zenong
2008-01-01
Background: Research suggests significant health differences between rural dwelling youth and their urban counterparts with relation to cardiovascular risk factors. This study was conducted to (1) determine relationships between physical activity and markers of metabolic syndrome, and (2) to explore factors relating to physical activity in a…
Metabolic syndrome in overweight and obese Japanese children.
Yoshinaga, Masao; Tanaka, Satoru; Shimago, Atsushi; Sameshima, Koji; Nishi, Junichiro; Nomura, Yuichi; Kawano, Yoshifumi; Hashiguchi, Jun; Ichiki, Takeo; Shimizu, Shinichiro
2005-07-01
To determine the prevalence of and sex differences related to the metabolic syndrome among obese and overweight elementary school children. Subjects were 471 overweight or obese Japanese children. Children meeting at least three of the following five criteria qualified as having the metabolic syndrome: abdominal obesity, elevated blood pressure, low high-density lipoprotein-cholesterol levels, high triglyceride levels, and high fasting glucose levels. Fasting insulin levels were also examined. Japanese obese children were found to have a significantly lower prevalence (17.7%) of the metabolic syndrome than U.S. obese adolescents (28.7%, p = 0.0014). However, Japanese overweight children had a similar incidence (8.7%) of the metabolic syndrome compared with U.S. overweight adolescents (6.8%). Hyperinsulinemia in girls and abdominal obesity in boys are characteristic features of individual metabolic syndrome factors in Japanese children. The prevalence of the metabolic syndrome is not lower in preteen Japanese overweight children than in U.S. overweight adolescents, although it is significantly lower in Japanese obese preteen children than in U.S. obese adolescents. Primary and secondary interventions are needed for overweight preteen children in Japan.
Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.
Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L
2016-01-01
Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.
Piecha, Roman; Svačina, Štěpán; Malý, Marek; Vrbík, Karel; Lacinová, Zdenka; Haluzík, Martin; Pavloušková, Jana; Vavrouš, Adam; Matějková, Dagmar; Müllerová, Dana; Mráz, Miloš; Matoulek, Martin
2016-12-01
Human exposure to organic pollutants (some of them also called endocrine disruptors) can be associated with adverse metabolic health outcomes including type 2 diabetes. The goal of this study was to compare the urine levels of bisphenol A and phthalate metabolites in subgroups of patients with metabolic syndrome composed of patients with and without three important components of metabolic syndrome (hypertension, dyslipidemia and diabetes). We have investigated 24 hr urine samples of 168 patients with metabolic syndrome from the Metabolic Outpatient Department of General University Hospital in Prague. Using standard metabolic syndrome criteria, we classified patients as dyslipidemic (n=87), hypertensive (n=96), and type 2 diabetic (n=58). Bisphenol A and 15 metabolites of phthalates were evaluated in relation to creatinine excretion. Samples were analysed with enzymatic cleavage of glucuronide using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in one laboratory with external quality control. Four metabolites, mono-n-butyl phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and mono-(2-ethyl-5-carboxypentyl) phthalate showed significantly higher levels in diabetic compared to non-diabetic patients (p<0.001, p=0.002, p=0.002, and p=0.005, respectively). The differences remained significant after adjustment to hypertension, dyslipidemia, age, and BMI. No difference was found between either the hypertensive and non-hypertensive or dyslipidemic and non-dyslipidemic patients. There was no significant relation of bisphenol A level to diabetes, hypertension, dyslipidemia, age, and BMI. Urine levels of four phthalate metabolites were significantly higher in type 2 diabetics independently on specified predictors. Phthalate levels can be in relation to beta cell dysfunction in type 2 diabetic patients but this study is not able to show if the relation is causal. Copyright© by the National Institute of Public Health, Prague 2016
Strowitzki, Thomas; Capp, Edison; von Eye Corleta, Helena
2010-04-01
PCOS (polycystic ovarian syndrome) is a clinically heterogeneous endocrine disorder which affects up to 4-10% of women of reproductive age. A standardized definition is still difficult because of a huge variety of different phenotypes. The aim of this study was to evaluate possible correlations between the degree of cycle irregularity and the grade of endocrine and metabolic abnormalities. A cross-sectional study was carried out. Hyperandrogenic and/or hirsute women with regular menstrual cycles and polycystic ovaries on ultrasound (PCOS eumenorr, n=45), PCOS patients with oligomenorrhea (PCOS oligo, n=42) and PCOS patients with amenorrhea (PCOS amenorr, n=31) were recruited from the Department of Gynecological Endocrinology and Reproductive Medicine of the Women's University Hospital Heidelberg (Heidelberg, Germany). Normocyclic patients demonstrated significantly better metabolic parameters (BMI, fasting insulin, HOMA-IR) than patients with oligo/amenorrhea. Hormonal parameters (LH, FSH, FAI and testosterone) were significantly different between patients with different menstrual patterns and patients with regular cycles. Determining the degree of cycle irregularity as a simple clinical parameter might be a valuable instrument to estimate the degree of metabolic and endocrine disorders. Emphasis should be given to those parameters as a first step to characterize PCOS patients with a risk of endocrine and metabolic disorders leading to consequent detailed examination. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Leisso, Rachel S; Buchanan, David A; Lee, Jinwook; Mattheis, James P; Sater, Chris; Hanrahan, Ines; Watkins, Christopher B; Gapper, Nigel; Johnston, Jason W; Schaffer, Robert J; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R
2015-02-01
'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder. © 2014 Scandinavian Plant Physiology Society.
Ling, Xiao; Xiang, Yuqiang; Chen, Feilong; Tang, Qingfa; Zhang, Wei; Tan, Xiaomei
2018-04-15
Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Fracture risk and bone mineral density in metabolic syndrome: a meta-analysis.
Esposito, Katherine; Chiodini, Paolo; Capuano, Annalisa; Colao, Annamaria; Giugliano, Dario
2013-08-01
The risk of bone fractures in subjects with the metabolic syndrome is unknown. We did a meta-analysis to assess the association between metabolic syndrome, risk of fractures, and bone mineral density (BMD). We did searches on electronic databases (Medline, Scopus, and ISI Web of Knowledge) until December 2012 and searched reports to identify studies in humans on bone fractures and BMD at different sites. Two independent reviewers collected the relevant reports. We did random-effects meta-analyses to determine the risk of fractures and BMD values associated with metabolic syndrome. A total of 17 studies, with 35 datasets, were included. In 10 articles (14 datasets) including 1350 incident and 1628 prevalent fractures, metabolic syndrome was associated with a reduced fracture risk (risk ratio = 0.85, 95% confidence interval, 0.71-1.00; high heterogeneity: I(2) = 55%, P = .006). Omission of 2 outlier studies resulted in a significant negative association (risk ratio = 0.85, P = .012; I(2) = 34%, P = .130). Most of the reduced fracture risk was seen in cohort studies (18% reduced risk), suggesting a direction of causality; sex, site of fracture, and definition of the syndrome did not affect the estimates. In 16 articles, including 29 341 subjects, there was no difference in spine, femoral neck, or calcaneus BMD values between subjects with or without metabolic syndrome; mean differences ranged from 0.001 to 0.012 g/cm(2) (P > .10). This article shows a reduced risk of bone fractures associated with metabolic syndrome, without modification of BMD. The clinical significance of these findings remains uncertain and should be addressed in future prospective studies.
Influence of insulin on glucose metabolism and energy expenditure in septic patients
Rusavy, Zdenek; Sramek, Vladimir; Lacigova, Silvie; Novak, Ivan; Tesinsky, Pavel; Macdonald, Ian A
2004-01-01
Introduction It is recognized that administration of insulin with glucose decreases catabolic response in sepsis. The aim of the present study was to compare the effects of two levels of insulinaemia on glucose metabolism and energy expenditure in septic patients and volunteers. Methods Glucose uptake, oxidation and storage, and energy expenditure were measured, using indirect calorimetry, in 20 stable septic patients and 10 volunteers in a two-step hyperinsulinaemic (serum insulin levels 250 and 1250 mIU/l), euglycaemic (blood glucose concentration 5 mmol/l) clamp. Differences between steps of the clamp (from serum insulin 1250 to 250 mIU/l) for all parameters were calculated for each individual, and compared between septic patients and volunteers using the Wilcoxon nonpaired test. Results Differences in glucose uptake and storage were significantly less in septic patients. The differences in glucose oxidation between the groups were not statistically significant. Baseline energy expenditure was significantly higher in septic patients, and there was no significant increase in either step of the clamp in this group; when comparing the two groups, the differences between steps were significantly greater in volunteers. Conclusion A hyperdynamic state of sepsis leads to a decrease in glucose uptake and storage in comparison with healthy volunteers. An increase in insulinaemia leads to an increase in all parameters of glucose metabolism, but the increases in glucose uptake and storage are significantly lower in septic patients. A high level of insulinaemia in sepsis increases glucose uptake and oxidation significantly, but not energy expenditure, in comparison with volunteers. PMID:15312220
Göbl, Christian S; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra
2016-01-01
There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile.
Zaliūnas, Remigijus; Slapikas, Rimvydas; Babarskiene, Rūta; Slapikiene, Birute; Luksiene, Dalia; Milvidaite, Irena; Laukaitiene, Jolanta
2008-01-01
During the last decade, it has been shown that the metabolic syndrome and its different components--arterial hypertension (AH), abdominal obesity (AO), diabetes mellitus (DM), atherogenic hypertriglyceridemia (HTG), and/or low concentration of high-density lipoprotein cholesterol (HDL-C))--increase the risk of cardiovascular diseases. There is increasing evidence that the incidence of the metabolic syndrome and the distribution of its components in combinations in the general male and female population differ. The aim of our study was to determine the incidence of the metabolic syndrome in men and women with acute ischemic syndromes and to evaluate the distribution of the metabolic syndrome component combinations in the presence of the metabolic syndrome. Contingent and methods. The study included 2756 patients (1670 males and 1086 females) with acute ischemic syndromes (1997 with myocardial infarction and 759 with unstable angina pectoris), in whom all five components of the metabolic syndrome were assessed. Women were significantly older than men (68.1+/-9.5 vs. 60.2+/-11.8 years, P<0.001). The metabolic syndrome was found (according to modified NCEP III) in 1641 (59.5%) patients (in 70.2% of females and in 52.6% of males, P<0.001). The most common components in both men and women were AH and AO (94.0% vs. 95.9% and 86.4% vs. 84.5%, respectively). HTG was significantly more common in men than in women (80.0% vs. 73.0%, P<0.001), while decreased HDL-C concentration was more common in women (82.8% and 59.2%, P<0.001). The DM component, detected in more than one-third of patients with acute ischemic syndromes, was significantly more common in women than in men (39.2% vs. 33.1%, P<0.05). Combinations of three components were significantly more common in men than in women, while combinations of four-five components were more common in women (55.6% vs. 41.4%, P<0.001; and 58.6% vs. 44.4%, P<0.01). The most common combination of three components in men was AH+AO+HTG and in women--AH+AO+low HDL-C; the most common combination of four components in both men and women was AH+AO+HTG+low HDL-C. CONCLUSION. In the metabolic syndrome, the differences between the components of atherogenic dyslipidemia in patients with acute ischemic syndromes were related to the patients' gender: men significantly more frequently had increased TG concentration and women--decreased HDL-C concentration; this is the problem to be addressed in further studies of dyslipidemia.
Chen, Hong; Cheng, Yu-Shu; Zhou, Zheng-Rong
2017-01-01
Background: In head and neck neoplasm survivors treated with brain irradiation, metabolic alterations would occur in the radiation-induced injury area. The mechanism of these metabolic alterations has not been fully understood, while the alternations could be sensitively detected by proton (1H) nuclear magnetic resonance spectroscopy (MRS). In this study, we investigated the metabolic characteristics of radiation-induced brain injury through a long-term follow-up after radiation treatment using MRS in vivo. Methods: A total of 12 adult Sprague-Dawley rats received a single dose of 30 Gy radiation treatment to semi-brain (field size: 1.0 cm × 2.0 cm; anterior limit: binocular posterior inner canthus connection; posterior limit: external acoustic meatus connection; internal limit: sagittal suture). Conventional magnetic resonance imaging and single-voxel 1H-MRS were performed at different time points (in month 0 before irradiation as well as in the 1st, 3rd, 5th, 7th, and 9th months after irradiation) to investigate the alternations in irradiation field. N-acetylaspartate/choline (NAA/Cho), NAA/creatinine (Cr), and Cho/Cr ratios were measured in the bilateral hippocampus and quantitatively analyzed with a repeated-measures mixed-effects model and multiple comparison test. Results: Significant changes in the ratios of NAA/Cho (F = 57.37, Pg < 0.001), NAA/Cr (F = 54.49, Pg < 0.001), and Cho/Cr (F = 9.78, Pg = 0.005) between the hippocampus region of the irradiated semi-brain and the contralateral semi-brain were observed. There were significant differences in NAA/Cho (F = 9.17, Pt < 0.001) and NAA/Cr (F = 13.04, Pt < 0.001) ratios over time. The tendency of NAA/Cr to change with time showed no significant difference between the irradiated and contralateral sides. Nevertheless, there were significant differences in the Cho/Cr ratio between these two sides. Conclusions: MRS can sensitively detect metabolic alternations. Significant changes of metabolites ratio in the first few months after radiation treatment reflect the metabolic disturbance in the acute and early-delayed stages of radiation-induced brain injuries. PMID:28397726
Nicotine Metabolism in Young Adult Daily Menthol and Nonmenthol Smokers.
Fagan, Pebbles; Pokhrel, Pallav; Herzog, Thaddeus A; Pagano, Ian S; Franke, Adrian A; Clanton, Mark S; Alexander, Linda A; Trinidad, Dennis R; Sakuma, Kari-Lyn K; Johnson, Carl A; Moolchan, Eric T
2016-04-01
Menthol cigarette smoking may increase the risk for tobacco smoke exposure and inhibit nicotine metabolism in the liver. Nicotine metabolism is primarily mediated by the enzyme CYP2A6 and the nicotine metabolite ratio (NMR = trans 3' hydroxycotinine/cotinine) is a phenotypic proxy for CYP2A6 activity. No studies have examined differences in this biomarker among young adult daily menthol and nonmenthol smokers. This study compares biomarkers of tobacco smoke exposure among young adult daily menthol and nonmenthol smokers. Saliva cotinine and carbon monoxide were measured in a multiethnic sample of daily smokers aged 18-35 (n = 186). Nicotine, cotinine, the cotinine/cigarette per day ratio, trans 3' hydroxycotinine, the NMR, and expired carbon monoxide were compared. The geometric means for nicotine, cotinine, and the cotinine/cigarette per day ratio did not significantly differ between menthol and nonmenthol smokers. The NMR was significantly lower among menthol compared with nonmenthol smokers after adjusting for race/ethnicity, gender, body mass index, and cigarette smoked per day (0.19 vs. 0.24, P = .03). White menthol smokers had significantly higher cotinine/cigarettes per day ratio than white nonmenthol smokers in the adjusted model. White menthol smokers had a lower NMR in the unadjusted model (0.24 vs. 0.31, P = .05) and the differences remained marginally significant in the adjusted model (0.28 vs. 0.34, P = .06). We did not observe these differences in Native Hawaiians and Filipinos. Young adult daily menthol smokers have slower rates of nicotine metabolism than nonmenthol smokers. Studies are needed to determine the utility of this biomarker for smoking cessation treatment assignments. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nicotine Metabolism in Young Adult Daily Menthol and Nonmenthol Smokers
Pokhrel, Pallav; Herzog, Thaddeus A.; Pagano, Ian S.; Franke, Adrian A.; Clanton, Mark S.; Alexander, Linda A.; Trinidad, Dennis R.; Sakuma, Kari-Lyn K.; Johnson, Carl A.; Moolchan, Eric T.
2016-01-01
Introduction: Menthol cigarette smoking may increase the risk for tobacco smoke exposure and inhibit nicotine metabolism in the liver. Nicotine metabolism is primarily mediated by the enzyme CYP2A6 and the nicotine metabolite ratio (NMR = trans 3′ hydroxycotinine/cotinine) is a phenotypic proxy for CYP2A6 activity. No studies have examined differences in this biomarker among young adult daily menthol and nonmenthol smokers. This study compares biomarkers of tobacco smoke exposure among young adult daily menthol and nonmenthol smokers. Methods: Saliva cotinine and carbon monoxide were measured in a multiethnic sample of daily smokers aged 18–35 (n = 186). Nicotine, cotinine, the cotinine/cigarette per day ratio, trans 3′ hydroxycotinine, the NMR, and expired carbon monoxide were compared. Results: The geometric means for nicotine, cotinine, and the cotinine/cigarette per day ratio did not significantly differ between menthol and nonmenthol smokers. The NMR was significantly lower among menthol compared with nonmenthol smokers after adjusting for race/ethnicity, gender, body mass index, and cigarette smoked per day (0.19 vs. 0.24, P = .03). White menthol smokers had significantly higher cotinine/cigarettes per day ratio than white nonmenthol smokers in the adjusted model. White menthol smokers had a lower NMR in the unadjusted model (0.24 vs. 0.31, P = .05) and the differences remained marginally significant in the adjusted model (0.28 vs. 0.34, P = .06). We did not observe these differences in Native Hawaiians and Filipinos. Conclusions: Young adult daily menthol smokers have slower rates of nicotine metabolism than nonmenthol smokers. Studies are needed to determine the utility of this biomarker for smoking cessation treatment assignments. PMID:25995160
Li, Jiang; Xiao, Cheng; Yang, Hui; Zhou, Yun; Wang, Rui; Cao, Yongtong
2017-12-09
Previous studies have shown that there is a controversial relationship between iron homeostasis and obesity. This study aims to explore the relationship of anemia and iron status with different body size phenotypes in adult Chinese population. Using information on iron status-related parameters and lifestyle data from 8462 participants of the 2009 wave of China Health and Nutrition Survey (2009 CHNS), we performed multivariable logistic regression analyses to estimate the odds ratios (ORs) for the risk of anemia and iron parameters according to different body size phenotypes. Participants with higher body mass index (BMI) had a lower anemia prevalence with significant trends in both metabolic status groups (P < 0.001). Serum ferritin, transferrin, and soluble transferrin receptor (sTfR)/log ferritin index were significant in different metabolic status groups and in different body size phenotypes, respectively. The ORs for higher ferritin and transferrin increased across different body size phenotypes in both genders, and for sTfR/log ferritin index decreased (P < 0.01 for trend). This association was still statistically significant after adjustment for multiple confounders. We found an inverse association of BMI levels with the prevalence of anemia and strong association of serum ferritin and transferrin with higher risk of obesity or overweight in both metabolic status groups.
Liesegang, A; Risteli, J
2005-01-01
The purpose of this study was to investigate, if different Ca concentrations in diets have an influence on bone mineral metabolism in growing goats and sheep. Twelve growing goats and sheep were divided into two groups. The two control groups received 6.1 g calcium/day (nG) and 6.7 g calcium/day (nS) for goat and sheep respectively. The other two groups were fed 17.7 g calcium/day (hG) and 18.5 g calcium/day (hS). Blood samples were taken 2, 4, 5 and 6 weeks after the start of the experiment. In serum Ca and vitamin D were determined and bone metabolism was measured using crosslinked carboxyterminal telopeptide of type I collagen (ICTP), crosslaps, bone-specific alkaline phosphatase and osteocalcin (OC). Bone mineral density (BMD) was quantified using quantitative computed tomography. Bone resorption marker (ICTP) concentrations were significantly different between both groups control sheep/control goat and hS/hG, but no significant differences were evident in the different feeding groups within one species. OC concentrations showed a similar course to ICTP. The goats had significantly higher concentrations compared with sheep. The 1,25 dihydroxyvitamin D (VITD) concentrations in both hCa groups were significantly lower than in the control groups. BMD increased in the hCa groups compared with the control groups with the time, but significant differences were only evident in sheep in week 2. The hCa diet did not induce differences between the groups within one species for all bone markers. The control Ca diet seems to improve the active Ca absorption via VITD whereas the hCa diet leads to a higher amount of Ca apparently digested. Higher BMD was only observed in group hS compared with nS.
Metabolic Differences between Dogs of Different Body Sizes
Lacroix, Sebastien; Kennedy, Adam D.; Beloshapka, Alison; Kaput, Jim
2017-01-01
Introduction The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. Objectives This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. Methods Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. Results 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. Conclusion Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function. PMID:29225968
One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling
Corbin, Joshua M.; Ruiz-Echevarría, Maria J.
2016-01-01
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325
Yamashita, Yuji; Nishiumi, Shin; Kono, Seishi; Takao, Shintaro; Azuma, Takeshi; Yoshida, Masaru
2017-08-29
Triple-negative breast cancer (TN) is more aggressive than other subtypes of breast cancer and has a lower survival rate. Furthermore, detailed biological information about the disease is lacking. This study investigated characteristics of metabolic pathways in TN. We performed the metabolome analysis of 74 breast cancer tissues and the corresponding normal breast tissues using LC/MS. Furthermore, we classified the breast cancer tissues into ER-positive, PgR-positive, HER2-negative breast cancer (EP+H-) and TN, and then the differences in their metabolic pathways were investigated. The RT-PCR and immunostaining were carried out to examine the expression of ELOVL1, 2, 3, 4, 5, 6, and 7. We identified 142 of hydrophilic metabolites and 278 of hydrophobic lipid metabolites in breast tissues. We found the differences between breast cancer and normal breast tissues in choline metabolism, glutamine metabolism, lipid metabolism, and so on. Most characteristic of comparison between EP+H- and TN were differences in fatty acid metabolism was which were related to the elongation of very long chain fatty acids were detected between TN and EP+H-. Real-time RT-PCR showed that the mRNA expression levels of ELOVL1, 5, and 6 were significantly upregulated by 8.5-, 4.6- and 7.0-fold, respectively, in the TN tumors compared with their levels in the corresponding normal breast tissue samples. Similarly, the mRNA expression levels of ELOVL1, 5, and 6 were also significantly higher in the EP+H- tissues than in the corresponding normal breast tissues (by 4.9-, 3.4-, and 2.1-fold, respectively). The mRNA expression level of ELOVL6 was 2.6-fold higher in the TN tumors than in the EP+H- tumors. During immunostaining, the TN and EP+H- tumors demonstrated stronger ELOVL1 and 6 staining than the corresponding normal breast tissues, but ELOVL5 was not stained strongly in the TN or EP+H- tumors. Furthermore, the TN tumors exhibited stronger ELOVL1 and 6 staining than the EP+H- tumors. Marked differences in fatty acid metabolism pathways, including those related to ELOVL1 and 6, were detected between TN and EP+H-, and it was suggested that ELOVL1 and 6-related fatty acid metabolism pathways may be targets for therapies against TN.
Prevalence of metabolic syndrome and prediabetes in an urban population of Guayaquil, Ecuador.
Duarte, María C; Peñaherrera, Carlos A; Moreno-Zambrano, Daniel; Santibáñez, Rocío; Tamariz, Leonardo; Palacio, Ana
2016-01-01
To determine the prevalence of metabolic syndrome and prediabetes in a population of the city of Guayaquil, Ecuador, aged 55-65 years; to observe if there are differences in prevalence between males and females, and to describe the frequency with which each component of the metabolic syndrome is found in this population. population-based cross-sectional study in Guayaquil. We recruited people of both genders, with ages ranging from 55 to 65 years. Through clinical history, physical examination and laboratory tests, we obtained necessary data to diagnose metabolic syndrome and/or prediabetes. Statistical analysis was performed using SPSS(®) 22. we obtained a sample of 213 patients, 64.5% were females and 35.5% were males. Mean age was 60.3 years (±3.1). A total 65.8% of patients had increased waist circumference, and 45% were diagnosed with metabolic syndrome. Hypertriglyceridemia was the most prevalent condition in males, while women more commonly had low HDL. Prediabetes was diagnosed in 45.9% of our patients, and 19.5% had both disorders. There was no significant difference on metabolic syndrome prevalence between genders, but prediabetes was significantly more common in women. we found a high prevalence of metabolic syndrome and prediabetes in Guayaquil, higher than what was reported in other areas. Abdominal obesity is even more prevalent. Women have prediabetes more frequently than men. Our patients, given their age, are at higher risk of cardiovascular disease and cognitive decline by having metabolic syndrome and/or prediabetes. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Cardiometabolic risk in patients with polycystic ovary syndrome.
Ozegowska, Katarzyna; Pawelczyk, Leszek
2015-11-01
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in premenopausal women, associated with risk of metabolic syndrome and cardiovascular disease (CVD). CVD risk evaluation is recommended for PCOS patients. This study aimed to evaluate the risk of CVD in PCOS patients and to identify the best predictors for metabolic and cardiovascular disturbances. The study included 169 PCOS patients and 110 healthy women in reproductive age. We estimated cardiovascular risk according to American Heart Association and Androgen Excess-PCOS Society criteria that classified patients as metabolically unhealthy (MU) or metabolically healthy (MH). The PCOS group had significantly higher body mass index (BMI), waist circumference, and waist-to-hip ratio (P < 0.000001). Metabolic syndrome was only defined among PCOS patients (8.9%). No obesity was observed in the control group. Waist circumference ≥ 80 cm was presented in 44% of PCOS patients in comparison to 14.5% of control participants (P < 0.000001). There was a significant tendency for higher fasting insulin levels in the PCOS population (P < 0.00001). Surprisingly the PCOS-MH group had the highest high-density lipoprotein (HDL) levels. ROC curves were used to indicate parameters diagnosing metabolically unhealthy women and revealed that WC, BMI and HC seem to be the strongest predictors of metabolic disturbances in PCOS but in the healthy population in reproductive age biochemical findings such as low HDL or increased fasting glycemia presented stronger predictive value than patients' anthropometric features. Physicians need to remember to adopt different diagnostic approach while seeking metabolic complications in these different groups of women.
Barros, Jessica A S; Cavalcanti, João Henrique F; Medeiros, David B; Nunes-Nesi, Adriano; Avin-Wittenberg, Tamar; Fernie, Alisdair R; Araújo, Wagner L
2017-11-02
Autophagy is a highly conserved cellular mechanism in eukaryotes allowing the degradation of cell constituents. It is of crucial significance in both cellular homeostasis and nutrient recycling. During energy limited conditions plant cells can metabolize alternative respiratory substrates, such as amino acids, providing electrons to the mitochondrial metabolism via the tricarboxylic acid (TCA) cycle or electron transfer flavoprotein/ electron transfer flavoprotein ubiquinone oxidoreductase (ETF/ETFQO) system. Our recent study reveals the importance of autophagy in the supply of amino acids to provide energy through alternative pathways of respiration during carbon starvation. This fact apart, autophagy seems to have more generalized effects related not only to amino acid catabolism but also to metabolism in general. By further comparing the metabolic data obtained with atg mutants with those of mutants involved in the alternative pathways of respiration, we observed clear differences between these mutants, pointing out additional effects of the autophagy deficiency on metabolism of Arabidopsis leaves. Collectively, our data point to an interdependence between mitochondrial metabolism and autophagy and suggest an exquisite regulation of primary metabolism under low energetic conditions.
Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds.
Reed, T. E.; Kalant, H.; Gibbins, R. J.; Kapur, B. M.; Rankin, J. G.
1976-01-01
Ethanol (0.4 to 0.8 g/kg in 30 minutes) was given by mouth to 102 healthy young volunteers (37 Caucasian men, 21 Caucasian women, 20 Chinese men and 24 Ojibwa men). Venous blood concentrations of ethanol and acetaldehyde 60, 90, 120 and 150 minutes after the end of drinking were measured by gas chromatography. The calculated rates of ethanol metabolism in the Caucasian men and women did not differ, but the overall group means for subgroups of Caucasians (103.6 mg/kg-h), Chinese (136.6 mg/kg-h) and Ojibwa (182.7 mg/kg-h) with decreasing postabsorption values differed significantly from each other. Mean acetaldehyde values paralleled the rates of ethanol metabolism: Ojibwa, 14.6 mug/ml; Chinese, 10.0 mug/ml; and Caucasians, 9.4 mug/ml. The high rate of ethanol metabolism in Amerind subjects differs from previous findings. Habitual level of alcohol consumption, proportion of body fat and genetic factors appear to account for most of the group differences. PMID:991030
Heiser, Philip; Enning, Frank; Krieg, Jürgen-Christian; Vedder, Helmut
2007-11-01
Cytotoxic effects on neuronal as well as on immune cells have been reported for both typical and atypical antipsychotic drugs. We evaluated the effects of different concentrations of a typical (haloperidol) and two atypical (clozapine, olanzapine) antipsychotics on the survival of human neuronal (SH-SY5Y cells) and immune cells (U937 cells) by determining the metabolic activity after 24 h of incubation by the modified tetrazolium method. The dopaminergic neuroblastoma SH-SY5Y and the lymphoma U-937 cell line are well established models for in vitro investigations. To further elucidate possible mechanisms of action we also determined the ATP content in the cultured cells. After experimental treatment, significant effects were detected by Kruskal Wallis test for all treatment conditions. Post-hoc tests (Dunn's method) showed that haloperidol and clozapine at the two highest concentrations (25 and 50 microg/ml) caused a significant decrease of metabolic activity in both cell systems, which was also detectable after treatment with clozapine at a concentration of 12.5 microg/ml in U937 cells. In contrast, olanzapine induced a significant increase in metabolic activity of SH-SY5Y cells at all concentrations except for the concentration of 3.1 microg/ml, whereas the metabolic activity in U937 cells was increased at concentrations of 1.6 and 6.25 microg/ml. For the determination of ATP content, the LD(50) values of the metabolic activity were used, except for olanzapine for which no distinct LD(50) value was available. Significant changes were detected for all treatments and post-hoc tests revealed that haloperidol caused a significant decrease compared to the control condition in both cell systems. These findings suggest that antipsychotic substances of different classes exert differential metabolic effects in both neuronal and immune cell systems.
Vu, Anh; Kosmiski, Lisa A; Beitelshees, Amber L; Prigeon, Ronald; Sidhom, Maha S; Bredbeck, Brooke; Predhomme, Julie; Deininger, Kimberly M; Aquilante, Christina L
2016-03-01
To determine the effects of low-dose pioglitazone on plasma adipocyte-derived cytokines, high-sensitivity C-reactive protein (hs-CRP), and components of the metabolic syndrome in adults with the metabolic syndrome without diabetes mellitus. Prospective, randomized, double-blind, placebo-controlled study. University of Colorado Clinical and Translational Research Center. Thirty-two men and women, aged 30-60 years, without diabetes who had a clinical diagnosis of the metabolic syndrome, as defined by the American Heart Association/National Heart, Lung, and Blood Institute criteria. Patients were randomly assigned to receive oral pioglitazone 7.5 mg daily or matching placebo for 8 weeks. The primary end point was the change in plasma high-molecular-weight (HMW) adiponectin level from baseline to week 8. Other end points were changes in plasma total adiponectin, omentin, and hs-CRP levels, and changes in components of the metabolic syndrome (e.g., insulin sensitivity) from baseline to week 8. Pioglitazone was associated with a significant increase in plasma HMW adiponectin from baseline to week 8 compared with placebo (+47% vs -10%, p<0.001). Insulin sensitivity increased significantly from baseline to week 8 in the pioglitazone group (+88%, p=0.02) but not in the placebo group (+15%, p=0.14). Change in HMW adiponectin was significantly correlated with the change in insulin sensitivity in the pioglitazone group (r = 0.784, p=0.003). No significant differences in mean percentage changes in plasma total adiponectin, omentin, and hs-CRP levels were observed between the pioglitazone and placebo groups. Likewise, changes in body weight, insulin sensitivity, glucose, lipids, and blood pressure did not differ significantly between the groups. Low-dose pioglitazone favorably modulates plasma HMW adiponectin, which was associated with an improvement in insulin sensitivity, in patients with the metabolic syndrome without diabetes. © 2016 Pharmacotherapy Publications, Inc.
Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad
2016-04-01
Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.
Wang, Jian-Guang; Fang, Wei; Yang, Min-Fu; Tian, Yue-Qin; Zhang, Xiao-Li; Shen, Rui; Sun, Xiao-Xin; Guo, Feng; Wang, Dao-Yu; He, Zuo-Xiang
2015-01-01
Abstract The effects of left bundle branch block (LBBB) on left ventricular myocardial metabolism have not been well investigated. This study evaluated these effects in patients with coronary artery disease (CAD). Sixty-five CAD patients with complete LBBB (mean age, 61.8 ± 9.7 years) and 65 without LBBB (mean age, 59.9 ± 8.4 years) underwent single photon emission computed tomography, positron emission tomography, and contrast coronary angiography. The relationship between myocardial perfusion and metabolism and reverse mismatch score, and that between QRS length and reverse mismatch score and wall motion score were evaluated. The incidence of left ventricular septum and anterior wall reverse mismatching between the two groups was significantly different (P < 0.001 and P = 0.002, respectively). The incidences of normal myocardial perfusion and metabolism in the left ventricular lateral and inferior walls were also significantly different between the two groups (P < 0.001 and P < 0.001, respectively). The incidence of septal reverse mismatching in patients with mild to moderate perfusion was significantly higher among those with LBBB than among those without LBBB (P < 0.001). In CAD patients with LBBB, septal reverse mismatching was significantly more common among those with mild to moderate perfusion than among those with severe perfusion defects (P = 0.002). The correlation between the septal reverse mismatch score and QRS length was significant (P = 0.026). In patients with CAD and LBBB, septal and anterior reverse mismatching of myocardial perfusion and metabolism was frequently present; the septal reverse mismatch score negatively correlated with the QRS interval. PMID:25997045
Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham
2012-01-01
The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450
Yoon, Hyun; Choi, Seong Woo; Park, Jong; Ryu, So Yeon; Han, Mi Ah; Kim, Gwang Seok; Kim, Sung Gil; Oh, Hye Jong; Choi, Cheol Won
2015-10-01
The present study was conducted to assess the relationship between metabolic syndrome and systolic inter-arm blood pressure difference (sIAD) in Korean adults. This study included 410 adults (235 males, 175 females) who were over 30 years old and had undergone a health check from July to December in 2013. The incidence of high sIAD and metabolic syndrome were 23.4% and 23.2%, respectively. Key study results were as follows: First, the sIAD levels increased significantly with an increase in metabolic syndrome score (p<0.001), shown by sIAD levels after adjusted the variables that affect sIAD levels (age, gender, smoking, drinking, exercising, total cholesterol, and body mass index). These were 4.6±0.7 mmHg for metabolic syndrome score (MSS) 0; 5.8±0.5 mmHg for MSS 1; 6.2±0.6 mmHg for MSS 2, 9.2±0.8 mmHg for MSS 3; and 9.9±1.2 mmHg for MSS ≥4 (p<0.001). Second, the sIAD level of the metabolic syndrome group (9.3±0.7 mmHg) was significantly higher (p<0.001) than for the nonmetabolic syndrome group (5.7±0.3 mmHg). In conclusion, metabolic syndrome and an increased number of its components are associated with the sIAD levels in Korean adults.
Hu, Lei; Lv, Zhenhua; Li, Gao; Xu, Xiaolong; Zhang, Chenghao; Cao, Peng; Huang, Jiangeng; Si, Luqin
2015-06-01
TJ0711 (1-[4-(2-methoxyethyl)phenoxy]-3-[2-(2-methoxyphenoxy)ethylamino]-2-propanol) is a novel β-adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β-blocker. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uzbekova, Svetlana; Elis, Sebastien; Teixeira-Gomes, Ana-Paula; Desmarchais, Alice; Maillard, Virginie; Labas, Valerie
2015-01-01
In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments. PMID:25756245
Halama, Anna; Guerrouahen, Bella S; Pasquier, Jennifer; Satheesh, Noothan J; Suhre, Karsten; Rafii, Arash
2017-01-04
The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment - a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4 + EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer - endothelial cells interaction. We demonstrated that "Warburg effect" is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment.
