Sample records for significant population structuring

  1. Significant demographic and fine-scale genetic structure in expanding and senescing populations of the terrestrial orchid Cymbidium goeringii (Orchidaceae).

    PubMed

    Chung, Mi Yoon; Nason, John D; Chung, Myong Gi

    2011-12-01

    Fine-scale genetic structure (FSGS) in plants is influenced by variation in spatial and temporal demographic processes. To determine how demographic structure and FSGS change with stages of population succession, we studied replicate expanding and senescing populations of the Asian terrestrial orchid Cymbidium goeringii. We used spatial autocorrelation methods (O-ring and kinship statistics) to quantify spatial demographic structure and FSGS in two expanding and two senescing populations, also measuring genetic diversity and inbreeding in each. All populations exhibited significant aggregation of individuals and FSGS at short spatial scales. In expanding populations, this finding was associated with high recruitment rates, suggesting restricted seed dispersal. In senescing populations, recruitment was minimal, suggesting alternative mechanisms of aggregation, perhaps including spatial associations with mycorrhizal fungi. All populations had significant evidence of genetic bottlenecks, and inbreeding levels were consistently high. Our results indicate that different successional stages can generate similar patterns of spatial demographic and genetic structure, but as a consequence of different processes. These results contrast with the only other study of senescence effects on population genetic structure in an herbaceous perennial, which found little to no FSGS in senescing populations. With the exception of populations subject to mass collection by orchid sellers, significant FSGS is characteristic of the 16 terrestrial orchid species examined to date. From a conservation perspective, this result suggests that inference of orchid population history will benefit from analyses of both FSGS and demographic structure in combination with other ecological field data.

  2. Significant population genetic structure detected in the rock bream Oplegnathus fasciatus (Temminck & Schlegel, 1844) inferred from fluorescent-AFLP analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Yongshuang; Ma, Daoyuan; Xu, Shihong; Liu, Qinghua; Wang, Yanfeng; Xiao, Zhizhong; Li, Jun

    2016-05-01

    Oplegnathus fasciatus (rock bream) is a commercial rocky reef fish species in East Asia that has been considered for aquaculture. We estimated the population genetic diversity and population structure of the species along the coastal waters of China using fluorescent-amplified fragment length polymorphisms technology. Using 53 individuals from three populations and four pairs of selective primers, we amplified 1 264 bands, 98.73% of which were polymorphic. The Zhoushan population showed the highest Nei's genetic diversity and Shannon genetic diversity. The results of analysis of molecular variance (AMOVA) showed that 59.55% of genetic variation existed among populations and 40.45% occurred within populations, which indicated that a significant population genetic structure existed in the species. The pairwise fixation index F st ranged from 0.20 to 0.63 and were significant after sequential Bonferroni correction. The topology of an unweighted pair group method with arithmetic mean tree showed two significant genealogical branches corresponding to the sampling locations of North and South China. The AMOVA and STRUCTURE analyses suggested that the O. fasciatus populations examined should comprise two stocks.

  3. The structural and functional connectivity of the grassland plant Lychnis flos-cuculi

    PubMed Central

    Aavik, T; Holderegger, R; Bolliger, J

    2014-01-01

    Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937

  4. Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina

    PubMed Central

    McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin

    2012-01-01

    Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425

  5. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum

    PubMed Central

    Rico, Y; Wagner, H H

    2016-01-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations. PMID:27381322

  6. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    PubMed

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  7. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Treesearch

    Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock

    2013-01-01

    Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...

  8. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America.

    PubMed

    Mirabello, Lisa; Vineis, Joseph H; Yanoviak, Stephen P; Scarpassa, Vera M; Póvoa, Marinete M; Padilla, Norma; Achee, Nicole L; Conn, Jan E

    2008-03-26

    Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5-8 microsatellite loci. We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 - 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and Central America, parts of Colombia and Venezuela (genotype 2), and are in agreement with previously published mitochondrial COI gene sequences interpreted as incipient species. Overall, it appears that two main factors have contributed to the genetic differentiation between the population clusters: physical distance between the populations and the differences in effective population sizes among the subpopulations.

  9. Genetic Structure and Diversity of the Endangered Fir Tree of Lebanon (Abies cilicica Carr.): Implications for Conservation

    PubMed Central

    Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid

    2014-01-01

    The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219

  10. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    PubMed

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the diminishing barrier effect of mountain ridges. Additionally, a significant decrease in genetic diversity in the peripheral populations supports Mayr's central-peripheral population hypothesis.

  11. Population Genetic Structure of the Deep-Sea Precious Coral Corallium secundum from the Hawaiian Archipelago Based on Microsatellites.

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.

    2006-12-01

    Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.

  12. Effects of population succession on demographic and genetic processes: predictions and tests in the daylily Hemerocallis thunbergii (Liliaceae).

    PubMed

    Chung, Mi Yoon; Nason, John D; Chung, Myong Gi

    2007-07-01

    Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.

  13. Genetic Structure of Chinese Indigenous Goats and the Special Geographical Structure in the Southwest China as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Xu, Lingyang; Liu, Gang; Wang, Zhigang; Zhao, Fuping; Zhang, Li; Han, Xu; Du, Lixin; Liu, Chousheng

    2014-01-01

    Background China has numerous native domestic goat breeds, however, extensive studies are focused on the genetic diversity within the fewer breeds and limited regions, the population demograogic history and origin of Chinese goats are still unclear. The roles of geographical structure have not been analyzed in Chinese goat domestic process. In this study, the genetic relationships of Chinese indigenous goat populations were evaluated using 30 microsatellite markers. Methodology/Principal Findings Forty Chinese indigenous populations containing 2078 goats were sampled from different geographic regions of China. Moderate genetic diversity at the population level (HS of 0.644) and high population diversity at the species level (HT value of 0.737) were estimated. Significant moderate population differentiation was detected (FST value of 0.129). Significant excess homozygosity (FIS of 0.105) and recent population bottlenecks were detected in thirty-six populations. Neighbour-joining tree, principal components analysis and Bayesian clusters all revealed that Chinese goat populations could be subdivided into at least four genetic clusters: Southwest China, South China, Northwest China and East China. It was observed that the genetic diversity of Northern China goats was highest among these clusters. The results here suggested that the goat populations in Southwest China might be the earliest domestic goats in China. Conclusions/Significance Our results suggested that the current genetic structure of Chinese goats were resulted from the special geographical structure, especially in the Western China, and the Western goat populations had been separated by the geographic structure (Hengduan Mountains and Qinling Mountains-Huaihe River Line) into two clusters: the Southwest and Northwest. It also indicated that the current genetic structure was caused by the geographical origin mainly, in close accordance with the human’s migration history throughout China. This study provides a fundamental genetic profile for the conservation of these populations and better to understand the domestication process and origin of Chinese goats. PMID:24718092

  14. Evolutionary mechanisms shaping the genetic population structure of coastal fish: insight from populations of Coilia nasus in Northwestern Pacific.

    PubMed

    Gao, Tianxiang; Wan, Zhenzhen; Song, Na; Zhang, Xiumei; Han, Zhiqiang

    2014-12-01

    A number of evolutionary mechanisms have been suggested for generating significant genetic structuring among marine fish populations in Northwestern Pacific. We used mtDNA control region to assess the factors in shaping the genetic structure of Japanese grenadier anchovy, Coilia nasus, an anadromous and estuarine coastal species, in Northwestern Pacific. Sixty seven individuals from four locations in Northwestern Pacific were sequenced for mitochondrial control region, detecting 61 haplotypes. The length of amplified control region varied from 677 to 754 bp. This length variability was due to the presence of varying numbers of a 38-bp tandemly repeated sequence. Two distinct lineages were detected, which might have diverged during Pleistocene low sea levels. There were strong differences in the geographical distribution of the two lineages. Analyses of molecular variance and the population statistic ΦST revealed significant genetic structure between China and Ariake Bay populations. Based on the frequency distribution of tandem repeat units, significant genetic differentiation was also detected between China and Ariake Bay populations. Isolation by distance seems to be the main factor driving present genetic structuring of C. nasus populations, indicating coastal dispersal pattern in this coastal species. Such an evolutionary process agrees well with some of the biological features characterizing this species.

  15. Clan-structured migration and phenotypic differentiation in the Jirels of Nepal.

    PubMed

    Williams-Blangero, S

    1989-04-01

    This paper examines the impact of clan-structured migration on the between-village differentiation of the Jirels, a tribal population of eastern Nepal. The Jirel population is geographically restricted to nine villages, all of which were sampled to some extent for this study. Data on five head measurements, stature, and digital ridge counts are utilized to illustrate the patterns of phenotypic variation. Multivariate statistical techniques are used to assess the extent to which clan membership and associated patterns of marital exchange influence the population structure of the Jirels. The phenotypic characteristics of randomly generated migrant sets are compared to those of the observed clan-structured sets, demonstrating the clan-related phenotypic nonrandomness of migrants. The results indicate that clan-structured migration may significantly influence the amount of between-village variation. Clan structure may be a significant factor in determining patterns of variation and should not be ignored in studies of microdifferentiation in tribal populations.

  16. A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe

    PubMed Central

    Gubili, Chrysoula; Sims, David W.; Veríssimo, Ana; Domenici, Paolo; Ellis, Jim; Grigoriou, Panagiotis; Johnson, Andrew F.; McHugh, Matthew; Neat, Francis; Satta, Andrea; Scarcella, Giuseppe; Serra-Pereira, Bárbara; Soldo, Alen; Genner, Martin J.; Griffiths, Andrew M.

    2014-01-01

    Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species. PMID:26064555

  17. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida

    PubMed Central

    Fedrizzi, Nathan; Stiassny, Melanie L. J.; Boehm, J. T.; Dougherty, Eric R.; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa. PMID:26200110

  18. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    PubMed

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  19. Quantifying Spatial Genetic Structuring in Mesophotic Populations of the Precious Coral Corallium rubrum

    PubMed Central

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109

  20. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    PubMed

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  1. Population structure of Phytophthora ramorum in Oregon

    Treesearch

    Simone Prospero; Jennifer Britt; Niklaus Grünwald; Everett Hansen

    2008-01-01

    Phytophthora ramorum is infecting plants in Oregon forests and nurseries. In this study, we analyzed the population structure of the P. ramorum in Oregon from 2001 to 2004 using microsatellites. The P. ramorum population in Oregon is characterized by low genetic diversity, significant genetic differences between...

  2. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    PubMed

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  3. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations

    PubMed Central

    Koelling, V A; Hamrick, J L; Mauricio, R

    2011-01-01

    Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

  4. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies

    PubMed Central

    Bao, Wenquan; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-e

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%–36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau. PMID:29186199

  5. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies.

    PubMed

    Bao, Wenquan; Wuyun, Tana; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-E

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.

  6. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers.

    PubMed

    Duran, S; Pascual, M; Estoup, A; Turon, X

    2004-03-01

    Different categories of molecular markers have been used so far to study the population structure of sponges. However, these markers often did not have the resolution power to address precisely questions on structuring processes, especially at the intrapopulational level. In this study we show that microsatellites fulfil these expectations, allowing a fine description of population structure at different geographical scales in the marine sponge Crambe crambe. Specimens were collected in 11 locations, representing most of the Atlanto-Mediterranean range of the species, and were analysed at six loci. As expected for a sessile invertebrate with lecitotrophic larvae, high levels of between-population structure were found (FST = 0.18) and a significant isolation-by-distance pattern was observed. A strong genetic structure was also found within sampled sites (FIS = 0.21) that may be explained by several factors including inbreeding, selfing and the Wahlund effect. In spite of a sampling design planned to avoid the sampling of clones, genotypically identical individuals for the six loci were found in some locations. The significance of these potential clones is discussed and their effect on the observed pattern of population structure assessed. Patterns of allelic distribution within populations suggest the possibility of a recent colonization of the Atlantic range from the Mediterranean Sea.