Yamamoto, Toru; Yoshida, Mitsuhiro; Watanabe, Seiji; Kawahara, Hiroshi
2015-12-01
Insulin resistance in patients undergoing invasive surgery impairs glucose and lipid metabolism and increases muscle protein catabolism, which may result in delayed recovery and prolonged hospital stay. We examined whether intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery under general anesthesia affects carbohydrate, proteins, and lipid metabolism and the length of hospital stay. We studied 16 patients with normal liver, kidney, and endocrine functions, and ASA physical status I or II, but without diabetes. Patients were randomly assigned to receive 0.1 g/kg/h of (n = 8) or lactated Ringer's solution (n = 8). Blood was collected before (T0) and 4 h after (T1) the start of surgery. We analyzed the plasma levels of glucose, ketone bodies, 3-methylhistidine (3-MH), and the length of hospital stay. At T0, no statistically significant differences were observed in the levels of glucose, ketone bodies, and 3-MH between the groups. At T1, no statistically significant difference in glucose levels was found between the groups. However, ketone bodies were significantly lower, and the changes in 3-MH levels were significantly less pronounced in the glucose-treated group compared with controls. No significant differences were observed between the groups in terms of length of hospital stay. The administration of low doses of glucose during surgery was safe, did not cause hyperglycemia or hypoglycemia, and inhibited lipid metabolism and protein catabolism. Additional experiments with larger cohorts will be necessary to investigate whether intraoperative management with glucose facilitates postoperative recovery of patients with oral cancer.
The prevalence of the metabolic syndrome in Portugal: the PORMETS study.
Raposo, Luís; Severo, Milton; Barros, Henrique; Santos, Ana Cristina
2017-06-08
The PORMETS study was designed to estimate the prevalence of metabolic syndrome and its determinants in the overall and administrative regions of the Portuguese mainland. A cross-sectional study of a representative sample of non-institutionalized Portuguese adults selected from primary health care centres lists including 1695 men and 2309 women was conducted from February 2007 to July 2009. A structured questionnaire was administered, collecting information on personal medical history and socio-demographic and behavioural characteristics. Anthropometrics, blood pressure, and venous blood samples were obtained. Metabolic syndrome was defined according to three operational definitions. The prevalence ratios and their respective 95% confidence intervals were calculated using binomial generalized linear regression, with the log link function. The prevalence rates of metabolic syndrome in this sample of Portuguese adults were 36.5%, 49.6%, and 43.1%, using the Adult Treatment Panel III, International Diabetes Federation and Joint Interim Statement definitions, respectively. The most prevalent feature of metabolic syndrome in this sample was high blood pressure (64.3%) and the lowest was high fasting glucose (24.9%). After adjustment for age and gender, significant differences were observed for the 18 districts of the Portugal mainland. Additionally, metabolic syndrome was significantly more frequent in non-urban areas than in urban ones (p = 0.001). The prevalence of metabolic syndrome was significantly higher in women (p˂0.001) and older participants (p˂0.001), as well as in those who reported being housewives (p = 0.010), retired (p = 0.046) or unemployed (p = 0.024). This study showed that metabolic syndrome is highly prevalent in the Portuguese adult population. Regional differences in the prevalence of this syndrome were observed, and this condition was more common in non-urban areas and less favoured socio-economic categories.
Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling.
Grayson, Bernadette E; Gutierrez-Aguilar, Ruth; Sorrell, Joyce E; Matter, Emily K; Adams, Michelle R; Howles, Philip; Karns, Rebekah; Seeley, Randy J; Sandoval, Darleen A
2017-01-01
Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery. Two cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3 weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach with no intestinal rearrangement. Each sex exhibited significantly decreased body weight due to a reduction in fat mass relative to Sham controls ( p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there was no reduction in females. Ad lib -fed and fasting circulating triglycerides, and postprandial chylomicron production were significantly lower in VSG relative to Sham animals of both sexes ( p < 0.01). However, hepatic VLDL production, highest in sham-operated females, was significantly reduced by VSG in females but not males. Taken together, although both males and females lose weight and improve plasma lipids, there are large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG.
Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan
2016-04-01
Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Martin, Francois-Pierre J; Montoliu, Ivan; Nagy, Kornél; Moco, Sofia; Collino, Sebastiano; Guy, Philippe; Redeuil, Karine; Scherer, Max; Rezzi, Serge; Kochhar, Sunil
2012-12-07
Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to different metabolic response to daily chocolate consumption. Using NMR- and MS-based metabolic profiling of blood plasma and urine, we monitored the metabolic response of 10 participants stratified as chocolate desiring and eating regularly dark chocolate (CD) and 10 participants stratified as chocolate indifferent and eating rarely dark chocolate (CI) to a daily consumption of 50 g of dark chocolate as part of a standardized diet over a one week period. We demonstrated that preference for chocolate leads to different metabolic response to chocolate consumption. Daily intake of dark chocolate significantly increased HDL cholesterol by 6% and decreased polyunsaturated acyl ether phospholipids. Dark chocolate intake could also induce an improvement in the metabolism of long chain fatty acid, as noted by a compositional change in plasma fatty acyl carnitines. Moreover, a relationship between regular long-term dietary exposure to a small amount of dark chocolate, gut microbiota, and phenolics was highlighted, providing novel insights into biological processes associated with cocoa bioactives.
Preliminary study of urine metabolism in type two diabetic patients based on GC-MS
Zhang, Ning; Geng, Fang; Hu, Zhong-Hua; Liu, Bin; Wang, Ye-Qiu; Liu, Jun-Cen; Qi, Yong-Hua; Li, Li-Jing
2016-01-01
Objective: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. Methods: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min-1, the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. Results: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. Conclusion: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism. PMID:27508010
Membrane biofouling process correlated to the microbial community succession in an A/O MBR.
Chen, Chun-Hong; Fu, Yuan; Gao, Da-Wen
2015-12-01
The microbial community succession of the biofouling layer in a submerged anoxic/oxic membrane biological reactor (A/O MBR) that fed with synthesized domestic wastewater was investigated under three different flux conditions without the changing of the nutrient load. The noticeable microbial community succession and its significant correlation with the metabolic products were observed under the subcritical flux condition. Under the supercritical flux condition, the microbial community shift was in a different pattern compared with that under the subcritical flux condition and it was affected by the increased permeable suction more than the metabolic products. The most abundant microorganisms in the foulants were β-proteobacteria and γ-proteobacteria which can reach more than 20% of the microbial community. However the microorganisms which had significant correlation with the metabolic products were in lower abundance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metabolic Syndrome and Short-Term Heart Rate Variability in Adults with Intellectual Disabilities
ERIC Educational Resources Information Center
Chang, Yaw-Wen; Lin, Jin-Ding; Chen, Wei-Liang; Yen, Chia-Feng; Loh, Ching-Hui; Fang, Wen-Hui; Wu, Li-Wei
2012-01-01
Metabolic syndrome (MetS) increases the risk of cardiovascular events. Heart rate variability (HRV) represents autonomic functioning, and reduced HRV significantly increases cardiovascular mortality. The aims of the present paper are to assess the prevalence of MetS in adults with intellectual disabilities (ID), the difference in short-term HRV…
Whole-body metabolism varies across the estrous cycle in Sprague-Dawley rats.
Parker, G C; McKee, M E; Bishop, C; Coscina, D V
2001-10-01
Food intake in rats and other mammals is lowest at estrus and highest at diestrus. While much is known about the effects of different estrous phases on energy intake, as well as some of the metabolic effects the associated hormones exert, little has been reported about changes in whole-body metabolism that accompany those phases. This study investigates how energy expenditure (EE) and respiratory quotient (RQ) vary in intact female Sprague-Dawley rats (n=12) tested mid-light cycle over 2 h on days associated with estrus vs. diestrus. Rats showed small but reliable decreases in body weight on days associated with estrus, but not diestrus. EE was significantly increased by approximately 21% on the day associated with estrus compared to diestrus. At the same time, RQ was significantly decreased by approximately 7% on the day associated with estrus, indicating a relative shift to fat over carbohydrate as the energy substrate to support energetic needs. Future investigations of ingestive processes can integrate the present findings to investigate how gender differences in feeding and metabolism contribute to regulatory behaviors.
Distinct metabolic responses of an ovarian cancer stem cell line.
Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P
2014-12-18
Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to be considered in the design and early testing of such treatments.
KuKanich, B; Coetzee, J F; Gehring, R; Hubin, M
2007-08-01
The purpose of the study was to compare the disposition of pharmacologic markers for cytochrome P-450 (CYP) metabolism, glomerular filtration rate (GFR), and extracellular (ECFV) and total body fluid volumes (TBFV) of Greyhounds and Beagles. Six healthy Greyhound and six healthy Beagle dogs were studied. Antipyrine, a marker for CYP metabolism and TBFV, and inulin, a marker for the GFR and ECFV, were administered i.v. Samples were collected at predetermined times and plasma was analyzed by validated high-pressure liquid chromatography (HPLC) methods. There were no differences in the disposition or pharmacokinetic parameters for inulin between the dog breeds. However, the clearance of antipyrine (mean = 8.33 mL/min/kg) in Greyhounds was significantly slower than Beagles (13.42 mL/min/kg, P = 0.004). The volume of distribution of antipyrine was significantly larger in Greyhounds (0.789 L/kg) than in Beagles (0.644 L/kg, P = 0.01). The half-life of antipyrine was significantly longer in Greyhounds (1.09 h) compared with Beagles (0.55 h, P = 0.002). The in vitro plasma protein binding of antipyrine was significantly less in Greyhounds (28%) compared with Beagles (40.3%, P = 0.008). Greyhounds exhibited significantly slower CYP metabolism, higher TBFV, and lower in vitro protein binding of antipyrine compared with Beagles. No differences in GFR or ECFV were found.
Wang, Qiu-Yi; Song, Yong; Huang, Wei; Xiao, Li; Wang, Qiu-Shi; Feng, Gui-Mei
2016-04-20
While combined oral contraceptives (COCs) are commonly used to treat polycystic ovary syndrome (PCOS), comparative data regarding metabolic effects of different progestogens on this patient population are missing. This study aimed to compare the different effects of drospirenone (DRP)-containing COCs with cyproterone acetate (CPA)-containing COCs, combined with metformin and lifestyle modifications in women with PCOS and metabolic disorders. Ninety-nine women with PCOS and a metabolic disorder between January 2011 and January 2013 were enrolled into this prospective randomized clinical trial. Participants were randomized into two groups such as DRP-containing COCs, and CPA-containing COCs. Participants took COCs cyclically for 6 months, combined with metformin administration (1.5 g/d) and lifestyle modifications (diet and exercise). Clinical measures and biochemical and hormone profiles were compared. Comparisons for continuous variables were evaluated with paired and unpaired Student's t-tests. The Wilcoxon signed rank test was used when the data were not normally distributed. Analysis of covariance was used to control for age, body mass index (BMI), and baseline data of each analyzed parameter when compared between the two groups. A total of 68 patients have completed the study. The combination regimen of COCs, metformin, and lifestyle modifications in these patients resulted in a significant decrease in BMI, acne, and hirsutism scores when compared to baseline levels in both groups (P < 0.05). Blood pressure (BP) was significantly different in the CPA group when compared to baseline (75.14 ± 6.77 mmHg vs. 80.70 ± 5.60 mmHg, P < 0.01), and after 6 months of treatment, only the change in systolic BP was significantly different between the two groups (4.00 [-6.00, 13.00] mmHg vs. -3.50 [-13.00, 9.00] mmHg, P = 0.009). Fasting glucose, fasting insulin, and homeostasis model assessment-insulin resistance decreased significantly in the DRP group (5.40 ± 0.41 mmol/L vs. 5.21 ± 0.32 mmol/L, P = 0.041; 13.90 [10.50, 18.40] μU/ml vs. 10.75 [8.60, 13.50] μU/ml, P = 0.020; 3.74 [2.85, 4.23] vs. 2.55 [1.92, 3.40], P = 0.008) but did not differ between the two groups. While individual lipid profiles increased in both groups, no statistically significant difference was observed. DRP-containing COCs combined with metformin and lifestyle modifications could better control BP and correct carbohydrate metabolism in women with PCOS and metabolic disorders compared with CPA-containing COCs. Chinese Clinical Trial Registry, ChiCTR-TRC-11001143; http://www.chictr.org.cn/showproj.aspx?proj=8395.
Guo, Yi; Liu, Chen-Xi; Zhang, Li-Sheng; Wang, Meng-Qing; Chen, Hong-Yin
2017-12-01
Insects cannot synthesize sterols and must obtain them from plants. Therefore, reducing plant sterol content or changing sterol type might be an effective pest control strategy. However, the impacts of these changes on pests' natural predators remain unknown. Here, we fed artificial diets with reduced sterol content to Mythimna separata (Walker) (Lepidoptera: Noctuidae) and investigated the effects on its natural predator, Arma chinensis (Fallou) (Hemiptera: Pentatomidae). Reduced sterol content in M. separata (MS1, MS2, and MS5) was achieved by feeding them artificial diets prepared from a feed base subjected to one, two, or five cycles of sterol extractions, respectively. The content of most substances increased in A. chinensis (AC) groups feeding on MS2 and MS5. The content of eight substances (alanine, betaine, dimethylamine, fumarate, glutamine, glycine, methylamine, and sarcosine) differed significantly between the control (AC0) and treated (AC1, AC2, and AC5) groups. Metabolic profiling revealed that only AC5 was significantly distinct from AC0; the major substances contributing to this difference were maltose, glucose, tyrosine, proline, O-phosphocholine, glutamine, allantoin, lysine, valine, and glutamate. Furthermore, only two metabolic pathways, that is, nicotinate and nicotinamide metabolism and ubiquinone and other terpenoid-quinone biosynthesis, differed significantly between AC1 and AC5 and the control, albeit with an impact value of zero. Thus, the sterol content in the artificial diet fed to M. separata only minimally affected the metabolites and metabolic pathways of its predator A. chinensis, suggesting that A. chinensis has good metabolic self-regulation with high resistance to sterol content changes. © 2017 Wiley Periodicals, Inc.
Teleka, Stanley; Häggström, Christel; Nagel, Gabriele; Bjørge, Tone; Manjer, Jonas; Ulmer, Hanno; Liedberg, Fredrik; Ghaderi, Sara; Lang, Alois; Jonsson, Håkan; Jahnson, Staffan; Orho-Melander, Marju; Tretli, Steinar; Stattin, Pär; Stocks, Tanja
2018-05-14
Previous studies on metabolic factors and bladder cancer (BC) risk have shown inconsistent results and have commonly not investigated associations separately by sex, smoking, and tumor invasiveness. Among 811 633 participants in six European cohorts, we investigated sex-specific associations between body mass index (BMI), mid-blood pressure (BP, [systolic+diastolic]/2), plasma glucose, triglycerides, total cholesterol and risk of BC overall, non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC). Among men, we additionally assessed additive interactions between metabolic factors and smoking on BC risk. During follow-up, 2 983 men and 754 women were diagnosed with BC. Among men, triglycerides and BP were positively associated with BC risk overall (hazard ratio [HR] per standard deviation [SD]: 1.17 [95% CI 1.06-1.27] and 1.09 [1.02-1.17], respectively), and among women, BMI was inversely associated with risk (HR: 0.90 [0.82-0.99]). The associations for BMI and BP differed between men and women (P interaction ≤0.005). Among men, BMI, cholesterol and triglycerides were positively associated with risk for NMIBC (HRs: 1.09 [95% CI 1.01-1.18], 1.14 [1.02-1.25], and 1.30 [1.12-1.48] respectively), and BP was positively associated with MIBC (HR: 1.23 [1.02-1.49]). Among women, glucose was positively associated with MIBC (HR: 1.99 [1.04-3.81]). Apart from cholesterol, HRs for metabolic factors did not significantly differ between MIBC and NMIBC, and there were no interactions between smoking and metabolic factors on BC. This study supports an involvement of metabolic aberrations in BC risk. Whilst some associations were significant only in certain sub-groups, there were generally no significant differences in associations by smoking or tumor invasiveness. This article is protected by copyright. All rights reserved. © 2018 UICC.
Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.
Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E
2017-02-14
Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Xie, Kui; Sheppard, Allan
2018-07-01
The metabolic requirements of differentiated neurons are significantly different from that of neuronal precursor and neural stem cells. While a re-programming of metabolism is tightly coupled to the neuronal differentiation process, whether shifts in mitochondrial mass, glycolysis, and oxidative phosphorylation are required (or merely consequential) in differentiation is not yet certain. In addition to providing more energy, enhanced metabolism facilitates differentiation by supporting increased neurotransmitter signaling and underpinning epigenetic regulation of gene expression. Both epidemiological and animal studies demonstrate that micronutrients (MNs) significantly influence many aspects of neonatal brain development, particularly neural migration and survival, neurite outgrowth, and process maturation. Here we review recent insights into the importance of metabolic reprogramming in neuronal differentiation, before considering evidence that micronutrient signaling may be key to regulating these processes. © 2018 WILEY Periodicals, Inc.
Zhang, Hongyou; Wu, Ling; Xu, Chuang; Xia, Cheng; Sun, Lingwei; Shu, Shi
2013-09-26
Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver-operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol and α-tocopherol in CK and SK, and to reveal differences between CK and SK. Our study shows that some new biomarkers of ketosis from plasma may find new metabolic changes to have clinically new utility and significance in diagnosis, prognosis, and prevention of ketosis in the future.
2013-01-01
Background Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. Results A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver–operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol and α-tocopherol in CK and SK, and to reveal differences between CK and SK. Conclusion Our study shows that some new biomarkers of ketosis from plasma may find new metabolic changes to have clinically new utility and significance in diagnosis, prognosis, and prevention of ketosis in the future. PMID:24070026
Metabolic syndrome and mammographic density in Mexican women
Rice, Megan; Biessy, Carine; Lajous, Martin; Bertrand, Kimberly A.; Tamimi, Rulla M.; Torres-Mejía, Gabriela; López-Ridaura, Ruy; Romieu, Isabelle
2014-01-01
Background Metabolic syndrome has been associated with an increased risk of breast cancer; however little is known about the association between metabolic syndrome and percent mammographic density, a strong predictor of breast cancer. Methods We analyzed cross-sectional data from 789 premenopausal and 322 postmenopausal women in the Mexican Teacher's Cohort (ESMaestras). Metabolic syndrome was defined according to the harmonized definition. We measured percent density on mammograms using a computer-assisted thresholding method. Multivariable linear regression was used to estimate the association between density and metabolic syndrome, as well as its components by state (Jalisco, Veracruz) and menopausal status (premenopausal, postmenopausal). Results Among premenopausal women in Jalisco, women with metabolic syndrome had higher percent density compared to those without after adjusting for potential confounders including BMI (difference = 4.76, 95%CI: 1.72, 7.81). Among the metabolic syndrome components, only low high-density lipoprotein levels (<50mg/dl) were associated with significantly higher percent density among premenopausal women in Jalisco (difference=4.62, 95%CI: 1.73, 7.52). Metabolic syndrome was not associated with percent density among premenopausal women in Veracruz (difference=-2.91, 95% CI: -7.19, 1.38), nor among postmenopausal women in either state. Conclusion Metabolic syndrome was associated with higher percent density among premenopausal women in Jalisco, Mexico, but was not associated with percent density among premenopausal women in Veracruz, Mexico or among postmenopausal women in either Jalisco or Veracruz. These findings provide some support for a possible role of metabolic syndrome in mammographic density among premenopausal women; however results were inconsistent across states and require further confirmation in larger studies. PMID:23682074
Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist
Fei, Yuxiang; Hou, Rong; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe
2017-01-01
The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204–0.342) in summer and 0.361 ml/g/h in winter (range 0.331–0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves. PMID:28306740
Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.
Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe
2017-01-01
The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.
Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat.
Liu, Caixiang; Ding, Feng; Hao, Fuhua; Yu, Men; Lei, Hehua; Wu, Xiangyu; Zhao, Zhengxi; Guo, Hongxiang; Yin, Jun; Wang, Yulan; Tang, Huiru
2016-02-10
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD(+). These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING.
Meierhofer, Melissa B; Johnson, Joseph S; Field, Kenneth A; Lumadue, Shayne S; Kurta, Allen; Kath, Joseph A; Reeder, DeeAnn M
2018-04-04
Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.
Reyngoudt, Harmen; Paemeleire, Koen; Descamps, Benedicte; De Deene, Yves; Achten, Eric
2011-09-01
Differences in brain energy metabolism have been found between migraine patients and controls in previous phosphorus magnetic resonance spectroscopy ((31)P-MRS) studies, most of them emphasizing migraine with aura (MwA). The aim of this study was to verify potential changes in resting-state brain energy metabolism in patients with migraine without aura (MwoA) compared to control subjects by (31)P-MRS at 3 tesla. Quantification was performed using the phantom replacement technique. MRS measurements were performed interictally and in the medial occipital lobe of 19 MwoA patients and 26 age-matched controls. A significantly decreased phosphocreatine concentration ([PCr]) was found as in previous studies. While adenosine triphosphate concentration ([ATP]) was considered to be constant in previously published work, this study found a significant decrease in the measured [ATP] in MwoA patients. The inorganic phosphate ([P(i)]) and magnesium ([Mg(2+)]) concentrations were not significantly different between MwoA patients and controls. The altered metabolic concentrations indicate that the energy metabolism in MwoA patients is impaired, certainly in a subgroup of patients. The actual decrease in [ATP] adds further strength to the theory of the presence of a mitochondrial component in the pathophysiology of migraine.
Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat
NASA Astrophysics Data System (ADS)
Liu, Caixiang; Ding, Feng; Hao, Fuhua; Yu, Men; Lei, Hehua; Wu, Xiangyu; Zhao, Zhengxi; Guo, Hongxiang; Yin, Jun; Wang, Yulan; Tang, Huiru
2016-02-01
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
Kawada, Tomoyuki; Otsuka, Toshiaki; Inagaki, Hirofumi; Wakayama, Yoko; Li, Qing; Katsumata, Masao
2009-10-01
The Framingham Risk Score (FRS) has frequently been used in the United States to predict the 10-year risk of coronary heart disease (CHD). Components of the metabolic syndrome and several lifestyle factors have also been evaluated to estimate the risk of CHD. To determine the relationship between the FRS and components of metabolic syndrome as coronary risk indicators, the authors conducted a cross-sectional study of 2,619 Japanese male workers, ranging in age from 40 to 64 years, at a single workplace. Although the estimation by the FRS and metabolic syndrome involved some different factors, significant association of the risk estimated by the 2 methods was observed. When logistic regression analysis was conducted with adjustment for several lifestyle factors, the FRS and serum insulin were found to be significantly associated with the risk of likelihood of metabolic syndrome. The odds ratios and 95% confidence intervals of FRS by per standard deviation increment and serum insulin by increasing 1 microIU/mL for the prediction of metabolic syndrome were 2.50 (2.17-2.88) and 1.24 (1.20-1.27), respectively. A preventive effect of abstaining from drinking every day and eating breakfast almost daily against the likelihood of metabolic syndrome was also observed. In conclusion, the FRS and insulin were found to be significantly associated with the risk of likelihood of metabolic syndrome, even after controlling for weight change.
Low doses of alcohol substantially decrease glucose metabolism in the human brain.
Volkow, Nora D; Wang, Gene-Jack; Franceschi, Dinko; Fowler, Joanna S; Thanos, Panayotis Peter K; Maynard, Laurence; Gatley, S John; Wong, Christopher; Veech, Richard L; Kunos, George; Kai Li, Ting
2006-01-01
Moderate doses of alcohol decrease glucose metabolism in the human brain, which has been interpreted to reflect alcohol-induced decreases in brain activity. Here, we measure the effects of two relatively low doses of alcohol (0.25 g/kg and 0.5 g/kg, or 5 to 10 mM in total body H2O) on glucose metabolism in the human brain. Twenty healthy control subjects were tested using positron emission tomography (PET) and FDG after placebo and after acute oral administration of either 0.25 g/kg, or 0.5 g/kg of alcohol, administered over 40 min. Both doses of alcohol significantly decreased whole-brain glucose metabolism (10% and 23% respectively). The responses differed between doses; whereas the 0.25 g/kg dose predominantly reduced metabolism in cortical regions, the 0.5 g/kg dose reduced metabolism in cortical as well as subcortical regions (i.e. cerebellum, mesencephalon, basal ganglia and thalamus). These doses of alcohol did not significantly change the scores in cognitive performance, which contrasts with our previous results showing that a 13% reduction in brain metabolism by lorazepam was associated with significant impairment in performance on the same battery of cognitive tests. This seemingly paradoxical finding raises the possibility that the large brain metabolic decrements during alcohol intoxication could reflect a shift in the substrate for energy utilization, particularly in light of new evidence that blood-borne acetate, which is markedly increased during intoxication, is a substrate for energy production by the brain.
Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P
2006-01-01
We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.
Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.
Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G
2018-01-01
Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.
Park, Shin-Ae; Park, Woo-Chul; Kwon, Yu-Jin
2017-01-01
Background Several studies have shown that family meals promote a well-balanced and healthier diet and weight status. Metabolic syndrome is related to eating behavior. This study investigated the association between eating family meals and the prevalence of metabolic syndrome. Methods This cross-sectional study included 4,529 subjects who participated in the Korea National Health and Nutrition Examination Survey IV and V (2007–2012). A self-reported questionnaire was used to assess dietary status. Metabolic syndrome was defined according to the guidelines of the modified version of the National Cholesterol Education Program Adult Treatment Panel III. We compared the overall quality of dietary intake in family meal. Results Nutritional adequacy ratios for energy, protein, calcium, vitamin A, vitamin B1, vitamin B2, vitamin C, niacin, and potassium, and the mean adequacy ratio were significantly higher in the family meal group (P<0.05). The prevalence of metabolic syndrome was lower in the family meal group (P<0.05). However, we observed no significant association between eating family meals and the prevalence of metabolic syndrome. Conclusion This study demonstrated that eating family meals appeared to be associated with nutrient adequacy. However, we observed no significant differences in prevalence of metabolic syndrome between the 2 groups. PMID:28572888
LIU, QIULI; WONG-RILEY, MARGARET T.T
2013-01-01
In rats, a critical period exists around postnatal day (P) 12-13, when an imbalance between heightened inhibition and suppressed excitation led to a weakened ventilatory and metabolic response to acute hypoxia. An open question was whether the two genders follow the same or different developmental trends throughout the first 3 postnatal weeks and whether the critical period exists in one or both genders. The present large-scale, in-depth ventilatory and metabolic study was undertaken to address this question. Our data indicated that: 1) the ventilatory and metabolic rates in both normoxia and acute hypoxia were comparable between the two genders from P0 to P21; thus, gender was never significant as a main effect; and 2) the age effect was highly significant in all parameters studies for both genders, and both genders exhibited a significantly weakened response to acute hypoxia during the critical period. Thus, the two genders have comparable developmental trends, and the critical period exists in both genders in rats. PMID:23797186
Partsalaki, Ioanna; Karvela, Alexia; Spiliotis, Bessie E
2012-01-01
The effects of carbohydrate-restricted (ketogenic) diets on metabolic parameters in children have been incompletely assessed. To compare the efficacy and metabolic impact of ketogenic and hypocaloric diets in obese children and adolescents. Fifty-eight obese subjects were placed on one of the two diets for 6 months. Anthropometric measurements, body composition, oral glucose/insulin tolerance test, lipidemic profile, high molecular weight (HMW) adiponectin, whole-body insulin sensitivity index (WBISI), and homeostatic model assessment-insulin resistance (HOMA-IR) were determined before and after each diet. Both groups significantly reduced their weight, fat mass, waist circumference, fasting insulin, and HOMA-IR (p = 0.009 for ketogenic and p = 0.014 for hypocaloric), but the differences were greater in the ketogenic group. Both groups increased WBISI significantly, but only the ketogenic group increased HMW adiponectin significantly (p = 0.025). The ketogenic diet revealed more pronounced improvements in weight loss and metabolic parameters than the hypocaloric diet and may be a feasible and safe alternative for children's weight loss.
Sperm traits in farmed and wild Atlantic salmon Salmo salar.
Camarillo-Sepulveda, N; Hamoutene, D; Lush, L; Burt, K; Volkoff, H; Fleming, I A
2016-02-01
Differences in sperm metabolism and morphology between wild and non-local farmed Atlantic salmon Salmo salar were assessed by measuring metabolic enzyme activities and length of sperm flagella. No differences were observed between wild and farmed S. salar sperm with regards to cell counts or any of the biochemical variables assessed. Flagella of sperm cells were significantly longer in wild than farmed S. salar; however, this did not result in higher energy levels or different fertilization rates. © 2015 The Fisheries Society of the British Isles.
Effect of Raw Crushed Garlic (Allium sativum L.) on Components of Metabolic Syndrome.
Choudhary, Prema Ram; Jani, Rameshchandra D; Sharma, Megh Shyam
2017-09-28
Metabolic syndrome consists of a group of risk factors characterized by abdominal obesity, hypertension, atherogenic dyslipidemia, hyperglycemia, and prothrombotic and proinflammatory conditions. Raw garlic homogenate has been reported to reduce serum lipid levels in animal model; however, no precise studies have been performed to evaluate the effect of raw crushed garlic (Allium sativum L.) on components of metabolic syndrome. Therefore, the present study was designed to investigate the effect of raw crushed garlic on components of metabolic syndrome. A total of 40 metabolic syndrome patients were randomly selected from the diabetic center of SP Medical College, Bikaner, Rajasthan, India. They underwent treatment with 100 mg/kg body weight raw crushed garlic 2 times a day with standard diet for 4 weeks; their anthropometric and serum biochemical variables were measured at both the beginning and the end of the study. Statistical analysis was performed using IBM SPSS version 20, and Student's paired "t" test was used to compare variables before and after treatment with garlic preparation. Raw crushed garlic significantly reduced components of metabolic syndrome including waist circumference (p < .05), systolic and diastolic blood pressure (p < .001), triglycerides (p < .01), fasting blood glucose (p < .0001) and significantly increased serum high-density lipoprotein cholesterol (p < .0001). There was no significant difference found in body mass index (p > .05) of patients with metabolic syndrome after consumption of raw crushed garlic for 4 weeks. Raw crushed garlic has beneficial effects on components of metabolic syndrome; therefore, it can be used as an accompanying remedy for prevention and treatment of patients with metabolic syndrome.
Huang, Jun; Mo, Jinhua; Zhao, Guili; Lin, Qiyin; Wei, Guanhui; Deng, Weinan; Chen, Dunjin; Yu, Bolan
2017-11-01
Although monitoring and diagnosis of fetal diseases in utero remains a challenge, metabolomics may provide an additional tool to study the etiology and pathophysiology of fetal diseases at a functional level. In order to explore specific markers of fetal disease, metabolites were analyzed in two separate sets of experiments using amniotic fluid from fetuses with Down syndrome (DS) as a model. Both sets included 10‑15 pairs of controls and cases, and amniotic fluid samples were processed separately; metabolomic fingerprinting was then conducted using UPLC‑MS. Significantly altered metabolites involved in respective metabolic pathways were compared in the two experimental sets. In addition, significantly altered metabolic pathways were further compared with the genomic characters of the DS fetuses. The data suggested that metabolic profiles varied across different experiments, however alterations in the 4 metabolic pathways of the porphyrin metabolism, bile acid metabolism, hormone metabolism and amino acid metabolism, were validated for the two experimental sets. Significant changes in metabolites of coproporphyrin III, glycocholic acid, taurochenodeoxycholate, taurocholate, hydrocortisone, pregnenolone sulfate, L‑histidine, L‑arginine, L‑glutamate and L‑glutamine were further confirmed. Analysis of these metabolic alterations was linked to aberrant gene expression at chromosome 21 of the DS fetus. The decrease in coproporphyrin III in the DS fetus may portend abnormal erythropoiesis, and unbalanced glutamine‑glutamate concentration was observed to be closely associated with abnormal brain development in the DS fetus. Therefore, alterations in amniotic fluid metabolites may provide important clues to understanding the etiology of fetal disease and help to develop diagnostic testing for clinical applications.
Pellizzon, Michael A; Ricci, Matthew R
2018-01-01
Diets used to induce metabolic disease are generally high in fat and refined carbohydrates and importantly, are usually made with refined, purified ingredients. However, researchers will often use a low fat grain-based (GB) diet containing unrefined ingredients as the control diet. Such a comparison between two completely different diet types makes it impossible to draw conclusions regarding the phenotypic differences driven by diet. While many compositional differences can account for this, one major difference that could have the greatest impact between GB and purified diets is the fiber content, both in terms of the level and composition. We will review recent data showing how fiber differences between GB diets and purified diets can significantly influence gut health and microbiota, which itself can affect metabolic disease development. Researchers need to consider the control diet carefully in order to make the best use of precious experimental resources.
Kijima, Sho; Tanaka, Hideki
2016-01-01
This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats. PMID:27483133
Kawagoe, Naoyuki; Kano, Osamu; Kijima, Sho; Tanaka, Hideki; Takayanagi, Masaaki; Urita, Yoshihisa
2016-01-01
This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6-12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22-25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats.
Göbl, Christian S.; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra
2016-01-01
Aims There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. Methods A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Results Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Conclusions Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile. PMID:27505055
Moreno-Indias, Isabel; Sánchez-Alcoholado, Lidia; Pérez-Martínez, Pablo; Andrés-Lacueva, Cristina; Cardona, Fernando; Tinahones, Francisco; Queipo-Ortuño, María Isabel
2016-04-01
This study evaluated the possible prebiotic effect of a moderate intake of red wine polyphenols on the modulation of the gut microbiota composition and the improvement in the risk factors for the metabolic syndrome in obese patients. Ten metabolic syndrome patients and ten healthy subjects were included in a randomized, crossover, controlled intervention study. After a washout period, the subjects consumed red wine and de-alcoholized red wine over a 30 day period for each. The dominant bacterial composition did not differ significantly between the study groups after the two red wine intake periods. In the metabolic syndrome patients, red wine polyphenols significantly increased the number of fecal bifidobacteria and Lactobacillus (intestinal barrier protectors) and butyrate-producing bacteria (Faecalibacterium prausnitzii and Roseburia) at the expense of less desirable groups of bacteria such as LPS producers (Escherichia coli and Enterobacter cloacae). The changes in gut microbiota in these patients could be responsible for the improvement in the metabolic syndrome markers. Modulation of the gut microbiota by using red wine could be an effective strategy for managing metabolic diseases associated with obesity.
Impact of diamond nanoparticles on neural cells.
Vaitkuviene, Aida; Ratautaite, Vilma; Ramanaviciene, Almira; Sanen, Kathleen; Paesen, Rik; Ameloot, Marcel; Petrakova, Vladimira; McDonald, Matthew; Vahidpour, Farnoosh; Kaseta, Vytautas; Ramanauskaite, Giedre; Biziuleviciene, Gene; Nesladek, Milos; Ramanavicius, Arunas
2015-02-01
Diamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen. Cells were cultured in medium with different concentrations (15, 50, 100 and 150 μg/ml) of DNPs. After 48 h of incubation, cell metabolic activity was evaluated by the XTT assay. For assessment of cellular metabolic activity, cells were also cultured on differently terminated nanocrystalline diamond (NCD) coatings in medium with 150 μg/ml of DNPs. Cell adhesion and morphology were evaluated by brightfield microscopy. Diamond nanoparticle internalization was determined by confocal microscopy. The obtained results showed that low concentrations (15, 50 and 100 μg/ml) of nanoparticles did not significantly affect the SH-SY5Y cell metabolic activity. However, a higher concentration (150 μg/ml) of DNPs statistically significantly reduced SH-SY5Y cell metabolic activity. After 48 h incubation with 150 μg/ml DNPs, cell metabolic activity was 23% lower than in medium without DNPs on standard tissue culture polystyrene. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bi, Yun-Feng; Zheng, Zhong; Pi, Zi-Feng; Liu, Zhi-Qiang; Song, Feng-Rui
2014-12-01
Using a UPLC-MS/MS (MRM) and cocktail probe substrates method, the metabolic fingerprint of the compatibility of Radix Aconite (RA) and Radix Paeoniae Alba (RPA) and its effect on CYP450 enzymes were investigated. These main CYP isoforms include CYP 1A2, CYP 2C, CYP 2E1, CYP 2D and CYP 3A. Compared with the inhibition effect of RA decoctions on CYP450 isoforms, their co-decoctions of RA and RPA with different proportions can decrease RA' inhibition on CYP3A, CYP2D, CYP2C and CYP1A2, but can not reduce RA' effect on CYP2E1. The metabolic fingerprints of RA decoction and co-decoctions with different proportions of RPA in CYP450 of rat liver were analyzed by UPLC-MS. Compared with the metabolic fingerprints of RA decoction, the intensity of diester-diterpenoid aconitum alkaloids decreased significantly, while the intensity of monoester-diterpenoid alkaloids significantly increased in the metabolic fingerprints of co-decoctions of RA and RPA. The results suggest that RA coadministration with RPA increased the degradation of toxic alkaloid and show the effect of toxicity reducing and efficacy enhancing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.F.; Lear, J.L.