  7. Three-gene identity coefficients demonstrate that clonal reproduction promotes inbreeding and spatial relatedness in yellow-cedar, Callitropsis nootkatensis.

    PubMed

    Thompson, Stacey Lee; Bérubé, Yanik; Bruneau, Anne; Ritland, Kermit

    2008-10-01

    Asexual reproduction has the potential to promote population structuring through matings between clones as well as through limited dispersal of related progeny. Here we present an application of three-gene identity coefficients that tests whether clonal reproduction promotes inbreeding and spatial relatedness within populations. With this method, the first two genes are sampled to estimate pairwise relatedness or inbreeding, whereas the third gene is sampled from either a clone or a sexually derived individual. If three-gene coefficients are significantly greater for clones than nonclones, then clonality contributes excessively to genetic structure. First, we describe an estimator of three-gene identity and briefly evaluate its properties. We then use this estimator to test the effect of clonality on the genetic structure within populations of yellow-cedar (Callitropsis nootkatensis) using a molecular marker survey. Five microsatellite loci were genotyped for 485 trees sampled from nine populations. Our three-gene analyses show that clonal ramets promote inbreeding and spatial structure in most populations. Among-population correlations between clonal extent and genetic structure generally support these trends, yet with less statistical significance. Clones appear to contribute to genetic structure through the limited dispersal of offspring from replicated ramets of the same clonal genet, whereas this structure is likely maintained by mating among these relatives.

  8. Genetic structure and diversity in natural and stocked populations of the mandarin fish (Siniperca chuatsi) in China.

    PubMed

    Yang, M; Tian, C; Liang, X-F; Zheng, H; Zhao, C; Zhu, K

    2015-05-18

    The Chinese perch, or mandarin fish (Siniperca chuatsi), is a freshwater fish that is endemic to East Asia. In this study, we investigated the genetic diversity and structure of nine natural mandarin fish populations (from the Yangtze River and Amur River basins) and six hatchery stocks (from central and south China) using microsatellite markers. The results show that the genetic diversity of the Yangtze River populations was high and stable, and genetic differences between them were not significant. In contrast, a low level of genetic diversity and strong genetic structure were detected in the Amur River population. These results suggest that the Yangtze River region and the Amur River region should be treated as two separate units in conservation programs. The hatchery stocks exhibited low genetic diversity and significant genetic differentiation compared to natural populations; this may result in a significant impact on the species if escape events occur. Therefore, a scientific aquaculture management strategy is necessary for the long-term development of hatcheries.

  9. Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul).

    PubMed

    Wang, Ian J

    2009-09-01

    Environmental variables can strongly influence a variety of intra- and inter-population processes, including demography, population structure and gene flow. When environmental conditions are particularly harsh for a certain species, investigating these effects is important to understanding how populations persist under difficult conditions. Furthermore, species inhabiting challenging environments present excellent opportunities to examine the effects of complex landscapes on population processes because these effects will often be more pronounced. In this study, I use 16 microsatellite loci to examine population structure, gene flow and demographic history in the black toad, Bufo exsul, which has one of the most restricted natural ranges of any amphibian. Bufo exsul inhabits four springs in the Deep Springs Valley high desert basin and has never been observed more than several meters from any source of water. My results reveal limited gene flow and moderately high levels of population structure (F(ST) = 0.051-0.063) between all but the two closest springs. I found that the geographic distance across the arid scrub habitat between springs is significantly correlated with genetic structure when distance accounts for topography and barriers to dispersal. I also found very low effective population sizes (N(e) = 7-30) and substantial evidence for historical population bottlenecks in all four populations. Together, these results suggest that the desert landscape and B. exsul's high habitat specificity contribute significantly to population structure and demography in this species and emphasize the importance of considering behavioural and landscape data in conservation genetic studies of natural systems.

  10. The Genetic Diversity and Structure of Linkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia.

    PubMed

    Trifonova, E A; Eremina, E R; Urnov, F D; Stepanov, V A

    2012-01-01

    The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.

  11. Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.

    2005-01-01

    Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts. 

  12. Genetic structure of muskellunge in the Great Lakes region and the effects of supplementation on genetic integrity of wild populations

    USGS Publications Warehouse

    Turnquist, Keith N.; Larson, Wesley; Farrell, John M.; Hanchin, P.A.; Kapuscinski, Kevin L.; Miller, Loren M.; Scribner, Kim T.; Wilson, Chris C.; Sloss, Brian L.

    2017-01-01

    Muskellunge (Esox masquinongy) are important apex predators that support numerous recreational fisheries throughout the Great Lakes region. Declines in muskellunge abundance from historical overharvest and environmental degradation have threatened the viability of many populations and prompted significant restoration efforts that often include stocking. The goal of our study was to investigate contemporary population structure and genetic diversity in 42 populations of muskellunge sampled across the Great Lakes region to inform future management and supplementation practices. We genotyped 1896 muskellunge (N = 10–123/population) at 13 microsatellite loci. The greatest genetic variation was between populations of Great Lakes origin and populations of Northern (inland) origin, with both groups also exhibiting significant substructure (overall FST = 0.23). Genetic structure was generally correlated with geography; however, we only found marginal evidence of isolation by distance, likely due to high genetic differentiation among proximate populations. Measures of genetic diversity were moderate across most populations, but some populations displayed low diversity consistent with small population sizes or historical bottlenecks. Many of the populations studied displayed evidence of historic introductions and supplemental stocking, including the presence of individuals with primarily non-native ancestry as well as interlineage hybrids. Our results suggest that the historic population structure of muskellunge is largely intact across the Great Lakes region, but also that stocking practices have altered this structure to some degree. We suggest that future supplementation practices use local sources where possible, and incorporate genetic tools including broodstock screening to ensure that non-native muskellunge are not used to supplement wild populations.

  13. Multilocus analyses indicate a mosaic distribution of hybrid populations in ground squirrels (genus Ictidomys)

    PubMed Central

    Thompson, Cody W; Anwarali Khan, Faisal Ali; Stangl, Frederick B; Baker, Robert J; Bradley, Robert D

    2013-01-01

    DNA sequence data from mitochondrial cytochrome-b (Cytb) and Y-linked structural maintenance of chromosomes (SmcY) genes were combined with 478 nuclear loci obtained from amplified fragment length polymorphisms (AFLP) to assess the extent of hybridization and genetic spatial structure of populations in two hybridizing species of ground squirrel (Ictidomys parvidens and Ictidomys tridecemlineatus). Based on AFLP analyses of 134 individuals from 28 populations, 10 populations were identified that possessed hybrid individuals. Overall estimates of FST values revealed strong support for population structure in the Cytb data set; however, analyses of the SmcY gene and the AFLP data indicated ongoing gene flow between species. Pairwise FST comparisons of populations were not significant for the SmcY gene; although they were significant for the Cytb gene, indicating that these populations were structured and that gene flow was minimal. Therefore, gene flow between I. parvidens and I. tridecemlineatus appeared to be restricted to populations that exhibited hybridization. In addition, the fragmented nature of the geographic landscape suggested limited gene flow between populations. As a result, the distributional pattern of interspersed parental and hybrid populations were compatible with a mosaic hybrid zone model. Because ground squirrels display female philopatry and male-biased dispersal, the ecology of these species is compatible with this hypothesis. PMID:24340186

  14. Structure and genetic diversity of Anacardium humile (Anacardiaceae): a tropical shrub.

    PubMed

    Cota, L G; Moreira, P A; Brandão, M M; Royo, V A; Junior, A F Melo; Menezes, E V; Oliveira, D A

    2017-09-27

    Anacardium humile Saint Hilaire is a tropical shrub native to the Cerrado biome. It is a fruiting species with biological, medicinal, and socioeconomic significance. Thus, knowing how the genetic variability of natural populations is organized allows for the establishment of strategies for conservation and the sustainable use of the species and its biome. Six microsatellite loci previously developed from Anacardium occidentale were used to investigate the spatial genetic structure and genetic diversity of eight natural A. humile populations based on analyses of 242 adult plants. The results obtained indicate that these populations show a high level of genetic diversity (expected heterozygosity = 0.710). The endogamy coefficient was positive and significant for most populations, with a mean of 0.142 (P = 0.001). The genetic differentiation between populations was low (θ = 0.075 and G ST = 0.066) but significant (P = 0.0001). The genotypes of five of the eight populations were non-randomly distributed with clusters of related plants for which the coancestry values were positive and significant. These populations exhibited high and significant endogamy indices. The results obtained for A. humile populations show that genetic conservation programs should be implemented to maintain this species.

  15. High-Level Genetic Diversity and Complex Population Structure of Siberian Apricot (Prunus sibirica L.) in China as Revealed by Nuclear SSR Markers

    PubMed Central

    Wang, Zhe; Kang, Ming; Liu, Huabo; Gao, Jiao; Zhang, Zhengdong; Li, Yingyue; Wu, Rongling; Pang, Xiaoming

    2014-01-01

    Siberian apricot (Prunus sibirica L.), an ecologically and economically important tree species with a high degree of tolerance to a variety of extreme environmental conditions, is widely distributed across the mountains of northeastern and northern China, eastern and southeastern regions of Mongolia, Eastern Siberia, and the Maritime Territory of Russia. However, few studies have examined the genetic diversity and population structure of this species. Using 31 nuclear microsatellites, we investigated the level of genetic diversity and population structure of Siberian apricot sampled from 22 populations across China. The number of alleles per locus ranged from 5 to 33, with an average of 19.323 alleles. The observed heterozygosity and expected heterozygosity ranged from 0.037 to 0.874 and 0.040 to 0.924 with average values of 0.639 and 0.774, respectively. A STRUCTURE-based analysis clustered all of the populations into four genetic clusters. Significant genetic differentiation was observed between all population pairs. A hierarchical analysis of molecular variance attributed about 94% of the variation to within populations. No significant difference was detected between the wild and semi-wild groups, indicating that recent cultivation practices have had little impact on the genetic diversity of Siberian apricot. The Mantel test showed that the genetic distance among the populations was not significantly correlated with geographic distance (r = 0.4651, p = 0.9940). Our study represents the most comprehensive investigation of the genetic diversity and population structure of Siberian apricot in China to date, and it provides valuable information for the collection of genetic resources for the breeding of Siberian apricot and related species. PMID:24516551

  16. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    USGS Publications Warehouse

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  17. Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    NASA Astrophysics Data System (ADS)

    Truelove, Nathan K.; Kough, Andrew S.; Behringer, Donald C.; Paris, Claire B.; Box, Stephen J.; Preziosi, Richard F.; Butler, Mark J.

    2017-03-01

    Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster ( Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 ( P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus ( P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation ( P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  18. Inference and Analysis of Population Structure Using Genetic Data and Network Theory

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli

    2016-01-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080

  19. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  20. Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population.

    PubMed

    Wei, Caihong; Lu, Jian; Xu, Lingyang; Liu, Gang; Wang, Zhigang; Zhao, Fuping; Zhang, Li; Han, Xu; Du, Lixin; Liu, Chousheng

    2014-01-01

    China has numerous native domestic goat breeds, however, extensive studies are focused on the genetic diversity within the fewer breeds and limited regions, the population demographic history and origin of Chinese goats are still unclear. The roles of geographical structure have not been analyzed in Chinese goat domestic process. In this study, the genetic relationships of Chinese indigenous goat populations were evaluated using 30 microsatellite markers. Forty Chinese indigenous populations containing 2078 goats were sampled from different geographic regions of China. Moderate genetic diversity at the population level (H(S) of 0.644) and high population diversity at the species level (H(T) value of 0.737) were estimated. Significant moderate population differentiation was detected (F(ST) value of 0.129). Significant excess homozygosity (F(IS) of 0.105) and recent population bottlenecks were detected in thirty-six populations. Neighbour-joining tree, principal components analysis and Bayesian clusters all revealed that Chinese goat populations could be subdivided into at least four genetic clusters: Southwest China, South China, Northwest China and East China. It was observed that the genetic diversity of Northern China goats was highest among these clusters. The results here suggested that the goat populations in Southwest China might be the earliest domestic goats in China. Our results suggested that the current genetic structure of Chinese goats were resulted from the special geographical structure, especially in the Western China, and the Western goat populations had been separated by the geographic structure (Hengduan Mountains and Qinling Mountains-Huaihe River Line) into two clusters: the Southwest and Northwest. It also indicated that the current genetic structure was caused by the geographical origin mainly, in close accordance with the human's migration history throughout China. This study provides a fundamental genetic profile for the conservation of these populations and better to understand the domestication process and origin of Chinese goats.

  1. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  2. Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Yuan, Jun–hui; Cheng, Fang–Yun; Zhou, Shi–Liang

    2012-01-01

    Background Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers. Methodology/Principal Findings Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm. Conclusions/Significance Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of this species and for improving the genetic basis for breeding its cultivars. PMID:22523566

  3. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean

    PubMed Central

    Canales-Aguirre, Cristian B.; Galleguillos, Ricardo; Oyarzun, Fernanda X.; Hernández, Cristián E.

    2018-01-01

    Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf. PMID:29362690

  4. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  5. Genetic Diversity and Population Parameters of Sea Otters, Enhydra lutris, before Fur Trade Extirpation from 1741–1911

    PubMed Central

    Larson, Shawn; Jameson, Ron; Etnier, Michael; Jones, Terry; Hall, Roberta

    2012-01-01

    All existing sea otter, Enhydra lutris, populations have suffered at least one historic population bottleneck stemming from the fur trade extirpations of the eighteenth and nineteenth centuries. We examined genetic variation, gene flow, and population structure at five microsatellite loci in samples from five pre-fur trade populations throughout the sea otter's historical range: California, Oregon, Washington, Alaska, and Russia. We then compared those values to genetic diversity and population structure found within five modern sea otter populations throughout their current range: California, Prince William Sound, Amchitka Island, Southeast Alaska and Washington. We found twice the genetic diversity in the pre-fur trade populations when compared to modern sea otters, a level of diversity that was similar to levels that are found in other mammal populations that have not experienced population bottlenecks. Even with the significant loss in genetic diversity modern sea otters have retained historical structure. There was greater gene flow before extirpation than that found among modern sea otter populations but the difference was not statistically significant. The most dramatic effect of pre fur trade population extirpation was the loss of genetic diversity. For long term conservation of these populations increasing gene flow and the maintenance of remnant genetic diversity should be encouraged. PMID:22403635

  6. Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda

    PubMed Central

    Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano

    2015-01-01

    Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963

  7. Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

    PubMed

    Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D; Goffredo, Stefano

    2015-01-01

    Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

  8. Spatio-temporal variation in age structure and abundance of the endangered snail kite: Pooling across regions masks a declining and aging population

    USGS Publications Warehouse

    Reichert, Brian E.; Kendall, William L.; Fletcher, Robert J.; Kitchens, Wiley M.

    2016-01-01

    While variation in age structure over time and space has long been considered important for population dynamics and conservation, reliable estimates of such spatio-temporal variation in age structure have been elusive for wild vertebrate populations. This limitation has arisen because of problems of imperfect detection, the potential for temporary emigration impacting assessments of age structure, and limited information on age. However, identifying patterns in age structure is important for making reliable predictions of both short- and long-term dynamics of populations of conservation concern. Using a multistate superpopulation estimator, we estimated region-specific abundance and age structure (the proportion of individuals within each age class) of a highly endangered population of snail kites for two separate regions in Florida over 17 years (1997–2013). We find that in the southern region of the snail kite—a region known to be critical for the long-term persistence of the species—the population has declined significantly since 1997, and during this time, it has increasingly become dominated by older snail kites (> 12 years old). In contrast, in the northern region—a region historically thought to serve primarily as drought refugia—the population has increased significantly since 2007 and age structure is more evenly distributed among age classes. Given that snail kites show senescence at approximately 13 years of age, where individuals suffer higher mortality rates and lower breeding rates, these results reveal an alarming trend for the southern region. Our work illustrates the importance of accounting for spatial structure when assessing changes in abundance and age distribution and the need for monitoring of age structure in imperiled species.

  9. Population sub-structuring among Trypanosoma evansi stocks.

    PubMed

    Njiru, Z K; Constantine, C C

    2007-10-01

    To investigate the population genetic structure of Trypanosoma evansi from domesticated animals, we have analysed 112 stocks from camels, buffaloes, cattle and horses using the tandemly repeated coding sequence (MORF2) and minisatellite markers 292 and cysteine-rich acidic integral membrane protein (CRAM). We recorded a total of six alleles at the MORF2 locus, seven at 292 and 12 at the CRAM loci. Nei's genetic distance showed reduced allelic diversity between buffaloes and cattle stocks (1.2) as compared to the diversity between camels and buffaloes (3.75) and camels and cattle stock (1.69). The mean index of association (IA=0.92) significantly deviated from zero, and the average number of multilocus genotypes (G/N ratio) was 0.21. Twenty-four multilocus genotypes were defined from the combination of alleles at the three loci. The Kenyan sub-populations showed Fst=0.28 and analysis of molecular variance showed significant divergence (22.7%) between the Laikipia, Kulal and Galana regions. The regional and host distribution of multi-locus genotypes significant population differentiation and high Nei's genetic distances suggest existence of genetic sub-structuring within T. evansi stocks while the few multi-locus genotypes and deviation of association index from zero indicate the lack of recombination. In conclusion, this study reveals that some genetic sub-structuring does occur within T. evansi, which has a clonal population structure.

  10. Population size, center-periphery, and seed dispersers' effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon.

    PubMed

    Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando

    2017-09-01

    The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS  = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population differentiation highlight the conservation value of large populations throughout the species' range, particularly in light of climate change and direct human threats.

  11. The role of river drainages in shaping the genetic structure of capybara populations.

    PubMed

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  12. Correlations in the population structure of music, genes and language.

    PubMed

    Brown, Steven; Savage, Patrick E; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A

    2014-01-07

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers.

  13. Correlations in the population structure of music, genes and language

    PubMed Central

    Brown, Steven; Savage, Patrick E.; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A.

    2014-01-01

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers. PMID:24225453

  14. CONTRIBUTIONS OF SEXUAL AND ASEXUAL REPRODUCTION TO POPULATION STRUCTURE IN THE CLONAL SOFT CORAL, ALCYONIUM RUDYI.

    PubMed

    McFadden, Catherine S

    1997-02-01

    Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (G o ) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics. © 1997 The Society for the Study of Evolution.

  15. Historical habitat connectivity affects current genetic structure in a grassland species.

    PubMed

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Strong population structure of Schizopygopsis chengi and the origin of S. chengi baoxingensis revealed by mtDNA and microsatellite markers.

    PubMed

    Liu, Dongqi; Hou, Feixia; Liu, Qin; Zhang, Xiuyue; Yan, Taiming; Song, Zhaobin

    2015-02-01

    The Tibetan Plateau underwent dramatic geological and climatic changes, which had important implications for genetic divergence and population dynamics of freshwater fish populations. Fluctuations of the ecogeographical environment and major hydrographic formations might have promoted the formation of new subspecies or species. In order to understand the impact of plateau uplift on freshwater fish evolutionary history, we estimated the genetic diversity and population structure in two subspecies of Schizopygopsis chengi (S. c. chengi and S. c. baoxingensis) in upper Yangtze River in Tibetan Plateau area using mitochondrial DNA control region and eight microsatellite markers, which suggested that there was a close genetic relationship. S. chengi showed some significant genetic structure that did not correlate with geographic distance. Bayesian assignment tests indicated that S. chengi samples in the study could be divided into four populations: upstream population, midstream population, tributary population and S. c. baoxingensis population. S. c. chengi and S. c. baoxingensis showed significant genetic divergence. However, phylogenetic analysis, population structure analysis and historical gene flow estimation suggested that there was close genetic relationship between S. c. baoxingensis and the Dawei population which belongs to populations of S. c. chengi. The time that Dawei population suffered from a bottleneck and S. c. baoxingensis underwent population expansion was congruent with the last glacial period on the Tibetan Plateau. The results confirmed the hypothesis that the Dawei River and Baoxing River were once connected, and the Dawei and Baoxing populations originated from a single population, but were isolated into separate populations because of crustal movements and the Baoxing population evolved as S. c. baoxingensis.

  17. Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae).

    PubMed

    Hou, Yan; Lou, Anru

    2011-01-01

    Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.

  18. Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    PubMed Central

    Hou, Yan; Lou, Anru

    2011-01-01

    Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437

  19. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments. PMID:21490969

  20. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    PubMed Central

    2012-01-01

    Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its epidemiological significance further investigated. The lack of genetic population structure in the other north-east Indian populations likely reflects large population sizes of An. baimaii that, historically, were able to disperse through continuous forest habitats in the north-east India. Additional markers and analytical approaches are required to determine if recent deforestation is now preventing ongoing gene flow. Until such information is acquired, An. baimaii in north-east India should be treated as a single unit for the implementation of vector control measures. PMID:22429500

  1. Genetic structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam.

    PubMed

    Tusso, Sergio; Morcinek, Kerstin; Vogler, Catherine; Schupp, Peter J; Caballes, Ciemon F; Vargas, Sergio; Wörheide, Gert

    2016-01-01

    Population outbreaks of the corallivorous crown-of-thorns seastar (COTS), Acanthaster 'planci' L., are among the most important biological disturbances of tropical coral reefs. Over the past 50 years, several devastating outbreaks have been documented around Guam, an island in the western Pacific Ocean. Previous analyses have shown that in the Pacific Ocean, COTS larval dispersal may be geographically restricted to certain regions. Here, we assess the genetic structure of Pacific COTS populations and compared samples from around Guam with a number of distant localities in the Pacific Ocean, and focused on determining the degree of genetic structure among populations previously considered to be isolated. Using microsatellites, we document substantial genetic structure between 14 localities from different geographical regions in the Pacific Ocean. Populations from the 14 locations sampled were found to be structured in three significantly differentiated groups: (1) all locations immediately around Guam, as well as Kingman Reef and Swains Island; (2) Japan, Philippines, GBR and Vanuatu; and (3) Johnston Atoll, which was significantly different from all other localities. The lack of genetic differentiation between Guam and extremely distant populations from Kingman Reef and Swains Island suggests potential long-distance dispersal of COTS in the Pacific.

  2. Fine-scale population genetic structure of a wildlife disease vector: The southern house mosquito on the island of Hawaii

    USGS Publications Warehouse

    Keyghobadi, N.; LaPointe, D.; Fleischer, R.C.; Fonseca, D.M.

    2006-01-01

    The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector. ?? 2006 The Authors.

  3. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey.

    PubMed

    Pérez-Espona, S; Pérez-Barbería, F J; Goodall-Copestake, W P; Jiggins, C D; Gordon, I J; Pemberton, J M

    2009-02-01

    The largest population of red deer (Cervus elaphus) in Europe is found in Scotland. However, human impacts through hunting and introduction of foreign deer stock have disturbed the population's genetics to an unknown extent. In this study, we analysed mitochondrial control region sequences of 625 individuals to assess signatures of human and natural historical influence on the genetic diversity and population structure of red deer in the Scottish Highlands. Genetic diversity was high with 74 haplotypes found in our study area (115 x 87 km). Phylogenetic analyses revealed that none of the individuals had introgressed mtDNA from foreign species or subspecies of deer and only suggested a very few localized red deer translocations among British localities. A haplotype network and population analyses indicated significant genetic structure (Phi(ST)=0.3452, F(ST)=0.2478), largely concordant with the geographical location of the populations. Mismatch distribution analysis and neutrality tests indicated a significant population expansion for one of the main haplogroups found in the study area, approximately dated c. 8200 or 16 400 years ago when applying a fast or slow mutation rate, respectively. Contrary to general belief, our results strongly suggest that native Scottish red deer mtDNA haplotypes have persisted in the Scottish Highlands and that the population retains a largely natural haplotype diversity and structure in our study area.