We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less
Shibayama, Junko; Yuzyuk, Tatiana N.; Cox, James; Makaju, Aman; Miller, Mickey; Lichter, Justin; Li, Hui; Leavy, Jane D.; Franklin, Sarah; Zaitsev, Alexey V.
2015-01-01
Heart failure (HF) is accompanied by complex alterations in myocardial energy metabolism. Up to 40% of HF patients have dyssynchronous ventricular contraction, which is an independent indicator of mortality. We hypothesized that electromechanical dyssynchrony significantly affects metabolic remodeling in the course of HF. We used a canine model of tachypacing-induced HF. Animals were paced at 200 bpm for 6 weeks either in the right atrium (synchronous HF, SHF) or in the right ventricle (dyssynchronous HF, DHF). We collected biopsies from left ventricular apex and performed comprehensive metabolic pathway analysis using multi-platform metabolomics (GC/MS; MS/MS; HPLC) and LC-MS/MS label-free proteomics. We found important differences in metabolic remodeling between SHF and DHF. As compared to Control, ATP, phosphocreatine (PCr), creatine, and PCr/ATP (prognostic indicator of mortality in HF patients) were all significantly reduced in DHF, but not SHF. In addition, the myocardial levels of carnitine (mitochondrial fatty acid carrier) and fatty acids (12:0, 14:0) were significantly reduced in DHF, but not SHF. Carnitine parmitoyltransferase I, a key regulatory enzyme of fatty acid ß-oxidation, was significantly upregulated in SHF but was not different in DHF, as compared to Control. Both SHF and DHF exhibited a reduction, but to a different degree, in creatine and the intermediates of glycolysis and the TCA cycle. In contrast to this, the enzymes of creatine kinase shuttle were upregulated, and the enzymes of glycolysis and the TCA cycle were predominantly upregulated or unchanged in both SHF and DHF. These data suggest a systemic mismatch between substrate supply and demand in pacing-induced HF. The energy deficit observed in DHF, but not in SHF, may be associated with a critical decrease in fatty acid delivery to the ß-oxidation pipeline, primarily due to a reduction in myocardial carnitine content. PMID:25790351
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Goldstein, Rita Z.; Klein, Nelly; Wong, Christopher; Swanson, James M.; Shumay, Elena
2013-01-01
Aging is associated with reductions in brain glucose metabolism in some cortical and subcortical regions, but the rate of decrease varies significantly between individuals, likely reflecting genetic and environmental factors and their interactions. Here we test the hypothesis that the variant of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3), which has been associated with novelty seeking and sensitivity to environmental stimuli (negative and positive) including the beneficial effects of physical activity on longevity, influence the effects of aging on the human brain. We used positron emission tomography (PET) and [18F]fluoro-D-glucose (18FDG) to measure brain glucose metabolism (marker of brain function) under baseline conditions (no stimulation) in 82 healthy individuals (age range 22–55 years). We determined their DRD4 genotype and found an interaction with age: individuals who did not carry the 7-repeat allele (7R−, n = 53) had a significant (p<0.0001) negative association between age and relative glucose metabolism (normalized to whole brain glucose metabolism) in frontal (r = −0.52), temporal (r = −0.51) and striatal regions (r = −0.47, p<0.001); such that older individuals had lower metabolism than younger ones. In contrast, for carriers of the 7R allele (7R+ n = 29), these correlations with age were not significant and they only showed a positive association with cerebellar glucose metabolism (r = +0.55; p = 0.002). Regression slopes of regional brain glucose metabolism with age differed significantly between the 7R+ and 7R− groups in cerebellum, inferior temporal cortex and striatum. These results provide evidence that the DRD4 genotype might modulate the associations between regional brain glucose metabolism and age and that the carriers of the 7R allele appear to be less sensitive to the effects of age on brain glucose metabolism. PMID:23717434
Tsai, Han Hui; Yeh, Ching Ying; Su, Chien Tien; Chen, Chiou Jong; Peng, Shu Mei; Chen, Ruey Yu
2013-01-01
To explore the effectiveness of exercise program for banking and insurance workers and clarify the association between exercise, burnout, and metabolic syndrome components. In the process of the study, a practicable worksite exercise program was developed for bank and insurance enterprises. A three-month (12-wk) exercise course was conducted, and its benefits evaluated. Levels of burnout and metabolic syndrome components were analyzed after exercise intervention. After intervention, the indicators of burnout and metabolic syndrome components were significantly improved in both low and high intensity groups, and the improvement were expressed in reduction of waist circumference, systolic blood pressure, person burnout and work-related burnout. A dose-response of burnouts and metabolic syndrome components with exercise intensity are shown (p<0.05). Metabolic syndrome components were independently associated with burnout and exercise intensity in the crude model. After adjustment for potential confounders, waist circumference and systolic blood pressure differences showed significant associations with exercise intensity (p<0.05). This study demonstrated an effective approach to worksite exercise intervention and exercise intensity played an important role to alleviate damage between burnouts and metabolic syndrome components.
Xie, Fang; Peng, Fangyu
2017-01-01
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Understanding the meaning of lactate threshold in resistance exercises.
Garnacho-Castaño, M V; Dominguez, R; Maté-Muñoz, J L
2015-05-01
This study compares acute cardiorespiratory, metabolic, mechanical and rating of perceived effort (RPE) responses to 2 different prolonged constant-load exercises, half-squat (HS) and cycle ergometry, performed at a workload corresponding to the lactate threshold (LT). A total of 18 healthy subjects completed 5 exercise tests separated by 48 h rest periods: an incremental cycle ergometer test, a constant-load cycle ergometer test at LT intensity, a one-repetition maximum (1RM) HS test, an incremental HS test and a constant-load HS test at LT intensity. In both constant-load tests, cardiorespiratory, metabolic and RPE data were recorded. Mechanical responses before and after each test were assessed in terms of jump height and mean power measured in a counter movement jump (CMJ) test. In both exercises, cardiorespiratory and metabolic responses stabilized, though cardiorespiratory responses were significantly greater for cycle ergometry (P<0.001), with the exception of respiratory exchange ratio (RER), which was higher for HS (P=0.028). Mechanical fatigue was observed in only HS (P<0.001). In conclusion, different exercise modalities induced different yet stable acute cardiorespiratory and metabolic responses. Although such responses were significantly reduced in HS, greater mechanical fatigue was produced, most likely because of the particular muscle actions involved in this form of exercise. © Georg Thieme Verlag KG Stuttgart · New York.
Nishikawa, Masatomo; Watanabe, Hiromitsu; Kurahashi, Toshifumi
2017-09-01
To evaluate the impact of metabolic syndrome on the early recovery of urinary continence after robot-assisted radical prostatectomy. The present study included a total of 302 consecutive Japanese patients with clinically localized prostate cancer who underwent robot-assisted radical prostatectomy. In this study, postoperative urinary continence was defined as no leak or the use of a security pad. The continence status was assessed by interviews before and 1 and 3 months after robot-assisted radical prostatectomy. Metabolic syndrome was defined as follows: body mass index ≥25 kg/m 2 and two or more of the following: hypertension, diabetes mellitus and dyslipidemia. The effect of the presence of metabolic syndrome on the continence status of these patients was retrospectively examined. A total of 116 (38.4%) and 203 (67.2%) of the 302 patients were continent at 1 and 3 months after robot-assisted radical prostatectomy, respectively. A total of 31 (10.3%) patients were judged to have metabolic syndrome. Despite the operative time being longer in patients with metabolic syndrome, no significant differences were observed in the remaining preoperative, intraoperative or postoperative variables between patients with or without metabolic syndrome. On multivariate logistic regression analysis, metabolic syndrome and the duration of hospitalization were significantly correlated with the 1-month continence status. Similarly, metabolic syndrome and estimated blood loss during surgery were independent predictors of continence rates at 3 months after robot-assisted radical prostatectomy. These findings suggest that the presence of metabolic syndrome could have a significant impact on the early recovery of urinary continence after robot-assisted radical prostatectomy. © 2017 The Japanese Urological Association.
Uyar, Meral; Davutoğlu, Vedat; Aydın, Neriman; Filiz, Ayten
2013-05-01
The aim of this study is to compare metabolic syndrome with syndrome Z growing epidemic in terms of risk factors, demographic variables, and gender differences in our large cohort at southeastern area in Turkey. Data of patients admitted to sleep clinic in University of Gaziantep from January 2006 to January 2011 were retrospectively evaluated. ATP III and JNC 7 were used for defining metabolic syndrome and hypertension. Data of 761 patients were evaluated. Hypertension, diabetes mellitus, coronary artery disease, pulmonary hypertension, and left ventricular hypertrophy were more common in patients with syndrome Z than in patients without metabolic syndrome. Age, waist/neck circumferences, BMI, triglyceride, glucose, and Epworth sleepiness scale score were detected higher, whereas the minimum oxygen saturation during sleep was lower in patients with syndrome Z. Metabolic syndrome was more common in sleep apneic subjects than in controls (58 versus 30 %). Female sleep apneics showed higher rate of metabolic syndrome than those of males (74 versus 52 %). Hypertension, diabetes mellitus, coronary artery disease, and left ventricular hypertrophy were detected higher in males with syndrome Z than in males without metabolic syndrome. Snoring and excessive daytime sleepiness were detected higher in females with syndrome Z than in females without metabolic syndrome. Systemic/pulmonary hypertension, diabetes mellitus, and left ventricular hypertrophy were more common in females with syndrome Z than in females without metabolic syndrome. Complaints of headache and systemic/pulmonary hypertension were more common among females than males with syndrome Z. Female syndrome Z patients had lower minimum oxygen saturation than male patients with syndrome Z. Metabolic syndrome in sleep apneic patients is more prevalent than in controls. All metabolic syndrome parameters were significantly different among obstructive sleep apneic patients with respect to gender with more severe coronary risk factors in males.
METABOLIC SYNDROME AND DAILY AMBULATION IN CHILDREN, ADOLESCENTS, AND YOUNG ADULTS
Gardner, Andrew W.; Parker, Donald E.; Krishnan, Sowmya; Chalmers, Laura J.
2012-01-01
Purposes To compare daily ambulatory measures in children, adolescents, and young adults with and without metabolic syndrome, and to assess which metabolic syndrome components, demographic measures, and body composition measures are associated with daily ambulatory measures. Methods Two-hundred fifty subjects between the ages of 10 and 30 years were assessed on metabolic syndrome components, demographic and clinical measures, body fat percentage, and daily ambulatory strides, durations, and cadences during seven consecutive days. Forty-five of the 250 subjects had metabolic syndrome, as defined by the International Diabetes Federation. Results Subjects with metabolic syndrome ambulated at a slower daily average cadence than those without metabolic syndrome (13.6 ± 2.2 strides/min vs. 14.9 ± 3.2 strides/min; p=0.012), and they had slower cadences for continuous durations of 60 minutes (p=0.006), 30 minutes (p=0.005), 20 minutes (p=0.003), 5 minutes (p=0.002), and 1 minute (p=0.001). However, the total amount of time spent ambulating each day was not different (p=0.077). After adjustment for metabolic syndrome status, average cadence is linearly associated with body fat percentage (p<0.001) and fat mass (p<0.01). Group difference in average cadence was no longer significant after adjusting for body fat percentage (p=0.683) and fat mass (p=0.973). Conclusion Children, adolescents, and young adults with metabolic syndrome ambulate more slowly and take fewer strides throughout the day than those without metabolic syndrome, even though the total amount of time spent ambulating is not different. Furthermore, the detrimental influence of metabolic syndrome on ambulatory cadence is primarily a function of body fatness. PMID:22811038
Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha
2013-01-01
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462
Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha
2013-01-01
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.
Lee, Sunghee; Lee, Seung Ku; Kim, Jong Yeol; Cho, Namhan; Shin, Chol
2017-09-02
To examine whether the use of Sasang constitutional (SC) types, such as Tae-yang (TY), Tae-eum (TE), So-yang (SY), and So-eum (SE) types, increases the accuracy of risk prediction for metabolic syndrome. From 2001 to 2014, 3529 individuals aged 40 to 69 years participated in a longitudinal prospective cohort. The Cox proportional hazard model was utilized to predict the risk of developing metabolic syndrome. During the 14 year follow-up, 1591 incident events of metabolic syndrome were observed. Individuals with TE type had higher body mass indexes and waist circumferences than individuals with SY and SE types. The risk of developing metabolic syndrome was the highest among individuals with the TE type, followed by the SY type and the SE type. When the prediction risk models for incident metabolic syndrome were compared, the area under the curve for the model using SC types was significantly increased to 0.8173. Significant predictors for incident metabolic syndrome were different according to the SC types. For individuals with the TE type, the significant predictors were age, sex, body mass index (BMI), education, smoking, drinking, fasting glucose level, high-density lipoprotein (HDL) cholesterol level, systolic and diastolic blood pressure, and triglyceride level. For Individuals with the SE type, the predictors were sex, smoking, fasting glucose, HDL cholesterol level, systolic and diastolic blood pressure, and triglyceride level, while the predictors in individuals with the SY type were age, sex, BMI, smoking, drinking, total cholesterol level, fasting glucose level, HDL cholesterol level, systolic and diastolic blood pressure, and triglyceride level. In this prospective cohort study among 3529 individuals, we observed that utilizing the SC types significantly increased the accuracy of the risk prediction for the development of metabolic syndrome.
Oshima, Shunji; Haseba, Takeshi; Masuda, Chiaki; Kakimi, Ema; Kitagawa, Yasushi; Ohno, Youkichi
2013-06-01
It is said that blood alcohol concentrations (BAG) are higher in female than in male due to the smaller distribution volume of alcohol in female, whereas the rate of alcohol metabolism is faster in female than in males due to a higher activity of liver alcohol dehydrogenase (ADH) in female. However, it is also known that alcohol metabolism varies depending on drinking conditions. In this study, we evaluated the dose effect of alcohol on sex differences in alcohol metabolism in daily drinking conditions, where young adults (16 males, 15 females) with ALDH2*1/1 genotype drunk beer at a dose of 0.32g or 1.0g ethanol/kg body weight with a test meal (460kcal). This study was conducted using a randomized cross-over design. In the considerable drinking condition (1.0g/kg), BAG was significantly higher in females than in males, whereas the rate of alcohol metabolism (beta) was higher in female than in male. In the moderate drinking condition (0.32g/kg), however, no sex differences in alcohol metabolism including BAG were seen. These results suggest that an increased first pass metabolism through liver ADH in female, which may be caused by the reduction of gastric emptying rate due to the meal intake, contribute to the vanishing of sex difference in BAC in the moderate drinking condition.
Negri, Alfredo S.; Prinsi, Bhakti; Failla, Osvaldo; Scienza, Attilio; Espen, Luca
2015-01-01
The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan. PMID:26300900
Mkaouer, Bessem; Jemni, Monèm; Chaabene, Helmi; Amara, Samiha; Njah, Ahmad; Chtara, Mokhtar
2018-01-01
Abstract The rotation sequence-order differs from a gymnast to another according to the draw at the time of the qualifying competitions in men’s artistic gymnastics. Only the six best gymnasts start on the floor exercises, the others could start on any of the other five apparatuses. It has been demonstrated that some gymnastics events are physiologically less taxing than others; hence some gymnasts could experience lower and/or higher levels of cardiovascular and metabolic stress compared to others, depending on the apparatus they start with. In this regard, the objective of this investigation was to compare cardiovascular and metabolic variables between two different types of Olympic rotation-order; one began with the floor exercises and the other began with the pommel horse. Six elite male gymnasts took part in this investigation. Heart rates, synchronized with real-time video acquisition, as well as capillary lactate concentration following each apparatus routine were monitored. Cardiovascular and metabolic stresses were significantly higher when gymnasts started their rotation with the pommel horse in all apparatuses except the pommel horse. The floor exercises’ score was significantly affected when gymnasts ended up their competition on this apparatus. As a conclusion, starting gymnastics’ competition on the floor exercises implicates less cardiovascular and metabolic stress associated with better performance compared with the other rotation order. As a matter of fact, best gymnasts who start on this apparatus could have a slight advantage compared with the other athletes. PMID:29599870
Mkaouer, Bessem; Jemni, Monèm; Chaabene, Helmi; Amara, Samiha; Njah, Ahmad; Chtara, Mokhtar
2018-03-01
The rotation sequence-order differs from a gymnast to another according to the draw at the time of the qualifying competitions in men's artistic gymnastics. Only the six best gymnasts start on the floor exercises, the others could start on any of the other five apparatuses. It has been demonstrated that some gymnastics events are physiologically less taxing than others; hence some gymnasts could experience lower and/or higher levels of cardiovascular and metabolic stress compared to others, depending on the apparatus they start with. In this regard, the objective of this investigation was to compare cardiovascular and metabolic variables between two different types of Olympic rotation-order; one began with the floor exercises and the other began with the pommel horse. Six elite male gymnasts took part in this investigation. Heart rates, synchronized with real-time video acquisition, as well as capillary lactate concentration following each apparatus routine were monitored. Cardiovascular and metabolic stresses were significantly higher when gymnasts started their rotation with the pommel horse in all apparatuses except the pommel horse. The floor exercises' score was significantly affected when gymnasts ended up their competition on this apparatus. As a conclusion, starting gymnastics' competition on the floor exercises implicates less cardiovascular and metabolic stress associated with better performance compared with the other rotation order. As a matter of fact, best gymnasts who start on this apparatus could have a slight advantage compared with the other athletes.
Effects of smoking and aerobic exercise on male college students' metabolic syndrome risk factors.
Kim, Jee-Youn; Yang, Yuhao; Sim, Young-Je
2018-04-01
[Purpose] The aim was to investigate the effects of university students' smoking and aerobic exercise on metabolic syndrome risk factors. [Subjects and Methods] Twenty-three male students were randomly assigned to the following groups: exercise smoker (n=6), non-exercise smoker (n=6), exercise non-smoker (n=6), and non-exercise non-smoker (n=5). A basketball exercise program was conducted three times per week (70 minutes per session) for 8 weeks with exercise intensity set at 50-80% of heart rate reserve. After 8 weeks, the variables of risk factors for metabolic syndrome were obtained. [Results] Systolic blood pressure and diastolic blood pressure were significantly decreased in the exercise non-smoker group and significantly increased in the non-exercise smoker group. Waist circumference was significantly reduced in both exercise groups regardless of smoking and significantly increased in the non-exercise smoker group. Triglyceride, high-density lipoprotein-cholesterol, and fasting plasma glucose showed no differences between the groups. [Conclusion] Obesity and smoking management should be conducted together for students as well as for those with metabolic syndrome risk factors. It is recommended that more students participate in such programs, and exercise programs should be further developed and diversified to prevent metabolic syndrome and cardiovascular diseases.
Insulin Response Genes in Different Stages of Periodontal Disease
Yu, N.; Barros, S.P.; Zhang, S.; Moss, K.L.; Phillips, S.T.; Offenbacher, S.
2015-01-01
Bacterial infections are known to alter glucose metabolism within tissues via mechanisms of inflammation. We conducted this study to examine whether insulin response genes are differentially expressed in gingival tissues, comparing samples from experimental gingivitis and periodontitis subjects to those from healthy individuals. Total RNA was extracted from gingival biopsies from 26 participants: 8 periodontally healthy, 9 experimental gingivitis, and 9 periodontitis subjects. Gene expression patterns were evaluated with a polymerase chain reaction array panel to examine 84 candidate genes involved with glucose metabolism, insulin resistance, and obesity. Array data were evaluated with a t test adjusted by the false discover rate (P < 0.05), and ingenuity pathway analysis was performed for statistical testing of pathways. Although tissue samples were not sufficient to enable protein quantification, we confirmed the upregulation of the key gene using lipopolysaccharide-stimulated primary gingival epithelial cells by Western blot. The mRNA expression patterns of genes that are associated with insulin response and glucose metabolism are markedly different in experimental gingivitis subjects compared with healthy controls. Thirty-two genes are upregulated significantly by at least 2-fold, adjusted for false discover rate (P < 0.05). Periodontitis subjects show similar but attenuated changes in gene expression patterns, and no genes meet the significance criteria. Ingenuity pathway analysis demonstrates significant activation of the carbohydrate metabolism network in experimental gingivitis but not in periodontitis. G6PD protein increases in response to lipopolysaccharide stimulation in primary gingival epithelial cells, which is in the same direction as upregulated mRNA in tissues. Acute gingival inflammation may be associated with tissue metabolism changes, but these changes are not evident in chronic periodontitis. This study suggests that acute gingival inflammation may induce localized changes that modify tissue insulin/glucose metabolism. PMID:25924856
Correlation of Diffusion and Metabolic Alterations in Different Clinical Forms of Multiple Sclerosis
Hannoun, Salem; Bagory, Matthieu; Durand-Dubief, Francoise; Ibarrola, Danielle; Comte, Jean-Christophe; Confavreux, Christian; Cotton, Francois; Sappey-Marinier, Dominique
2012-01-01
Diffusion tensor imaging (DTI) and MR spectroscopic imaging (MRSI) provide greater sensitivity than conventional MRI to detect diffuse alterations in normal appearing white matter (NAWM) of Multiple Sclerosis (MS) patients with different clinical forms. Therefore, the goal of this study is to combine DTI and MRSI measurements to analyze the relation between diffusion and metabolic markers, T2-weighted lesion load (T2-LL) and the patients clinical status. The sensitivity and specificity of both methods were then compared in terms of MS clinical forms differentiation. MR examination was performed on 71 MS patients (27 relapsing remitting (RR), 26 secondary progressive (SP) and 18 primary progressive (PP)) and 24 control subjects. DTI and MRSI measurements were obtained from two identical regions of interest selected in left and right centrum semioval (CSO) WM. DTI metrics and metabolic contents were significantly altered in MS patients with the exception of N-acetyl-aspartate (NAA) and NAA/Choline (Cho) ratio in RR patients. Significant correlations were observed between diffusion and metabolic measures to various degrees in every MS patients group. Most DTI metrics were significantly correlated with the T2-LL while only NAA/Cr ratio was correlated in RR patients. A comparison analysis of MR methods efficiency demonstrated a better sensitivity/specificity of DTI over MRSI. Nevertheless, NAA/Cr ratio could distinguish all MS and SP patients groups from controls, while NAA/Cho ratio differentiated PP patients from controls. This study demonstrated that diffusivity changes related to microstructural alterations were correlated with metabolic changes and provided a better sensitivity to detect early changes, particularly in RR patients who are more subject to inflammatory processes. In contrast, the better specificity of metabolic ratios to detect axonal damage and demyelination may provide a better index for identification of PP patients. PMID:22479330
Thor, Peter; Bailey, Allison; Halsband, Claudia; Guscelli, Ella; Gorokhova, Elena; Fransson, Agneta
2016-01-01
Widespread ocean acidification (OA) is transforming the chemistry of the global ocean, and the Arctic is recognised as a region where the earliest and strongest impacts of OA are expected. In the present study, metabolic effects of OA and its interaction with food availability was investigated in Calanus glacialis from the Kongsfjord, West Spitsbergen. We measured metabolic rates and RNA/DNA ratios (an indicator of biosynthesis) concurrently in fed and unfed individuals of copepodite stages CII-CIII and CV subjected to two different pH levels representative of present day and the "business as usual" IPCC scenario (RCP8.5) prediction for the year 2100. The copepods responded more strongly to changes in food level than to decreasing pH, both with respect to metabolic rate and RNA/DNA ratio. However, significant interactions between effects of pH and food level showed that effects of pH and food level act in synergy in copepodites of C. glacialis. While metabolic rates in copepodites stage CII-CIII increased by 78% as a response to food under present day conditions (high pH), the increase was 195% in CII-CIIIs kept at low pH-a 2.5 times greater increase. This interaction was absent for RNA/DNA, so the increase in metabolic rates were clearly not a reaction to changing biosynthesis at low pH per se but rather a reaction to increased metabolic costs per unit of biosynthesis. Interestingly, we did not observe this difference in costs of growth in stage CV. A 2.5 times increase in metabolic costs of growth will leave the copepodites with much less energy for growth. This may infer significant changes to the C. glacialis population during future OA.
Chen, Yu-Chi; Wu, Hui-Ping; Hwang, Shinn-Jang; Li, I-Chuan
2010-11-01
The aim was to explore the prevalence of five components of metabolic syndrome with respect to gender and health-promoting lifestyle behaviours. Age- and gender-specific strategies might be useful as an approach to controlling metabolic syndrome. Prevention or delaying the onset of metabolic syndrome is of utmost importance in terms of chronic disease care in Taiwan. This was a cross-sectional study. Participants self-completed a questionnaire and replied via mail. The overall prevalence rate of metabolic syndrome was 24.07%, with men showing a higher rate than women. High blood pressure was the first abnormal component. The genders were significantly different in the prevalence of high blood pressure, hypertriglyceridemia and decreased HDL-C. Age was also a significant determinant and positively correlated to the total Health-Promoting Lifestyle Profile II (HPLP II) scale score (r = 0.11*), nutrition (r = 0.14**), physical activity (r = -0.16**) and health responsibility (r = 0.12**). Young, employed adult men were most at risk for having metabolic syndrome. It would seem that it is essential to control blood pressure and abdominal obesity to prevent metabolic syndrome; however, accomplishing this by trying to improve the level of physical activity does not seem to be a viable solution. Moreover, lifestyle modification has been proposed using gender-, age- and location-specific interventions. Nurses should not only strive to investigate the factors that lead to the adoption of unhealthy lifestyle behaviours by using the system approach, but also to empower people to participate in designing health programmes. By understanding the components of metabolic syndrome, it will be possible to develop more effective strategies for its prevention. Based on this, it will help if healthcare providers focus their efforts on the specific components of metabolic syndrome and on the individuals who are at the greatest risk of developing metabolic syndrome. © 2010 Blackwell Publishing Ltd.
Al-Rubean, Khalid; Youssef, Amira M; AlFarsi, Yousuf; Al-Sharqawi, Ahmad H; Bawazeer, Nahla; AlOtaibi, Mohammad T; AlRumaih, Fahd Issa; Zaidi, Muhammad Shoaib
2017-01-01
The prevalence of metabolic syndrome varies widely by ethnicity and by the criteria used in its definition. To identify the optimal cutoff values for waist circumference (WC), waist-to-hip ratio (WHR) and body mass index (BMI) for identifying metabolic syndrome among the Saudi population. Nationwide household cross-sectional population-based survey. Thirteen health sectors in Saudi Arabia. We used data for subjects in the Saudi Abnormal Glucose Metabolism and Diabetes Impact Study (SAUDI-DM), which was conducted from 2007 to 2009. Using International Diabetes Federation (IDF) criteria, metabolic syndrome and its different components were assessed using anthropometric measurements, blood pressure, fasting plasma glucose, triglycerides and HDL cholesterol. Receiver operating characteristic (ROC) curves were generated to assess sensitivity and specificity for different cutoff values of WC, WHR, and BMI. The Youden index was used to calculate the optimal cutoff value for each anthropometric measurement. Optimal cutoff value for WC, WHR, and BMI for identifying the risk of metabolic syndrome. The prevalence of two or more risk factors for metabolic syndrome was observed in 43.42% of the total cohort of 12126 study participants >=18 years of age. The presence of two or more risk factors were significantly higher among men (46.81%) than women (40.53%) (P < .001). The optimal cutoff values for WC, WHR, and BMI were 92 cm, 0.89, and 25 kg/m2 for men and 87 cm, 0.81 and 28 kg/m2 for women for identifying the risk of metabolic syndrome. The prevalence of elevated triglycerides, blood pressure, and fasting plasma glucose significantly increased with age for both genders. The proposed WC cutoff values were better than WHR and BMI in predicting metabolic syndrome and could be used for screening people at high risk for metabolic syndrome in the Saudi population. No direct measure of body fatness and fat distribution, cross-sectional design.
Liu, Yi-Yun; Zhou, Xin-Yu; Yang, Li-Ning; Wang, Hai-Yang; Zhang, Yu-Qing; Pu, Jun-Cai; Liu, Lan-Xiang; Gui, Si-Wen; Zeng, Li; Chen, Jian-Jun; Zhou, Chan-Juan; Xie, Peng
2017-01-01
Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that "Hereditary Disorder, Neurological Disease, Lipid Metabolism" was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.
Peterson, Joseph R.; Thor, ShengShee; Kohler, Lars; ...
2016-11-16
Here, while a few studies on the variations in mRNA expression and half-lives measured under different growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we present the first comprehensive study for a model methanogen. As a result, we use expression and half-life data for the methanogen Methanosarcina acetivorans growing on fast- and slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coli where only small shifts in half-lives were observed, wemore » found that most mRNA have significantly longer half-lives for slow growth on acetate compared to fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism. Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant differences in pathway flux and production of metabolites were predicted for the three growth substrates. In conclusion, this study provides the first global picture of differential expression and half-lives for a class II methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional modification). We found that more than half of genes in metabolism were controlled by degradation. Our results suggest that M. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and more generally that degradation could play a much greater role in optimizing an organism’s metabolism than previously thought.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Joseph R.; Thor, ShengShee; Kohler, Lars
Here, while a few studies on the variations in mRNA expression and half-lives measured under different growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we present the first comprehensive study for a model methanogen. As a result, we use expression and half-life data for the methanogen Methanosarcina acetivorans growing on fast- and slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coli where only small shifts in half-lives were observed, wemore » found that most mRNA have significantly longer half-lives for slow growth on acetate compared to fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism. Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant differences in pathway flux and production of metabolites were predicted for the three growth substrates. In conclusion, this study provides the first global picture of differential expression and half-lives for a class II methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional modification). We found that more than half of genes in metabolism were controlled by degradation. Our results suggest that M. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and more generally that degradation could play a much greater role in optimizing an organism’s metabolism than previously thought.« less
Syed, Raisa; Shibata, Noreene M; Kharbanda, Kusum K; Su, Ruijun J; Olson, Kristin; Yokoyama, Amy; Rutledge, John C; Chmiel, Kenneth J; Kim, Kyoungmi; Halsted, Charles H; Medici, Valentina
2016-05-01
Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.
Larsen, I; Welde, B; Martins, C; Tjønna, A E
2014-06-01
Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ± .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P < 0.001) between 4-AIT, CME, and 1-AIT. Total EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon.
Gillard, Gareth; Harvey, Thomas N; Gjuvsland, Arne; Jin, Yang; Thomassen, Magny; Lien, Sigbjørn; Leaver, Michael; Torgersen, Jacob S; Hvidsten, Torgeir R; Vik, Jon Olav; Sandve, Simen R
2018-03-01
Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration. © 2018 John Wiley & Sons Ltd.
Kikuchi, Rieko; Irie, Junichiro; Yamada-Goto, Nobuko; Kikkawa, Eri; Seki, Yosuke; Kasama, Kazunori; Itoh, Hiroshi
2018-06-01
Bariatric surgery improves metabolic diseases and alters the intestinal microbiota in animals and humans, but different procedures reportedly have different impacts on the intestinal microbiota. We developed laparoscopic sleeve gastrectomy with duodenojejunal bypass (LSG-DJB) as an alternative to laparoscopic Roux-en-Y gastric bypass (LRYGB) in addition to laparoscopic sleeve gastrectomy (LSG) for Japanese patients with obesity. We investigated the precise change in the intestinal microbiota induced by these procedures in the present study. A prospective observational study of 44 Japanese patients with obesity was conducted [22 patients underwent LSG, 18 underwent LSG-DJB, and 4 underwent laparoscopic adjustable gastric banding (LAGB)]. The patients' clinical parameters and intestinal microbiota were investigated before and for 6 months after surgery. The microbiota was analyzed by a 16S rDNA method. LSG and LSG-DJB significantly improved the metabolic disorders in the patients with obesity. The proportion of the phylum Bacteroidetes and order Lactobacillales increased significantly in the LSG group, and that of the order Enterobacteriales increased significantly in the LSG-DJB group. LSG and LSG-DJB improved obesity and type 2 diabetes in Japanese patients with obesity, but the impact of LSG-DJB on the intestinal microbiota differed from that of LSG. This difference in the impact on the intestinal environment could explain the different efficacies of LSG and LSG-DJB in terms of their ability to resolve metabolic disorders in the clinical setting.
Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C
2012-08-29
Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.
The Educated Guess: Determining Drug Doses in Exotic Animals Using Evidence-Based Medicine.
Visser, Marike; Oster, Seth C
2018-05-01
Lack of species-specific pharmacokinetic and pharmacodynamic data is a challenge for pharmaceutical and dose selection. If available, dose extrapolation can be accomplished via basic equations. If unavailable, several methods have been described. Linear scaling uses an established milligrams per kilograms dose based on weight. This does not allow for differences in species drug metabolism, sometimes resulting in toxicity. Allometric scaling correlates body weight and metabolic rate but fails for drugs with significant hepatic metabolism and cannot be extrapolated to avians or reptiles. Evidence-based veterinary medicine for dose design based on species similarity is discussed, considering physiologic differences between classes. Copyright © 2018 Elsevier Inc. All rights reserved.
Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes
Dugan, Hilary; Woolway, R. Iestyn; Santoso, Arianto; Corman, Jessica; Jaimes, Aline; Nodine, Emily; Patil, Vijay; Zwart, Jacob A.; Brentrup, Jennifer A.; Hetherington, Amy; Oliver, Samantha K.; Read, Jordan S.; Winters, Kirsten; Hanson, Paul; Read, Emily; Winslow, Luke; Weathers, Kathleen
2016-01-01
Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to model gas exchange with the atmosphere. Theoretical and empirically based models of krange in complexity from wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological Observatory Network (GLEON) to study how model choice of kinfluenced estimates of lake metabolism and gas exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were substantially different between models and, at an annual scale, resulted in significantly different estimates of lake metabolism and gas exchange with the atmosphere.
The cerebral neurobiology of anxiety, anxiety displacement, and anxiety denial.
Gottschalk, L A; Fronczek, J; Abel, L; Buchsbaum, M S; Fallon, J H
2001-01-01
Previous studies examining the relationship of anxiety scores, derived from the content analysis of speech of normal individuals, have revealed that the anxiety scores occurring in the dreams associated with rapid eye movement (REM) sleep are significantly correlated with localized cerebral glucose metabolic rates assessed by positron emission tomography (PET) scanning. These significant intercorrelations occur in different cerebral areas when the anxiety scores are obtained from mental experiences reported during non-REM sleep or during wakeful silent mentation. The purpose of the present study was to examine the intercorrelations found between anxiety attributed to the self, anxiety-displacement, and anxiety denial measured from computerized content analysis of 5-min verbal reports of subjective thoughts and feelings obtained from wakeful normal subjects and localized cerebral glucose metabolic rates during PET scanning. The subjects were 10 wakeful young males. Their anxiety scores were derived from computerized content analysis of 5-min reports they gave of their subjective thoughts, feelings and fantasies during a 30-min period following an intravenous injection of F D-deoxyglucose (FDG). The subjects were moved 32--45 min after this injection to obtain a PET scan, which records all of the localized cerebral glucose metabolic rates during the 30 min following the FDG injection. Significant intercorrelations of localized cerebral glucose metabolic rates with the scores of self-anxiety, anxiety displacement, and anxiety-denial were found in dissimilar cerebral locations depending on the type of anxiety involved. The significant correlations occurred in brain regions known to be associated with the functions of emotions, cognition, memory, and vision. Specific combinations of cerebral areas, based on glucose metabolic rates, appear to distinguish and be associated with different verbal expressions of anxiety. Replication of this preliminary research will be carried out. Copyright 2001 S. Karger AG, Basel
Romualdi, D; De Cicco, S; Busacca, M; Gagliano, D; Lanzone, A; Guido, M
2013-09-01
The estrogenic component of estro- progestin (EP) is responsible for a negative impact on the metabolic and lipid assessment in women with polycystic ovary syndrome (PCOS). To evaluate the risk/benefit ratio of two EP combinations, containing the same progestin (3 mg drospirenone) and a different dose of ethinyl-estradiol (EE) (20 vs 30 μg) and to compare their effects on the clinical and endocrine-metabolic parameters in normal-weight PCOS women. In this randomized pilot study, we enrolled 30 young normal-weight PCOS women. Fifteen subjects were allocated to group A (20 μg EE) and 15 PCOS subjects to group B (30 μg EE). Hirsutism score, hormonal assays, oral glucose tolerance test, euglycemic hyperinsulinemic clamp and lipid profile were performed at baseline, and after 6 and 12 months of therapy. Main outcome measures were signs of hyperandrogenism, glucose and insulin metabolism, lipid profile. Both treatment regimens induced a significant improvement in hirsutism score, testosterone, DHEAS, and SHBG levels. Androstenedione significantly dropped only in patients of Group A, while 17(OH)P only in those from Group B. Both the formulations did not significantly modify gluco-insulinemic metabolism. Total cholesterol, LDL cholesterol, and HDL cholesterol levels significantly increased in both groups. Triglycerides levels, which increased as well, resulted more markedly influenced by the formulation with 30 μg EE. In association with drospirenone, 20 μg EE results as effective as 30 μg in improving clinical and hormonal features of normal-weight PCOS women, while exhibiting a milder influence on lipidic parameters.
Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.
Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco
2015-12-01
To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits.
Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile
Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco
2015-01-01
Abstract To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese. A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile. BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile. Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits. PMID:26717356
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-01-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-12-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.
Halama, Anna; Guerrouahen, Bella S.; Pasquier, Jennifer; Satheesh, Noothan J.; Suhre, Karsten; Rafii, Arash
2017-01-01
The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment – a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4+EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer – endothelial cells interaction. We demonstrated that “Warburg effect” is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment. PMID:28051182
Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo
2013-08-01
Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.
Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.
Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte
2015-12-01
Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
GH and IGF1: roles in energy metabolism of long-living GH mutant mice.
Brown-Borg, Holly M; Bartke, Andrzej
2012-06-01
Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.
Ulas, Turgay; Buyukhatipoglu, Hakan; Kirhan, Idris; Dal, Mehmet Sinan; Ulas, Sevilay; Demir, Mehmet Emin; Eren, Mehmet Ali; Ucar, Mehmet; Hazar, Abdussamet; Kurkcuoglu, Ibrahim Can; Aksoy, Nurten
2013-04-01
The aim of this study was to evaluate the oxidative stress and metabolic activities of nurses working day and night shifts. Intensive care unit (ICU) (n=70) and ordinary service (OS) nurses (n=70) were enrolled in the study. Just before and the end of the shifts, blood samples were obtained to measure the participants' oxidative stress parameters. Metabolic activities were analyzed using the SenseWear Armband. Oxidative stress parameters were increased at the end of the shifts for all OS and ICU nurses compared to the beginning of the shifts. Compared to the OS nurses, the ICU nurses' TAS, TOS, and OSI levels were not significantly different at the end of the day and night shifts. The metabolic activities of the OS and ICU nurses were found to be similar. As a result, the OS and ICU nurses' oxidative stress parameters and metabolic activities were not different, and all of the nurses experienced similar effects from both the day and night shifts.
Aminkeng, F; Ross, C J D; Rassekh, S R; Brunham, L R; Sistonen, J; Dube, M-P; Ibrahim, M; Nyambo, T B; Omar, S A; Froment, A; Bodo, J-M; Tishkoff, S; Carleton, B C; Hayden, M R
2014-04-01
There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n=372) and European (n=958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care.
Aminkeng, F; Ross, CJD; Rassekh, SR; Brunham, LR; Sistonen, J; Dube, M-P; Ibrahim, M; Nyambo, TB; Omar, SA; Froment, A; Bodo, J-M; Tishkoff, S; Carleton, BC; Hayden, MR
2015-01-01
There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n = 372) and European (n = 958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care. PMID:23588107
Eiler, Alexander; Zaremba-Niedzwiedzka, Katarzyna; Martínez-García, Manuel; McMahon, Katherine D; Stepanauskas, Ramunas; Andersson, Siv G E; Bertilsson, Stefan
2014-01-01
Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities. PMID:24118837
Zhang, Lijuan; Cordeiro, Lorraine S.; Liu, Jinghua; Ma, Yunsheng
2017-01-01
The effect of skipping breakfast on health, especially in adults, remains a controversial topic. A secondary data analysis was conducted to examine associations between breakfast eating patterns and weight loss, nutrient intake, and metabolic parameters among participants with metabolic syndrome (MetS) (n = 240). Three randomly selected 24-h dietary recalls were collected from each participant at baseline and at the one-year visit. Skipped breakfast was seen in 32.9% at baseline and in 17.4% at the one-year visit, respectively. At baseline, after adjustment for demographics and physical activity, participants who ate breakfast had a higher thiamin, niacin, and folate intake than did breakfast skippers (p < 0.05); other selected parameters including body weight, dietary quality scores, nutrient intake, and metabolic parameters showed no significant differences between the two groups (p ≥ 0.05). From baseline to one year, after adjustment for covariates, mean fat intake increased by 2.7% (95% confidence intervals (CI): −1.0, 6.5%) of total energy in breakfast skippers in comparison to the 1.2% decrease observed in breakfast eaters (95% CI: −3.4, 1.1%) (p = 0.02). Mean changes in other selected parameters showed no significant differences between breakfast skippers and eaters (p > 0.05). This study did not support the hypothesis that skipping breakfast has impact on body weight, nutrient intakes, and selected metabolic measures in participants with MetS. PMID:28420112
Effects of castration on expression of lipid metabolism genes in the liver of korean cattle.
Baik, Myunggi; Nguyen, Trang Hoa; Jeong, Jin Young; Piao, Min Yu; Kang, Hyeok Joong
2015-01-01
Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.
Park, Shin-Eui; Choi, Nam-Gil; Jeong, Gwang-Woo
2017-06-01
Proton magnetic resonance spectroscopy (1H-MRS) was used to evaluate metabolic changes in the dorsolateral prefrontal cortex (DLPFC) in patients with obsessive-compulsive disorder (OCD). In total, 14 OCD patients (mean age 28.9±7.2 years) and 14 healthy controls (mean age 32.6±7.1 years) with no history of neurological and psychiatric illness participated in this study. Brain metabolite concentrations were measured from a localised voxel on the right DLPFC using a 3-Tesla 1H-MRS. The metabolic concentration of myo-inositol in patients with OCD increased significantly by 52% compared with the healthy controls, whereas glutamine/glutamate was decreased by 11%. However, there were no significant differences in N-acetylaspartate, choline, lactate and lipid between the two groups. These findings would be helpful to understand the pathophysiology of OCD associated with the brain metabolic abnormalities in the right DLPFC.
Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.
Zhao, Ran; Chen, Dong; Wu, Hualing
2017-11-15
To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.
Short-term variability in biomarkers of bone metabolism in sheep.
Sousa, Cristina P; de Azevedo, Jorge T; Reis, Rui L; Gomes, Manuela E; Dias, Isabel R
2014-01-01
Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.
Lin, Yi-Chun; Lai, Chien-Liang; Chan, Hung-Yu
2017-12-02
The correlation between different rehabilitation programs and the prevalence of metabolic syndrome in people with schizophrenia is unclear. We tested the association in chronic inpatients with schizophrenia of a psychiatric hospital in Taiwan. Patients with schizophrenia and age from 20 to 65 years old were included. The criteria of metabolic syndrome were according to the adapted Adult Treatment Protocol for Asians. According to different types of rehabilitations, patients were divided into work group, occupational therapy group and daily activities group. A total of 359 chronic inpatients with schizophrenia were recruited. Participants had a mean age of 45.9 years and the prevalence of metabolic syndrome was 37.3%. There was a significantly higher prevalence of metabolic syndrome in the work group than in the daily activity group (adjusted odds ratio (aOR) = 1.91, 95% CI = 1.019-3.564, p < 0.05) after adjusted related confounders. Other factors associated with higher prevalence of metabolic syndrome included old age, female gender, low psychotic symptoms severity and clozapine user. This study identified a high prevalence of metabolic syndrome in chronic inpatients with schizophrenia especially in patients with good occupational function. Further investigation of the relationship between the occupational function and metabolic syndrome is necessary for chronic inpatients with schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Yesbergenova-Cuny, Zhazira; Simons, Margaret; Chardon, Fabien; Armengaud, Patrick; Quilleré, Isabelle; Cukier, Caroline; Gibon, Yves; Limami, Anis M.; Nicolas, Stéphane; Brulé, Lenaïg; Lea, Peter J.; Maranas, Costas D.; Hirel, Bertrand
2017-01-01
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels. PMID:28396554
Yuan, An; Gong, Lihong; Luo, Lin; Dang, Jue; Gong, Xiaohong; Zhao, Mengjie; Li, Yan; Li, Yunxia; Peng, Cheng
2017-11-01
Forsythiae Fructus is an important Chinese medicine which shows a significant effect against inflammation. This study aimed to investigate the preventive anti-inflammation mechanism of Forsythiae Fructus by serum metabolomics strategy and compare the difference of the metabolism pathways between Forsythia extract and Forsythia oil in rat. Four groups (control group, model group, Forsythia extract group and Forsythia oil group) were orally administered 10mL/kg 0.5% Tween 80 solution, 10mL/kg 0.5% Tween 80 solution, 5g/kg Forsythia extract and 0.48mL/kg Forsythia oil respectively. 30min after drug administration, rat acute inflammation was induced by subcutaneous injection of carrageenan in the right paw in model group, Forsythia extract group and Forsythia oil group. After being administered Forsythia extract and Forsythia oil, the percentage of rat paw edema was significantly decreased (P<0.05) compared with model group. Metabolomics based on UPLC-Q-TOF-MS/MS was used to analyze the collected serum sample. Multivariate analysis was established for metabolomics analysis. According to Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) results, four groups were clearly separated. And thirteen alterative biomarkers were identified in the serum, namely PC (19:0/0:0), LysoPC (20:0), LysoPC (20:1), LysoPC (17:0), Sphingosine, Linoleic acid, 3R-hydroxy-butanoic acid (3-HB), 2-hydroxyhexadecanoic acid, Lactic acid, L-Threonine, L-Leucine, Maleic acid, Adipic acid. The change of biomarkers suggested that Forsythia extract affected Linoleic acid metabolism, Valine, leucine and isoleucine biosynthesis, Sphingolipid metabolism and Glycerophospholipid metabolism. Forsythia oil affected Sphingolipid metabolism and Glycerophospholipid metabolism. It indicated that Forsythia extract and Forsythia oil both showed significant preventive anti-inflammatory effect through acting on different metabolism pathways. Moreover, efficacy mechanism of Forsythiae Fructus could recover metabolites disturb in the body through affecting particular drug targets associated with the inflammatory pathway. Copyright © 2017. Published by Elsevier Masson SAS.
Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S
2015-05-01
The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fan, Jie; Xu, Jian Hui; Wang, Jia; Wang, Gui Zhen; Zhang, You Qin; Liu, Xing Zhen
2014-06-01
Despite some reports about the long-term metabolic outcomes after laparoscopic adjustable gastric banding (LAGB) in the Western populations, there are few reports on the Asian population whose body size and fat distribution are different. Therefore, this study was conducted to evaluate the medium-term effects of LAGB on weight loss and metabolic outcomes of obese patients with different body mass index (BMI) in China. A retrospective study was performed to review the 5-year follow-up data of 56 patients (18 males, 38 females) who received LAGB from November 2003 to May 2013 at the Shanghai Changhai Hospital. The patients were evaluated at years 1, 3, and 5 after operation in the outpatient clinic, and the weight loss, metabolic parameters, and remission of comorbidities were measured. The 56 patients preoperatively had BMI of 37.4 ± 6.0 kg/m2, with BMI < 35 kg/m2 in 19 patients (BMI <35 kg/m2 group), and BMI ≥ 35 kg/m2 in 37 patients (BMI ≥ 35 kg/m2 group). The percentages of excess weight loss (%EWL) of the BMI < 35 kg/m2 group at years 1, 3, and 5 were 65.2, 65.6, and 65.7%, respectively, indicating the majority of metabolic parameters were significantly improved (P < 0.05). However, in the BMI ≥ 35 kg/m2 group, the %EWL were 37.9, 34.8, and 26.5%, respectively, except at year 1 when the metabolic parameters improved significantly (P < 0.05), those at year 3 and year 5 did not significantly improve compared with the preoperative levels. Similar results were observed in the improvement of comorbidities. Relatively low medium-term weight loss, metabolic improvement, and resolution or remission of obesity-related comorbidities and high reoperation rate were observed in our population of patients with BMI ≥ 35 kg/m2 who underwent LAGB.
Lustrino, D; Tunholi-Alves, V M; Tunholi, V M; Marassi, M P; Pinheiro, J
2010-02-01
The influence of different photophases (0, 6, 12, 18 and 24 hours) on the triglycerides and total cholesterol contents in the hemolymph of A. fulica was evaluated, since there is no information in the literature about the influence of this factor on lipids metabolism in mollusks. After 2 and 4 weeks of exposure the snails were dissected. The cholesterol content at the 2nd and 4th weeks post exposure only varied significantly in the groups exposed at 24 hours and 0 hour of photophase, respectively. Probably, such increase may be a result of a rise in cholesterol biosynthesis and/or remodelling of cell membranes. There were no significant differences among the content of triglycerides in the snails exposed to 6, 12, 18 and 24 hours of photophase during two weeks. The snails exposed to intermediate photophase (6 and 12 hours) had the triglycerides content increased, ranging over values near to those observed in the group exposed to 0 hour. Results showed that triglycerides metabolism in A. fulica are more influenced by photoperiod than cholesterol metabolism. A negative relation is maintained between the triglycerides content in the hemolymph and the different photophases, with lower mobilisation of triglycerides under shorter photophases.
Understanding and manipulating plant lipid composition: Metabolic engineering leads the way
Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B
2014-01-01
The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765
Chiral Pesticide Pharmacokinetics: A Range of Values
Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...
Jimenez, Ana Gabriela; Williams, Joseph B
2014-10-01
The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.
The prevalence of the metabolic syndrome among arab americans.
Jaber, Linda A; Brown, Morton B; Hammad, Adnan; Zhu, Qian; Herman, William H
2004-01-01
To estimate the prevalence of the metabolic syndrome in Arab Americans by age, sex, and BMI and to examine the association between insulin resistance and each of the components of the metabolic syndrome. We studied a representative, cross-sectional, population-based sample of 542 Arab Americans aged 20-75 years. The metabolic syndrome was defined by Adult Treatment Panel III (ATP III) and World Health Organization (WHO) diagnostic criteria. Insulin resistance was estimated by homeostasis model assessment (HOMA-IR). The age-adjusted prevalence of the metabolic syndrome was 23% (95% CI 19-26%) by the ATP III definition and 28% (24-32%) by the WHO definition. Although the prevalence increased significantly with age and BMI in both sexes by both definitions, differences in estimates were noted. With ATP III, the age-specific rates were similar for men and women aged 20-49 years but were significantly higher for women aged >/=50 years. With WHO, rates were higher for men than women aged 20-49 years and similar for those aged >/=50 years. The most common component of the metabolic syndrome in men and women was low HDL cholesterol with the ATP III and the presence of glucose intolerance and HOMA-IR with the WHO. Strong associations between HOMA-IR and individual components of the metabolic syndrome were observed. After fitting a model with HOMA-IR as the outcome, waist circumference, triglyceride level, and fasting plasma glucose level were significantly associated with HOMA-IR. The metabolic syndrome is common among Arab Americans and is related to modifiable risk factors.
Chen, Yimin; Zhao, Ying; Feng, Linmin; Zhang, Jie; Zhang, Juanwen; Feng, Guofang
2016-04-27
Metabolic syndrome is closely associated with an increased risk for fatty liver disease morbidity and mortality. Recently, studies have reported that participants with fatty liver disease have higher serum alpha-fetoprotein levels than those without. We investigated the association between alpha-fetoprotein levels and the prevalence of metabolic syndrome in a Chinese asymptomatic population. A cross-sectional study was performed with 7,755 participants who underwent individual health examinations. Clinical and anthropometric parameters were collected and serum alpha-fetoprotein levels and other clinical and laboratory parameters were measured. Logistic regression analysis was used to examine associations between alpha-fetoprotein and metabolic syndrome. Participants with metabolic syndrome had significantly higher (p < 0.001) alpha-fetoprotein levels than those without, though all alpha-fetoprotein levels were within the reference interval. The association between the components of metabolic syndrome (central obesity, elevated blood pressure, elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose) and alpha-fetoprotein levels was evaluated. Alpha-fetoprotein levels in the elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose groups were significantly different (p=0.002, p < 0.001, p=0.020) compared with alpha-fetoprotein in the normal triglycerides, high-density lipoprotein cholesterol, and fasting plasma glucose groups. Logistic regression analyses showed an association between alpha-fetoprotein levels and increased risk for metabolic syndrome, the presence of reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose, but not with obesity, elevated blood pressure, or triglycerides. These results suggest a significant association between alpha-fetoprotein and metabolic syndrome.
Adams, Hugo Ja; de Klerk, John Mh; Fijnheer, Rob; Heggelman, Ben Gf; Dubois, Stefan V; Nievelstein, Rutger Aj; Kwee, Thomas C
2016-06-01
There is a lack of data on the effect of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy on brain glucose metabolism of diffuse large B-cell lymphoma (DLBCL) patients, as measured by 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, the prognostic value of brain glucose metabolism measurements is currently unknown. To investigate the use of FDG-PET for measurement of brain glucose metabolism in R-CHOP-treated DLBCL patients, and to assess its prognostic value. This retrospective study included DLBCL patients who underwent FDG-PET including the brain. FDG-PET metabolic volume products (MVPs) of the entire brain, cerebral cortex, basal ganglia, and cerebellum were measured, before and after R-CHOP therapy. Whole-body total lesion glycolysis (TLG) was also measured. Thirty-eight patients were included, of whom 18 had an appropriate end-of-treatment FDG-PET scan. There were no significant differences (P > 0.199) between pre- and post-treatment brain glucose metabolism metrics. Low basal ganglia MVP was associated with a significantly worse progression-free survival (PFS) and overall survival (OS) (P = 0.020 and P = 0.032), and low cerebellar MVP was associated with a significantly worse OS (P = 0.034). There were non-significant very weak correlations between pretreatment brain glucose metabolism metrics and TLG. In the multivariate Cox regression, only the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) remained an independent predictor of PFS (hazard ratio 3.787, P = 0.007) and OS (hazard ratio 2.903, P = 0.0345). Brain glucose metabolism was not affected by R-CHOP therapy. Low pretreatment brain glucose metabolism was associated with a worse outcome, but did not surpass the predictive value of the NCCN-IPI. © The Foundation Acta Radiologica 2015.
NASA Astrophysics Data System (ADS)
Evers, Michael; Salma, Nunciada; Birngruber, Reginald; Evans, Conor L.; Manstein, Dieter
2017-02-01
Traditional assessments of cellular metabolism are often destructive, time consuming and without visual information. Fluorescence lifetime imaging microscopy (FLIM) provides a highly sensitive, non-invasive, and label-free alternative. This study uses FLIM in combination with two-photon microscopy to investigate pharmacological induced metabolic changes of adipocytes via changes in the fluorescence of the metabolic co-factors NADH and FAD. In agreement with recent publications NADH fluorescence suggests the presence of four distinct lifetimes in cell culture and tissue with two unbound and two protein bound states which show different responses to treatment with metabolic modifiers. We evaluated the effects on NADH fluorescence lifetime after systematic manipulations to change the balance between oxidative and glycolytic metabolism using five pharmacological reagents - Oligomycin, 2-DG, FCCP, Rotenone, and Glucose - which interact with different parts of the metabolic pathway. We established several ratios between the four distinct lifetimes of NADH after treatment and compared the results to oxygen consumption rate and extracellular acidification rate. We demonstrated, for the first time, a correlation between the two unbound fluorescence lifetimes components and glycolytic and oxidative metabolic activity with a significant higher sensitivity compared to the commonly used free-to-bound ratio of NADH. Analyzing all four lifetime components of NADH has the potential to become a powerful tool to evaluate metabolic activity of adipocytes with subcellular resolution.
PI3K-resistant GSK3 controls adiponectin formation and protects from metabolic syndrome.
Chen, Hong; Fajol, Abul; Hoene, Miriam; Zhang, Bingbing; Schleicher, Erwin D; Lin, Yun; Calaminus, Carsten; Pichler, Bernd J; Weigert, Cora; Häring, Hans U; Lang, Florian; Föller, Michael
2016-05-17
Metabolic syndrome is characterized by insulin resistance, obesity, and dyslipidemia. It is the consequence of an imbalance between caloric intake and energy consumption. Adiponectin protects against metabolic syndrome. Insulin-induced signaling includes activation of PI3 kinase and protein kinase B (PKB)/Akt. PKB/Akt in turn inactivates glycogen synthase kinase (GSK) 3, a major regulator of metabolism. Here, we studied the significance of PI3K-dependent GSK3 inactivation for adiponectin formation in diet-induced metabolic syndrome. Mice expressing PI3K-insensitive GSK3 (gsk3(KI)) and wild-type mice (gsk3(WT)) were fed a high-fat diet. Compared with gsk3(WT) mice, gsk3(KI) mice were protected against the development of metabolic syndrome as evident from a markedly lower weight gain, lower total body and liver fat accumulation, better glucose tolerance, stronger hepatic insulin-dependent PKB/Akt phosphorylation, lower serum insulin, cholesterol, and triglyceride levels, as well as higher energy expenditure. Serum adiponectin concentration and the activity of transcription factor C/EBPα controlling the expression of adiponectin in adipose tissue was significantly higher in gsk3(KI) mice than in gsk3(WT) mice. Treatment with GSK3 inhibitor lithium significantly decreased the serum adiponectin concentration of gsk3(KI) mice and abrogated the difference in C/EBPα activity between the genotypes. Taken together, our data demonstrate that the expression of PI3K-insensitive GSK3 stimulates the production of adiponectin and protects from diet-induced metabolic syndrome.
Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo
2004-05-01
The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.
Kantermann, Thomas; Duboutay, Françoise; Haubruge, Damien; Hampton, Shelagh; Darling, Andrea L; Berry, Jacqueline L; Kerkhofs, Myriam; Boudjeltia, Karim Zouaoui; Skene, Debra J
2014-12-01
The aim of this pilot study was to explore the risk of metabolic abnormalities in steel workers employed in different shift-work rotations. Male workers in a steel factory [16 employed in a fast clockwise rotation (CW), 18 in slow counterclockwise rotation (CC), 9 day workers (DW); mean age 43.3 ± SD 6.8 years] with at least 5 years experience in their current work schedule participated. All workers provided fasting blood samples between 06:00 and 08:00 h for plasma glucose, insulin, apo-lipoproteins A and B (ApoA, ApoB), high- and low-density lipoproteins (HDL and LDL), total cholesterol (tCH), triglycerides (TG), minimally oxidized (mox) LDL, C-reactive protein (CRP), interleukin-8 (IL-8) and serum 25-hydroxyvitamin D (25(OH)D). HOMA index (homeostatic model assessment) was calculated to evaluate insulin resistance, beta cell function and risk of diabetes. Information on demographics, health, stimulants, sleep, social and work life, chronotype (phase of entrainment) and social jetlag (difference between mid-sleep on workdays and free days) as a surrogate for circadian disruption was collected by questionnaire. Neither chronotype nor social jetlag was associated with any of the metabolic risk blood markers. There were no significant differences in 25(OH)D, ApoA, ApoB, CRP, HDL, IL-8, insulin, LDL, mox-LDL, mox-LDL/ApoB ratio, tCH and TG levels between the three work groups. Although we did observe absolute differences in some of these markers, the small sample size of our study population might prevent these differences being statistically significant. Fasting glucose and HOMA index were significantly lower in CW compared to DW and CC, indicating lower metabolic risk. Reasons for the lower fasting glucose and HOMA index in CW workers remains to be clarified. Future studies of workers in different shift rotations are warranted to understand better the differential effects of shift-work on individual workers and their health indices.
Tyson L. Swetnam; Christopher D. O' Connor; Ann M. Lynch
2016-01-01
A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across...
The Effects of Aerobic Exercise on Estrogen Metabolism in Healthy Premenopausal Women
Smith, Alma J.; Phipps, William R.; Thomas, William; Schmitz, Kathryn H.; Kurzer, Mindy S.
2013-01-01
Background It is well accepted that exercise can decrease breast cancer risk. Limited clinical evidence suggests that this risk could be mediated through changes in estrogen metabolism in premenopausal women. Our objective was to investigate the effects of exercise on premenopausal estrogen metabolism pertinent to breast cancer risk. Methods Sedentary, healthy, young eumenorrheic women were randomized into an intervention of 30 minutes of moderate-to-vigorous aerobic exercise 5 times a week for approximately 16 weeks (n = 212), or into a usual-lifestyle sedentary control group (n = 179). Urinary levels of estrogens (estrone [E1], estradiol, and estriol) and nine estrogen metabolites were measured at baseline and at study end by liquid chromatography/tandem mass spectrometry. The ratios of 2-hydroxyestrone to 16α-hydroxyestrone (2-OHE1/16α-OHE1) and 2-OHE1 to 4-hydroxyestrone (2- OHE1/4-OHE1) were also calculated. Results The exercise intervention resulted in significant increases in aerobic fitness and lean body mass, and a significant decrease in percent body fat. For exercisers who completed the study (n = 165), 2-OHE1/16α-OHE1 increased significantly (P = 0.043), while E1 decreased significantly (P = 0.030) in control participants (n = 153). The change from baseline in 2-OHE1/16α-OHE1 was significantly different between groups (P = 0.045), even after adjustment for baseline values. Conclusions The exercise intervention resulted in a significant increase in the 2-OHE1/16α-OHE1 ratio, but no differences in other estrogen metabolites or ratios. Impact Our results suggest that changes in premenopausal estrogen metabolism may be a mechanism by which increased physical activity lowers breast cancer risk. PMID:23652373
Musharraf, Syed Ghulam; Iqbal, Ayesha; Ansari, Saqib Hussain; Parveen, Sadia; Khan, Ishtiaq Ahmad; Siddiqui, Amna Jabbar
2017-01-01
β-Thalassemia is one of the most prevalent forms of congenital blood disorders characterized by reduced hemoglobin levels with severe complications, affecting all dimensions of life. The mechanisms underlying the phenotypic heterogeneity of β-thalassemia are still poorly understood. We aimed to work over metabolite biomarkers to improve mechanistic understanding of phenotypic heterogeneity and hence better management of disorder at different levels. Untargeted serum metabolites were analyzed after protein precipitation and SPE (solid phase extraction) from 100 β-thalassemia patients and 61 healthy controls using GC-MS. 40 metabolites were identified having a significance difference between these two groups at probability of 0.05 and fold change >1.5. Out of these 40 metabolites, 17 were up-regulated while 23 were down-regulated. PCA and PLS-DA model was also created that revealed a fine separation with a sensitivity of 70% and specificity of 100% on external validation of samples. Metabolic pathway analysis revealed alteration in multiple pathways including glycolysis, pyruvate, propanoate, glycerophospholipid, galactose, fatty acid, starch and sucrose metabolism along with fatty acid elongation in mitochondria, glycerolipid, glyoxylate and dicarboxylate metabolism pointing towards the shift of metabolism in β-thalassemia patients in comparison to healthy individuals. PMID:28198811
Picó, Catalina; Palou, Mariona; Priego, Teresa; Sánchez, Juana; Palou, Andreu
2012-01-01
Epidemiological studies in humans and controlled intervention studies in animals have shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. The phenotypes of health or disease are hence the result of the interaction between genetic and environmental factors, starting right from conception. In this sense, gestation and lactation are disclosed as critical periods. Continuous food restriction during these stages may lead to permanent adaptations with lasting effects on the metabolism of the offspring and may influence the propensity to develop different chronic diseases associated with obesity. However, the different outcomes of these adaptations on later health may depend on factors such as the type, duration, period, and severity of the exposure to energy restriction conditions, and they are, in part, gender specific. A better understanding of the factors and mechanisms involved in metabolic programming, and their effects, may contribute significantly to the prevention of obesity, which is considered to be one of the major health concerns of our time. Here, the different outcomes of maternal food restriction during gestation and lactation in the metabolic health of offspring, as well as potential mechanisms underlying these effects are reviewed. PMID:23189059
Glanville, E J; Seebacher, F
2006-12-01
Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (U(crit)) shifted to the respective mean body temperatures during acclimation (cold=20 degrees C, warm=29 degrees C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.
Wiseman, Helen; Casey, Karen; Bowey, Elizabeth A; Duffy, Rosanna; Davies, Margaret; Rowland, Ian R; Lloyd, Antony S; Murray, Alistair; Thompson, Richard; Clarke, Don B
2004-09-01
Little information is currently available on the role of the gut microflora in modulating isoflavone bioavailability or on sex differences in isoflavone metabolism and bioavailability. We sought to determine whether chronic soy consumption influences isoflavone bioavailability as judged by plasma isoflavone concentrations and modified gut microflora activities [beta-glucoside hydrolysis and equol and O-desmethylangolensin (O-DMA) production]. We also examined whether sex differences in isoflavone metabolism exist. A randomized, parallel, controlled study design was used to compare a high-soy diet (104 +/- 24 mg total isoflavones/d) with a low-soy diet (0.54 +/- 0.58 mg total isoflavones/d) in 76 healthy young adults for 10 wk. Concentrations of isoflavones and their gut microflora metabolites in the plasma, urine, and feces were significantly higher in the subjects who consumed the high-soy diet than in those who consumed the low-soy diet. Concentrations of O-DMA in plasma and urine were higher in the men than in the women. Fecal bacteria from subjects consuming both diets could convert daidzein to equol ex vivo. Fecal beta-glucosidase activity was significantly higher in the subjects who consumed the high-soy diet than in those who consumed the low-soy diet. Although interindividual variation in isoflavone metabolism was high, intraindividual variation was low. Only concentrations of O-DMA in plasma and urine appeared to be influenced by sex. Chronic soy consumption does not appear to induce many significant changes to the gut metabolism of isoflavones other than higher beta-glucosidase activity.
Hernández-Alonso, Pablo; Cañueto, Daniel; Giardina, Simona; Salas-Salvadó, Jordi; Cañellas, Nicolau; Correig, Xavier; Bulló, Mònica
2017-07-01
The specific nutritional composition of nuts could affect different metabolic pathways involved in a broad range of metabolic diseases. We therefore investigated whether chronic consumption of pistachio nuts modifies the urine metabolome in prediabetic subjects. We designed a randomized crossover clinical trial in 39 prediabetic subjects. They consumed a pistachio-supplemented diet (PD, 50% carbohydrates, 33% fat, including 57 g/d of pistachios daily) and a control diet (CD, 55% carbohydrates, 30% fat) for 4 months each, separated by a 2-week wash-out. Nuclear magnetic resonance (NRM) was performed to determine changes in 24-h urine metabolites. Significant changes in urine metabolites according to the different intervention periods were found in uni- and multivariate analysis. Score plot of the first two components of the multilevel partial least squares discriminant analysis (ML-PLS-DA) showed a clear separation of the intervention periods. Three metabolites related with gut microbiota metabolism (i.e., hippurate, p-cresol sulfate and dimethylamine) were found decreased in PD compared with CD (P<.05). Moreover, cis-aconitate [intermediate of the tricarboxylic acid (TCA)] was also found decreased following PD compared with CD. Intragroup analysis showed that creatinine levels were significantly increased in PD (P=.023), whereas trimethylamine N-oxide (TMAO) was found significantly reduced following PD (P=.034). Our results suggest that chronic pistachio consumption may modulate some urinary metabolites related to gut microbiota metabolism and the TCA cycle; all associated with metabolic derangements associated with insulin resistance and Type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Kovacevic, Larisa; Lu, Hong; Caruso, Joseph A; Govil-Dalela, Tuhina; Thomas, Ronald; Lakshmanan, Yegappan
2017-06-01
Using a proteomic approach, we aimed to identify and compare the urinary excretion of proteins involved in lipid transport and metabolism in children with kidney stones and hypercalciuria (CAL), hypocitraturia (CIT), and normal metabolic work-up (NM), and in healthy controls (HCs). Additionally, we aimed to confirm these results using ELISA, and to examine the relationship between the urinary excretion of selected proteins with demographic, dietary, blood, and urinary parameters. Prospective, controlled, pilot study of pooled urine from CAL, CIT, and NM versus age- and gender-matched HCs, using liquid chromatography-mass spectrometry. Relative protein abundance was estimated using spectral counting. Results were confirmed by ELISA performed on individual samples. Of the 1,813 proteins identified, 230 met the above criteria. Of those, 5 proteins (apolipoprotein A-II [APOA2]; apolipoprotein A-IV [APOA4]; apolipoprotein C-III [APOA3]; fatty acid-binding protein, liver [FABPL]; fatty acid-binding protein, adipocyte [FABP4]) involved in lipid metabolism and transport were found in the CAL group, with significant differences compared with HCs. ELISA analysis indicated statistically significant differences in the urinary excretion of APOC3, APOA4, and FABPL in the CAL group compared with HCs. Twenty-four-hour urinary calcium excretion correlated significantly with concentrations of ApoC3 (r = 0.77, p < 0.001), and FABPL (r = 0.80, p = 0.005). We provide proteomic data showing increased urinary excretion of lipid metabolism/transport-related proteins in children with kidney stones and hypercalciuria. These findings suggest that abnormalities in lipid metabolism might play a role in kidney stone formation.
de Morais, Tercio Lemos; Giribela, Cassiana; Nisenbaum, Marcelo Gil; Guerra, Grazia; Mello, Nilson; Baracat, Edmundo; Consolim-Colombo, Fernanda M
2014-11-01
The use of combined oral contraceptives is widespread among hypertensive women despite being associated with increased cardiovascular risk. Contraceptives containing drospirenone, which has antimineralocorticoid properties, may have a positive or neutral effect on neurohumoral activation and metabolic homeostasis of hypertensive women at reproductive age. To evaluate the effect of combined oral contraceptive containing drospirenone+ethinylestradiol on the systemic blood pressure, metabolic variables and neurohumoral axis in hypertensive women in reproductive age. Prospective controlled trial with 56 hypertensive women allocated in two groups: 30 volunteers under oral combined contraceptive use and 26 volunteers using non-hormonal contraceptive methods. Subjects were tested before the introduction of the contraceptive method and 6 months after its use. For data acquisition, we used continuous non-invasive beat-to-beat blood pressure curve recordings and, for the biochemical and hormonal analyses two blood samples were obtained. Student's t test was used to determine differences between groups and moments and p<0.05 was considered statistically significant. Comparing antropometric and blood pressure measurements, cardiac sympatho-vagal modulation, baroreceptor sensitivity, metabolic and neurohumoral axis variables between baseline and after 6 months, no significant difference was detected in each group or between groups. Except serum triglyceride levels which increased in the group of women using EE+DRSP after 6 months of use. A contraceptive containing 20 mcg of ethinyl estradiol and 3 mg of drospirenone causes no significant changes in clinical and autonomic parameters, metabolic variables and neurohumoral axis of hypertensive women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Qiu-Yi; Song, Yong; Huang, Wei; Xiao, Li; Wang, Qiu-Shi; Feng, Gui-Mei
2016-01-01
Background: While combined oral contraceptives (COCs) are commonly used to treat polycystic ovary syndrome (PCOS), comparative data regarding metabolic effects of different progestogens on this patient population are missing. This study aimed to compare the different effects of drospirenone (DRP)-containing COCs with cyproterone acetate (CPA)-containing COCs, combined with metformin and lifestyle modifications in women with PCOS and metabolic disorders. Methods: Ninety-nine women with PCOS and a metabolic disorder between January 2011 and January 2013 were enrolled into this prospective randomized clinical trial. Participants were randomized into two groups such as DRP-containing COCs, and CPA-containing COCs. Participants took COCs cyclically for 6 months, combined with metformin administration (1.5 g/d) and lifestyle modifications (diet and exercise). Clinical measures and biochemical and hormone profiles were compared. Comparisons for continuous variables were evaluated with paired and unpaired Student's t-tests. The Wilcoxon signed rank test was used when the data were not normally distributed. Analysis of covariance was used to control for age, body mass index (BMI), and baseline data of each analyzed parameter when compared between the two groups. Results: A total of 68 patients have completed the study. The combination regimen of COCs, metformin, and lifestyle modifications in these patients resulted in a significant decrease in BMI, acne, and hirsutism scores when compared to baseline levels in both groups (P < 0.05). Blood pressure (BP) was significantly different in the CPA group when compared to baseline (75.14 ± 6.77 mmHg vs. 80.70 ± 5.60 mmHg, P < 0.01), and after 6 months of treatment, only the change in systolic BP was significantly different between the two groups (4.00 [–6.00, 13.00] mmHg vs. –3.50 [–13.00, 9.00] mmHg, P = 0.009). Fasting glucose, fasting insulin, and homeostasis model assessment-insulin resistance decreased significantly in the DRP group (5.40 ± 0.41 mmol/L vs. 5.21 ± 0.32 mmol/L, P = 0.041; 13.90 [10.50, 18.40] μU/ml vs. 10.75 [8.60, 13.50] μU/ml, P = 0.020; 3.74 [2.85, 4.23] vs. 2.55 [1.92, 3.40], P = 0.008) but did not differ between the two groups. While individual lipid profiles increased in both groups, no statistically significant difference was observed. Conclusions: DRP-containing COCs combined with metformin and lifestyle modifications could better control BP and correct carbohydrate metabolism in women with PCOS and metabolic disorders compared with CPA-containing COCs. Trial Registration: Chinese Clinical Trial Registry, ChiCTR-TRC-11001143; http://www.chictr.org.cn/showproj.aspx?proj=8395. PMID:27064030
Measuring Biological Age via Metabonomics: The Metabolic Age Score.