  4. Genetic Diversity and Population Structure of the Pelagic Thresher Shark (Alopias pelagicus) in the Pacific Ocean: Evidence for Two Evolutionarily Significant Units

    PubMed Central

    Cardeñosa, Diego; Hyde, John; Caballero, Susana

    2014-01-01

    There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range. PMID:25337814

  5. Genetic diversity and population structure of the pelagic thresher shark (Alopias pelagicus) in the Pacific Ocean: evidence for two evolutionarily significant units.

    PubMed

    Cardeñosa, Diego; Hyde, John; Caballero, Susana

    2014-01-01

    There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.

  6. Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management

    PubMed Central

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611

  7. A Demographic Analysis of American Geophysical Union Membership with Implications for Change

    NASA Astrophysics Data System (ADS)

    Rhodes, D. D.

    2006-12-01

    Demographers use population pyramids to characterize the age/gender structure of societal groups. Diagrams of the population of age cohorts for both sexes assume the shape of a pyramid in rapidly expanding groups, having many more young people than older adults. Stable populations have similar numbers of people in age cohorts from infants through middle-age adults. Shrinking populations have fewer children and relatively larger numbers of adults. Demographic analysis of the American Geophysical Union's (AGU) membership reveals significant differences among the numerous specialties and the membership as a whole. The population structure diagram of the total AGU membership is highly asymmetrical with 77.5% male and 22.5% female. Males outnumber females in every age cohort. This is most noticeable among members born prior to 1945. Males belonging to these cohorts make up 16.5% of the total membership, while female members of equivalent age include 0.8% of the total. The largest membership cohort (29% of the total) is comprised of males born between 1950 and 1964, a group that includes both the "baby boom" generation and post-war petroleum exploration expansion. In contrast, the female cohort with birth years from 1970 to 1979 is the largest grouping of women members (8.4% of AGU's membership). Furthermore, women comprise 36% of the members born since 1965, and only 14.5% of those born before 1965. Considered separately, the female membership's age structure is characteristic of a growing population, while the male side is in relative decline. The population structure of the entire membership is mirrored in some specialties, but there are remarkable differences in others. The largest specialty group (hydrology) includes 16.9% of the total AGU membership and has a population structure that differs little from that of the whole organization. Four specialties, Atmospheric Chemistry, Biogeosciences, and Paleoceanography and Paleoclimatology, and Marine Geochemistry differ significantly from the aggregate membership. The population structures of these groups are pyramidal, indicating a strong potential for growth. Women also comprise more than 30% of each of these groups and outnumber men in some recent cohorts. Growth potential is unevenly distributed throughout AGU's membership with traditional specialties likely to experience significant decline as the older cohorts retire and die. Strongest growth is most likely to occur in recently recognized interdisciplinary specialties, especially those in which women already constitute a significant fraction of the membership.

  8. Population genetic structure of the round stingray Urobatis halleri (Elasmobranchii: Rajiformes) in southern California and the Gulf of California

    PubMed Central

    Plank, S. M.; Lowe, C. G.; Feldheim, K. A.; Wilson, R. R.; Brusslan, J. A.

    2017-01-01

    The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (−0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep-water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size. PMID:20646159

  9. Evolution of population structure in a highly social top predator, the killer whale.

    PubMed

    Hoelzel, A Rus; Hey, Jody; Dahlheim, Marilyn E; Nicholson, Colin; Burkanov, Vladimir; Black, Nancy

    2007-06-01

    Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale.

  10. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    PubMed Central

    Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285

  11. Genetic Diversity and Population Structure of Siberian apricot (Prunus sibirica L.) in China

    PubMed Central

    Li, Ming; Zhao, Zhong; Miao, Xingjun; Zhou, Jingjing

    2014-01-01

    The genetic diversity and population genetic structure of 252 accessions from 21 Prunus sibirica L. populations were investigated using 10 ISSR, SSR, and SRAP markers. The results suggest that the entire population has a relatively high level of genetic diversity, with populations HR and MY showing very high diversity. A low level of inter-population genetic differentiation and a high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow, and largely attributable to the cross-pollination and self-incompatibility reproductive system. A STRUCTURE (model-based program) analysis revealed that the 21 populations can be divided into two main groups, mainly based on geographic differences and genetic exchanges. The entire wild Siberia apricot population in China could be divided into two subgroups, including 107 accessions in subgroup (SG) 1 and 147 accessions in SG 2. A Mantel test revealed a significant positive correlation between genetic and geographic distance matrices, and there was a very significant positive correlation among three marker datasets. Overall, we recommend a combination of conservation measures, with ex situ and in situ conservation that includes the construction of a core germplasm repository and the implement of in situ conservation for populations HR, MY, and ZY. PMID:24384840

  12. The influence of age and gender on skin-associated microbial communities in urban and rural human populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Shi; Zeng, Dan -Ning; Chi, Liang

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroupmore » variation among the elderly and rural populations was significantly greater. Lastly, skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~ 5x greater than random.« less

  13. The influence of age and gender on skin-associated microbial communities in urban and rural human populations

    DOE PAGES

    Ying, Shi; Zeng, Dan -Ning; Chi, Liang; ...

    2015-10-28

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroupmore » variation among the elderly and rural populations was significantly greater. Lastly, skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~ 5x greater than random.« less

  14. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L

    PubMed Central

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID:23536759

  16. Spatial genetic structure of the cyprinid fish Onychostoma lepturum on Hainan Island.

    PubMed

    Zhou, Tian-Qi; Lin, Hung-Du; Hsu, Kui-Ching; Kuo, Po-Hsun; Wang, Wei-Kuang; Tang, Wen-Qiao; Liu, Dong; Yang, Jin-Quan

    2017-11-01

    Population genetic structure of Onychostoma lepturum on Hainan Island was investigated based on mitochondrial CR + cyt b region in 63 specimens collected from four populations. Population analyses indicated significant genetic structure (F ST  = 0.749) and displayed a significant relationship between phylogeny and geography (N ST  = 0.750 and G ST  = 0.140). Thirty-one mtDNA haplotypes were classified into four lineages, and these lineages had an almost allopatric distribution. The results of a statistical dispersal-vicariance analysis suggest that the ancestral populations were distributed widely on Hainan Island, and the rising of the central mountainous area of Hainan Island, the Wuzhi and Yinggeling Mountain Range, separated these four drainages into independent lineages. According to a spatial analysis of molecular variance analysis, we divided these populations into three units: ND, CH and WQ + LS, running into Qiongzhou Strait, the Gulf of Tokin and the South China Sea, respectively. According to our study, the exposure of straits and shelf under water retreat gave chances for population dispersion during the glaciations.

  17. Multiple paternity and sporophytic inbreeding depression in a dioicous moss species.

    PubMed

    Szövényi, P; Ricca, M; Shaw, A J

    2009-11-01

    Multiple paternity (polyandry) frequently occurs in flowering plants and animals and is assumed to have an important function in the evolution of reproductive traits. Polyandry in bryophytes may occur among multiple sporophytes of a female gametophyte; however, its occurrence and extent is unknown. In this study we investigate the occurrence and extent of multiple paternity, spatial genetic structure, and sporophytic inbreeding depression in natural populations of a dioicous bryophyte species, Sphagnum lescurii, using microsatellite markers. Multiple paternity is prevalent among sporophytes of a female gametophyte and male genotypes exhibit significant skew in paternity. Despite significant spatial genetic structure in the population, suggesting frequent inbreeding, the number of inbred and outbred sporophytes was balanced, resulting in an average fixation coefficient and population level selfing rate of zero. In line with the prediction of sporophytic inbreeding depression sporophyte size was significantly correlated with the level of heterozygosity. Furthermore, female gametophytes preferentially supported sporophytes with higher heterozygosity. These results indicate that polyandry provides the opportunity for postfertilization selection in bryophytes having short fertilization distances and spatially structured populations facilitating inbreeding. Preferential maternal support of the more heterozygous sporophytes suggests active inbreeding avoidance that may have significant implications for mating system evolution in bryophytes.

  18. Population genetic structure and its implications for adaptive variation in memory and the hippocampus on a continental scale in food-caching black-capped chickadees.

    PubMed

    Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S

    2012-09-01

    Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.

  19. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.

  20. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean.

    PubMed

    Planes, S; Fauvelot, C

    2002-02-01

    We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.

  1. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    NASA Astrophysics Data System (ADS)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, P<0.01). These results suggest that E. rhadinum populations in the East and South China Seas have developed divergent genetic structures. Tests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  2. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP.

    PubMed

    Ge, X J; Liu, M H; Wang, W K; Schaal, B A; Chiang, T Y

    2005-04-01

    Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.

  3. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    PubMed Central

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    Background Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. Methodology Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. Principal Findings/Conclusions We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations. PMID:21857900

  4. Genetic structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam

    PubMed Central

    Tusso, Sergio; Morcinek, Kerstin; Vogler, Catherine; Schupp, Peter J.; Caballes, Ciemon F.; Vargas, Sergio

    2016-01-01

    Population outbreaks of the corallivorous crown-of-thorns seastar (COTS), Acanthaster ‘planci’ L., are among the most important biological disturbances of tropical coral reefs. Over the past 50 years, several devastating outbreaks have been documented around Guam, an island in the western Pacific Ocean. Previous analyses have shown that in the Pacific Ocean, COTS larval dispersal may be geographically restricted to certain regions. Here, we assess the genetic structure of Pacific COTS populations and compared samples from around Guam with a number of distant localities in the Pacific Ocean, and focused on determining the degree of genetic structure among populations previously considered to be isolated. Using microsatellites, we document substantial genetic structure between 14 localities from different geographical regions in the Pacific Ocean. Populations from the 14 locations sampled were found to be structured in three significantly differentiated groups: (1) all locations immediately around Guam, as well as Kingman Reef and Swains Island; (2) Japan, Philippines, GBR and Vanuatu; and (3) Johnston Atoll, which was significantly different from all other localities. The lack of genetic differentiation between Guam and extremely distant populations from Kingman Reef and Swains Island suggests potential long-distance dispersal of COTS in the Pacific. PMID:27168979

  5. Fine-scale population genetic structure and sex-biased dispersal in the smooth snake (Coronella austriaca) in southern England.

    PubMed

    Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J

    2011-09-01

    Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.

  6. Phenotypic diversity, population structure and stress protein-based capacitoring in populations of Xeropicta derbentina, a heat-tolerant land snail species.

    PubMed

    Di Lellis, Maddalena A; Sereda, Sergej; Geißler, Anna; Picot, Adrien; Arnold, Petra; Lang, Stefanie; Troschinski, Sandra; Dieterich, Andreas; Hauffe, Torsten; Capowiez, Yvan; Mazzia, Christophe; Knigge, Thomas; Monsinjon, Tiphaine; Krais, Stefanie; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R

    2014-11-01

    The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.

  7. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  8. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These data provide comprehensive information for the development of conservation strategies of these valuable hazelnut resources.

  9. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean.

    PubMed

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-10-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species.

  11. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean

    PubMed Central

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-01-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species. PMID:21427750

  12. Genetic structure of the world's polar bear populations.

    PubMed

    Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C

    1999-10-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  13. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  14. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    PubMed

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  15. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    PubMed Central

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  16. Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula

    USGS Publications Warehouse

    Gorman, Kristen B.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, George K.; Gravley, Megan C.; Fraser, William R.; Williams, Tony D.

    2017-01-01

    Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (FST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA ΦST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.

  17. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA.

    PubMed

    Hu, Yibo; Guo, Yu; Qi, Dunwu; Zhan, Xiangjiang; Wu, Hua; Bruford, Michael W; Wei, Fuwen

    2011-07-01

    Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence-based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai-Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above-mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite-based Bayesian clustering clearly identified three groups (Qionglai-Liangshan, Xiaoxiangling and Gaoligong-Tibet). A significant isolation-by-distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large-scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai-Tibetan Plateau, subspecies classification and conservation of red pandas are discussed. © 2011 Blackwell Publishing Ltd.

  18. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations.

    PubMed

    Jones, Kenneth L; Krapu, Gary L; Brandt, David A; Ashley, Mary V

    2005-08-01

    Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.

  19. Spatial Genetic Structure of Coffee-Associated Xylella fastidiosa Populations Indicates that Cross Infection Does Not Occur with Sympatric Citrus Orchards.

    PubMed

    Francisco, Carolina S; Ceresini, Paulo C; Almeida, Rodrigo P P; Coletta-Filho, Helvécio D

    2017-04-01

    Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.

  20. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun

    2017-01-01

    Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005

  1. Conservation genetics of the rare Pyreneo-Cantabrian endemic Aster pyrenaeus (Asteraceae)

    PubMed Central

    Escaravage, Nathalie; Cambecèdes, Jocelyne; Largier, Gérard; Pornon, André

    2011-01-01

    Background and aims Aster pyrenaeus (Asteraceae) is an endangered species, endemic to the Pyrenees and Cantabrian Mountain ranges (Spain). For its long-term persistence, this taxon needs an appropriate conservation strategy to be implemented. In this context, we studied the genetic structure over the entire geographical range of the species and then inferred the genetic relationships between populations. Methodology Molecular diversity was analysed for 290 individuals from 12 populations in the Pyrenees and the Cantabrian Mountains using inter simple sequence repeats (ISSRs). Bayesian-based analysis was applied to examine population structure. Principal results Analysis of genetic similarity and diversity, based on 87 polymorphic ISSR markers, suggests that despite being small and isolated, populations have an intermediate genetic diversity level (P % = 52.8 %, HE = 0.21 ± 0.01, genetic similarity between individuals = 49.6 %). Genetic variation was mainly found within populations (80–84 %), independently of mountain ranges, whereas 16–18 % was found between populations and <5 % between mountain ranges. Analyses of molecular variance indicated that population differentiation was highly significant. However, no significant correlation was found between the genetic and geographical distances among populations (Rs = 0.359, P = 0.140). Geographical structure based on assignment tests identified five different gene pools that were independent of any particular structure in the landscape. Conclusions The results suggest that population isolation is probably relatively recent, and that the outbreeding behaviour of the species maintains a high within-population genetic diversity. We assume that some long-distance dispersal, even among topographically remote populations, may be determinant for the pattern of genetic variation found in populations. Based on these findings, strategies are proposed for genetic conservation and management of the species. PMID:22476499

  2. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): Natural replicate tests of post-Pleistocene evolution

    USGS Publications Warehouse

    Morris-Pocock, J. A.; Taylor, S.A.; Birt, T.P.; Damus, M.; Piatt, John F.; Warheit, K.I.; Friesen, Vicki L.

    2008-01-01

    Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa. ?? 2008 The Authors.

  3. Relative importance of pollen and seed dispersal across a Neotropical mountain landscape for an epiphytic orchid.

    PubMed

    Kartzinel, Tyler R; Shefferson, Richard P; Trapnell, Dorset W

    2013-12-01

    Populations of many species are isolated within narrow elevation bands of Neotropical mountain habitat, and how well dispersal maintains genetic connectivity is unknown. We asked whether genetic structure of an epiphytic orchid, Epidendrum firmum, corresponds to gaps between Costa Rican mountain ranges, and how these gaps influence pollen and seed flow. We predicted that significant genetic structure exists among mountain ranges due to different colonization histories and limited gene flow. Furthermore, we predicted that pollen movement contributes more to gene flow than seeds because seeds are released into strong winds perpendicular to the narrow northwest-southeast species distribution, while the likely pollinators are strong fliers. Individuals from 12 populations and three mountain ranges were genotyped with nuclear microsatellites (nDNA) and chloroplast sequences (cpDNA). Genetic diversity was high for both markers, while nDNA genetic structure was low (FSTn  = 0.020) and cpDNA structure was moderate (FSTc  = 0.443). Significant cpDNA barriers occurred within and among mountain ranges, but nDNA barriers were not significant after accounting for geographic distance. Consistent with these contrasting patterns of genetic structure, pollen contributes substantially more to gene flow among populations than seed (mp /ms  = 46). Pollinators mediated extensive gene flow, eroding nDNA colonization footprints, while seed flow was comparatively limited, possibly due to directional prevailing winds across linearly distributed populations. Dispersal traits alone may not accurately inform predictions about gene flow or genetic structure, supporting the need for research into the potentially crucial role of pollinators and landscape context in gene flow among isolated populations. © 2013 John Wiley & Sons Ltd.

  4. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  5. Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain.

    PubMed

    Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E

    2015-08-01

    Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.

  6. Analysis of population genetic structure and gene flow in an annual plant before and after a rapid evolutionary response to drought.

    PubMed

    Welt, Rachel S; Litt, Amy; Franks, Steven J

    2015-03-27

    The impact of environmental change on population structure is not well understood. This study aimed to examine the effect of a climate change event on gene flow over space and time in two populations of Brassica rapa that evolved more synchronous flowering times over 5 years of drought in southern California. Using plants grown from seeds collected before and after the drought, we estimated genetic parameters within and between populations and across generations. We expected that with greater temporal opportunity to cross-pollinate, due to reduced phenological isolation, these populations would exhibit an increase in gene flow following the drought. We found low but significant FST, but no change in FST or Nm across the drought, in contrast to predictions. Bayesian analysis of these data indicates minor differentiation between the two populations but no noticeable change in structure before and after the shift in flowering times. However, we found high and significant levels of FIS, indicating that inbreeding likely occurred in these populations despite self-incompatibility in B. rapa. In this system, we did not find an impact of climate change on gene flow or population structuring. The contribution of gene flow to adaptive evolution may vary by system, however, and is thus an important parameter to consider in further studies of natural responses to environmental change. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation.

    PubMed

    Li, Ming; Wei, Fuwen; Goossens, Benoît; Feng, Zuojian; Tamate, Hidetoshi B; Bruford, Michael W; Funk, Stephan M

    2005-07-01

    The red panda (Ailurus fulgens) is an endangered species and its present distribution is restricted to isolated mountain ranges in western China (Sichuan, Yunnan, and Tibet provinces) and the Himalayan Mountains chain of Nepal, India, Bhutan, and Burma. To examine the evolutionary history across its current range, and to assess the genetic divergence among current subspecies and population structure among different geographic locations, we sequenced mitochondrial DNA from the control region (CR) and cytochrome (cyt) b gene for 41 individuals in Sichuan, Yunnan, Tibet of China, and Burma. 25 CR haplotypes (10 for cyt b) were identified from 11 geographic locations. Only three haplotypes were shared among sample localities, including one among current subspecies. Nine haplotypes were shared with the study of Su et al. [Mol. Biol. Evol. 18 (2001) 1070]. CR haplotype diversity was high (0.95+/-0.02) and nucleotide diversity among all haplotypes was relatively low (0.018+/-0.009). Phylogenetic confirmed trees show a shallow pattern with very little structure or statistical robustness. The application of two coalescent-based tests for population growth allowed us to interpret this phylogeny as the result of a recent population expansion. Analysis of molecular variance and nested clade analysis failed to detect significant geographic structure in both data sets. The lack of significant differentiation between subspecies does not indicate the presence of evolutionary significant units. We suggest that the present population structure has resulted from habitat fragmentation and expansion from glacial refugia. Due to its habitat requirements it is likely that the red panda has undergone bottlenecks and population expansions several times in the recent past. The present population may exhibit a pattern reminiscent of a relatively recent population expansion.

  8. Phylogeographical structure in mitochondrial DNA of eggplant fruit and shoot borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae) in South and Southeast Asia.

    PubMed

    Chang, Jian-Cheng; Ponnath, Daniel W; Ramasamy, Srinivasan

    2016-01-01

    Leucinodes orbonalis is the most detrimental South and Southeast Asian insect pest of eggplant. To help reduce the impact of this pest, population genetic diversity and structure of L. orbonalis were examined in eight populations from six countries using mitochondrial cytochrome c oxidase subunit I DNA sequences. No correlation between genetic diversity and geographic distance was detected among populations. Low levels of haplotype and nucleotide diversities were observed in the Philippines population, suggesting recent colonization. No significant gene flow was found among local populations in different countries. The Vietnam population is highly differentiated, indicated by significant pairwise FST values, and may be ascribed to a new subspecies or race. India was confirmed to be the source of genetic variation in L. orbonalis populations. Our study showed that L. orbonalis formed subpopulations for each local region, and the corresponding pest management technology should be developed at the country scale.

  9. Agroecosystems shape population genetic structure of the greenhouse whitefly in Northern and Southern Europe

    PubMed Central

    2014-01-01

    Background To predict further invasions of pests it is important to understand what factors contribute to the genetic structure of their populations. Cosmopolitan pest species are ideal for studying how different agroecosystems affect population genetic structure within a species at different climatic extremes. We undertook the first population genetic study of the greenhouse whitefly (Trialeurodes vaporariorum), a cosmopolitan invasive herbivore, and examined the genetic structure of this species in Northern and Southern Europe. In Finland, cold temperatures limit whiteflies to greenhouses and prevent them from overwintering in nature, and in Greece, milder temperatures allow whiteflies to inhabit both fields and greenhouses year round, providing a greater potential for connectivity among populations. Using nine microsatellite markers, we genotyped 1274 T. vaporariorum females collected from 18 greenhouses in Finland and eight greenhouses as well as eight fields in Greece. Results Populations from Finland were less diverse than those from Greece, suggesting that Greek populations are larger and subjected to fewer bottlenecks. Moreover, there was significant population genetic structure in both countries that was explained by different factors. Habitat (field vs. greenhouse) together with longitude explained genetic structure in Greece, whereas in Finland, genetic structure was explained by host plant species. Furthermore, there was no temporal genetic structure among populations in Finland, suggesting that year-round populations are able to persist in greenhouses. Conclusions Taken together our results show that greenhouse agroecosystems can limit gene flow among populations in both climate zones. Fragmented populations in greenhouses could allow for efficient pest management. However, pest persistence in both climate zones, coupled with increasing opportunities for naturalization in temperate latitudes due to climate change, highlight challenges for the management of cosmopolitan pests in Northern and Southern Europe. PMID:25266268

  10. Contrasting effects of landscape features on genetic structure in different geographic regions in the ornate dragon lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Tomkins, Joseph L; Lebas, Natasha R; Kennington, W Jason

    2013-08-01

    Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine-scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST  = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure. © 2013 John Wiley & Sons Ltd.

  11. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    PubMed

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary contact between Chefu and Limpopo populations. We demonstrated: (1) ancient (pre-Pleistocene) divergence between the two main N. furzeri lineages, their recent secondary contact and lack of reproductive isolation; (2) important genetic structuring attributed to the fragmented nature of their environment and isolation-by-distance, suggesting that dispersal is limited, occurs over short distances and is not directly associated with river routes; (3) an apparent role of the River Limpopo as a barrier to dispersal and gene flow.

  12. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    PubMed

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  13. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea).