Hertel, Johannes; Friedrich, Nele; Wittfeld, Katharina; Pietzner, Maik; Budde, Kathrin; Van der Auwera, Sandra; Lohmann, Tobias; Teumer, Alexander; Völzke, Henry; Nauck, Matthias; Grabe, Hans Jörgen
2016-02-05
Chronological age is one of the most important risk factors for adverse clinical outcome. Still, two individuals at the same chronological age could have different biological aging states, leading to different individual risk profiles. Capturing this individual variance could constitute an even more powerful predictor enhancing prediction in age-related morbidity. Applying a nonlinear regression technique, we constructed a metabonomic measurement for biological age, the metabolic age score, based on urine data measured via (1)H NMR spectroscopy. We validated the score in two large independent population-based samples by revealing its significant associations with chronological age and age-related clinical phenotypes as well as its independent predictive value for survival over approximately 13 years of follow-up. Furthermore, the metabolic age score was prognostic for weight loss in a sample of individuals who underwent bariatric surgery. We conclude that the metabolic age score is an informative measurement of biological age with possible applications in personalized medicine.
Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover.
Denkert, Carsten; Budczies, Jan; Weichert, Wilko; Wohlgemuth, Gert; Scholz, Martin; Kind, Tobias; Niesporek, Silvia; Noske, Aurelia; Buckendahl, Anna; Dietel, Manfred; Fiehn, Oliver
2008-09-18
Apart from genetic alterations, development and progression of colorectal cancer has been linked to influences from nutritional intake, hyperalimentation, and cellular metabolic changes that may be the basis for new diagnostic and therapeutic approaches. However, in contrast to genomics and proteomics, comprehensive metabolomic investigations of alterations in malignant tumors have rarely been conducted. In this study we investigated a set of paired samples of normal colon tissue and colorectal cancer tissue with gas-chromatography time-of-flight mass-spectrometry, which resulted in robust detection of a total of 206 metabolites. Metabolic phenotypes of colon cancer and normal tissues were different at a Bonferroni corrected significance level of p=0.00170 and p=0.00005 for the first two components of an unsupervised PCA analysis. Subsequent supervised analysis found 82 metabolites to be significantly different at p<0.01. Metabolites were connected to abnormalities in metabolic pathways by a new approach that calculates the distance of each pair of metabolites in the KEGG database interaction lattice. Intermediates of the TCA cycle and lipids were found down-regulated in cancer, whereas urea cycle metabolites, purines, pyrimidines and amino acids were generally found at higher levels compared to normal colon mucosa. This study demonstrates that metabolic profiling facilitates biochemical phenotyping of normal and neoplastic colon tissue at high significance levels and points to GC-TOF-based metabolomics as a new method for molecular pathology investigations.
Metabolic adaptations of overwintering European common lizards (Lacerta vivipara).
Voituron, Y; Hérold, J P; Grenot, C
2000-01-01
The European common lizard Lacerta vivipara, a reptile of cold-temperate climates, provides us an interesting model of low-temperature adaptation. Indeed its unique cold-hardiness strategy, which employs both freeze tolerance and freeze avoidance, may be seen as the primary reason for its large distribution, which extends from Spain to beyond the Arctic circle. To study the metabolism supporting this capacity, we used three techniques: two techniques of calorimetry (oxygen consumption and thermogenesis) and nuclear magnetic resonance spectroscopy. These techniques were used to examine the metabolic balance and the different molecular pathways used between three different periods through the year (September, January, and May). The results show a significant 20% augmentation of winter anaerobic metabolism compared to other periods of the year. This is mainly because of an activation of the lactic fermentation pathway leading to an increase of lactate concentration (>34% in winter). Furthermore, glucose, which increases some 245% in winter, is used as antifreeze and metabolic substrate. Furthermore, this study provides evidence that the physiological adaptations of the common lizard differ from those of other ectotherms such as Rana sylvatica. Concentrations of alanine and glycerol, commonly used as antifreeze by many overwintering ectotherms, do not increase during winter.
Safiri, Saeid; Qorbani, Mostafa; Heshmat, Ramin; Tajbakhsh, Ramin; Eslami Shahr Babaki, Amir; Djalalinia, Shirin; Motlagh, Mohammad Esmaeil; Tajadini, Mohammad Hasan; Asayesh, Hamid; Safari, Omid; Kelishadi, Roya
2016-05-01
There is controversial evidence on association of serum acid uric (SUA) with cardiometabolic risk factors and metabolic syndrome in adults. This study aimed to investigate the associations of SUA levels, components of metabolic syndrome, and other cardiometabolic risk factors, in a nationally representative sample of Iranian adolescents. This study included 132 participants who met the criteria of metabolic syndrome and 235 participants without metabolic syndrome. The participants were grouped according to the tertiles of SUA. Metabolic syndrome was defined according to the Adult Treatment Panel III criteria modified for children and adolescents. The relationship between SUA and cardiometabolic risk factors and metabolic syndrome was assessed by multivariable logistic regression analysis. The mean age of the participants was 15.21 ± 2.35 years, with no significant difference between the boys and the girls. The participants whose SUA was categorized in the 2nd tertile and those falling into the 3rd tertile had significantly higher systolic blood pressure (P < .001) as compared with the lower tertile(s). A similar trend was documented for the overall high blood pressure. Metabolic syndrome was associated with the 2nd and 3rd tertiles of SUA as compared to the lower tertile(s), in the adjusted model (P < .001), with the risk increasing by at least 2 times. Our study showed that those adolescents with metabolic syndrome had higher SUA levels. Its association with some components of metabolic syndrome supports that SUA might be an additional component of metabolic syndrome even during adolescence.
The impact of metabolic state on Cd adsorption onto bacterial cells
Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.
2007-01-01
This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.
Moghaddam, Asma Salari; Entezari, Mohammad Hassan; Iraj, Bijan; Askari, Gholam Reza; Maracy, Mohammad Reza
2014-12-01
Diabetes mellitus is one of the most common chronic diseases in the world and has become a major threat for global health. Recent studies reported that the soy has beneficial effects in diabetic mellitus patients. The aim of this study was to assess the effects of soybean flour fortified bread consumption on metabolic profile in type 2 diabetic women. This randomized, cross-over, controlled clinical trial was carried out in 30 type 2 diabetic women. At first, a 2-week run-in period was applied. Then, participants were randomly assigned to either intervention or control groups. Participants in the intervention group were asked to replace 120 g of soybean flour fortified bread with the same amount of their usual bread intake or other cereal products for 6 weeks. After a 4 weeks washout period, participants were crossed over for another 6 weeks. Mean (±standard deviation) age and body mass index of subjects was 45.7 ± 3.8 years and 29.5 ± 3.9 kg/m(2), respectively. The results of our study showed no significant effects of soybean flour fortified bread on metabolic profile. We found a reduction in serum triglycerides (change difference: -3.7, P = 0.82), serum low-density lipoprotein-cholesterol (change difference: -11.2, P = 0.50), insulin (change difference: -3.6, P = 0.7), and homeostatic model assessment of insulin resistance (change differences: -0.57, P = 0.45) after 6 weeks but these changes were not statistically significant. No significant effects of soybean flour fortified bread on serum concentrations of fasting blood sugar, glycated hemoglobin, high-density lipoproteins and total cholesterol levels were found. Six weeks consumption of soybean flour fortified bread among diabetic patients had no significant effects on metabolic profile.
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan
2013-01-01
Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed. PMID:23554883
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia.
da Costa, Diego Vicente; Dias, Jorge; Colen, Rita; Rosa, Priscila Vieira; Engrola, Sofia
2017-04-01
This study investigated the effect of dietary glycerol on the metabolism of juvenile tilapia (Oreochromis mossambicus) and to determine its metabolic fate. The experimental diets contained 0% (Group CON), 5% (Group G5) and 15% glycerol (Group G15) and were fed for 40 d to apparent satiation, three times a day. For the metabolism trials, six fish from each treatment were randomly chosen and tube-fed with five pellets labelled with 14 C-glycerol [ 14 C(U)] in order to evaluate the absorption, catabolism, retention and partition of glycerol in muscle and liver. Group G5 presented the highest 14 C-glycerol retention and the lowest catabolism, with no significant differences between Groups CON and G15. In Group CON, the highest percentage of 14 C was incorporated in muscle lipids; with no significant differences between Groups G5 and G15. Furthermore, no treatment effects were found for hepatic 14 C-lipid and for 14 C in hepatic and muscle non-lipid extract. In the non-lipid and non-protein fraction, the highest radioactivity was measured in livers of Group G5, however no significant differences were found for this fraction between Groups CON and G15 in liver and for all treatments in muscle. The results of the present study can have practical implications in diet formulations for tilapia and for other aquaculture species with similar feeding pattern since juvenile tilapia are able to metabolise dietary glycerol into lipids, protein and/or carbohydrates and to use it as energy source.
Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133
NASA Astrophysics Data System (ADS)
Hur, Wonhee; Ryu, Jae Yong; Kim, Hyun Uk; Hong, Sung Woo; Lee, Eun Byul; Lee, Sang Yup; Yoon, Seung Kew
2017-04-01
Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were identified using integrative systems analysis, and these characteristics could be potential cures for the resistance of liver cancer cells to anticancer treatments.
Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci.
Kaznadzey, Anna; Shelyakin, Pavel; Gelfand, Mikhail S
2017-11-25
Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism. We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events. Overall, we describe a complex web formed by evolutionary relationships of bacterial carbohydrate metabolism genes, manifested as co-localization patterns. This article was reviewed by Daria V. Dibrova (A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia), nominated by Armen Mulkidjanian (University of Osnabrück, Germany), Igor Rogozin (NCBI, NLM, NIH, USA) and Yuri Wolf (NCBI, NLM, NIH, USA).
NASA Astrophysics Data System (ADS)
Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan
2017-06-01
Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.
2013-01-01
Objectives The prevalence of the metabolic syndrome has increased rapidly in South Korea over the past 10 years. However, the occurrence of the metabolic syndrome in workers grouped according to the specific type of work is not well understood in Korea. In this study, we assessed the differences in the prevalence of the metabolic syndrome by occupational group and evaluated the risk of the metabolic syndrome among occupational groups. Methods From the Fifth Korean National Health and Nutrition Examination Survey (2010), 3,303 employed participants were included in this study. The unadjusted and age-adjusted prevalences of the metabolic syndrome were estimated and multiple logistic regression analysis was conducted using the presence of the metabolic syndrome as a dependent variable, and adjusting for age, education level, household income, drinking behavior, smoking status, physical activity, work hours, and work scheduling pattern. Results Among male workers, non-manual workers had the greatest age-adjusted prevalence (26.4%, 95% CI: 22.3-30.5%) among the occupational groups. In a logistic regression analysis, male manual workers had a significantly lower odds ratio for the metabolic syndrome relative to non-manual workers (0.59, 95% CI: 0.41-0.85). Conclusion Our study demonstrated differences in the prevalence of the metabolic syndrome by occupational group and identified the greatest risk for the metabolic syndrome in male non-manual workers. PMID:24472422
Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects.
Chaya, M S; Nagendra, H R
2008-01-01
The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.). Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group (P < 0.001) measured at 9 p.m. and 16% lower at 6 a.m. (P < 0.001). The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs) whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group (P < 0.001). The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors) achieved due to training in yoga.
[Relationship between vitamin D deficiency and metabolic syndrome].
González-Molero, Inmaculada; Rojo, Gemma; Morcillo, Sonsoles; Pérez-Valero, Vidal; Rubio-Martín, Eleazara; Gutierrez-Repiso, Carolina; Soriguer, Federico
2014-06-06
Vitamin D deficiency and metabolic syndrome are 2 very common health problems in the Spanish population. It has been suggested that patients with metabolic syndrome may be vitamin D deficient more often than subjects without it and that low vitamin D levels may predispose to metabolic syndrome development. However, the results of prospective and intervention studies have been different and such relationship remains unclear. We assessed the relationship between 25-hydroxyvitamin D levels and the prevalence and incidence of metabolic syndrome. We undertook a population-based cohort study in Spain. At baseline (1996-1998), 1,226 subjects were evaluated. Follow-up visits were performed in 2002-2004 and 2005-2007.At baseline and follow-up, participants underwent an interview and a standardized clinical examination with an oral glucose tolerance test in those subjects without known diabetes. At the second visit, 25-hydroxyvitamin D levels and intact parathyroid hormone levels were measured. The prevalence of metabolic syndrome at the second and third visit was 29.4 and 42.5%, respectively. Mean levels of 25-hydroxyvitamin D were lower in subjects with metabolic syndrome: 21.7 (6.21) vs 23.35 (6.29) ng/ml, P<.001.The prevalence of vitamin D deficiency (25-hydroxyvitamin D<20 ng/ml) at the second evaluation was 34.7%, with significant differences between subjects with and without metabolic syndrome(34.6 vs 26.5%, P<.01). Men with vitamin D deficiency had more frequently hypertension and metabolic syndrome than men with normal levels. Women with vitamin D deficiency had more frequently hyperglycemia, hypertension, increased waist circumference and hypertriglyceridemia. In a prospective study, 25-hydroxyvitamin D values<20 ng/ml were not significantly associated with an increased risk of developing metabolic syndrome in the next 5 years (odds ratio 0,99, 95% confidence interval 0.57-1.7, P=.97) after adjusting by sex and age. Vitamin D deficiency is associated with an increased prevalence but not with an increased incidence of metabolic syndrome. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.
Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J
2016-11-01
Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Tomlinson, Sean; Dixon, Kingsley W; Didham, Raphael K; Bradshaw, S Don
2015-12-01
Seasonal variation in metabolic rate and evaporative water loss as a function of ambient temperature were compared in two species of bees. The endemic blue-banded bee, Amegilla chlorocyanea, is a solitary species that is an important pollinator in the south-west Australian biodiversity hotspot. Responses were compared with the European honeybee, Apis mellifera, naturalised in Western Australia almost 200 years ago. Metabolic rate increased exponentially with temperature to a peak in both species, and then declined rapidly, with unique scaling exponents and peaks for all species-by-season comparisons. Early in the austral summer, Apis was less thermally tolerant than Amegilla, but the positions reversed later in the foraging season. There were also significant exponential increases in evaporative water loss with increasing temperature, and both season and species contributed to significantly different responses. Apis maintained relatively consistent thermal performance of metabolic rate between seasons, but at the expense of increased rates of evaporative water loss later in summer. In contrast, Amegilla had dramatically increased metabolic requirements later in summer, but maintained consistent thermal performance of evaporative water loss. Although both species acclimated to higher thermal tolerance, the physiological strategies underpinning the acclimation differed. These findings may have important implications for understanding the responses of these and other pollinators to changing environments and for their conservation management.
Relationship between the three kinds of healthy habits and the metabolic syndrome.
Wada, Takashi; Fukumoto, Tsutomu; Ito, Kyoko; Hasegawa, Yasutaka; Osaki, Takanobu
2009-08-01
In 2005, the diagnostic criteria for Japan-specific metabolic syndrome were published. The representative health habits are Breslow's seven healthy practices, Morimoto's eight items and Ikeda's six healthy habits. We investigated the prevalence of metabolic syndrome related with life-style strongly among these three sets of healthy habit. Cross-sectional study was conducted for the prevalence of metabolic syndrome by practicing these healthy habits. 20,776 Japanese individuals visited the Health Science Center at Jikei University Hospital in Japan for medical check-ups. Subjects were divided into 8 groups based on gender and age (females in their 30s, 40s, 50s and 60s, and males in their 30s, 40s, 50s and 60s). Participants completed a simple, self-administered lifestyle questionnaire based on the three sets of healthy habits. Subjects were divided into three groups (poor, moderate and favorable) according to each of the healthy habit criteria. Significant differences were observed among 10 groups for Breslow's seven healthy practices, 4 groups for Morimoto's eight items, and 13 groups for Ikeda's six healthy habits. Ikeda's six healthy habits showed the most significant differences among the three sets of habits. Among the three methods tested, to practice more Ikeda's healthy habits were the most useful for metabolic syndrome. © 2009 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.
[The blood glucose value not necessarily indicates correctly the cellular metabolic state].
Simon, Kornél; Wittmann, István
2017-03-01
In clinical recommendations the normalized blood glucose level is declared as the main target in therapy of diabetes mellitus, i.e. the achievement of euglycemia is the main therapeutic goal. This approach suggests, that the normal blood glucose value is the marker of the normal carbohydrate metabolism (eumetabolism), and vice versa: hyperglycemia is associated with abnormal metabolism (dysmetabolism). However the question arises, whether identical blood glucose values do reflect the same intracellular biochemical mechanisms? On the basis of data published in the literature authors try to answer these questions by studying the relations between the short/longterm blood glucose level and the cellular metabolism in different clinical settings characterized by divergent pathophysiological parameters. The correlations between blood glucose level and cellular metabolism in development of micro-, and macroangiopathy, in the breakthrough phenomenon, as well as during administration of metabolic promoters, the discrepancies of relation between blood glucose values and cellular metabolism in type 1, and type 2 diabetes mellitus, furthermore association between blood glucose value and myocardial metabolism in acute and chronic stress were analyzed. Authors conclude, that the actual blood glucose values reveal the actual cellular metabolism in a very variable manner: neither euglycemia does mandatorily indicate eumetabolism (balance of cellular energy production), nor hyperglycemia is necessarily a marker of abnormal metabolic state (dept of cellular energy production). Moreover, at the same actual blood glucose level both the metabolic efficacy of the same organ may sharply vary, and the intracellular biochemical machinery could also be very different. In case of the very same longterm blood glucose level the metabolic state of the different organs could be very variable: some organs show an energetically balanced metabolism, while others produce a significant deficit. These inconsistencies between blood glucose level and cellular metabolism can be explained by the fact, that blood glucose value is a transport parameter, reflecting the actual steady state of glucose transport from the carbohydrate pools into the blood, and that from the blood into the tissues. Without knowing the speed of these transports of opposite direction, the blood glucose value per se can not reveal the quantitative and qualitative characteristics of cellular metabolism. Orv. Hetil., 2017, 158(11), 409-417.
Metabolomic analysis of insulin resistance across different mouse strains and diets.
Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E
2017-11-24
Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Evans, Simon J; Ringrose, Rachel N; Harrington, Gloria J; Mancuso, Peter; Burant, Charles F; McInnis, Melvin G
2014-10-01
Polyunsaturated fatty acids (PUFA) profiles associate with risk for mood disorders. This poses the hypothesis of metabolic differences between patients and unaffected healthy controls that relate to the primary illness or are secondary to medication use or dietary intake. However, dietary manipulation or supplementation studies show equivocal results improving mental health outcomes. This study investigates dietary patterns and metabolic profiles relevant to PUFA metabolism, in bipolar I individuals compared to non-psychiatric controls. We collected seven-day diet records and performed metabolomic analysis of fasted plasma collected immediately after diet recording. Regression analyses adjusted for age, gender and energy intake found that bipolar individuals had significantly lower intake of selenium and PUFAs, including eicosapentaenoic acid (EPA) (n-3), docosahexaenoic acid (DHA) (n-3), arachidonic acid (AA) (n-6) and docosapentaenoic acid (DPA) (n-3/n-6 mix); and significantly increased intake of the saturated fats, eicosanoic and docosanoic acid. Regression analysis of metabolomic data derived from plasma samples, correcting for age, gender, BMI, psychiatric medication use and dietary PUFA intake, revealed that bipolar individuals had reduced 13S-HpODE, a major peroxidation product of the n-6, linoleic acid (LA), reduced eicosadienoic acid (EDA), an elongation product of LA; reduced prostaglandins G2, F2 alpha and E1, synthesized from n-6 PUFA; and reduced EPA. These observations remained significant or near significant after Bonferroni correction and are consistent with metabolic variances between bipolar and control individuals with regard to PUFA metabolism. These findings suggest that specific dietary interventions aimed towards correcting these metabolic disparities may impact health outcomes for individuals with bipolar disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.
Srivastava, Niraj Kumar; Sharma, Shikha; Sharma, Rajkumar; Sinha, Neeraj; Mandal, Sudhir Kumar; Sharma, Deepak
2018-01-01
Rheumatoid arthritis (RA) is a systemic autoimmune disease whose major characteristics persistent joint inflammation that results in joint destruction and failure of the function. Collagen-induced arthritis (CIA) rat is an autoimmune disease model and in many ways shares features with RA. The CIA is associated with systemic manifestations, including alterations in the metabolism. Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics has been successfully applied to the perchloric acid extract of the joint tissue of CIA rat and control rat for the analysis of aqueous metabolites. GPC (Glycerophosphocholine), carnitine, acetate, and creatinine were important discriminators of CIA rats as compared to control rats. Level of lactate (significance; p = 0.004), alanine (p = 0.025), BCA (Branched-chain amino acids) (p = 0.006) and creatinine (p = 0.023) was significantly higher in CIA rats as compared to control rats. Choline (p = 0.038) and GPC (p = 0.009) were significantly reduced in CIA rats as compared to control rats. Choline to GPC correlation was good and negative (Pearson correlation = -0.63) for CIA rats as well as for control rats (Pearson correlation = -0.79). All these analyses collectively considered as metabolic fingerprinting of the joint tissue of CIA rat as compared to control rat. The metabolic fingerprinting of joint tissue of CIA rats was different as compared to control rats. The metabolic fingerprinting reflects inflammatory disease activity in CIA rats with synovitis, demonstrating that underlying inflammatory process drives significant changes in metabolism that can be measured in the joint tissue. Therefore, the outcome of this study may be helpful for understanding the mechanism of metabolic processes in RA. This may be also helpful for the development of advanced diagnostic methods and therapy for RA. PMID:29743863
Srivastava, Niraj Kumar; Sharma, Shikha; Sharma, Rajkumar; Sinha, Neeraj; Mandal, Sudhir Kumar; Sharma, Deepak
2018-01-01
Rheumatoid arthritis (RA) is a systemic autoimmune disease whose major characteristics persistent joint inflammation that results in joint destruction and failure of the function. Collagen-induced arthritis (CIA) rat is an autoimmune disease model and in many ways shares features with RA. The CIA is associated with systemic manifestations, including alterations in the metabolism. Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics has been successfully applied to the perchloric acid extract of the joint tissue of CIA rat and control rat for the analysis of aqueous metabolites. GPC (Glycerophosphocholine), carnitine, acetate, and creatinine were important discriminators of CIA rats as compared to control rats. Level of lactate (significance; p = 0.004), alanine (p = 0.025), BCA (Branched-chain amino acids) (p = 0.006) and creatinine (p = 0.023) was significantly higher in CIA rats as compared to control rats. Choline (p = 0.038) and GPC (p = 0.009) were significantly reduced in CIA rats as compared to control rats. Choline to GPC correlation was good and negative (Pearson correlation = -0.63) for CIA rats as well as for control rats (Pearson correlation = -0.79). All these analyses collectively considered as metabolic fingerprinting of the joint tissue of CIA rat as compared to control rat. The metabolic fingerprinting of joint tissue of CIA rats was different as compared to control rats. The metabolic fingerprinting reflects inflammatory disease activity in CIA rats with synovitis, demonstrating that underlying inflammatory process drives significant changes in metabolism that can be measured in the joint tissue. Therefore, the outcome of this study may be helpful for understanding the mechanism of metabolic processes in RA. This may be also helpful for the development of advanced diagnostic methods and therapy for RA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve
Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recentlymore » in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.« less
Ando, Takashi; Ishikawa, Takeshi; Kokura, Satoshi; Naito, Yuji; Yoshida, Norimasa; Yoshikawa, Toshikazu
2008-04-01
In Japanese healthy CYP2C19 extensive metabolizers, rabeprazole 10 mg shows a faster onset of action and stronger inhibition of acid secretion than does omeprazole 20 mg on the first 3 days of administration. We evaluated gastric ulcer improvement after 1 week's treatment with rabeprazole or omeprazole in relation to CYP2C19 polymorphism. A 6-mm rubber disc was placed temporarily at the side of the ulcer for measurement of the ulcer area. The improvement ratios of ulcer area in homozygous extensive metabolizers (homoEMs), heterozygous extensive metabolizers (heteroEMs) and poor metabolizers (PMs) treated with rabeprazole 10 mg were 60.8, 65.0 and 55.3%, respectively, and these values are not significantly different. Corresponding values with omeprazole 20 mg were 46.3, 61.7 and 63.2%, respectively, and the value of homoEMs was significantly smaller than that of heteroEMs. The improvement ratios with rabeprazole in homoEMs and heteroEMs were significantly greater than that with omeprazole in homoEMs.
Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath
2014-01-01
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool. PMID:25225969
De Lorenzo, Andrea; Glerian, Leticia; Amaral, Ana Carolina; Reis, Thiago B; Lima, Ronaldo S L
To evaluate the prevalence of the "metabolically healthy" (MH) or "metabolically unhealthy" (MU) obesity phenotypes and their association with cardiorespiratory fitness and inducible myocardial ischaemia. Individuals without known coronary artery disease undergoing myocardial perfusion single-photon emission computed tomography (MPS) were studied. Those without dyslipidemia, hypertension, or diabetes were considered MH, and when ≥1 of these was present, MU status was considered present. Summed stress and difference perfusion scores (SSS and SDS, respectively) were calculated; a SDS >1 defined ischaemic MPS. MH patients were 35.0% of the nonobese population and 23.5% of the obese (p<0.001). The prevalence of ischaemia was not significantly different between MH patients with obesity or MH patients without obesity (10.9% vs 9.1%, p=0.3), except for patients with body mass index ≥40kg/m 2 (21.9%). MH obese patients were less frequently able to exercise and had lower exercise capacity than the nonobese patients. The prevalence of myocardial ischaemia was not significantly different between MH obese or nonobese individuals, supporting the concept of the "metabolically healthy obesity". However, there are other factors involved, such as the ability to exercise, that influence the risk of myocardial ischaemia, limiting the "safety" of that obesity phenotype. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Zuberi, Aamir R.
2008-01-01
Published reports of botanical action are often hampered by lack of generalized systematic approaches or by the failure to explore mechanisms that could confirm and extend the reported observations. Choice of housing conditions (singly or group housed) and imposed stress during handling procedures are often variable and can contribute significantly to differences in base-line phenotypes measured across studies. Differences can also be observed in the role of the extract in either the treatment of the metabolic syndrome or roles in the regulation of the emergence of metabolic syndrome. The choice of diet used can also vary between the different studies and diet-botanical interactions must be considered. This mini-review highlights the strategies being pursued by the Botanical Research Center Animal Research Core to evaluate the in vivo phenotypes of several Botanical extracts during chronic feeding studies. We describe a phenotyping strategy that promotes a more rigorous interpretation of botanical action and can suggest or eliminate possible mechanisms that may be involved. We discuss the importance of selecting the mouse model, as background strain can significantly alter the underlying susceptibilities to the various components of Metabolic Syndrome. Finally, we present data suggesting the one of the major botanical extracts being studied, an extract of Russian Tarragon, may manifest a mouse strain genotypic-specific insulin-sensitizing phenotype. PMID:18555848
Libbey, J E; Sanchez, J M; Doty, D J; Sim, J T; Cusick, M F; Cox, J E; Fischer, K F; Round, J L; Fujinami, R S
2018-04-25
Multiple sclerosis (MS) is a metabolically demanding disease involving immune-mediated destruction of myelin in the central nervous system. We previously demonstrated a significant alteration in disease course in the experimental autoimmune encephalomyelitis (EAE) preclinical model of MS due to diet. Based on the established crosstalk between metabolism and gut microbiota, we took an unbiased sampling of microbiota, in the stool, and metabolites, in the serum and stool, from mice (Mus musculus) on the two different diets, the Teklad global soy protein-free extruded rodent diet (irradiated diet) and the Teklad sterilisable rodent diet (autoclaved diet). Within the microbiota, the genus Lactobacillus was found to be inversely correlated with EAE severity. Therapeutic treatment with Lactobacillus paracasei resulted in a significant reduction in the incidence of disease, clinical scores and the amount of weight loss in EAE mice. Within the metabolites, we identified shifts in glycolysis and the tricarboxylic acid cycle that may explain the differences in disease severity between the different diets in EAE. This work begins to elucidate the relationship between diet, microbiota and metabolism in the EAE preclinical model of MS and identifies targets for further study with the goal to more specifically probe the complex metabolic interaction at play in EAE that may have translational relevance to MS patients.
Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath
2014-01-01
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.
Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.
Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko
2013-12-10
This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.
Investigating the dependence of BOLD contrast on oxidative metabolism.
Schwarzbauer, C; Heinke, W
1999-03-01
Most functional magnetic resonance imaging (fMRI) studies are based on measuring the changes in the blood oxygenation level-dependent (BOLD) contrast that arise from a complex interplay between cerebral hemodynamics and oxidative metabolism. To separate these effects, we consecutively applied two different stimuli: visual stimulation (black/white checkerboard alternating with a frequency of 8 Hz) and hypercapnia (inspiration of 5% CO2). Changes in cerebral blood flow (deltaCBF) and the effective transverse relaxation time (T2*) were measured in an interleaved manner by combining a previously described spin-labeling technique with BOLD-based fMRI. In six healthy volunteers, T2* was significantly longer during hypercapnia than during visual stimulation, whereas the corresponding deltaCBF values were the same at the given level of significance (P<0.01). This finding is explained by a significant increase in oxygen consumption under visual stimulation. The average T2* changes in the visual cortex related to cerebral hemodynamics and oxidative metabolism were 10.6+/-3.0% and -4.7+/-1.2%, respectively, resulting in a net increase of 5.9+/-2.3%. Although the hemodynamic effect is dominant, the increase in oxidative metabolism gives rise to a significant decrease in BOLD contrast. The calculated average change in the cerebral metabolic rate of oxygen (CMRO2), 4.4+/-1.1% (N = 6), is in excellent agreement with previous results obtained by positron emission tomography.
Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice
Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko
2013-01-01
This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061
Syed, Raisa; Shibata, Noreene M.; Kharbanda, Kusum K.; Su, Ruijun J.; Olson, Kristin; Yokoyama, Amy; Rutledge, John C.; Chmiel, Kenneth J.; Kim, Kyoungmi; Halsted, Charles H.
2016-01-01
Abstract Background: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. Methods: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Results: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Conclusions: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals. PMID:26881897
Bruno, Antonio; Pandolfo, Gianluca; Crucitti, Manuela; Maisano, Antonino; Zoccali, Rocco A; Muscatello, Maria Rosaria Anna
2017-02-01
Second-generation antipsychotics (SGAs) are notoriously associated with a marked increase in body weight and with a wide range of metabolic adverse effects, and their chronic use is related with an increased risk for the development of metabolic syndrome (MS). Different adjunctive treatments have been proposed to reduce SGAs-induced weight gain and/or metabolic abnormalities with inconsistent or too limited evidence to support their regular clinical use, thus suggesting the need to find new possible treatments. Bergamot polyphenolic fraction (BPF) has been proven effective in patients with MS, as demonstrated by a concomitant improvement in lipemic and glycemic profiles. The present study was aimed to explore the efficacy and safety of BPF treatment on metabolic parameters in a sample of subjects receiving atypical antipsychotics. Fifteen outpatients treated with SGAs assumed BPF at the oral daily dose of 1000 mg/day for 30 days. Fasting levels of glucose, glycated hemoglobin, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglycerides were determined. BPF administration resulted in a statistically significant reduction of body weight (P=.004) and in a trend for body mass index decrease (P=.005). No significant differences in other and metabolic parameters were observed. Our findings suggest that BPF, at the daily dose of 1000 mg for 30 days, could be an effective and safe agent to prevent weight gain associated with atypical antipsychotic use. However, further clinical trials with adequately powered and well-designed methodology are needed to better explore the BPF effectiveness on the SGAs-induced weight gain and metabolic side effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Adams, P C; Rickert, D E
1996-11-01
We tested the hypothesis that the small intestine is capable of the first-pass, reductive metabolism of xenobiotics. A simplified version of the isolated vascularly perfused rat small intestine was developed to test this hypothesis with 1,3-dinitrobenzene (1,3-DNB) as a model xenobiotic. Both 3-nitroaniline (3-NA) and 3-nitroacetanilide (3-NAA) were formed and absorbed following intralumenal doses of 1,3-DNB (1.8 or 4.2 mumol) to isolated vascularly perfused rat small intestine. Dose, fasting, or antibiotic pretreatment had no effect on the absorption and metabolism of 1,3-DNB in this model system. The failure of antibiotic pretreatment to alter the metabolism of 1,3-DNA indicated that 1,3-DNB metabolism was mammalian rather than microfloral in origin. All data from experiments initiated with lumenal 1,3-DNB were fit to a pharmacokinetic model (model A). ANOVA analysis revealed that dose, fasting, or antibiotic pretreatment had no statistically significant effect on the model-dependent parameters. 3-NA (1.5 mumol) was administered to the lumen of isolated vascularly perfused rat small intestine to evaluate model A predictions for the absorption and metabolism of this metabolite. All data from experiments initiated with 3-NA were fit to a pharmacokinetic model (model B). Comparison of corresponding model-dependent pharmacokinetic parameters (i.e. those parameters which describe the same processes in models A and B) revealed quantitative differences. Evidence for significant quantitative differences in the pharmacokinetics or metabolism of formed versus preformed 3-NA in rat small intestine may require better definition of the rate constants used to describe tissue and lumenal processes or identification and incorporation of the remaining unidentified metabolites into the models.