    PubMed Central

    Andersen, Liselotte W.; Fog, Kåre; Damgaard, Christian

    2004-01-01

    A genetic study of the European tree frog, Hyla arborea, in Denmark was undertaken to examine the population structure on mainland Jutland and the island of Lolland after a period of reduction in suitable habitat and population sizes. The two regions have experienced the same rate of habitat loss but fragmentation has been more severe on Lolland. Genetic variation based on 12 polymorphic DNA microsatellites was analysed in 494 tree frogs sampled from two ponds in Jutland and 10 ponds on Lolland. A significant overall deviation from Hardy-Weinberg expectations could be attributed to three ponds, all on Lolland. This was most probably caused by an inbreeding effect reducing fitness, which was supported by the observed significant negative correlation between larva survival and mean F(IS) value and mean individual inbreeding coefficient. A significant reduction in genetic variation (bottleneck) was detected in most of the ponds on Lolland. Population-structure analysis suggested the existence of at least 11 genetically different populations, corresponding to most of the sampled population units. The results indicated that the populations were unique genetic units and could be used to illustrate the migration pattern between newly established ponds arisen either by natural colonization of tree frogs or by artificial introduction. A high degree of pond fidelity in the tree frogs was suggested. A severe fragmentation process reducing population size and fitness within some of the populations probably caused the significant reduction in genetic variation of tree frog populations on Lolland. PMID:15306354

  14. Molecular analysis of population genetic structure and recolonization of rainbow trout following the Cantara spill

    USGS Publications Warehouse

    Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.

    2000-01-01

    Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.

  15. Population Genetics of Plasmodium vivax in Four Rural Communities in Central Vietnam

    PubMed Central

    Hong, Nguyen Van; Delgado-Ratto, Christopher; Thanh, Pham Vinh; Van den Eede, Peter; Guetens, Pieter; Binh, Nguyen Thi Huong; Phuc, Bui Quang; Duong, Tran Thanh; Van Geertruyden, Jean Pierre; D’Alessandro, Umberto; Erhart, Annette; Rosanas-Urgell, Anna

    2016-01-01

    Background The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. Methodology/Principal Findings P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium (IAS = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. Conclusions/Significance In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the study area and are relevant to current malaria elimination efforts. PMID:26872387

  16. Paleoclimate effects and geographic barriers shape regional population genetic structure of blackbrush (Coleogyne ramosissima: Rosaceae)

    Treesearch

    Bryce A. Richardson; Susan E. Meyer

    2012-01-01

    Coleogyne ramosissima Torr. (blackbrush) is a dominant xerophytic shrub species in the ecotone between the warm and cold deserts of interior western North America. Amplified fragment length polymorphisms (AFLPs) were used to survey genetic diversity and population genetic structure at 14 collection sites across the species range. Analysis revealed significant...

  17. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    PubMed Central

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species. PMID:27736863

  18. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans).

    PubMed

    Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.

  19. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  1. Social and Population Structure in the Ant Cataglyphis emmae

    PubMed Central

    Jowers, Michael J.; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R.

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  2. GENETIC STRUCTURE OF TRIATOMA INFESTANS POPULATIONS IN RURAL COMMUNITIES OF SANTIAGO DEL ESTERO, NORTHERN ARGENTINA

    PubMed Central

    Marcet, PL; Mora, MS; Cutrera, AP; Jones, L; Gürtler, RE; Kitron, U; Dotson, EM

    2008-01-01

    To gain an understanding of the genetic structure and dispersal dynamics of T. infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies PMID:18773972

  3. Structure and genetic diversity of natural populations of Morus alba in the trans-Himalayan Ladakh region.

    PubMed

    Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering

    2014-04-01

    Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.

  4. Patterns of Deep-Sea Genetic Connectivity in the New Zealand Region: Implications for Management of Benthic Ecosystems

    PubMed Central

    Bors, Eleanor K.; Rowden, Ashley A.; Maas, Elizabeth W.; Clark, Malcolm R.; Shank, Timothy M.

    2012-01-01

    Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region. PMID:23185341

  5. Phylogeography of the Rock Shell Thais clavigera (Mollusca): Evidence for Long-Distance Dispersal in the Northwestern Pacific

    PubMed Central

    Jung, Daewui; Li, Qi; Kong, Ling-Feng; Ni, Gang; Nakano, Tomoyuki; Matsukuma, Akihiko; Kim, Sanghee; Park, Chungoo; Lee, Hyuk Je; Park, Joong-Ki

    2015-01-01

    The present-day genetic structure of a species reflects both historical demography and patterns of contemporary gene flow among populations. To precisely understand how these factors shape current population structure of the northwestern (NW) Pacific marine gastropod, Thais clavigera, we determined the partial nucleotide sequences of the mitochondrial COI gene for 602 individuals sampled from 29 localities spanning almost the whole distribution of T. clavigera in the NW Pacific Ocean (~3,700 km). Results from population genetic and demographic analyses (AMOVA, ΦST-statistics, haplotype networks, Tajima’s D, Fu’s FS, mismatch distribution, and Bayesian skyline plots) revealed a lack of genealogical branches or geographical clusters, and a high level of genetic (haplotype) diversity within each of studied population. Nevertheless, low but significant genetic structuring was detected among some geographical populations separated by the Changjiang River, suggesting the presence of geographical barriers to larval dispersal around this region. Several lines of evidence including significant negative Tajima’s D and Fu’s FS statistics values, the unimodally shaped mismatch distribution, and Bayesian skyline plots suggest a population expansion at marine isotope stage 11 (MIS 11; 400 ka), the longest and warmest interglacial interval during the Pleistocene epoch. The lack of genetic structure among the great majority of the NW Pacific T. clavigera populations may be attributable to high gene flow by current-driven long-distance dispersal of prolonged planktonic larval phase of this species. PMID:26171966

  6. Population genetic analysis of Enterocytozoon bieneusi in humans.

    PubMed

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  7. Genetic structure of American chestnut populations based on neutral DNA markers

    Treesearch

    Thomas L. Kubisiak; James H. Roberds

    2006-01-01

    Microsatellite and RAPD markers suggest that American chestnut exists as a highly variable species. Even at the margins of its natural range, with a large proportion of its genetic variability occurring within populations (~95%). A statistically significant proportion also exists among population. Although genetic differentiation among populations has taken place, no...

  8. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones

    USGS Publications Warehouse

    Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.

    2003-01-01

    Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.

  9. Effects of English admixture and geographic distance on anthropometric variation and genetic structure in 19th-century Ireland.

    PubMed

    Relethford, J H

    1988-05-01

    The analysis of anthropometric data often allows investigation of patterns of genetic structure in historical populations. This paper focuses on interpopulational anthropometric variation in seven populations in Ireland using data collected in the 1890s. The seven populations were located within a 120-km range along the west coast of Ireland and include islands and mainland isolates. Two of the populations (the Aran Islands and Inishbofin) have a known history of English admixture in earlier centuries. Ten anthropometric measures (head length, breadth, and height; nose length and breadth; bizygomatic and bigonial breadth; stature; hand length; and forearm length) on 259 adult Irish males were analyzed following age adjustment. Discriminant and canonical variates analysis were used to determine the degree and pattern of among-group variation. Mahalanobis' distance measure, D2, was computed between each pair of populations and compared to distance measures based on geographic distance and English admixture (a binary measure indicating whether either of a pair of populations had historical indications of admixture). In addition, surname frequencies were used to construct distance measures based on random isonymy. Correlations were computed between distance measures, and their probabilities were derived using the Mantel matrix permutation method. English admixture has the greatest effect on anthropometric variation among these populations, followed by geographic distance. The correlation between anthropometric distance and geographic distance is not significant (r = -0.081, P = .590), but the correlation of admixture and anthropometric distance is significant (r = 0.829, P = .047). When the two admixed populations are removed from the analysis the correlation between geographic and anthropometric distance becomes significant (r = 0.718, P = .025). Isonymy distance shows a significant correlation with geographic distance (r = 0.425, P = .046) but not with admixture distance (r = -0.052, P = .524). The fact that anthropometrics show past patterns of gene flow and surnames do not reflects the greater impact of stochastic processes on surnames, along with the continued extinction of surnames. This study shows that 1) anthropometrics can be extremely useful in assessing population structure and history, 2) differential gene flow into populations can have a major impact on local genetic structure, and 3) microevolutionary processes can have different effects on biological characters and surnames.

  10. Three Decades of Farmed Escapees in the Wild: A Spatio-Temporal Analysis of Atlantic Salmon Population Genetic Structure throughout Norway

    PubMed Central

    Glover, Kevin A.; Quintela, María; Wennevik, Vidar; Besnier, François; Sørvik, Anne G. E.; Skaala, Øystein

    2012-01-01

    Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population. PMID:22916215

  11. Population Genomics of the Euryhaline Teleost Poecilia latipinna

    PubMed Central

    Hoover, D.; Travis, J.; Oleksiak, M. F.; Crawford, D. L.

    2015-01-01

    Global climate change and increases in sea levels will affect coastal marine communities. The conservation of these ecologically important areas will be a challenge because of their wide geographic distribution, ecological diversity and species richness. To address this problem, we need to better understand how the genetic variation of the species in these communities is distributed within local populations, among populations and between distant regions. In this study we apply genotyping by sequencing (GBS) and examine 955 SNPs to determine Sailfin molly (Poecilia latipinna) genetic diversity among three geographically close mangrove salt marsh flats in the Florida Keys compared to populations in southern and northern Florida. The questions we are asking are whether there is sufficient genetic variation among isolated estuarine fish within populations and whether there are significant divergences among populations. Additionally, we want to know if GBS approaches agree with previous studies using more traditional molecular approaches. We are able to identify large genetic diversity within each saltmarsh community (π ≈ 36%). Additionally, among the Florida Key populations and the mainland or between southern and northern Florida regions, there are significant differences in allele frequencies seen in population structure and evolutionary relationships among individuals. Surprisingly, even though the cumulative FST value using all 955 SNPs within the three Florida Key populations is small, there are 29 loci with significant FST values, and 11 of these were outliers suggestive of adaptive divergence. These data suggest that among the salt marsh flats surveyed here, there is significant genetic diversity within each population and small but significant differences among populations. Much of the genetic variation within and among populations found here with GBS is very similar to previous studies using allozymes and microsatellites. However, the meaningful difference between GBS and these previous measures of genetic diversity is the number of loci examined, which allows more precise delineations of population structure as well as facilitates identifying loci with excessive FST values that could indicate adaptive divergence. PMID:26335684

  12. Population Genomics of the Euryhaline Teleost Poecilia latipinna.

    PubMed

    Nunez, J C B; Seale, T P; Fraser, M A; Burton, T L; Fortson, T N; Hoover, D; Travis, J; Oleksiak, M F; Crawford, D L

    2015-01-01

    Global climate change and increases in sea levels will affect coastal marine communities. The conservation of these ecologically important areas will be a challenge because of their wide geographic distribution, ecological diversity and species richness. To address this problem, we need to better understand how the genetic variation of the species in these communities is distributed within local populations, among populations and between distant regions. In this study we apply genotyping by sequencing (GBS) and examine 955 SNPs to determine Sailfin molly (Poecilia latipinna) genetic diversity among three geographically close mangrove salt marsh flats in the Florida Keys compared to populations in southern and northern Florida. The questions we are asking are whether there is sufficient genetic variation among isolated estuarine fish within populations and whether there are significant divergences among populations. Additionally, we want to know if GBS approaches agree with previous studies using more traditional molecular approaches. We are able to identify large genetic diversity within each saltmarsh community (π ≈ 36%). Additionally, among the Florida Key populations and the mainland or between southern and northern Florida regions, there are significant differences in allele frequencies seen in population structure and evolutionary relationships among individuals. Surprisingly, even though the cumulative FST value using all 955 SNPs within the three Florida Key populations is small, there are 29 loci with significant FST values, and 11 of these were outliers suggestive of adaptive divergence. These data suggest that among the salt marsh flats surveyed here, there is significant genetic diversity within each population and small but significant differences among populations. Much of the genetic variation within and among populations found here with GBS is very similar to previous studies using allozymes and microsatellites. However, the meaningful difference between GBS and these previous measures of genetic diversity is the number of loci examined, which allows more precise delineations of population structure as well as facilitates identifying loci with excessive FST values that could indicate adaptive divergence.