Horska, Katerina; Ruda-Kucerova, Jana; Drazanova, Eva; Karpisek, Michal; Demlova, Regina; Kasparek, Tomas; Kotolova, Hana
2017-09-01
Schizophrenia appears to be linked to higher incidence of metabolic syndrome even in the absence of antipsychotic treatment. Atypical antipsychotics substantially differ in their propensity to induce metabolic alterations. Aripiprazole is considered to represent an antipsychotic drug with low risk of metabolic syndrome development. The aim of this study was to evaluate metabolic phenotype of neurodevelopmental polyI:C rat model and assess metabolic effects of chronic aripiprazole treatment with regard to complex neuroendocrine regulations of energy homeostasis. Polyinosinic:polycytidylic acid (polyI:C) was administered subcutaneously at a dose of 8 mg/kg in 10 ml on gestational day 15 to female Wistar rats. For this study 20 polyI:C and 20 control adult male offspring were used, randomly divided into 2 groups per 10 animals for chronic aripiprazole treatment and vehicle. Aripiprazole (5 mg/kg, dissolved tablets, ABILIFY ® ) was administered once daily via oral gavage for a month. Altered lipid profile in polyI:C model was observed and a trend towards different dynamics of weight gain in polyI:C rats was noted in the absence of significant antipsychotic treatment effect. PolyI:C model was not associated with changes in other parameters i.e. adipokines, gastrointestinal hormones and cytokines levels. Aripiprazole did not influence body weight but it induced alterations in neurohumoral regulations. Leptin and GLP-1 serum levels were significantly reduced, while ghrelin level was elevated. Furthermore aripiprazole decreased serum levels of pro-inflammatory cytokines. Our data indicate dysregulation of adipokines and gastrointestinal hormones present after chronic treatment with aripiprazole which is considered metabolically neutral in the polyI:C model of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strauß, Markus; Foshag, Peter; Przybylek, Bianca; Horlitz, Marc; Lucia, Alejandro; Sanchis-Gomar, Fabian; Leischik, Roman
2016-01-01
The treatment and prevention of the metabolic syndrome (MetS) is currently one of the major challenges in medicine. The impact of working conditions on metabolic risk has not been adequately studied. Our objective was to compare the prevalence of MetS and metabolic risk in two extremely different occupational groups: firefighters and office workers. A total of 143 male subjects (97 firefighters and 46 office workers) from Germany participated in the study. Anthropometric characteristics, metabolic risk parameters as well as laboratory parameters were collected. MetS was diagnosed according to criteria of the International Diabetes Federation. Sedentary occupation showed a significant tendency towards obesity. Abdominal waist circumference was significantly greater in office workers than in firefighters [5.08 CI (1.44-8.71), p = 0.007]. Concerning metabolic risk factors, abnormal HDL, triglycerides, BMI, blood pressure and waist circumference values were more frequently found in office workers than in firefighters. The MetS was detected in almost 33 % of office workers as compared with only 14 % in firefighters (p = 0.015). Regarding MetS in an international comparison, the prevalence of MetS in German office workers was high and in firefighters it was extremely low. Sedentary occupation as an office worker is associated with a high risk of MetS. Both groups need to be made aware of the metabolic risks, and health promoting concepts such as corporate sports activities or education in healthy nutrition need to be implemented to counteract the development of the MetS and cardiovascular risk factors.
The physiological costs of prey switching reinforce foraging specialization.
Hooker, Oliver E; Van Leeuwen, Travis E; Adams, Colin E
2017-05-01
Sympatric speciation is thought to be strongly linked to resource specialization with alternative resource use acting as a fundamental agent driving divergence. However, sympatric speciation through niche expansion is dependent on foraging specialization being consistent over space and time. Standard metabolic rate is the minimal maintenance metabolic rate of an ectotherm in a post-absorptive and inactive state and can constitute a significant portion of an animal's energy budget; thus, standard metabolic rate and growth rate are two measures frequently used as an indication of the physiological performance of individuals. Physiological adaptations to a specific diet may increase the efficiency with which it is utilized, but may have an increased cost associated with switching diets, which may result in a reduced standard metabolic rate and growth rate. In this study, we use the diet specialization often seen in polymorphic Arctic charr (Salvelinus alpinus) populations to study the effects of different prey on standard metabolic rate and growth rate as well as the effects that early prey specialization may have on the ability to process other prey types efficiently. We found a significant effect of prey type on standard metabolic rate and growth rate. Furthermore, we found evidence of diet specialization with all fish maintaining a standard metabolic rate and growth rate lower than expected when fed on a diet different to which they were raised, possibly due to a maladaptation in digestion of alternative prey items. Our results show that early diet specialization may be reinforced by the elevated costs of prey switching, thus promoting the process of resource specialization during the incipient stages of sympatric divergence. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui
2016-01-01
Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
Hu, Junlang; Lei, Pan; Mohsin, Ali; Liu, Xiaoyun; Huang, Mingzhi; Li, Liang; Hu, Jianhua; Hang, Haifeng; Zhuang, Yingping; Guo, Meijin
2017-09-12
Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13 C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden-Meyerhof-Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD + ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. This study shows that integration of transcriptomics, 13 C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin's regulatory mechanisms in B. subtilis grown under different dissolved oxygen tension conditions. The two-component system, ResD-ResE, was considered as the signal receiver of DO tension and gene regulator that led to differences between biomass and riboflavin production after triggering the shifts in gene expression, metabolic flux distributions and metabolite pool sizes.
Gryko, Anna; Głowińska-Olszewska, Barbara; Płudowska, Katarzyna; Smithson, W Henry; Owłasiuk, Anna; Żelazowska-Rutkowska, Beata; Wojtkielewicz, Katarzyna; Milewski, Robert; Chlabicz, Sławomir
2017-01-01
In the recent years, alterations in the carbohydrate metabolism, including insulin resistance, are considered as risk factors in the development of hypertension and its complications in young age. Hypertension is associated with significant cardiovascular morbidity and mortality. The onset of pathology responsible for the development of hypertension, as well as levels of biomarkers specific for early stages of atherosclerosis are poorly understood. To compare a group of children whose parents have a history of hypertension (study group) with a group of children with normotensive parents (reference group), with consideration of typical risk factors for atherosclerosis, parameters of lipid and carbohydrate metabolism, anthropometric data and new biomarkers of early cardiovascular disease (hsCRP, adiponectin, sICAM-1). The study population consists of 84 children. Of these, 40 children (mean age 13.6±2.7 years) had a parental history of hypertension, and 44 aged 13.1±3.7 yrs were children of normotensive parents. Anthropometric measurements were taken, and measurements of blood pressure, lipid profile, glucose and insulin levels were carried out. The insulin resistance index (HOMA IR) was calculated. Levels of hsCRP, soluble cell adhesion molecules (sICAM) and adiponectin were measured. There were no statistically significant differences in anthropometric parameters (body mass, SDS BMI, skin folds) between groups. Values of systolic blood pressure were statistically significantly higher in the study group (Me 108 vs. 100 mmHg, p= 0.031), as were glycaemia (Me 80 vs. 67 mg/dl p<0.001) and insulinaemia levels (Me 8.89 vs. 5.34 µIU/ml, p=0.024). Higher, statistically significant values of HOMA IR were found in the study group (children of hypertensive parents) (Me 1.68 vs. 0.80 mmol/l × mU/l, p=0.007). Lower adiponectin levels (Me 13959.45 vs. 16822 ng/ml, p=0.020) were found in children with a family history of hypertension. No significant differences were found in the levels of sICAM, hsCRP, and parameters of lipid metabolism. Family history of hypertension is correlated with higher values of systolic blood pressure and higher values of parameters for carbohydrate metabolism in children. Hypertension in parents is a risk factor for cardiovascular disease in their children. © Polish Society for Pediatric Endocrinology and Diabetology.
Park, Soo Kyung; Larson, Janet L
2014-01-01
The prevalence of metabolic syndrome has been reported to be 20% to 50% in people with chronic obstructive pulmonary disease (COPD). Because such people are sedentary and physically inactive, they are at risk of metabolic syndrome. The extent of this problem, however, is not fully understood. This study examined the relationship of sedentary time and physical activity to metabolic syndrome and the components of metabolic syndrome in a population-based sample of people with COPD. This was a secondary analysis of existing cross-sectional data. Subjects with COPD (n = 223) were drawn from the National Health and Nutrition Examination Survey data set (2003-2006). Physical activity was measured by accelerometry. Waist circumference, triglyceride level, high-density lipoprotein cholesterol level, blood pressure, and fasting glucose level were used to describe metabolic syndrome. Descriptive and inferential statistics were used for analysis. Fifty-five percent of the sample had metabolic syndrome. No significant differences in sedentary time and level of physical activity were found in people with COPD and metabolic syndrome and people with COPD only. However, those with a mean activity count of greater than 240 counts per minute had a lower prevalence of metabolic syndrome. Waist circumference and glucose level were significantly associated with the time spent in sedentary, light, and moderate to vigorous physical activity. Metabolic syndrome is highly prevalent in people with COPD, and greater physical activity and less sedentary time are associated with lower rates of metabolic syndrome. This suggests that interventions to decrease the risk of metabolic syndrome in people with COPD should include both reducing sedentary time and increasing the time and intensity of physical activity.
Guo, Shaodong
2014-01-01
Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010
The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram
2016-11-01
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified.
Zhang, Ruiya; Cui, Yonglei; Wang, Yan; Tian, Xiangge; Zheng, Lu; Cong, HaiJian; Wu, Bin; Huo, Xiaokui; Wang, Chao; Zhang, BaoJing; Wang, Xiaobo; Yu, Zhonghui
2017-12-01
Baicalein is the major bioactive flavonoid in some herb medicines and dietary plants; however, the detailed metabolism pathway of its major metabolite oroxylin A-7-O-β-D-glucuronide in human was not clear. It was important to illustrate the major metabolic enzymes that participate in its elimination for the clinic use of baicalein. We first revealed a two-step metabolism profile for baicalein and illustrated the combination of catechol-O-methyltransferase (COMT) and uridine diphosphate-glucuronosyltransferases (UGTs) in drug metabolism, further evaluated its bioactivity variation during drug metabolism. The metabolism profiles were systematically characterized in different human biology preparations; after then, the anti-inflammatory activities of metabolites were evaluated in LPS-induced RAW264.7 cell. The first-step metabolite of baicalein was isolated and identified as oroxylin A; soluble-bound COMT (S-COMT) was the major enzyme responsible for its biotransformation. Specially, position 108 mutation of S-COMT significantly decreases the elimination. Meantime, oroxylin A was rapidly metabolized by UGTs, UGT1A1, -1A3, -1A6, -1A7, -1A8, -1A9, and -1A10 which were involved in the glucuronidation. Considerable species differences were observed with 1060-fold K m (3.05 ± 1.86-3234 ± 475 μM) and 330-fold CL int (5.93-1973 μL/min/mg) variations for baicalein metabolism. Finally, the middle metabolite oroxylin A exhibited a potent anti-inflammatory activity with the IC 50 value of 28 μM. The detailed kinetic parameters indicated that COMT provide convenience for the next glucuronidation; monkey would be a preferred animal model for the preclinical investigation of baicalein. Importantly, oroxylin A should be reconsidered in evaluating baicalein efficacy against inflammatory diseases.
Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo
2014-09-01
Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk
da Silva, Hellen Abreu; Carraro, Júlia Cristina Cardoso; Bressan, Josefina; Hermsdorff, Helen Hermana Miranda
2015-01-01
Objective To identify possible relations between serum uric acid levels and metabolic syndrome and its components in a population with cardiometabolic risk. Methods This cross-sectional study included 80 subjects (46 women), with mean age of 48±16 years, seen at the Cardiovascular Health Program. Results The prevalence of hyperuricemia and metabolic syndrome was 6.3% and 47.1%, respectively. Uric acid level was significantly higher in individuals with metabolic syndrome (5.1±1.6mg/dL), as compared to those with no syndrome or with pre-syndrome (3.9±1.2 and 4.1±1.3mg/dL, respectively; p<0.05). The uric acid levels were significantly higher in men presenting abdominal obesity, and among women with abdominal obesity, lower HDL-c levels and higher blood pressure (p<0.05). Conclusion Uric acid concentrations were positively related to the occurrence of metabolic syndrome and its components, and there were differences between genders. Our results indicate serum uric acid as a potential biomarker for patients with cardiometabolic risk. PMID:26018145
Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi
2017-01-01
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420
Hrydziuszko, Olga; Perera, M Thamara P R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A; Murphy, Nick; Mirza, Darius F; Viant, Mark R
2016-01-01
Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations.
Laing, Richard; Kirwan, Jennifer; Silva, Michael A.; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F.; Viant, Mark R.
2016-01-01
Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations. PMID:27835640
Chan, Jessica L; Kar, Sujata; Vanky, Eszter; Morin-Papunen, Laure; Piltonen, Terhi; Puurunen, Johanna; Tapanainen, Juha S; Maciel, Gustavo Arantes Rosa; Hayashida, Sylvia Asaka Yamashita; Soares, Jose Maria; Baracat, Edmund Chada; Mellembakken, Jan Roar; Dokras, Anuja
2017-08-01
Polycystic ovary syndrome is a heterogeneous disorder and its presentation varies with race and ethnicity. Reproductive-age women with polycystic ovary syndrome are at increased risk of metabolic syndrome; however, it is not clear if prevalence of metabolic syndrome and clustering of its components differs based on race and ethnicity. Moreover, the majority of these women do not undergo routine screening for metabolic syndrome. We sought to compare the prevalence of metabolic syndrome and clustering of its components in women with polycystic ovary syndrome in the United States with women in India, Brazil, Finland, and Norway. This is a cross-sectional study performed in 1089 women with polycystic ovary syndrome from 1999 through 2016 in 5 outpatient clinics in the United States, India, Brazil, Finland, and Norway. Polycystic ovary syndrome was defined by the Rotterdam criteria. Main outcome measures were: metabolic syndrome prevalence, blood pressure, body mass index, fasting high-density lipoprotein cholesterol, fasting triglycerides, and fasting glucose. Data from all sites were reevaluated for appropriate application of diagnostic criteria for polycystic ovary syndrome, identification of polycystic ovary syndrome phenotype, and complete metabolic workup. The US White women with polycystic ovary syndrome were used as the referent group. Logistic regression models were used to evaluate associations between race and metabolic syndrome prevalence and its components and to adjust for potential confounders, including age and body mass index. The median age of the entire cohort was 28 years. Women from India had the highest mean Ferriman-Gallwey score for clinical hyperandrogenism (15.6 ± 6.5, P < .001). The age-adjusted odds ratio for metabolic syndrome was highest in US Black women at 4.52 (95% confidence interval, 2.46-8.35) compared with US White women. When adjusted for age and body mass index, the prevalence was similar in the 2 groups. Significantly more Black women met body mass index and blood pressure criteria (P < .001), and fewer met fasting triglycerides criteria (P < .05). The age- and body mass index-adjusted prevalence of metabolic syndrome was highest in Indian women (odds ratio, 6.53; 95% confidence interval, 3.47-12.30) with abnormalities in glucose and fasting high-density lipoprotein cholesterol criterion and in Norwegian women (odds ratio, 2.16; 95% confidence interval, 1.17-3.98) with abnormalities in blood pressure, glucose, and fasting high-density lipoprotein cholesterol criterion. The Brazilian and Finnish cohorts had similar prevalence of metabolic syndrome and its components compared to US White women. Despite a unifying diagnosis of polycystic ovary syndrome, there are significant differences in the prevalence of metabolic syndrome and clustering of its components based on race and ethnicity, which may reflect contributions from both racial and environmental factors. Our findings indicate the prevalence of metabolic syndrome components varies in women with polycystic ovary syndrome, such that compared to White women from the United States, Black US women had the highest prevalence, whereas women from India and Norway had a higher prevalence of metabolic syndrome independent of obesity. The differences in clustering of components of metabolic syndrome based on ethnicity highlight the need to routinely perform complete metabolic screening to identify specific targets for cardiovascular risk reduction strategies in these reproductive-age women. Copyright © 2017 Elsevier Inc. All rights reserved.
Ha, M; Tokura, H; Tanaka, Y; Holmér, I
1996-01-01
Thermophysiological responses and clothing microclimate under the influences of different underwear materials were compared during walking and recovery in the cold. Two kinds of underwear were used: two layers of cotton underwear with two-piece long-sleeved shirt and long-legged trousers (C), two layers of polypropylene underwear with two-piece long-sleeved shirt and long-legged trousers (P). In addition, the subject put on a two-piece ski suit of 100% polyester including 100% polyester padding. Seven adult females served as subjects in this study. The test was done in a climatic chamber at an ambient air temperature of 2 degrees C, a relative humidity of 65% and an air velocity of 0.14 m.s-1. The subject walked on a motor-driven treadmill with a 6 km/h speed for 30 min followed by 60 min recovery. Rectal temperature, skin temperatures, clothing microclimate (temperature, humidity), metabolic heat production and heart rate were measured. Furthermore, subjective ratings on thermal sensation, sweating/shivering sensation, clothing wettedness sensation and skin wettedness sensation for whole body were asked. The major findings are summarized as follows: 1) Mean skin temperature was not significantly different during walking, but it was significantly higher in P than in C during the recovery. 2) The absolute humidity of innermost layer and outermost layer were not significantly different during walking, but it was significantly higher in P than in C during the recovery. 3) Clothing microclimate temperature of innermost was not significantly different during the first half of walking, but it was significantly higher in C than in P during the second half of walking and significantly lower in C than in P during the recovery. Clothing microclimate temperature of outermost was not significantly different during walking, but it was significantly higher in P than in C during the recovery. 4) Metabolic heat production for the last 10 min during recovery tended to be higher in P. 5) The degree of skin wettedness sensation and clothing wettedness sensation for whole body was significantly higher in P during walking and recovery. Thus, it was concluded that two kinds of underwear with different properties to moisture could influence, not only clothing microclimate, but also physiological parameters like skin temperatures and metabolic heat production in the cold differently.
Malcolm, Philippe; Rossi, Denise Martineli; Siviy, Christopher; Lee, Sangjun; Quinlivan, Brendan Thomas; Grimmer, Martin; Walsh, Conor J
2017-07-12
Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions. The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.
Different functional classes of genes are characterized by different compositional properties.
D'Onofrio, Giuseppe; Ghosh, Tapash Chandra; Saccone, Salvatore
2007-12-22
A compositional analysis on a set of human genes classified in several functional classes was performed. We found out that the GC3, i.e. the GC level at the third codon positions, of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing. Analyses of human/Xenopus ortologous genes showed that: (i) the GC3 increment of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing; and (ii) a strong correlation between the GC3 and the corresponding GCi, i.e. the GC level of introns, was found in each functional class. The non-randomness of the GC increments favours the selective hypothesis of gene/genome evolution.
Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin
2014-01-01
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. © 2013.
Temporal development of the barley leaf metabolic response to Pi limitation.
Alexova, Ralitza; Nelson, Clark J; Millar, A Harvey
2017-05-01
The response of plants to P i limitation involves interplay between root uptake of P i , adjustment of resource allocation to different plant organs and increased metabolic P i use efficiency. To identify potentially novel, early-responding, metabolic hallmarks of P i limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 d of P i stress, and the relationship of primary metabolites with leaf P i levels and leaf biomass. The abundance of leaf P i , Tyr and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low P i . Combining these data with 15 N metabolic labelling, we show that over the first 48 h of P i limitation, metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in P i stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external P i is low. © 2016 John Wiley & Sons Ltd.
[Effects of aluminum on neurobehavioral function and metabolism of monoamine neurotransmitter].
Yang, H; Zheng, Y; Liang, Y
1998-03-01
To evaluate the effects of occupational exposure to aluminum on neurobahavioral function and metabolism of monoamine neurotransmitter. Thirty-three workers exposed to aluminum and 40 controls were studied. Air aluminum concentrations in workplace environment were detected with an atomic absorption spectrophotometer, homovanillic acid (HVA) and vanilylmandellic acid (VMA) in urine and aluminum in serum and urine were detected with high perfolmance liquid chromatography. Neurobehavioral function was tested with Neurobehavioral Core Test Battery recommended by WHO. Geometric time-weighted average of aluminum in workplace environment was 0.95 mg/m3, ranging from 0.31 to 4.12 mg/m3, and urine aluminum levels in workers exposed to aluminum averaged 12.25 micrograms/L, significantly higher than that in controls (5.78 micrograms/L). There was no significant difference in serum aluminum between the exposed and controls. Both urine VMA and HVA levels were higher in the workers exposed to aluminum, and urine VMA level in the exposed was significantly higher than that in controls. There was significant difference in neurobehavioral test, including Santa Ana, digit symbol and Benton tests between the exposed and control workers. It suggests that occupational exposure to low level of aluminum can affect the neurobehavioral function and metabolism of monoamine neurotransmitter.
[Cardiovascular risk parameters, metabolic syndrome and alcohol consumption by workers].
Vicente-Herrero, María Teófila; López González, Ángel Arturo; Ramírez-Iñiguez de la Torre, María Victoria; Capdevila-García, Luisa; Terradillos-García, María Jesús; Aguilar-Jiménez, Encarna
2015-04-01
Prevalence of alcohol consumption is high in the general population and generates specific problems at the workplace. To establish benchmarks between levels of alcohol consumption and cardiovascular risk variables and metabolic syndrome. A cross-sectional study of 7,644 workers of Spanish companies (2,828 females and 4,816 males). Alcohol consumption and its relation to cardiovascular risk was assessed using Framingham calibrated for the Spanish population (REGICOR) and SCORE, and metabolic syndrome was assessed using modified ATPIII and IDF criteria and Castelli and atherogenic index and triglycerides/HDL ratio. A multivariate analysis was performed using logistic regression and odds ratios were estimated. Statistically significant differences were seen in the mean values of the different parameters studied in prevalence of metabolic syndrome, for both sexes and with modified ATPIII, IDF and REGICOR and SCORE. The sex, age, alcohol, and smoking variables were associated to cardiovascular risk parameters and metabolic syndrome. Physical exercise and stress are only associated to with some of them. The alcohol consumption affects all cardiovascular risk parameters and metabolic syndrome, being more negative the result in high level drinkers. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying
2016-08-01
Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.
Lin, Hanli; Zhang, Liqun; Zheng, Ruizhi; Zheng, Yishan
2017-11-01
We conducted a systematic review and meta-analysis to firstly obtain a reliable estimation of the prevalence of metabolically healthy obese (MHO) individuals in obesity, then assessed the risk of developing metabolic abnormalities (MA) among MHO individuals. At last, we evaluated the effects of traditional lifestyle interventions on metabolic level for MHO subjects. A systematic review and meta-analysis (PRISMA) guideline were conducted, and original studies were searched up to December 31, 2016. The prevalence of MHO in obesity from each study was pooled using random effects models. The relative risks (RRs) were pooled to determine the risk of developing MA for MHO compared with metabolically healthy normal-weight (MHNW) subjects. For the meta-analysis of intervention studies, the mean difference and standardized mean differences were both estimated for each metabolic parameter within each study, and then pooled using a random-effects model. Overall, 40 population-based studies reported the prevalence of MHO in obesity, 12 cohort studies and 7 intervention studies were included in the meta-analysis. About 35.0% obese individuals were metabolically healthy in the obese subjects. There were dramatic differences in the prevalence among different areas. However, 0.49 (95% confidence intervals [CI]: 0.38 to 0.60) of the MHO individuals would develop one or more MA within 10 years. Compared with MHNW subjects, the MHO subjects presented higher risk of incident MA (pooled RR = 1.80, 95%CI: 1.53-2.11). Following intervention, there was certain and significant improvement of metabolic state for metabolically abnormal obesity (MAO) subjects. Only diastolic blood pressure had reduced for MHO individuals after intervention. Almost one-third of the obese individuals are in metabolic health. However, they are still at higher risk of advancing to unhealthy state. Therefore, it is still needed to advise MHO individuals to maintain or adopt a healthy lifestyle, so as to counterbalance the adverse effects of obesity. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish
2016-07-01
The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were not different in normal and obese ewes. Estrogen and progesterone secretions were less from granulosa cells recovered from metabolically stressed and emaciated ewes. The results suggested that oocyte morphology, fertilizing capacity and granulosa cell growth were dependent on body condition and feeding status of the animals. Copyright © 2016. Published by Elsevier B.V.
Mishra, Priti; Gong, Zhiyuan; Kelly, Barry C
2017-12-01
Continuous low-dose exposure of pharmaceutically active compounds (PhACs) in aquatic ecosystems is a concern worldwide. In this study, we utilized a gas chromatography mass spectrometry (GC-MS) based metabolomics approach to assess endogenous metabolite changes in developing zebrafish embryos exposed to different concentrations of the widely used antidepressant, fluoxetine. Embryos were exposed from 2 h post fertilization (hpf) until 96 hpf. Using the Fiehn GC-MS library, a total of 31 metabolites were positively identified in embryos. Statistical analyses revealed significant dysregulation of 11 metabolites in fluoxetine exposed embryos. Metabolite classes that were significantly altered included, amino acids, monosaccharides, glycerophosphates, fatty acids, carboxylic acid derivatives and sugars. Concentrations of amino acids, maltose, d-malic acid, 3-phosphoglycerate and d-glucose were significantly reduced in exposed embryos. Conversely, concentrations of citric acid were in some cases significantly elevated in exposed embryos. Metabolic pathway analysis revealed perturbation of five main pathways, including (i) alanine, aspartate and glutamate metabolism, (ii) phenylalanine, tyrosine and tryptophan biosynthesis, (iii) phenylalanine metabolism. (iv) tyrosine metabolism and (v) starch and sucrose metabolism. The results indicate fluoxetine exposure causes perturbation of energy and amino acid metabolism, which may adversely impact embryogenesis due to depletion of energy reserves during this period. Also, the observed alterations in aspartic acid, phenylalanine and tyrosine in fluoxetine exposed embryos suggests potential disruption of normal neurobehavioral and liver function. The results further demonstrate that GC-MS based metabolomics is an effective approach for assessing toxicodynamics and threshold effect levels of environmental pollutants in aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Songbo; Wu, Jie; Li, Yuanyuan
To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, whilemore » dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.« less
Munakata, M; Hattori, T; Konno, S
2015-06-01
In developed countries, systolic blood pressure is known to increase with age. Metabolic risks may generally worse with increasing age. But this trend may be modified by environmental factors which are different between gender and generation. The aim of this study was to examine the relationship between age and gender-related difference in cardio-metabolic risks and life style factors in the Japanese general population. We studied 3628 inhabitants of Watari (mean age 63.9 yrs, 42.5% men), Miyagi prefecture, who participated in a health check-up in 2009. Anthropometry, sitting blood pressures, fasting blood samples were examined. Unhealthy dietary behaviors (night meal, late dinner, fast eating, skipping breakfast, smoking, heavy drinking, lack of regular exercise) were evaluated by standard questionnaire. Presence or absence of each behavior was scored 0 or 1 and total score was calculated as healthy life style score (range 0 to 7, higher the better). Gender difference in age-related changes in blood pressures, BMI, lipid and glucose metabolism were examined by two way ANOVA. Systolic blood pressure was continuously increased from age 30 s to 70 s in both genders. Systolic blood pressure was significantly higher in men than in women in age 30 s (122.0 ± 13.9 vs. 113.3 ± 12.8 mmHg, p < 0.001) but the difference decreased with an increase in age. Similar gender interaction was observed for diastolic blood pressure, BMI, triglyceride and high density lipoprotein (all p < 0.001) but was not for HbA1c. The healthy life style score was lowest in men age 30 s (5.1 ± 1.5) and it increased with an increase in age. Women demonstrated significantly higher healthy life style score than men in all generations. The gender difference in the score was largest in age 30 s and decreased with an increase in age. Cardio-metabolic risks are worse in men than in women in young generation but this gender difference diminishes with age. The gender difference in the young may be largely attributable to life style factors. Glucose metabolism may be less affected by life style than blood pressure or lipid.
Ardiansyah; Shirakawa, Hitoshi; Koseki, Takuya; Hashizume, Katsumi; Komai, Michio
2007-01-01
The aim of this study is to investigate the effects of dietary supplementation with the Driselase-treated fraction (DF) of rice bran and ferulic acid (FA) on hypertension and glucose and lipid metabolism in stroke-prone spontaneously hypertensive rats (SHRSP). Male SHRSP at 4 weeks of age were divided into three groups, and for 8 weeks were fed (1) a control diet based on AIN-93M, (2) a DF of rice bran-supplemented diet at 60 g/kg and (3) an FA-supplemented diet at 0.01 g/kg. Means and standard errors were calculated and the data were tested by one-way ANOVA followed by a least significance difference test. The results showed that both the DF and FA diets significantly improved hypertension as well as glucose tolerance, plasma nitric oxide (NOx), urinary 8-hydroxy-2'-deoxyguanosine and other parameters. In particular, compared to the FA diet, the DF diet produced a significant improvement in urinary NOx, hepatic triacylglycerol and several mRNA expressions of metabolic parameters involved in glucose and lipid metabolisms. The results of the metabolic syndrome-related parameters obtained from this study suggest that the DF diet is more effective than the FA diet.
Lee, Jooyeon; Torosyan, Nare; Silverman, Daniel H
2017-01-01
Natural compounds in grapes such as resveratrol are known for their antioxidant and anti-inflammatory properties. Some studies have shown a potential role for grapes or wine in slowing cognitive decline and other effects of aging. However, well-controlled experimental data obtained in human subjects are still in need of further development. Here we aimed to systematically assess effects of grapes on regional cerebral metabolism. Ten subjects with mild decline in cognition (mean, 72.2±4.7years; 50% female) were included in this analysis. Participants were randomized into an active grape formulation arm or a placebo arm which consumed a formulation free of polyphenols for six months. Cognitive performance was measured through neuropsychological assessments performed at baseline and 6months after initiation of therapy. Changes in brain metabolism occurring with each therapy regimen were assessed by brain PET scans with the radiotracer [F-18] fluorodeoxyglucose (FDG), obtained during initial evaluation and 6months later. Standardized volumes of interest (sVOI) and statistical parametric mapping (SPM) methods were applied to FDG-PET scans to identify significant regional cerebral metabolic changes. In contrast to participants taking the active grape formulation, who displayed no significant decline in metabolism, the placebo arm underwent significant metabolic decline in sVOI's of the right posterior cingulate cortex (p=0.01), and left superior posterolateral temporal cortex (p=0.04). SPM analyses also found significant declines in the placebo group, particularly in left prefrontal, cingulate, and left superior posterolateral temporal cortex (p<0.01) with stable brain metabolism in the active formulation arm. No significant differences were seen in scores on the neuropsychological battery of tests between the two groups. However, metabolism in right superior parietal cortex and left inferior anterior temporal cortex was correlated with improvements in attention/working memory, as measured with WAIS-III Digital Span within the active formulation group (r=-0.69, p=0.04). The placebo arm had declines in regions of the brain known to be significantly affected in the early stages of Alzheimer's disease, while the active formulation group was spared such decline. This suggests a protective effect of grapes against early pathologic metabolic decline. Copyright © 2016 Elsevier Inc. All rights reserved.
Mehanna, Eman T; Saleh, Samy M; Ghattas, Maivel H; Mesbah, Noha M; Abo-Elmatty, Dina M
2015-02-01
Myeloperoxidase is a heme protein secreted by activated macrophages and generates intermediates that oxidize lipoproteins. Myeloperoxidase-463G/A is a functional polymorphism involved in regulation of myeloperoxidase expression. The aim of this study is to assess the relation of myeloperoxidase-463G/A polymorphism with metabolic syndrome and its component traits in Egyptian women from the Suez Canal area. The study includes 100 healthy female subjects and 100 metabolic syndrome patients. The component traits of metabolic syndrome are determined and the genotypes of the polymorphisms assessed using the PCR-RFLP technique. There was no significant difference in the allele frequencies between the metabolic syndrome and control groups. However, the GA and AA genotypes were associated with lower total cholesterol, LDL-C, systolic and diastolic blood pressure in the patients. Myeloperoxidase-463G/A polymorphism is not associated with the incidence of metabolic syndrome.
Johnson, S. A.; Painter, M. S.; Javurek, A. B.; Ellersieck, M. R.; Wiedmeyer, C. E.; Thyfault, J. P.; Rosenfeld, C. S.
2016-01-01
Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications. PMID:26378919
Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle
Baik, Myunggi; Nguyen, Trang Hoa; Jeong, Jin Young; Piao, Min Yu; Kang, Hyeok Joong
2015-01-01
Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration. PMID:25557684
Metabolic complications associated with HIV protease inhibitor therapy.
Nolan, David
2003-01-01
HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.
MacLeod, A Kenneth; Lin, De; Huang, Jeffrey T-J; McLaughlin, Lesley A; Henderson, Colin J; Wolf, C Roland
2018-05-01
Purpose: Osimertinib is a third-generation inhibitor of the epidermal growth factor receptor used in treatment of non-small cell lung cancer. A full understanding of its disposition and capacity for interaction with other medications will facilitate its effective use as a single agent and in combination therapy. Experimental Design: Recombinant cytochrome P450s and liver microsomal preparations were used to identify novel pathways of osimertinib metabolism in vitro A panel of knockout and mouse lines humanized for pathways of drug metabolism were used to establish the relevance of these pathways in vivo Results: Although some osimertinib metabolites were similar in mouse and human liver samples there were several significant differences, in particular a marked species difference in the P450s involved. The murine Cyp2d gene cluster played a predominant role in mouse, whereas CYP3A4 was the major human enzyme responsible for osimertinib metabolism. Induction of this enzyme in CYP3A4 humanized mice substantially decreased circulating osimertinib exposure. Importantly, we discovered a further novel pathway of osimertinib disposition involving CPY1A1. Modulation of CYP1A1/CYP1A2 levels markedly reduced parent drug concentrations, significantly altering metabolite pharmacokinetics (PK) in humanized mice in vivo Conclusions: We demonstrate that a P450 enzyme expressed in smokers' lungs and lung tumors has the capacity to metabolise osimertinib. This could be a significant factor in defining the outcome of osimertinib treatment. This work also illustrates how P450-humanized mice can be used to identify and mitigate species differences in drug metabolism and thereby model the in vivo effect of critical metabolic pathways on anti-tumor response. Clin Cancer Res; 24(9); 2138-47. ©2018 AACR . ©2018 American Association for Cancer Research.
Gohir, Wajiha; Whelan, Fiona J; Surette, Michael G; Moore, Caroline; Schertzer, Jonathan D; Sloboda, Deborah M
2015-01-01
Shifts in the maternal gut microbiome have been implicated in metabolic adaptations to pregnancy. We investigated how pregnancy and diet interact to influence the composition of the maternal gut microbiota. Female C57BL/6 mice were fed either a control or a high fat diet for 8 weeks prior to mating. After confirmation of pregnancy, maternal weight gain and food intake were recorded. Fecal pellets were collected at 2 timepoints prior to mating (at the beginning of the experiment, and after 6 weeks of the specified diet) and at 4 timepoints during pregnancy (gestation day 0.5, 5.5, 10.5, and 15.5). The microbial composition and predicted metabolic functionality of the non-pregnant and pregnant gut was determined via sequencing of the variable 3 region of the 16S rRNA gene. Upon conception, differences in gut microbial communities were observed in both control and high fat-fed mice, including an increase in mucin-degrading bacteria. Control versus high fat-fed pregnant mice possessed the most profound changes to their maternal gut microbiota as indicated by statistically significant taxonomic differences. High fat-fed pregnant mice, when compared to control-fed animals, were found to be significantly enriched in microbes involved in metabolic pathways favoring fatty acid, ketone, vitamin, and bile synthesis. We show that pregnancy-induced changes in the female gut microbiota occur immediately at the onset of pregnancy, are vulnerable to modulation by diet, but are not dependent upon increases in maternal weight gain during pregnancy. High fat diet intake before and during pregnancy results in distinctive shifts in the pregnant gut microbiota in a gestational-age dependent manner and these shifts predict significant differences in the abundance of genes that favor lipid metabolism, glycolysis and gluconeogenic metabolic pathways over the course of pregnancy. PMID:26322500
Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L
2010-12-01
Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.
Coyne, Terry; Ibiebele, Torukiri I; Baade, Peter D; McClintock, Christine S; Shaw, Jonathan E
2009-12-01
Several components of the metabolic syndrome, particularly diabetes and CVD, are known to be oxidative stress-related conditions and there is research to suggest that antioxidant nutrients may play a protective role in these conditions. Carotenoids are compounds derived primarily from plants and several have been shown to be potent antioxidant nutrients. The aim of the present study was to examine the associations between metabolic syndrome status and major serum carotenoids in adult Australians. Data on the presence of the metabolic syndrome, based on International Diabetes Federation 2005 criteria, were collected from 1523 adults aged 25 years and over in six randomly selected urban centres in Queensland, Australia, using a cross-sectional study design. Weight, height, BMI, waist circumference, blood pressure, fasting and 2 h blood glucose and lipids were determined, as well as five serum carotenoids. Mean serum alpha-, beta-carotenes and the sum of the five carotenoid concentrations were significantly lower (P < 0.05) in persons with the metabolic syndrome (after adjusting for age, sex, education, BMI status, alcohol intake, smoking, physical activity status and vitamin/mineral use) than persons without the syndrome. alpha-, beta- and total carotenoids also decreased significantly (P < 0.05) with increased number of components of the metabolic syndrome, after adjusting for these confounders. These differences were significant among former smokers and non-smokers, but not in present smokers. Low concentrations of serum alpha-, beta-carotenes and the sum of five carotenoids appear to be associated with metabolic syndrome status. Additional research, particularly longitudinal studies, may help to determine whether these associations are causally related to the metabolic syndrome, or are a result of the pathologies of the syndrome.