  13. Phylogeography of the Lutzomyia gomezi (Diptera: Phlebotominae) on the Panama Isthmus

    PubMed Central

    2014-01-01

    Background Lutzomyia gomezi (Nitzulescu, 1931) is one of the main Leishmania (Vianna) panamensis vectors in Panama, and despite its medical significance, there are no population genetic studies regarding this species. In this study, we used the sequences of the mitochondrial gene cytochrome b/start of NADH1 and the nuclear elongation gene α-1 in order to analyze genetic variation and phylogeographic structure of the Lu. gomezi populations. Methods A total of 86 Lu. gomezi individuals were captured in 38 locations where cutaneous leishmaniasis occurred. DNA was extracted with phenol/chloroform methods and amplification of genes was performed using PCR primers for mitochondrial and nuclear markers. Results We found a total of 37 and 26 haplotypes of mitochondrial and nuclear genes, high haplotype diversity (h) for all three populations were detected with both molecular markers. Nucleotide diversity (π) was estimated to be high for all three populations with the mitochondrial marker, which was opposite to the estimate with the nuclear marker. In the AMOVA Φst recorded moderate (mitochondrial) and small (nuclear) population structure with statistical significance among populations. The analysis of the fixation index (Fst) used to measure the differentiation of populations showed that with the exception of the population located in the region of Bocas del Toro, the other populations presented with minor genetic differentiation. The median-Joining network of the mitochondrial marker reveled three clusters and recorded four haplotypes exclusively of localities sampled from Western Panama, demonstrating strong divergence. We found demographic population expansion with Fu´s Fs neutrality test. In the analysis mismatch distribution was observed as a bimodal curve. Conclusion Lu. gomezi is a species with higher genetic pool or variability and mild population structure, due to possible capacity migration and local adaptation to environmental changes or colonization potential. Thus, knowledge of the genetic population and evolutionary history is useful to understand the implications of different population genetic structures for cutaneous leishmaniasis epidemiology. PMID:24398187

  14. Population genetic structure, genetic diversity, and natural history of the South American species of Nothofagus subgenus Lophozonia (Nothofagaceae) inferred from nuclear microsatellite data

    PubMed Central

    Vergara, Rodrigo; Gitzendanner, Matthew A; Soltis, Douglas E; Soltis, Pamela S

    2014-01-01

    The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (N. obliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well-defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis. PMID:25360279

  15. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    PubMed

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  16. Spatial Genetic Structure and Mitochondrial DNA Phylogeography of Argentinean Populations of the Grasshopper Dichroplus elongatus

    PubMed Central

    Rosetti, Natalia; Remis, Maria Isabel

    2012-01-01

    Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss associated with recent anthropogenic fragmentation of the D. elongatus studied range. PMID:22859953

  17. Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares).

    PubMed

    Pecoraro, Carlo; Babbucci, Massimiliano; Villamor, Adriana; Franch, Rafaella; Papetti, Chiara; Leroy, Bruno; Ortega-Garcia, Sofia; Muir, Jeff; Rooker, Jay; Arocha, Freddy; Murua, Hilario; Zudaire, Iker; Chassot, Emmanuel; Bodin, Nathalie; Tinti, Fausto; Bargelloni, Luca; Cariani, Alessia

    2016-02-01

    Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Multi-Genetic Marker Approach and Spatio-Temporal Analysis Suggest There Is a Single Panmictic Population of Swordfish Xiphias gladius in the Indian Ocean

    PubMed Central

    Muths, Delphine; Le Couls, Sarah; Evano, Hugues; Grewe, Peter; Bourjea, Jerome

    2013-01-01

    Genetic population structure of swordfish Xiphias gladius was examined based on 2231 individual samples, collected mainly between 2009 and 2010, among three major sampling areas within the Indian Ocean (IO; twelve distinct sites), Atlantic (two sites) and Pacific (one site) Oceans using analysis of nineteen microsatellite loci (n = 2146) and mitochondrial ND2 sequences (n = 2001) data. Sample collection was stratified in time and space in order to investigate the stability of the genetic structure observed with a special focus on the South West Indian Ocean. Significant AMOVA variance was observed for both markers indicating genetic population subdivision was present between oceans. Overall value of F-statistics for ND2 sequences confirmed that Atlantic and Indian Oceans swordfish represent two distinct genetic stocks. Indo-Pacific differentiation was also significant but lower than that observed between Atlantic and Indian Oceans. However, microsatellite F-statistics failed to reveal structure even at the inter-oceanic scale, indicating that resolving power of our microsatellite loci was insufficient for detecting population subdivision. At the scale of the Indian Ocean, results obtained from both markers are consistent with swordfish belonging to a single unique panmictic population. Analyses partitioned by sampling area, season, or sex also failed to identify any clear structure within this ocean. Such large spatial and temporal homogeneity of genetic structure, observed for such a large highly mobile pelagic species, suggests as satisfactory to consider swordfish as a single panmictic population in the Indian Ocean. PMID:23717447

  19. Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis.

    PubMed

    Lukoschek, V; Waycott, M; Keogh, J S

    2008-07-01

    Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.

  20. Genetic structure in four West African population groups

    PubMed Central

    Adeyemo, Adebowale A; Chen, Guanjie; Chen, Yuanxiu; Rotimi, Charles

    2005-01-01

    Background Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). Results There was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups. Conclusion There was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM study sample. Ethnicity apparently did not introduce differential allele frequencies that may affect analysis and interpretation of linkage and association studies. These findings, although not entirely surprising given the geographical proximity of these groups, provide important insights into the genetic relationships between the ethnic groups studied and confirm previous results that showed close genetic relationship between most studied West African groups. PMID:15978124

  1. Genetic structure of the threatened Hopea chinensis in the Quang Ninh Province, Vietnam.

    PubMed

    Trang, N T P; Triest, L

    2016-04-29

    Hopea chinensis Hand-Mazz (synonym H. hongayensis Tardieu), is a wind and insect pollinated species. It is a threatened species known only from two locations: Quang Ninh (Vietnam) and Guangxi (China). As an endemic species, it is worth preserving both for dipterocarp biodiversity, as well as for its medicinal use and economic importance as a fine wood. The genetic diversity and population genetic structure of H. chinensis was investigated, using natural populations distributed throughout the Ba Mun and Cai Lim islands, Quang Ninh Province, Vietnam. A total of 65 alleles were detected. The adult allelic richness was higher than that found in juveniles and seedlings in both populations. Inbreeding was found to be significant in Ba Mun adults (F(ST) = 0.139), as well as in Cai Lim juveniles and seedlings (F(ST) = 0.283 and 0.345, respectively). Evidence of a bottleneck could be detected in the juveniles and seedlings of the Cai Lim population. A Bayesian analysis and F(ST) values suggested high genetic differentiation among the age classes of the Ba Mun and Cai Lim populations. Whereas the adults of the Ba Mun population showed evidence of inbreeding, the next generations showed more potential heterozygotes. In contrast, the adults in the Cai Lim population showed no significant inbreeding, but the observed heterozygosity in the next generation was lower than expected, suggesting significant inbreeding. The H. chinensis populations on islands are developed well and showed re-generation under good condition. Thus, the forestry protector should conserve and protect the natural spatial structure of H. chinensis on each island as their natural habitats and keep them through natural regeneration.

  2. Genetic variation among interconnected populations of Catostomus occidentalis: Implications for distinguishing impacts of contaminants from biogeographical structuring

    USGS Publications Warehouse

    Whitehead, A.; Anderson, S.L.; Kuivila, K.M.; Roach, J.L.; May, B.

    2003-01-01

    Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is discussed.

  3. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China.

    PubMed

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.

  4. Genetic, Epigenetic, and HPLC Fingerprint Differentiation between Natural and Ex Situ Populations of Rhodiola sachalinensis from Changbai Mountain, China

    PubMed Central

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis. PMID:25386983

  5. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines.

    PubMed

    Wang, Ju; McClean, Phillip E; Lee, Rian; Goos, R Jay; Helms, Ted

    2008-04-01

    Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.

  6. Historical explanation of genetic variation in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: Rhinolophidae) inferred from mitochondrial cytochrome-b and D-loop genes in Iran.

    PubMed

    Najafi, Nargess; Akmali, Vahid; Sharifi, Mozafar

    2018-04-26

    Molecular phylogeography and species distribution modelling (SDM) suggest that late Quaternary glacial cycles have portrayed a significant role in structuring current population genetic structure and diversity. Based on phylogenetic relationships using Bayesian inference and maximum likelihood of 535 bp mtDNA (D-loop) and 745 bp mtDNA (Cytb) in 62 individuals of the Mediterranean Horseshoe Bat, Rhinolophus euryale, from 13 different localities in Iran we identified two subspecific populations with differing population genetic structure distributed in southern Zagros Mts. and northern Elburz Mts. Analysis of molecular variance (AMOVA) obtained from D-loop sequences indicates that 21.18% of sequence variation is distributed among populations and 10.84% within them. Moreover, a degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.68, p = .005). The positive and significant correlation between geographic and genetic distances (R 2  = 0.28, r = 0.529, p = .000) is obtained following controlling for environmental distance. Spatial distribution of haplotypes indicates that marginal population of the species in southern part of the species range have occupied this section as a glacial refugia. However, this genetic variation, in conjunction with results of the SDM shows a massive postglacial range expansion for R. euryale towards higher latitudes in Iran.

  7. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow.

    PubMed

    Whittaker, Kerry A; Rynearson, Tatiana A

    2017-03-07

    The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations ( F ST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a , a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.

  8. Mitochondrial and nuclear sequence polymorphisms reveal geographic structuring in Amazonian populations of Echinococcus vogeli (Cestoda: Taeniidae).

    PubMed

    Santos, Guilherme B; Soares, Manoel do C P; de F Brito, Elisabete M; Rodrigues, André L; Siqueira, Nilton G; Gomes-Gouvêa, Michele S; Alves, Max M; Carneiro, Liliane A; Malheiros, Andreza P; Póvoa, Marinete M; Zaha, Arnaldo; Haag, Karen L

    2012-12-01

    To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics.

    PubMed

    Solmsen, N; Johannesen, J; Schradin, C

    2011-04-01

    Sex-biased dispersal is observed in many taxa, but few studies have compared sex-biased dispersal among and within populations. We addressed the magnitude and habitat dependency of sex-biased dispersal in social African striped mice by separating group-related from population-related genetic variance to understand the contribution of each sex to deme structure. As dispersal over unoccupied habitat is likely to be more costly than dispersal within a population, we predicted that individuals leaving the natal population have a lower body condition, being inferior to heavier territorial individuals. Fine-scale genetic structure was detected in both sexes. Female relatedness decreased continuously from R = 0.21 at 25 m to zero at 500 m. Maximum male relatedness R = 0.05 was constant at distances between 25 and 75 m, becoming zero at 100 m. Genetic variance (F(ST) ) among seven locations was significantly higher in females than in males, while inbreeding estimates (F(IS) ) were significantly higher in males than in females. Assignment tests estimated significantly more migrants among males, while Bayesian clustering estimated only a single genetic unit cluster for males among the seven locations. The mean body mass of migrant males (44 g) was significantly lower than for males that remained resident and thus dispersed within their sub-population (48 g). Combined, the results showed habitat-independent male-biased dispersal and high female philopatry, and suggested that body condition was more important than kinship in male dispersal decisions. We suggest that locally inferior males are important for gene flow between sub-populations. Thus, males might follow alternative dispersal tactics. © 2011 Blackwell Publishing Ltd.