Oyoyo, Udochukwu; Hovda, David A.; Sutton, Richard L.
2010-01-01
Abstract Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo 13C NMR spectroscopy following an infusion of [1-13C] glucose and [1,2-13C2] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the 13C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the 13C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The 13C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism. PMID:20939699
Jaiswal, S K; Sukla, K K; Chauhan, A; Lakhotia, A R; Kumar, A; Rai, A K
2017-01-01
Choline is an essential nutrient involved in one-carbon metabolism, but its role in mechanisms underlying meiotic non-disjunction is poorly known. The relationship between folate-homocysteine metabolic pathway gene polymorphism and Down syndrome (DS) risk has been widely analyzed, but there are limited reports on its correlation with choline metabolism. In the present case-control association study, we investigated the relationship of three single-nucleotide polymorphisms (SNPs) (phosphatidylethanolamine N-methyltransferase (PEMT) rs12325817, choline dehydrogenase (CHDH) rs12676 and homocysteine methyltransferase (BHMT) rs3733890) of choline metabolism with risk for DS. Genotyping of 228 mothers of a down syndrome child (DSM) and 200 control mothers (CMs) for all SNPs was performed by PCR coupled with restriction fragment length polymorphism method. A significantly increased risk for BHMT +742AA genotype with an odds ratio of 4.96 (95% confidence interval (CI): 1.66-14.88, P=0.0036) was observed. For PEMT rs12325817 and CHDH rs12676, no significant difference in allelic and genotypic frequencies was observed. In genotypic combination analysis considering PEMT -744GG/CHDH +432GG/BHMT +742GG as the reference combination, PEMT -744GC/CHDH +432GG/BHMT +742GG genotypic combination was significantly higher in DSM compared with that in CMs with an odds ratio of 2.061 (95% CI: 1.10-3.86, P=0.0342). We also observed an epistatic interaction between methylenetetrahydrofolate reductase (MTHFR) rs1801133 and choline metabolic pathway gene variants. Our findings indicate impaired choline metabolism showing a greater risk for DS, especially in a population associated with homocysteine-folate impairment. Further studies are required to confirm our findings.
Jalilolghadr, Shabnam; Yazdi, Zohreh; Mahram, Manoochehr; Babaei, Farkhondeh; Esmailzadehha, Neda; Nozari, Hoormehr; Saffari, Fatemeh
2016-05-01
Obesity and biochemical parameters of metabolic disorders are both closely related to obstructive sleep apnea (OSA). The aim of this study was to compare sleep architecture and OSA in obese children with and without metabolic syndrome. Forty-two children with metabolic syndrome were selected as case group and 38 children without metabolic syndrome were matched for age, sex, and BMI as control group. The standardized Persian version of bedtime problems, excessive daytime sleepiness, awakenings during the night, regularity and duration of sleep, snoring (BEARS) and Children's Sleep Habits Questionnaires were completed, and polysomnography (PSG) was performed for all study subjects. Scoring was performed using the manual of American Academy of Sleep Medicine for children. Data were analyzed using chi-square test, T test, Mann-Whitney U test, and logistic regression analysis. Non-rapid eye movement (NREM) sleep and N1 stage in the case group were significantly longer than the control group, while REM sleep was significantly shorter. Waking after sleep onset (WASO) was significantly different between two groups. Severe OSA was more frequent in the control group. Multivariate logistic regression analysis showed that severe OSA (OR 21.478, 95 % CI 2.160-213.600; P = 0.009) and REM sleep (OR 0.856, 95 % CI 0.737-0.994; P = 0.041) had independent association with metabolic syndrome. Obese children with metabolic syndrome had increased WASO, N1 sleep stage, and severe OSA. But the results regarding sleep architecture are most likely a direct result of OSA severity. More longitudinal studies are needed to confirm the association of metabolic syndrome and OSA.
Zheng, Guomao; Wan, Yi; Shi, Sainan; Zhao, Haoqi; Gao, Shixiong; Zhang, Shiyi; An, Lihui; Zhang, Zhaobin
2018-04-17
Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromo- o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH ( p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals.
Hu, Qiong-Dan; Wu, Wei-Hua; Zeng, Yan; Wen, Ji; Li, Xiao-Jun; Pan, Wei; Zhang, Mao-Ping; Hu, Bo; Lei, Chun-Yan; Fan, Junming
2018-04-30
In recent years, metabolomics using high-performance liquid chromatography (UPLC) has been used to study the metabolic profiles in plasma, urine, stool and tissue in animal model of chronic kidney disease (CKD). In the previous work, we found that traditional Chinese medicine (TCM) "Kidney Flaccidity Compound" (KFC) based on "kidney flaccidity theory" can improve renal function and quality of life of patients with kidney disease. This study aimed to investigate the metabolic profiles in peripheral blood of hemodialysis patients administrated by KFC for 1.5 and 3 months and explore the potential metabolic mechanism using UPLC. Results showed that 121 metabolites were different between KFC 3-months group and untreated control, of which 75 were significantly upregulated and 46 were significantly downregulated. In the 1.5-months treatment group, there were 365 metabolites, of which 164 were significantly upregulated and 192 downregulated. There were 6 metabolites and 15 metabolites upregulated 3-fold in 3-months and 1.5-months KFC treatment group, respectively. In addition, more than 60 new metabolites were identified in the peripheral blood in KFC treated patients, including two potential diagnostic markers MGDG 30:8 and 2-(hydroxymethyl)-6-[[(1R,4S) -2,2,4-trimethyl-3-oxabicyclo[2.2.2]octan-5-yl]oxy]oxane-3,4,5-triol. The pathway enrichment analysis showed thce differential metabolites mainly enriched in Arginine and proline metabolism, Urea cycle, Tyrosine metabolism, Methionine metabolism, Tricarboxylic acid cycle, and Androgen and estrogen metabolism. The findings are helpful to reveal the mechanism of KFC protects CKD, and to provide a new strategy for recovery renal function in hemodialysis patients.
Liang, Ruoyu; Chen, Juan; Shi, Yajuan; Lu, Yonglong; Sarvajayakesavalu, Suriyanarayanan; Xu, Xiangbo; Zheng, Xiaoqi; Khan, Kifayatullah; Su, Chao
2018-05-15
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1 H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1 H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Der-Yuan; Chen, Yi-Ming; Chien, Han-Ju; Lin, Chi-Chen; Hsieh, Chia-Wei; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Chien-Chen
2016-01-01
Liquid chromatography/mass spectrometry (LC/MS)-based comprehensive analysis of metabolic profiles with metabolomics approach has potential diagnostic and predictive implications. However, no metabolomics data have been reported in adult-onset Still's disease (AOSD). This study investigated the metabolomic profiles in AOSD patients and examined their association with clinical characteristics and disease outcome. Serum metabolite profiles were determined on 32 AOSD patients and 30 healthy controls (HC) using ultra-performance liquid chromatography (UPLC)/MS analysis, and the differentially expressed metabolites were quantified using multiple reactions monitoring (MRM)/MS analysis in 44 patients and 42 HC. Pure standards were utilized to confirm the presence of the differentially expressed metabolites. Eighteen differentially expressed metabolites were identified in AOSD patents using LC/MS-based analysis, of which 13 metabolites were validated by MRM/MS analysis. Among them, serum levels of lysoPC(18:2), urocanic acid and indole were significantly lower, and L-phenylalanine levels were significantly higher in AOSD patients compared with HC. Moreover, serum levels of lysoPC(18:2), PhePhe, uridine, taurine, L-threonine, and (R)-3-Hydroxy-hexadecanoic acid were significantly correlated with disease activity scores (all p<0.05) in AOSD patients. A different clustering of metabolites was associated with a different disease outcome, with significantly lower levels of isovalerylsarcosine observed in patients with chronic articular pattern (median, 77.0AU/ml) compared with monocyclic (341.5AU/ml, p<0.01) or polycyclic systemic pattern (168.0AU/ml, p<0.05). Thirteen differentially expressed metabolites identified and validated in AOSD patients were shown to be involved in five metabolic pathways. Significant associations of metabolic profiles with disease activity and outcome of AOSD suggest their involvement in AOSD pathogenesis.
Whitfield, Patricia; Parry-Strong, Amber; Walsh, Emily; Weatherall, Mark; Krebs, Jeremy D
2016-04-01
This randomised controlled trial assessed the acute and long-term effects of daily supplementation of kanuka honey, formulated with cinnamon, chromium and magnesium on glucose metabolism, weight and lipid parameters in individuals with type 2 diabetes. Twelve individuals with type 2 diabetes received 53.5 g of a formulated honey and a control (non-formulated) kanuka honey in a random order for 40 days, using cross-over design. Fasting glucose, insulin, HbA1c, lipids and anthropometric measures were measured at baseline and end of treatment. A meal tolerance test was performed at baseline to assess acute metabolic response. There was no statistically significant difference in acute glucose metabolism between treatment groups, as measured by the Matsuda index and AUC for glucose and insulin. After the 40-day intervention with honey, fasting glucose did not differ significantly between the two treatments (95 % CI -2.6 to 0.07). There was no statistically significant change in HbA1c or fasting insulin. There was a statistically significant reduction in total cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23), LDL cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23) and weight by -2.2 kg (95 % CI -4.2 to -0.1). There was a trend towards increased HDL and reduced systolic blood pressure in the intervention treatment. The addition of cinnamon, chromium and magnesium supplementation to kanuka honey was not associated with a significant improvement in glucose metabolism or glycaemic control in individuals with type 2 diabetes. Use of the formulated honey was associated with a reduction in weight and improvements in lipid parameters, and should be investigated further.
Mori, A; Kenyon, P R; Mori, N; Yamamoto, I; Tanaka, Y; Suzuki, N; Tazaki, H; Ozawa, T; Hayashi, T; Hickson, R E; Morris, S T; Blair, H; Arai, T
2008-02-01
Metabolite and immunoreactive insulin (IRI) concentrations, energy metabolism related enzymes activities and peripheral blood mononuclear cell (PBMC) populations were measured in blood of pregnant Angus heifers with differing liveweight change profiles (gaining or losing), in New Zealand to investigate the meanings of those parameters in the restricted feeding beef heifers. Beef heifers losing liveweight (-412 g/day) showed significantly lower concentrations of plasma IRI, and higher concentrations of plasma free fatty acid (FFA) than heifers gaining liveweight (483 g/day). The cytosolic and mitochondrial malate dehydrogenase (MDH) activities and MDH/lactate dehydrogenase (M/L) ratio in leukocytes of the liveweight losing heifers were significantly higher than those the liveweight gaining heifers. Percentages of cluster of differentiation (CD) 3 positive cells and natural killer (NK) cells in PBMC decreased significantly in the liveweight losing heifers compared to those in the liveweight gaining heifers. Plasma IRI and FFA concentrations, leukocyte cytosolic and mitochondrial MDH activities and CD3 positive and NK cell populations may be useful markers to evaluate metabolic conditions and immunity in the restricted feeding beef heifers.
The effect of diphenylhydantoin on metabolic and growth hormone changes during and after exercise.
Chalmers, R J; Johnson, R H
1983-01-01
Metabolic and human growth hormone responses to exercise were investigated in six normal healthy subjects on two occasions with and without an oral dose of diphenylhydantoin (500 mg). Serum diphenylhydantoin concentrations were similar in all subjects and were just below the accepted therapeutic range for epileptic patients. There was no significant difference in blood lactate, pyruvate or glucose concentrations with diphenylhydantoin. Plasma free fatty acids, and blood glycerol and total ketone concentrations were greater after exercise following diphenylhydantoin. Significantly greater concentrations of human growth hormone occurred during exercise with diphenylhydantoin. Further investigation of the mechanisms by which diphenylhydantoin alters lipolysis and human growth hormone release would be of value as these metabolic and hormonal effects could influence exercise tolerance in athletics and other pursuits. PMID:6886706
Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O
2018-05-01
Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Changes in coral reef metabolism during the 2015 El Niño in the eastern Pacific
NASA Astrophysics Data System (ADS)
McGillis, W. R.; Manzello, D.; Smith, T. B.; Baker, A.; Fong, P.; Glynn, P.; Smith, J.; Takeshita, Y.; Martz, T. R.; Hsueh, D.; Langdon, C.; Price, N.; Mate, J.
2016-02-01
The likely strong 2015-2016 El Niño event offers an opportunity to assess coral reef benthic metabolism under stressful high temperatures, coral bleaching, and mortality. During a period of increasing ocean temperatures caused by the 2015-2016 El Niño-Southern Oscillation (ENSO), we assessed the metabolism, at hourly intervals, of eastern Pacific coral reefs using the Benthic Ecosystem and Acidification Measurement System (BEAMS). We measured coral reef net ecosystem productivity (NEP) and net ecosystem calcification (NEC) in 2014 before the start of the El Niño event and in 2015 during the first anomalously high sea surface temperatures of the 2015 El Niño. Increases in ocean temperatures of 1-2°C between 2014 and 2015 caused over 30% decline in calcification at Uva Is. (Panama) and Darwin Is. (Galapagos), along with significant coral bleaching at Uva and coral paling at Darwin. Warming at Saboga Island, in the seasonally upwelling Gulf of Panama, was only 0.3oC, did not result in significant bleaching, and was accompanied by a significant increase in coral reef metabolism. Additional key findings include an increase in nighttime dissolution of calcium carbonate during ENSO heating. Light-NEP and light-NEC relationships were generated for each location, and showed that variations in metabolism were strongly correlated with the incident bottom solar intensity, with strong daily cycles and patterns of light-enhanced calcification also identified. The response of different coral species also provides in situ data on the varying metabolism. The metabolism of the 2015-2016 El Niño shows the possible reef function under future warming and acidified conditions. These emerging results may be harbingers of significant further decreases in metabolism, and other detrimental impacts, if this region experiences additional warming during the current ENSO event.
Takahara, Mitsuyoshi; Katakami, Naoto; Kaneto, Hideaki; Noguchi, Midori; Shimomura, Iichiro
2014-01-01
The aim of the current study was to develop a predictive model of insulin resistance using general health checkup data in Japanese employees with one or more metabolic risk factors. We used a database of 846 Japanese employees with one or more metabolic risk factors who underwent general health checkup and a 75-g oral glucose tolerance test (OGTT). Logistic regression models were developed to predict existing insulin resistance evaluated using the Matsuda index. The predictive performance of these models was assessed using the C statistic. The C statistics of body mass index (BMI), waist circumference and their combined use were 0.743, 0.732 and 0.749, with no significant differences. The multivariate backward selection model, in which BMI, the levels of plasma glucose, high-density lipoprotein (HDL) cholesterol, log-transformed triglycerides and log-transformed alanine aminotransferase and hypertension under treatment remained, had a C statistic of 0.816, with a significant difference compared to the combined use of BMI and waist circumference (p<0.01). The C statistic was not significantly reduced when the levels of log-transformed triglycerides and log-transformed alanine aminotransferase and hypertension under treatment were simultaneously excluded from the multivariate model (p=0.14). On the other hand, further exclusion of any of the remaining three variables significantly reduced the C statistic (all p<0.01). When predicting the presence of insulin resistance using general health checkup data in Japanese employees with metabolic risk factors, it is important to take into consideration the BMI and fasting plasma glucose and HDL cholesterol levels.
[Features of metabolic syndrome in patients with depressive disorder].
Zeman, M; Jirák, R; Zák, A; Jáchymová, M; Vecka, M; Tvrzická, E; Vávrová, L; Kodydková, J; Stanková, B
2009-01-01
Depressive disorder is a serious illness with a high incidence, proxime accessit after anxiety disorders among the psychiatric diseases. It is accompanied by an increased risk of development of type 2 diabetes mellitus, cardiovascular disease, and by increased all-cause mortality. Recently published data have suggested that factors connected with the insulin resistance are at the background of this association. In this pilot study we have investigated parameters of lipid metabolism and glucose homeostasis in consecutively admitted patients suffering from depressive disorder (DD) (group of 42 people), in 57 patients with the metabolic syndrome (MetS) and in a control group of 49 apparently healthy persons (CON). Depressive patients did not differ from the control group by age or body mass index (BMI) value, but they had statistically significantly higher concentrations of serum insulin, C-peptide, glucose, triglycerides (TG), conjugated dienes in LDL particles (CD-LDL), higher value of microalbuminuria and of insulin resistance (HOMA-IR) index. They simultaneously had significantly lower value of the insulin sensitivity (QUICKI) index. In comparison with the MetS group the depressive patients were characterized by significantly lower both systolic and diastolic blood pressure, BMI , serum TG, apolipoprotein B, uric acid, C-peptide and by higher concentrations of apolipoprotein A-I and HDL-cholesterol. On the contrary, we have not found statistically significant differences between the DD and MetS groups in the concentrations of serum insulin, glucose, HOMA and QUICKI indices, in CD-LDL and MAU. In this pilot study, we have found in patients with depressive disorder certain features of metabolic syndrome, especially insulin resistance and oxidative stress.
Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine
Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.
1997-01-01
Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830
Poot-Hernandez, Augusto Cesar; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto
2015-11-17
It is generally accepted that gene duplication followed by functional divergence is one of the main sources of metabolic diversity. In this regard, there is an increasing interest in the development of methods that allow the systematic identification of these evolutionary events in metabolism. Here, we used a method not based on biomolecular sequence analysis to compare and identify common and variable routes in the metabolism of 40 Gammaproteobacteria species. The metabolic maps deposited in the KEGG database were transformed into linear Enzymatic Step Sequences (ESS) by using the breadth-first search algorithm. These ESS represent subsequent enzymes linked to each other, where their catalytic activities are encoded in the Enzyme Commission numbers. The ESS were compared in an all-against-all (pairwise comparisons) approach by using a dynamic programming algorithm, leaving only a set of significant pairs. From these comparisons, we identified a set of functionally conserved enzymatic steps in different metabolic maps, in which cell wall components and fatty acid and lysine biosynthesis were included. In addition, we found that pathways associated with biosynthesis share a higher proportion of similar ESS than degradation pathways and secondary metabolism pathways. Also, maps associated with the metabolism of similar compounds contain a high proportion of similar ESS, such as those maps from nucleotide metabolism pathways, in particular the inosine monophosphate pathway. Furthermore, diverse ESS associated with the low part of the glycolysis pathway were identified as functionally similar to multiple metabolic pathways. In summary, our comparisons may help to identify similar reactions in different metabolic pathways and could reinforce the patchwork model in the evolution of metabolism in Gammaproteobacteria.
The evolution of organellar metabolism in unicellular eukaryotes.
Ginger, Michael L; McFadden, Geoffrey I; Michels, Paul A M
2010-03-12
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.
Zhu, Guangsu; Ma, Fangli; Wang, Gang; Wang, Yuanyuan; Zhao, Jianxin; Zhang, Hao; Chen, Wei
2018-06-20
Host gut microbiota dysbiosis occurs for multiple reasons and is often accompanied by chronic inflammation induced by a high-fat-high-sucrose (HFHS) diet and related metabolic disorders. Intervention with probiotics is a novel strategy for amelioration of metabolic syndrome, which is believed to regulate the gut microbiota composition to some extent. We investigated the relationship amongst bifidobacteria treatment, HFHS diet-induced metabolic disorders and the gut microbiota composition. Seven strains of bifidobacteria from four species were individually administered to rats fed a HFHS diet for 12 weeks. Various bifidobacteria strains showed various effects on the recovery of metabolic disorders and gut microbiota dysbiosis, and these effects seemed to be inter- or intra-species specific. Bifidobacterium longum, B. adolescentis and B. bifidum seemed to affect the blood glucose balance, whilst two strains of B. breve showed extremely different effects in this area. However, only one strain of B. longum and the B. adolescentis displayed significant regulation of blood lipid levels. The protective effects of bifidobacteria on the pancreas were strongly correlated with those on blood glucose. Furthermore, the influence of bifidobacteria on gut microbiota dysbiosis also showed a potential relationship with symptoms of metabolic disorders. Of these seven strains, B. adolescentis Z25 displayed an outstanding ability to alleviate metabolic syndrome, including glucose and lipid metabolism disorders, tissue damage and gut microbiota dysbiosis. This strain, coupled with other prebiotics and probiotics, could be used as a potential treatment approach for metabolic syndrome induced by a HFHS diet.
MUSCLE METABOLISM WITH BLOOD FLOW RESTRICTION IN CHRONIC FATIGUE SYNDROME
McCully, Kevin K.; Smith, Sinclair; Rajaei, Sheeva; Leigh, John S.; Natelson, Benjamin H.
2009-01-01
The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to CDC criteria (n=19) were compared to normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle using 31P magnetic resonance spectroscopy (MRS). Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50,60,70,80,and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients. Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow. In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery, but no evidence that this impaired muscle metabolism. Thus, CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Further, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms. PMID:14578362
Masson, Walter; Epstein, Teo; Huerín, Melina; Lobo, Lorenzo Martín; Molinero, Graciela; Angel, Adriana; Masson, Gerardo; Millán, Diana; De Francesca, Salvador; Vitagliano, Laura; Cafferata, Alberto; Losada, Pablo
2017-09-01
The estimated cardiovascular risk determined by the different risk scores, could be heterogeneous in patients with metabolic syndrome without diabetes or vascular disease. This risk stratification could be improved by detecting subclinical carotid atheromatosis. To estimate the cardiovascular risk measured by different scores in patients with metabolic syndrome and analyze its association with the presence of carotid plaque. Non-diabetic patients with metabolic syndrome (Adult Treatment Panel III definition) without cardiovascular disease were enrolled. The Framingham score, the Reynolds score, the new score proposed by the 2013 ACC/AHA Guidelines and the Metabolic Syndrome Severity Calculator were calculated. Prevalence of carotid plaque was determined by ultrasound examination. A Receiver Operating Characteristic analysis was performed. A total of 238 patients were enrolled. Most patients were stratified as "low risk" by Framingham score (64%) and Reynolds score (70.1%). Using the 2013 ACC/AHA score, 45.3% of the population had a risk ≥7.5%. A significant correlation was found between classic scores but the agreement (concordance) was moderate. The correlation between classical scores and the Metabolic Syndrome Severity Calculator was poor. Overall, the prevalence of carotid plaque was 28.2%. The continuous metabolic syndrome score used in our study showed a good predictive power to detect carotid plaque (area under the curve 0.752). In this population, the calculated cardiovascular risk was heterogenic. The prevalence of carotid plaque was high. The Metabolic Syndrome Severity Calculator showed a good predictive power to detect carotid plaque.
The evolution of organellar metabolism in unicellular eukaryotes
Ginger, Michael L.; McFadden, Geoffrey I.; Michels, Paul A. M.
2010-01-01
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution. PMID:20124338
Arana, Carlos; Moreno-Fernández, Ana María; Gómez-Moreno, Gerardo; Morales-Portillo, Cristóbal; Serrano-Olmedo, Isabel; de la Cuesta Mayor, M Carmen; Martín Hernández, Tomás
2017-05-01
The aim of this study was to determine whether there are differences in salivary oxidative stress between patients with diabetes mellitus type 2 (DM2) and healthy non-diabetic patients, and whether this oxidative stress is associated with the presence of periodontal disease in diabetic patients. This observational study included 70 patients divided into three groups according to metabolic control levels: 19 non-diabetic patients (control group); 24 patients with good metabolic control (HbA1c<7%), and 27 patients DM2 with poor metabolic control (HbA1c>7%). The following oxidative stress parameters were measured in all subjects: glutathione peroxidase (GPx), glutathione reductase (GRd), reduced glutathione (GSH) and oxidized glutathione (GSSG). Periodontal health was determined by means of the community periodontal index (CPI) recommended by the WHO. The diabetic group with good metabolic control showed a significant increase in GPx and GRd activity in comparison with the control group (P<.001). The activity of the enzymes measured was significantly less in patients with poor metabolic control in comparison with the control group and well-controlled diabetic groups (P<.001). Both diabetic groups showed higher GSSG/GSH quotients and CPI in comparison with the control group, and both parameters were significantly higher in diabetic patients with poor metabolic control in comparison with well-controlled diabetic patients. Poor metabolic control in DM2 patients is associated with higher levels of salivary oxidative stress and worse periodontal health. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Alefishat, Eman A; Abu Farha, Rana K; Al-Debei, Mutaz M
2017-01-01
This study aimed to evaluate factors that affect adherence in individuals at high risk of metabolic syndrome, with a focus on knowledge and attitude effect. A sample of 900 high-risk individuals with metabolic syndrome was recruited in this cross-sectional study. During the study period, all participants filled in validated structured questionnaires to evaluate the adherence to different management options of metabolic syndrome, knowledge about the syndrome, and health-related attitude. Simple linear regression followed by multiple linear regression analysis were used to evaluate the effect of knowledge, attitude, and other factors on participants' adherence to both medications and lifestyle changes. Of the 900 participants, 436 (48.4%) were nonadherent to medications and 813 (90.3%) were nonadherent to lifestyle changes. Increasing age (r = 0.140, p = 0.000), the presence of hypertension (r = 0.075, p = 0.036), and a more positive attitude toward health (r = 0.230, p = 0.000) were significantly associated with increasing adherence to medications. Higher educational level (r = 0.085, p = 0.023), higher knowledge score (r = 0.135, p = 0.001), and more positive attitude toward health (r = 0.183, p = 0.000) were found to significantly increase the adherence to lifestyle changes, while central obesity (r = -0.106, p = 0.003) was found to significantly decrease the adherence to lifestyle changes. Patients' knowledge about metabolic syndrome and attitude to health affected adherence rates in patients at high risk of metabolic syndrome. Hence, we suggest the need to incorporate patients' educational programs into current management of metabolic syndrome. © 2016 S. Karger AG, Basel.
Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.
2016-01-01
Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.
Biological and metabolic response in STS-135 space-flown mouse skin.
Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S
2014-08-01
There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.
NASA Astrophysics Data System (ADS)
Drenda, Jan; Kułagowska, Ewa; Różański, Zenon; Pach, Grzegorz; Wrona, Paweł; Karolak, Izabela
2017-06-01
Considering different duties and activities among miners working in underground coal mines, their work is connected with variable metabolic rate. Determination of this rate for different workplace was the aim of the research and was the base for set up the work arduousness classes for the workplace (according to the standard PN-EN 27243). The research covered 6 coal mines, 268 workers and 1164 series of measurements. Metabolic rate was established on the base of heart rate obtained from individual pulsometers (according to the standard PN-EN ISO 8996). Measurements were supplemented by poll surveys about worker and thermal environment parameters. The results showed significant variability of average heart rate (from 87 bmp to 100 bpm) with variance coefficient 14%. Mean values of metabolic rate were from 150 W/m2 to 207 W/m2. According to the results, the most common class of work arduousness was at moderate metabolic rate (class 2 - moderate work), however, more intense work was found in headings, especially at " blind end" workplace.
Metabolomic Changes in Serum of Children with Different Clinical Diagnoses of Malnutrition.
Di Giovanni, Valeria; Bourdon, Celine; Wang, Dominic X; Seshadri, Swapna; Senga, Edward; Versloot, Christian J; Voskuijl, Wieger; Semba, Richard D; Trehan, Indi; Moaddel, Ruin; Ordiz, M Isabel; Zhang, Ling; Parkinson, John; Manary, Mark J; Bandsma, Robert Hj
2016-12-01
Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. We studied children aged 9-59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953. © 2016 American Society for Nutrition.
Metabolomic Changes in Serum of Children with Different Clinical Diagnoses of Malnutrition123
Di Giovanni, Valeria; Wang, Dominic X; Seshadri, Swapna; Senga, Edward; Versloot, Christian J; Semba, Richard D; Moaddel, Ruin; Ordiz, M Isabel; Zhang, Ling; Parkinson, John; Manary, Mark J; Bandsma, Robert HJ
2016-01-01
Background: Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. Objectives: We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. Methods: We studied children aged 9–59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. Results: At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. Conclusions: Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953. PMID:27807038
Regional variation in muscle metabolic enzymes in individual American shad (Alosa sapidissima)
Leonard, J.B.K.
1999-01-01
Evaluation of the activity of metabolic enzymes is often used to asses metabolic capacity at the tissue level, but the amount of regional variability within a tissue in an individual fish of a given species is frequently unknown. The activities of four enzymes (citrate synthase (CS), phosphofructokinase, lactate dehydrogenase (LDH), and ??-hydroxyacyl coenzyme A dehydrogenase (HOAD) were assayed in red and white muscle at 10 sites along the body of adult American shad (Alosa sapidissima). Red and white muscle HOAD and white muscle CS and LDH varied significantly, generally increasing posteriorly. Maximal variation occurs in red muscle HOAD (~450%) and white muscle LDH (~60%) activity. Differences between the sexes also vary with sampling location. This study suggests that the variability in enzyme activity may be linked to functional differences in the muscle at different locations, and also provides guidelines for sample collection in this species.
NASA Astrophysics Data System (ADS)
Contini, D.; Spinelli, L.; Torricelli, A.; Ferrante, S.; Pedrocchi, A.; Molteni, F.; Ferrigno, G.; Cubeddu, R.
2009-02-01
We present a preliminary study that combines functional electrical stimulation and time-domain near infrared spectroscopy for a quantitative measurement of the local muscular metabolism during rehabilitation of post-acute stroke patients. Seven healthy subjects and nine post-acute stroke patients underwent a protocol of knee flex-extension of the quadriceps induced by functional electrical stimulation. During the protocol time-domain near infrared spectroscopy measurement were performed on both left and right muscle. Hemodynamic parameters (concentration of oxy- and deoxy-genated hemoglobin) during baseline did not show any significant differences between healthy subject and patients, while functional performances (knee angle amplitude) were distinctly different. Nevertheless, even if their clinical histories were noticeably different, there was no differentiation among functional performances of patients. On the basis of the hemodynamic parameters measured during the recovery phase, instead, it was possible to identify two classes of patients showing a metabolic trend similar or very different to the one obtained by healthy subjects. The presented results suggest that the combination of functional and metabolic information can give an additional tool to the clinicians in the evaluation of the rehabilitation in post-acute stroke patients.
Feng, Jin-Zhou; Wang, Wen-Yuan; Zeng, Jun; Zhou, Zhi-Yuan; Peng, Jin; Yang, Hao; Deng, Peng-Chi; Li, Shi-Jun; Lu, Charles D; Jiang, Hua
2017-08-01
Therapeutic hypothermia is widely used to treat traumatic brain injuries (TBIs). However, determining the best hypothermia therapy strategy remains a challenge. We hypothesized that reducing the metabolic rate, rather than reaching a fixed body temperature, would be an appropriate target because optimizing metabolic conditions especially the brain metabolic environment may enhance neurologic protection. A pilot single-blind randomized controlled trial was designed to test this hypothesis, and a nested metabolomics study was conducted to explore the mechanics thereof. Severe TBI patients (Glasgow Coma Scale score, 3-8) were randomly divided into the metabolic-targeted hypothermia treatment (MTHT) group, 50% to 60% rest metabolic ratio as the hypothermia therapy target, and the body temperature-targeted hypothermia treatment (BTHT) control group, hypothermia therapy target of 32°C to 35°C body temperature. Brain and circulatory metabolic pool blood samples were collected at baseline and on days 1, 3, and 7 during the hypothermia treatment, which were selected randomly from a subgroup of MTHT and BTHT groups. The primary outcome was mortality. Using H nuclear magnetic resonance technology, we tracked and located the disturbances of metabolic networks. Eighty-eight severe TBI patients were recruited and analyzed from December 2013 to December 2014, 44 each were assigned in the MTHT and BTHT groups (median age, 42 years; 69.32% men; mean Glasgow Coma Scale score, 6.17 ± 1.02). The mortality was significantly lower in the MTHT than the BTHT group (15.91% vs. 34.09%; p = 0.049). From these, eight cases of MTHT and six cases from BTHT group were enrolled for metabolomics analysis, which showed a significant difference between the brain and circulatory metabolic patterns in MTHT group on day 7 based on the model parameters and scores plots. Finally, metabolites representing potential neuroprotective monitoring parameters for hypothermia treatment were identified through H nuclear magnetic resonance metabolomics. MTHT can significantly reduce the mortality of severe TBI patients. Metabolomics research showed that this strategy could effectively improve brain metabolism, suggesting that reducing the metabolic rate to 50% to 60% should be set as the hypothermia therapy target. Therapeutic study, Level I.
Flowers, Elena; Molina, César; Mathur, Ashish; Reaven, Gerald M
2015-01-01
Prevalence of insulin resistance and associated dyslipidaemia [high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) concentrations] are increased in South Asian individuals; likely contributing to their increased risk of type-2 diabetes and cardiovascular disease. The plasma concentration ratio of TG/HDL-C has been proposed as a simple way to identify apparently healthy individuals at high cardio-metabolic risk. This study was carried out to compare the cardio-metabolic risk profiles of high-risk South Asian individuals identified by an elevated TG/HDL-C ratio versus those with a diagnosis of the metabolic syndrome. Body mass index, waist circumference, blood pressure, and fasting plasma glucose, insulin, TG, and HDL-C concentrations were determined in apparently healthy men (n=498) and women (n=526). The cardio-metabolic risk profile of "high risk" individuals identified by TG/HDL-C ratios in men (≥ 3.5) and women (≥2.5) was compared to those identified by a diagnosis of the metabolic syndrome. More concentrations of all cardio-metabolic risk factors were significantly higher in "high risk" groups, identified by either the TG/HDL-C ratio or a diagnosis of the metabolic syndrome. TG, HDL-C, and insulin concentrations were not significantly different in "high risk" groups identified by either criterion, whereas plasma glucose and blood pressure were higher in those with the metabolic syndrome. Apparently healthy South Asian individuals at high cardio-metabolic risk can be identified using either the TG/HDL-C ratio or the metabolic syndrome criteria. The TG/HDL-C ratio may be used as a simple marker to identify such individuals.
Mostafa, Dalia K; Nasra, Rasha A; Zahran, Noha; Ghoneim, Mohammed T
2016-12-05
Several lines of evidence point to the association of vitamin D deficiency with the different components of metabolic syndrome. Yet, the effect of vitamin D supplementation on metabolic syndrome is not clearly elucidated. Herein, we tested the hypothesis that administration of vitamin D, either alone or in combination of metformin can improve metabolic and structural derangements associated with metabolic syndrome. Fifty wistar rats were randomly assigned to serve either as normal control (10 rats) or metabolic syndrome rats, by feeding them with a standard or a high fat diet (HFD), respectively. Metabolic syndrome rats were further assigned to receive either vehicle, Metformin (100mg/Kg orally), vitamin D (6ng/Kg SC.) or both, daily for 8 weeks. Body weight, blood pressure, serum glucose, insulin, insulin resistance, lipid profile, oxidative stress, serum uric acid and Ca +2 were assessed at the end of the study. Histopathological examination of hepatic, renal and cardiac tissues were also performed. Treatment with vitamin D was associated with a significant improvement of the key features of metabolic syndrome namely obesity, hypertension and dyslipidaemia with a neutral effect on Ca +2 level. When combined with metformin, most of the other metabolic abnormalities were ameliorated. Furthermore, a significant attenuation of the associated hepatic steatosis was observed with vitamin D as well as vitamin D/metformin combination. In conclusion, vitamin D can improve hypertension, metabolic and structural abnormalities induced by HFD, and it provides additional benefits when combined with metformin. Therefore, vitamin D could represent a feasible therapeutic option for prevention of metabolic syndrome. Copyright © 2016 Elsevier B.V. All rights reserved.
Osteoporosis: Modern Paradigms for Last Century’s Bones †
Kruger, Marlena C.; Wolber, Frances M.
2016-01-01
The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a “brittle bone” disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture. PMID:27322315
Osteoporosis: Modern Paradigms for Last Century's Bones.
Kruger, Marlena C; Wolber, Frances M
2016-06-17
The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a "brittle bone" disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture.
Leblanc, Vicky; Hudon, Anne-Marie; Royer, Marie-Michelle; Corneau, Louise; Dodin, Sylvie; Bégin, Catherine; Lemieux, Simone
2015-01-01
Few studies have compared men and women in response to nutritional interventions but none has assessed differences between men and women in the response to a nutritional intervention programme based on the self-determination theory (SDT) and using the Mediterranean diet (MedDiet) as a model of healthy eating, in a context of CVD prevention and within a non-Mediterranean population. The present study aimed to document differences between men and women in changes in dietary, anthropometric and metabolic variables, in response to a nutritional intervention programme promoting the adoption of the MedDiet and based on the SDT. A total of sixty-four men and fifty-nine premenopausal women presenting risk factors for CVD were recruited through different media advertisements in the Québec City Metropolitan area (Canada). The 12-week nutritional programme used a motivational interviewing approach and included individual and group sessions. A validated FFQ was administered to evaluate dietary intakes from which a Mediterranean score (Medscore) was derived. Both men and women significantly increased their Medscore in response to the intervention (P < 0·0001). Men showed a significantly greater decrease in red and processed meat (-0·4 (95 % CI -0·7, -0·1) portions per d) and a greater increase in fruit (0·9 (95 % CI 0·2, 1·6) portions per d) intakes than women. Significant decreases were observed for BMI and waist circumference in both men and women (P ≤ 0·04). Significant greater decreases were found for total cholesterol (total-C):HDL-cholesterol (HDL-C) (-0·2; 95 % CI -0·4, -0·03) and TAG:HDL-C (-0·2; 95 % CI -0·4, -0·04) ratios in men than in women. When adjusting for the baseline value of the response variable, differences between men and women became non-significant for red and processed meat and fruit intakes whereas significant differences between men and women (i.e. larger increases in men than women) were observed for legumes, nuts and seeds (0·6 (95 % CI 0·2, 1·0) portions per d) and whole-grain products (0·5 (95 % CI 0·01, 1·0) portions per d) intakes. For metabolic variables, differences between men and women became non-significant for total-C:HDL-C and TAG:HDL-C ratios when adjusted for the baseline value of the response variable. The present results suggest that the nutritional intervention promoting the adoption of the Mediterranean diet and based on the SDT led to greater improvements in dietary intakes in men than in women, which appear to have contributed to beneficial anthropometric and metabolic changes, more particularly in men. However, the more deteriorated metabolic profile found in men at baseline seems to contribute to a large extent to the more beneficial changes in CVD risk factors observed in men as compared with women.
Mahmud, Iqbal; Thapaliya, Monica; Boroujerdi, Arezue; Chowdhury, Kamal
2014-01-01
The culture of sugarcane leaf explant onto culture induction medium triggers the stimulation of cell metabolism into both embryogenic and non-embryogenic callus tissues. Previous analyses demonstrated that embryogenic and nonembryogenic callus tissues have distinct metabolic profiles. This study is the follow-up to understand the biochemical relationship between the nutrient media and callus tissues using one-dimensional (1D 1H) and two-dimensional (2D 1H–13C) NMR spectroscopy followed by principal component analysis (PCA). 1D 1H spectral comparisons of fresh unspent media (FM), embryogenic callus media (ECM), non-embryogenic callus media (NECM), embryogenic callus (EC), and non-embryogenic callus (NEC), showed different metabolic relationships between callus tissues and media. Based on metabolite fold change analysis, significantly changing sugar compounds such as glucose, fructose, sucrose, and maltose were maintained in large quantities by EC only. Significantly different amino acid compounds such as valine, leucine, alanine, threonine, asparagine, and glutamine and different organic acid derivatives such as lactate, 2-hydroxyisobutyrate, 4-aminobutyrate, malonate, and choline were present in EC, NEC, and NECM, which indicates that EC maintained these nutrients, while NEC either maintained or secreted the metabolites. These media and callus-specific results suggest that EC and NEC utilize and/or secrete media nutrients differently. PMID:25012359
Seasonal field metabolic rates of American martens in Wisconsin
Jonathan H. Gilbert; Patrick A Zollner; Adam K. Green; John L. Wright
2009-01-01
We report on FMR of free-living American martens (Martes americana) in autumn and winter in northern Wisconsin. Mean body mass was significantly higher in males (1099 ± 43 [S.E.] g) than females (737 ± 28 g), with no significant difference by season. Daily mass change rates of martens did not differ from zero, and mass change rate...
Acevedo, B; Oehmen, A; Carvalho, G; Seco, A; Borrás, L; Barat, R
2012-04-15
Previous studies have shown that polyphosphate-accumulating organisms (PAOs) are able to behave as glycogen-accumulating organisms (GAOs) under different conditions. In this study we investigated the behavior of a culture enriched with Accumulibacter at different levels of polyphosphate (poly-P) storage. The results of stoichiometric ratios Gly(degraded)/HAc(uptake), PHB(synthesized)/HAc(uptake), PHV(synthesized)/HAc(uptake) and P(release)/HAc(uptake) confirmed a metabolic shift from PAO metabolism to GAO metabolism: PAOs with high poly-P content used the poly-P to obtain adenosine tri-phosphate (ATP), and glycogen (Gly) to obtain nicotinamide adenine dinucleotide (NADH) and some ATP. In a test where poly-P depletion was imposed on the culture, all the acetate (HAc) added in each cycle was transformed into polyhydroxyalkanoate (PHA) despite the decrease of poly-P inside the cells. This led to an increase of the Gly(degraded)/HAc(uptake) ratio that resulted from a shift towards the glycolytic pathway in order to compensate for the lack of ATP formed from poly-P hydrolysis. The shift from PAO to GAO metabolism was also reflected in the change in the PHA composition as the poly-P availability decreased, suggesting that polyhydroxyvalerate (PHV) is obtained due to the consumption of excess reducing equivalents to balance the internal NADH, similarly to GAO metabolism. Fluorescence in situ hybridization analysis showed a significant PAO population change from Type I to Type II Accumulibacter as the poly-P availability decreased in short term experiments. This work suggests that poly-P storage levels and GAO-like metabolism are important factors affecting the competition between different PAO Types in enhanced biological phosphorus removal systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beydoun, May A; Gary, Tiffany L; Caballero, Benjamin H; Lawrence, Robert S; Cheskin, Lawrence J; Wang, Youfa
2008-06-01
Recent studies suggest dairy consumption and associated nutrients may be protective against some of the components of the metabolic syndrome (MetS). We examined the association between consumption of a variety of dairy products and their related nutrients with obesity, central obesity, and MetS, and attempted to explain some of the ethnic differences in metabolic outcomes through dairy consumption using national data. Nationally representative indicators of obesity, central obesity, and MetS among US adults were constructed from National Health and Nutrition Examination Survey 1999-2004 data, including direct anthropometric assessments, blood pressure, and laboratory tests. Sample sizes ranged from 4519 for MetS to 14 618 for obesity. Associations between diet (assessed using 24-h recalls) and metabolic and other outcomes were tested using multivariate linear and logistic models and structural equation models. We found a significant inverse association between intake of whole milk, yogurt, calcium, and magnesium and metabolic disorders. Odds ratios for one more daily serving of yogurt and 100 mg Mg for MetS were 0.40 (95% CI: 0.18, 0.89) and 0.83 (95% CI: 0.72, 0.96), respectively. The opposite was found for intakes of cheese, low-fat milk, and phosphorus. Using structural equation models, ethnic differences in some MetS outcomes, such as body mass index and systolic blood pressure, were partly explained by variations in dairy-related nutrients. Various dairy products may have differential associations with metabolic disorders, including obesity. Ethnic differences in dairy consumption may explain in part the ethnic disparities in metabolic disorders in the US population.
Activation-specific metabolic requirements for NK cell IFN-γ production1
Keppel, Molly P.; Topcagic, Nermina; Mah, Annelise Y.; Vogel, Tiphanie P.; Cooper, Megan A.
2014-01-01
There has been increasing recognition of the importance of cellular metabolism and metabolic substrates for the function and differentiation of immune cells. Here, for the first time, we investigate the metabolic requirements for production of IFN-γ by freshly isolated NK cells. Primary murine NK cells mainly utilize mitochondrial oxidative phosphorylation at rest and with short-term activation. Remarkably, we discovered significant differences in the metabolic requirements of murine NK cell IFN-γ production depending upon the activation signal. Stimulation of NK cell IFN-γ production was independent of glycolysis or mitochondrial oxidative phosphorylation when cells were activated with IL-12+IL-18. By contrast, stimulation via activating NK receptors required glucose-driven oxidative phosphorylation. Prolonged treatment with high-dose, but not low dose, IL-15 eliminated the metabolic requirement for receptor stimulation. In summary, this study demonstrates that metabolism provides an essential second signal for induction of IFN-γ production by activating NK cell receptors that can be reversed with prolonged high-dose IL-15 treatment. PMID:25595780
The impact of tropical forest logging and oil palm agriculture on the soil microbiome.
Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M
2016-05-01
Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.
Lavarías, S; Ocon, C; van Oosterom, V López; Laino, A; Medesani, D A; Fassiano, A; Garda, H; Donadelli, J; de Molina, M Ríos; Capítulo, A Rodrigues
2017-01-01
The present study analyzes a battery of biomarkers in the water bug Belostoma elegans from a stream polluted with organic matter (OMS), and another one considered as reference site (RS) during spring-summer season (December to March). Biochemical parameters of glucidic, lipidic and oxidative metabolic pathways were analyzed in males and females of this insect. In general, no significant differences were observed in all biomarkers assayed between both sexes, except lactate concentration which was higher in males than in females (p < 0.0006) in the first three months. About carbohydrate metabolism parameters, only pyruvate-kinase showed significant differences between insects collected in both streams (p < 0.05) during December. However, the total lipid content, saturated fatty acid, and mainly triacylglycerol were higher in insects from RS compared to those from OMS (p < 0.002) in all sampled months. Levels of lipoperoxidation, protein oxidation, reduced glutathione and glutathione-S-transferase activity showed no differences between insects collected from both streams. Nevertheless, the significant increase observed in superoxide dismutase and catalase activities (p < 0.004) could be due to the elevated oxidative metabolism in insects from RS compared to those from OMS with lower dissolved oxygen. Regarding those responding parameters, males accounted for the differences between the two sites during the study period. In conclusion, our results support that lipidic energetic reserves and antioxidant enzyme activities in B. elegans could be used as biomarkers of environmental pollution by organic matter.
Rondanelli, Mariangela; Klersy, Chaterine; Perna, Simone; Faliva, Milena Anna; Montorfano, Gigliola; Roderi, Paola; Colombo, Irma; Corsetto, Paola Antonia; Fioravanti, Marisa; Solerte, Sebastiano Bruno; Rizzo, Angela Maria
2015-10-29
Nowadays no researches has been performed on fatty acid profile (FA) and desaturase activity in metabolically healthy obesity (MHO). The aim of this study was to assessed gender and BMI-related difference in FA, estimated desaturase activities and the efficacy on metabolic changes produced by 2-months well-balance diet in MHO subjects. In 103 MHO subjects (30/73 M/F; age:42.2 ± 9.5) FA, estimated desaturase activity, body composition (by DXA), Body Mass Index (BMI), lipid profile, adipokines (leptin, adiponectin, grelin, glucagon-like peptide-1), insulin resistence (by Homestasis metabolic assessment), C-reactive proteine, Atherogenic index of plasma (AIP) and Body Shape Index (ABSI) have been assessed. Gender and BMI related difference have been evaluated and the efficacy produced by 2-months well-balance diet has been considered. At baseline, obese subjects, compared to overweight, show a significantly higher oleic (p <0.050), monounsaturated fatty acids (p <0.040), C18:0 delta-9 desaturase activity (D9D) (p <0.040) and lower linoleic acid (p <0.020), polyunsaturated fatty acids (p <0.020) and n-6 LCPUFA (p <0.010). Concerning gender-related difference, women show a significantly higher arachidonic acid (p <0.001), polyunsaturated fatty acids (p <0.001), n-6 LCPUFA (p <0.002), and lower monounsaturated fatty acids (p <0.001), D6D activity (p <0.030), C18:0 D9D (0.000) and C16:0 D9D (p <0.030). The 2-months diet was associated with a significantly increase in arachidonic acid (p = 0.007), eicosapentaenoic acid (p = 0.030), docosahexaenoic acid (p <0.001), long chain omega 3 polyunsaturated fatty acids (n-3 LCPUFA) (p <0.001), delta-5 desaturase activity (D5D) (p = 0.002), glucagon like peptide-1 (p <0.001) and a significant decrease in palmitoleic acid (p = <0.030), n-6/n-3 LCPUFA (p <0.001), insulin resistance (p = 0.006), leptin (p = 0.006), adiponectin (p <0.001), grelin (p = 0.030), CRP (p = 0.004), BMI (p <0.001) and android fat mass (p <0.001). The balanced diet intervention was effective in improving metabolic indices.
Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
Ding, Ye; Panizzolo, Fausto A; Siviy, Christopher; Malcolm, Philippe; Galiana, Ignacio; Holt, Kenneth G; Walsh, Conor J
2016-10-03
Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP). Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s -1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants' lower limb kinetics, kinematics, metabolic cost and muscle activation. The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg -1 ) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively). The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a significant reduction in both biological hip and knee joint power. Further, the ESLP condition had the highest average metabolic reduction among the powered conditions. Future work on autonomous hip exoskeletons may incorporate these considerations when designing effective control strategies.
Insulin resistance and metabolic syndrome in children of parents with diabetes mellitus.
Altinli, Sebnem; Elevli, Murat; Ozkul, Ayse Ayaz; Kara, Pinar Gizem; Karsidag, Kubilay; Dogru, Macit
2007-03-01
The aim of this prospective study was to research features of insulin resistance and metabolic syndrome in offspring of diabetic parents and to find out whether there is a risk of developing type 2 diabetes mellitus (DM) in these children. Study participants were 30 children of parents with type 1 DM (DM1) (Group I) and 11 children of parents with type 2 DM (DM2) (Group II) who were being followed up in the Diabetes Department of Haseki Research and Training Hospital. The results were compared with a control group of 17 children in the same age group (Group III). There were no statistically significant differences between the Group I and the control group in fasting blood glucose, oral glucose tolerance test values, 1st 2nd and hour insulin, homeostasis model assessment (HOMA) values, body mass index (BMI), systolic and diastolic blood pressure, and lipid parameters, i.e. HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol, total cholesterol, and triglycerides. Fasting, 1st and 2nd hour blood insulin levels, HOMA values, BMI, and systolic blood pressure values were significantly higher in Group II compared to the control group (p < 0.05). There were no statistically significant differences between Group II and the control group in lipid parameters, fasting blood glucose, OGTT values, or diastolic blood pressure. We conclude that in our population there is a tendency of insulin resistance and metabolic syndrome in the offspring of parents with DM2, and a risk for developing DM2. Thus, children of patients with DM2 should be followed up so as to recognize early metabolic defects of glucose metabolism and to plan effective preventive efforts to reduce cardiovascular and atherosclerotic risk factors.
Metabolic complications and selected cytokines in HIV-infected individuals.
Bociąga-Jasik, Monika; Polus, Anna; Góralska, Joanna; Śliwa, Agnieszka; Raźny, Urszula; Zdzienicka, Anna; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona
2014-01-01
Human immunodeficiency virus (HIV)-infected individuals are at a higher risk of developing metabolic disturbances. The pathogenesis of these complications is complex and not fully explored. The aim of the study was to investigate the effect of HIV infection and antiretroviral (ARV) therapy on the development of metabolic changes and adipocytokine concentrations. The analysis of the differences in the investigated parameters among lipodystrophic and nonlipodystrophic patients was also performed. A total of 42 HIV‑infected patients on ARV therapy (HIV[+]ARV[+]), 13 HIV‑infected ARV naive patients (HIV[+]ARV[-]), and 20 healthy controls were included in the study. A lipid profile, fasting free fatty acids (FFAs), glucose, insulin, and insulin resistance (homeostasis model assessment of insulin resistance--HOMA‑IR) were tested. Serum concentrations of tumor necrosis factor α (TNF‑α), interleukin 6 (IL‑6), adiponectin, leptin, and fatty acid-binding protein 4 (FABP4) were determined. Increased FFA levels were observed in HIV(+)ARV(-) patients. HIV(+)ARV(+) patients had significantly higher triglycerides and insulin level compared with controls. HOMA‑IR showed a tendency to be higher in HIV(+)ARV(+) patients compared with the other study groups. The ARV therapy longer than 2 years resulted in more pronounced metabolic abnormalities. HIV infection itself had a significant effect on inflammation expressed by elevated TNF‑α and IL‑6 levels. We did not observe differences in adiponectin and FABP4 concentrations among the study groups, while the leptin concentration was significantly lower in HIV‑infected lipodystrophic than in nonlipodystrophic patients. HIV infection induces lipid disorders, especially associated with fatty acid turnover augmented by ARV therapy. Compared with FABP4, leptin is a better biological marker of metabolic complications in HIV‑infected patients.
Han, Jian-hua; Wu, Lian; Yu, Song-lin; Fang, Hui-ling; Kamg, Wei-ming; Cheng, Xin-qi; Lu, Jie; Yu, Jian-chun; Qiu, Ling
2015-04-01
To assess the clinical application value of iodine metabolism biomarkers in assessing iodine nutrition status in surgically treated patients with thyroid disease. Blood,morning urine and 24-hour urine samples were collected in 31 healthy volunteers and in 30 surgically treated patients with thyroid disease before and after surgery. Iodine concentration was analyzed by inductively coupled plasma mass spectrometry. The iodine metabolism biomarkers including serum iodine (SI), morning urine iodine(UI), morning urine iodine/urine creatinine ratio (UI/UCr), 24-hour urine iodine (24 h UI), and 24-hour urine iodine excretion (24 h UIE) were evaluated in these two groups. In addition, the validation coincidence rate of iodine metabolism biomarkers in healthy volunteers to different reference ranges including World Health Organization, Mayo Clinic, and Quest Diagnostics were calculated. The UI/UCr ratio of pre-operative thyroid disease patients was significantly lower than that of healthy volunteers (P<0.05), while the other biomarkers showed no significant differences (all P>0.05) between these two groups. The SI, UI ,and 24 h UI in postoperative thyroid disease patients were significantly higher than those of the pre-operative patients (all P<0.05). Though the medians of all biomarkers in healthy volunteers were within the reference ranges,only the validation coincidence rates of SI, UI, and UI/UCr in the 41-70-year populations were over than 90% according to Mayo Clinic; furthermore, the area under the receiver operating characteristic curve about UI/UCr ratio (0.737) was the biggest within the iodine metabolism biomarkers. The UI/UCr ratio may be used for iodine nutrition evaluation in surgically treated patients with thyroid disease.
Yu, D N; Xian, T Z; Wang, L J; Cheng, B; Sun, M X; Guo, L X
2018-05-10
Objective: To understand the overweight rate and obesity rate in middle-aged and elderly people in urban area of Beijing, and analyze the changes of body composition and resting metabolic rate with age. Methods: From November 2014 to December 2015, body composition measurement and resting metabolic rate detection were conducted among 858 people aged 51 to 99 years, including 760 men, 98 women, who received physical examination at Beijing Hospital. Results: The overweight rate was 51.4 % , and the obesity rate was 16.9 % . The overweight rate was 26.5 % and the obesity rate was 14.3 % in women, significantly lower than those in men (54.6 % and 17.2 % ) ( P <0.001). The distribution of skeletal muscle volume, muscle index, body fat percentage, visceral fat area and resting metabolic rate in different age groups were different ( P <0.001). In the normal weight group, the skeletal muscle volume, muscle index and resting metabolic rate in age group ≥80 years decreased obviously ( P <0.05). At the same time, the body fat percentage and visceral fat area increased obviously ( P <0.05). However, the skeletal muscle volume, muscle index and resting metabolic rate of the overweight and obese groups began to decrease obviously in age group 70- years ( P <0.05), and the decrease in age group ≥80 years was more obvious. At the same time, body fat percentage and visceral fat area increased significantly in age group 70- years ( P <0.05). Conclusion: The overweight and obesity rates were high in the middle-aged and elderly people in the urban area of Beijing, and the rates were higher in men than in women. With the increase of age, the skeletal muscle volume, muscle index and resting metabolic rate gradually decreased, while the percentage of body fat and visceral fat area increased; Overweight and obese people had earlier changes in body composition and resting metabolic rate.
The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base
Adler, Sheldon
1972-01-01
Should significant pH heterogeneity exist within cells then the simultaneous calculation of intracellular pH from the distribution of a weak acid will give a value closest to the highest pH in the system, whereas calculation from the distribution of a weak base will give a value closer to the lowest pH. These two values should then differ significantly. Intact rat diaphragms were exposed in vitro to varying bicarbonate concentrations (pure metabolic) and CO2 tensions (pure respiratory), and steady-state cell pH was measured simultaneously either by distribution of the weak acid 5,5-dimethyloxazolidine-2,4-dione-14C (pH DMO) or by distribution of the weak base nicotine-14C (pH nicotine). The latter compound was found suitable to measure cell pH since it was neither metabolized nor bound by rat diaphragms. At an external pH of 7.40, pH DMO was 7.17 while pH nicotine was 6.69—a pH difference of 0.48 pH units (P < 0.001). In either respiratory or metabolic alkalosis both DMO and pH nicotine rose so that differences between them remained essentially constant. Metabolic acidosis induced a decrease in both values though they fell more slowly than did extracellular pH. In contradistinction, in respiratory acidosis, decreasing extracellular pH from 7.40 to 6.80 resulted in 0.35 pH unit drop in pH DMO while pH nicotine remained constant. In every experiment, under all external conditions, pH DMO exceeded pH nicotine. These results indicate that there is significant pH heterogeneity within diaphragm muscle, but the degree of heterogeneity may vary under different external conditions. The metabolic implications of these findings are discussed. In addition, the data show that true overall cell pH is between 6.69 and 7.17—a full pH higher than would be expected from thermodynamic considerations alone. This implies the presence of active processes to maintain cell pH. PMID:5009113
Red blood cell metabolism (M114), part D. [in Skylab space flight simulation
NASA Technical Reports Server (NTRS)
Mengel, C. E.
1973-01-01
Statistically significant differences were found between Skylab simulation crews and controls for glycolytic enzymes. The absence of simultaneous controls for the pre- and postchamber analyses leaves the significance of the findings in the crew during these periods indeterminate.
Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun
2014-09-01
The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein.
Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun
2014-01-01
[Purpose] The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. [Methods] There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. [Results] The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. [Conclusion] It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein. PMID:25566463
Wang, Guangji; Yan, Bei; Zhang, Sujiang; Huang, Qing; Ni, Lingna; Zha, Weibin; Liu, Linsheng; Cao, Bei; Hong, Ming; Wu, Hanxin; Lu, Hua; Shi, Jian; Li, Mengjie; Li, Jianyong
2010-01-01
The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML). However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML) showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML) and patients resistant to imatinib (RCML) had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA). In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention. PMID:20949032
Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects
Chaya, M S; Nagendra, H R
2008-01-01
Background: The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim: The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.). Materials and Methods: Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group (P < 0.001) measured at 9 p.m. and 16% lower at 6 a.m. (P < 0.001). The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs) whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group (P < 0.001). The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors) achieved due to training in yoga. PMID:21829281
Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine
2011-02-01
Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less
Shift Work and the Relationship with Metabolic Syndrome in Chinese Aged Workers
Guo, Yanjun; Rong, Yi; Huang, Xiji; Lai, Hanpeng; Luo, Xin; Zhang, Zhihong; Liu, Yuewei; He, Meian; Wu, Tangchun; Chen, Weihong
2015-01-01
Background Shift work is indicated to be associated with adverse metabolic disorders. However, potential effects of shift work on metabolic syndrome (MetS) and its components have not been well established. Methods In total, 26,382 workers from Dongfeng-Tongji Cohort were included in this study. Information on shift work history was gathered through questionnaires and metabolic traits were measured. Logistic regression models were used to calculate the odds ratio (OR) and 95% confidence interval (CI) for long-term shift work related with MetS and each component, respectively. Further stratification analysis was performed to detect the differences on MetS between female and male shift workers. Results Long-term shift work was associated with MetS without adjusting for any confounders. Compared with the group of non-shift work, the multivariate-adjusted ORs (95%CI) of MetS associated with 1–10, 11−20, and ≥20y of shift work were 1.05 (0.95−1.16), 1.14 (1.03−1.26), 1.16 (1.01−1.31), respectively. In female workers, we found a dose-response relationship that every 10 years increase in shift work was associated with a 10% (95% CI: 1%−20%) elevated OR of MetS, while no significant dose-response trend was found among male workers. Furthermore, shift work duration was significantly associated with ORs of high blood pressure (1.07, 1.01−1.13), long waist circumference (1.10, 1.01−1.20) and high glucose levels (1.09, 1.04−1.15). No significant association was observed between shift work and low HDL cholesterol) and raised triglyceride levels. Conclusions Long-term shift work was associated with metabolic syndrome and the association might differ by gender in retired workers. Applicable intervention strategies are needed for prevention of metabolic disorders for shift workers. PMID:25761114
Hjerpsted, Julie B; Flint, Anne; Brooks, Ashley; Axelsen, Mads B; Kvist, Trine; Blundell, John
2018-03-01
To investigate the effects of semaglutide on fasting and postprandial glucose and lipid responses, and on gastric emptying. This was a randomized, double-blind, placebo-controlled, 2-period, crossover trial. Subjects with obesity (N = 30) received once-weekly subcutaneous semaglutide, dose-escalated to 1.0 mg, or placebo. After each 12-week treatment period, glucose and lipid metabolism were assessed before and after standardized meals. Gastric emptying (paracetamol absorption test) and peptide YY (PYY) response were also assessed. Semaglutide treatment significantly lowered fasting concentrations of glucose and glucagon, and increased insulin vs placebo (estimated treatment ratio: 0.95 [95% confidence interval: 0.91, 0.98]; 0.86 [0.75, 0.98]; 1.45 [1.20, 1.75], respectively). Postprandial glucose metabolism significantly improved with semaglutide vs placebo (incremental area under the curve 0 to 5 hours [iAUC 0-5h ]; estimated treatment difference: glucose -1.34 mmol h/L [-2.42, -0.27]; insulin -921 pmol h/L [-1461, -381]; C-peptide -1.42 nmol h/L [-2.33, -0.51]). Fasting and postprandial lipid metabolism improved with semaglutide vs placebo. First-hour gastric emptying after the meal was delayed with semaglutide vs placebo (AUC 0-1h ; estimated treatment ratio: 0.73 [0.61, 0.87]); this may have contributed to the lower postprandial glucose increase in semaglutide-treated subjects. Overall gastric emptying (AUC 0-5h ) was not statistically different between treatments. Fasting and postprandial PYY responses were significantly lower with semaglutide vs placebo (P = .0397 and P = .0097, respectively). Semaglutide improved fasting and postprandial glucose and lipid metabolism. Overall gastric emptying was similar to that with placebo; however, the observed first-hour delay with semaglutide may contribute to a slower entry of glucose into the circulation. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Hattori, Tomomi; Konno, Satoshi; Munakata, Masanori
2017-01-01
Objective In Japan, metabolic syndrome (MetS) and preliminary metabolic syndrome (preMetS) are more prevalent in men; however, it remains unclear whether the relationship between these metabolic disorders and lifestyle factors is similar between genders. Methods We examined waist circumference, blood pressure, fasting blood, and various lifestyle factors in 3,166 individuals aged from 30-79 years of age from the Japanese general population. MetS was diagnosed on the basis of central obesity - assessed by waist circumference - plus two or more of the following cardio-metabolic risks according to Japanese criteria: high blood pressure, hyperglycemia, and lipid abnormality. Central obesity plus one of the risks was defined as preMetS. Results Men had a significantly higher prevalence of MetS (23.3% vs. 8.7%, p<0.001) and preMetS (21.2% vs. 10.2%, p<0.001) than women. An age-adjusted logistic regression analysis revealed that heavy drinkers were associated with an increased probability of MetS (odds ratio, 1.91: 95% confidence interval, 1.29-2.83) and preMetS (1.69: 1.11-2.58); fast eaters were also related to preMetS (1.83: 1.33-2.55) and MetS (1.55: 1.12-2.15) in men. Lacking regular exercise was significantly associated with preMetS (1.38: 1.03-1.85), but not MetS. In women, preMetS was significantly associated with fast eaters and lacking regular exercise (1.44: 1.01-2.07 and 1.41: 1.02-1.96, respectively); a stepwise increase in each odds ratio (2.02: 1.40-2.91 and 1.47: 1.03-2.09, respectively) was also observed for MetS. Conclusion The relationships between lifestyle factors and MetS or preMetS differed between men and women, which suggests the need for gender-specific lifestyle modification to effectively prevent MetS. PMID:28794374
Dynamic substrate preferences predict metabolic properties of a simple microbial consortium
Erbilgin, Onur; Bowen, Benjamin P.; Kosina, Suzanne M.; ...
2017-01-23
Mixed cultures of different microbial species are increasingly being used to carry out a specific biochemical function in lieu of engineering a single microbe to do the same t ask. However, knowing how different species' metabolisms will integrate to reach a desired outcome is a difficult problem that has been studied in great detail using steady-state models. However, many biotechnological processes, as well as natural habitats, represent a more dynamic system. Examining how individual species use resources in their growth medium or environment (exometabolomics) over time in batch culture conditions can provide rich phenotypic data that encompasses regulation and transporters,more » creating an opportunity to integrate the data into a predictive model of resource use by a mixed community. Here we use exometabolomic profiling to examine the time-varying substrate depletion from a mixture of 19 amino acids and glucose by two Pseudomonas and one Bacillus species isolated from ground water. Contrary to studies in model organisms, we found surprisingly few correlations between resource preferences and maximal growth rate or biomass composition. We then modeled patterns of substrate depletion, and used these models to examine if substrate usage preferences and substrate depletion kinetics of individual isolates can be used to predict the metabolism of a co-culture of the isolates. We found that most of the substrates fit the model predictions, except for glucose and histidine, which were depleted more slowly than predicted, and proline, glycine, glutamate, lysine and arginine, which were all consumed significantly faster. Our results indicate that a significant portion of a model community's overall metabolism can be predicted based on the metabolism of the individuals. Based on the nature of our model, the resources that significantly deviate from the prediction highlight potential metabolic pathways affected by species-species interactions, which when further studied can potentially be used to modulate microbial community structure and/or function.« less
Howard, Jeremy T.; O’Nan, Audrey T.; Maltecca, Christian; Baynes, Ronald E.; Ashwell, Melissa S.
2015-01-01
Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and fenbendazole and known drug metabolizing genes. PMID:26366864
Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S
2015-01-01
Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and fenbendazole and known drug metabolizing genes.
Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan
2012-01-01
AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912
Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection.
Wu, Qi; Zhou, Lina; Sun, Xin; Yan, Zhongfang; Hu, Chunxiu; Wu, Junping; Xu, Long; Li, Xue; Liu, Huiling; Yin, Peiyuan; Li, Kuan; Zhao, Jieyu; Li, Yanli; Wang, Xiaolin; Li, Yu; Zhang, Qiuyang; Xu, Guowang; Chen, Huaiyong
2017-08-22
Severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-like coronavirus are a potential threat to global health. However, reviews of the long-term effects of clinical treatments in SARS patients are lacking. Here a total of 25 recovered SARS patients were recruited 12 years after infection. Clinical questionnaire responses and examination findings indicated that the patients had experienced various diseases, including lung susceptibility to infections, tumors, cardiovascular disorders, and abnormal glucose metabolism. As compared to healthy controls, metabolomic analyses identified significant differences in the serum metabolomes of SARS survivors. The most significant metabolic disruptions were the comprehensive increase of phosphatidylinositol and lysophospha tidylinositol levels in recovered SARS patients, which coincided with the effect of methylprednisolone administration investigated further in the steroid treated non-SARS patients with severe pneumonia. These results suggested that high-dose pulses of methylprednisolone might cause long-term systemic damage associated with serum metabolic alterations. The present study provided information for an improved understanding of coronavirus-associated pathologies, which might permit further optimization of clinical treatments.
Guo, Yanqin; Jin, Long; Wang, Fengjiao; He, Mengnan; Liu, Rui; Li, Mingzhou; Shuai, Surong
2014-01-01
Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.
Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis
Murray, Kevin J.; Rendahl, Aaron K.; Geor, Raymond J.; Schultz, Nichol E.; McCue, Molly E.
2018-01-01
Background Metabolomics, the study of small‐molecule metabolites, has increased understanding of human metabolic diseases, but has not been used to study equine metabolic syndrome (EMS). Objectives (1) To examine the serum metabolome of Welsh Ponies with and without insulin dysregulation before and during an oral sugar test (OST). (2) To identify differences in metabolites in ponies with insulin dysregulation, obesity, or history of laminitis. Animals Twenty Welsh Ponies (mean ± SD; 13.8 ± 9.0 years) classified as non‐insulin dysregulated [CON] (n = 10, insulin < 30 mU/L) or insulin dysregulated [ID] (n = 10, insulin > 60 mU/L) at 75 minutes after administration of Karo syrup, obese (n = 6) or nonobese (n = 14), and history of laminitis (n = 9) or no history of laminitis (n = 11). Methods Case‐control study. Metabolomic analysis was performed on serum obtained at 0 minutes (baseline) and 75 minutes during the OST. Data were analyzed with multivariable mixed linear models with significance set at P ≤ .05. Results Metabolomic analysis of 646 metabolites (506 known) detected significant metabolite differences. At baseline, 55 metabolites (insulin response), 91 metabolites (obesity status), and 136 metabolites (laminitis history) were different. At 75 minutes, 51 metabolites (insulin response), 102 metabolites (obesity status), and 124 metabolites (laminitis history) were different. Conclusions and Clinical Importance Use of metabolomics could have diagnostic utility for early detection of EMS and provide new knowledge regarding the pathophysiology of metabolic perturbations associated with this condition that might lead to improved clinical management. PMID:29572947
Cesur, Mustafa; Corapcioglu, Demet; Gursoy, Alptekin; Gonen, Sait; Ozduman, Mine; Emral, Rifat; Uysal, Ali Riza; Tonyukuk, Vedia; Yilmaz, Arif Ender; Bayram, Fahri; Kamel, Nuri
2007-02-01
Although diabetics may be exempted from Ramadan fasting, many patients still insist on this worship. Aim of the present study is to compare the effects of glimepiride, repaglinide, and insulin glargine in type 2 diabetics during Ramadan fasting on the glucose metabolism. Patients, who were willing to fast, were treated with glimepiride (n=21), repaglinide (n=18), and insulin glargine (n=10). Sixteen non-fasting control type 2 diabetics matched for age, sex, and body mass index were also included. Fasting blood glucose (FBG), post-prandial blood glucose (PBG), HbA1c, and fructosamine as well as lipid metabolism were evaluated in pre-Ramadan, post-Ramadan, and 1-month post-Ramadan time points. There was no significant change from pre-Ramadan in FBG, PBG, and HbA1c variables in fasting diabetics at post-Ramadan and 1-month post-Ramadan. However, PBG was found higher in non-fasting control diabetics at post-Ramadan and 1-month post-Ramadan (p<0.05 and p<0.001, respectively). In fructosamine levels, a significant increase was noted both in fasting group and non-fasting group at 1-month post-Ramadan (p<0.01 for all). However, no significant difference was found in the comparison of the changes in fructosamine levels between fasting group and non-fasting group. Risk of hypoglycemia did not significantly differ between fasting and non-fasting diabetics. There was no significant difference between three drug therapies regarding glucose metabolism and rate of hypoglycemia. No adverse effects on plasma lipids were noted in fasting diabetics. In this fasting sample of patients with type 2 diabetes, glimepiride, repaglinide, and insulin glargine did not produce significant changes in glucose and lipid parameters.
Metabolic Adaptation to Muscle Ischemia
NASA Technical Reports Server (NTRS)
Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.
2000-01-01
Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.