  10. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation.

    PubMed

    Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-12-01

    Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.

  11. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size

    PubMed Central

    Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624

  12. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.

    PubMed

    Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.

  13. Evidence of weak genetic structure and recent gene flow between Bactrocera dorsalis s.s. and B. papayae, across Southern Thailand and West Malaysia, supporting a single target pest for SIT applications

    PubMed Central

    2014-01-01

    Background Bactrocera dorsalis s.s. (Hendel) and B. papayae Drew & Hancock, are invasive pests belonging to the B. dorsalis complex. Their species status, based on morphology, is sometimes arguable. Consequently, the existence of cryptic species and/or population isolation may decrease the effectiveness of the sterile insect technique (SIT) due to an unknown degree of sexual isolation between released sterile flies and wild counterparts. To evaluate the genetic relationship and current demography in wild populations for guiding the application of area-wide integrated pest management using SIT, seven microsatellite-derived markers from B. dorsalis s.s. and another five from B. papayae were used for surveying intra- and inter-specific variation, population structure, and recent migration among sympatric and allopatric populations of the two morphological forms across Southern Thailand and West Malaysia. Results Basic genetic variations were not significantly different among forms, populations, and geographical areas (P > 0.05). Nonetheless, two sets of microsatellite markers showed significantly different levels of polymorphisms. Genetic differentiation between intra- and inter-specific differences was significant, but low. Seventeen populations revealed three hypothetical genetic clusters (K = 3) regardless of forms and geographical areas. The genetic structure of sympatric populations slightly changed during the different years of collection. Recent gene flow (m ≥ 0.10) was frequently detected whether samples were sympatric or allopatric. Ninety-five of 379 individuals distributed across the given area were designated as recent migrants or of admixed ancestry. As a consequence of substantial migration, no significant correlation between genetic and geographic distances was detected (R2 = 0.056, P = 0.650). Conclusions According to the 12 microsatellite variations, weak population structure and recent gene flow suggest that there is no status for cryptic species between B. dorsalis s.s. and B. papayae forms in Southern Thailand and West Malaysia. Both forms can be treated as a single target pest for the SIT program in an area-wide sense. Additionally, the result of species identification based on molecular data and morphological character are not congruent. The use of independent, multiple approaches in the characterization of the target population may ensure the effectiveness and feasibility of SIT-based control in the target area. PMID:24929425

  14. Evidence of weak genetic structure and recent gene flow between Bactrocera dorsalis s.s. and B. papayae, across Southern Thailand and West Malaysia, supporting a single target pest for SIT applications.

    PubMed

    Aketarawong, Nidchaya; Isasawin, Siriwan; Thanaphum, Sujinda

    2014-06-14

    Bactrocera dorsalis s.s. (Hendel) and B. papayae Drew & Hancock, are invasive pests belonging to the B. dorsalis complex. Their species status, based on morphology, is sometimes arguable. Consequently, the existence of cryptic species and/or population isolation may decrease the effectiveness of the sterile insect technique (SIT) due to an unknown degree of sexual isolation between released sterile flies and wild counterparts. To evaluate the genetic relationship and current demography in wild populations for guiding the application of area-wide integrated pest management using SIT, seven microsatellite-derived markers from B. dorsalis s.s. and another five from B. papayae were used for surveying intra- and inter-specific variation, population structure, and recent migration among sympatric and allopatric populations of the two morphological forms across Southern Thailand and West Malaysia. Basic genetic variations were not significantly different among forms, populations, and geographical areas (P > 0.05). Nonetheless, two sets of microsatellite markers showed significantly different levels of polymorphisms. Genetic differentiation between intra- and inter-specific differences was significant, but low. Seventeen populations revealed three hypothetical genetic clusters (K = 3) regardless of forms and geographical areas. The genetic structure of sympatric populations slightly changed during the different years of collection. Recent gene flow (m ≥ 0.10) was frequently detected whether samples were sympatric or allopatric. Ninety-five of 379 individuals distributed across the given area were designated as recent migrants or of admixed ancestry. As a consequence of substantial migration, no significant correlation between genetic and geographic distances was detected (R2 = 0.056, P = 0.650). According to the 12 microsatellite variations, weak population structure and recent gene flow suggest that there is no status for cryptic species between B. dorsalis s.s. and B. papayae forms in Southern Thailand and West Malaysia. Both forms can be treated as a single target pest for the SIT program in an area-wide sense. Additionally, the result of species identification based on molecular data and morphological character are not congruent. The use of independent, multiple approaches in the characterization of the target population may ensure the effectiveness and feasibility of SIT-based control in the target area.

  15. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.

    PubMed

    Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel

    2015-01-01

    To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.

  16. Evolutionary dynamics of cooperation in neutral populations

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  17. Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations

    PubMed Central

    Miner, Brooks E.; Kerr, Benjamin

    2011-01-01

    Understanding the historical processes that generated current patterns of phenotypic diversity in nature is particularly challenging in subdivided populations. Populations often exhibit heritable genetic differences that correlate with environmental variables, but the non-independence among neighbouring populations complicates statistical inference of adaptation. To understand the relative influence of adaptive and non-adaptive processes in generating phenotypes requires joint evaluation of genetic and phenotypic divergence in an integrated and statistically appropriate analysis. We investigated phenotypic divergence, population-genetic structure and potential fitness trade-offs in populations of Daphnia melanica inhabiting neighbouring subalpine ponds of widely differing transparency to ultraviolet radiation (UVR). Using a combination of experimental, population-genetic and statistical techniques, we separated the effects of shared population ancestry and environmental variables in predicting phenotypic divergence among populations. We found that native water transparency significantly predicted divergence in phenotypes among populations even after accounting for significant population structure. This result demonstrates that environmental factors such as UVR can at least partially account for phenotypic divergence. However, a lack of evidence for a hypothesized trade-off between UVR tolerance and growth rates in the absence of UVR prevents us from ruling out the possibility that non-adaptive processes are partially responsible for phenotypic differentiation in this system. PMID:20943691

  18. Phylogeography and Sex-Biased Dispersal across Riverine Manatee Populations (Trichechus inunguis and Trichechus manatus) in South America

    PubMed Central

    Satizábal, Paula; Mignucci-Giannoni, Antonio A.; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M.; García-Dávila, Carmen R.; Trujillo, Fernando; Caballero, Susana J.

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments. PMID:23285054

  19. Phylogeography and sex-biased dispersal across riverine manatee populations (Trichechus inunguis and Trichechus manatus) in South America.

    PubMed

    Satizábal, Paula; Mignucci-Giannoni, Antonio A; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M; García-Dávila, Carmen R; Trujillo, Fernando; Caballero, Susana J

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.

  20. Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers

    PubMed Central

    Todokoro, Yasuhiro; Higaki, Tomomi

    2010-01-01

    The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control. PMID:20625919

  1. Effects of Freshwater Discharge in Sandy Beach Populations: The Mole Crab Emerita brasiliensis in Uruguay

    NASA Astrophysics Data System (ADS)

    Lercari, D.; Defeo, O.

    1999-10-01

    Sandy beaches are ecosystems which are heavily affected by human activities. An example of this is freshwater discharges, which are known to change salinity, temperature and nutrient regimes and degrade nearshore environments. However, the effects of this kind of disturbance on sandy beach fauna have been little studied. This paper reports the spatial effects of a man-made freshwater canal discharge on the population structure, abundance and reproductive characteristics of the sandy beach mole crab Emerita brasiliensis. Along the 22 km of sandy beach sampled, the mole crab showed a marked longshore variability in population structure and abundance. Abundance of different population components (juveniles, males, females and ovigerous females) significantly decreased towards the canal. Population structure by sex and size, individual weight, fecundity and female maturity patterns at size also displayed a non-linear response to the distance from the freshwater discharge. Only the size structure of males did not follow this pattern. For males, spatial heterogeneity enhanced the detection of density-dependence at less disturbed sites. The authors conclude that artificial freshwater discharges could significantly influence the distribution, abundance and life-history traits of the biota of sandy beaches, and that further study of these ecosystems should include human activities as important factors affecting spatial and temporal trends. The need to consider different spatial and temporal scales in order to detect the effect of anthropogenically-driven impacts in sandy beach populations is stressed.

  2. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  3. Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate

    PubMed Central

    Hoffman, Joseph I.; Clarke, Andrew; Clark, Melody S.; Peck, Lloyd S.

    2013-01-01

    Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive F st values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales. PMID:23691125

  4. Population structure of giraffes is affected by management in the Great Rift Valley, Kenya

    PubMed Central

    2018-01-01

    Giraffe populations in East Africa have declined in the past thirty years yet there has been limited research on this species. This study had four objectives: i) to provide a baseline population assessment for the two largest populations of Rothschild’s giraffes in Kenya, ii) to assess whether there are differences in population structure between the two enclosed populations, iii) to assess the potential and possible implications of different management practices on enclosed giraffe populations to inform future decision-making, and iv) to add to the availability of information available about giraffes in the wild. I used individual identification to assess the size and structure of the two populations; in Soysambu Conservancy between May 2010 and January 2011, I identified 77 giraffes; in Lake Nakuru National Park between May 2011 and January 2012, I identified 89. Population structure differed significantly between the two sites; Soysambu Conservancy contained a high percentage of juveniles (34%) and subadults (29%) compared to Lake Nakuru NP, which contained fewer juveniles (5%) and subadults (15%). During the time of this study Soysambu Conservancy contained no lions while Lake Nakuru NP contained a high density of lions (30 lions per 100km2). Lions are the main predator of giraffes, and preferential predation on juvenile giraffes has previously been identified in Lake Nakuru NP. My results suggest that high lion density in Lake Nakuru NP may have influenced the structure of the giraffe population by removing juveniles and, consequently, may affect future population growth. I suggest that wildlife managers consider lion densities alongside breeding plans for Endangered species, since the presence of lions appears to influence the population structure of giraffes in enclosed habitats. PMID:29298338

  5. Population structure of giraffes is affected by management in the Great Rift Valley, Kenya.

    PubMed

    Muller, Zoe

    2018-01-01

    Giraffe populations in East Africa have declined in the past thirty years yet there has been limited research on this species. This study had four objectives: i) to provide a baseline population assessment for the two largest populations of Rothschild's giraffes in Kenya, ii) to assess whether there are differences in population structure between the two enclosed populations, iii) to assess the potential and possible implications of different management practices on enclosed giraffe populations to inform future decision-making, and iv) to add to the availability of information available about giraffes in the wild. I used individual identification to assess the size and structure of the two populations; in Soysambu Conservancy between May 2010 and January 2011, I identified 77 giraffes; in Lake Nakuru National Park between May 2011 and January 2012, I identified 89. Population structure differed significantly between the two sites; Soysambu Conservancy contained a high percentage of juveniles (34%) and subadults (29%) compared to Lake Nakuru NP, which contained fewer juveniles (5%) and subadults (15%). During the time of this study Soysambu Conservancy contained no lions while Lake Nakuru NP contained a high density of lions (30 lions per 100km2). Lions are the main predator of giraffes, and preferential predation on juvenile giraffes has previously been identified in Lake Nakuru NP. My results suggest that high lion density in Lake Nakuru NP may have influenced the structure of the giraffe population by removing juveniles and, consequently, may affect future population growth. I suggest that wildlife managers consider lion densities alongside breeding plans for Endangered species, since the presence of lions appears to influence the population structure of giraffes in enclosed habitats.

  6. Genetic structure of typical and atypical populations of Candida albicans from Africa.

    PubMed

    Forche, A; Schönian, G; Gräser, Y; Vilgalys, R; Mitchell, T G

    1999-11-01

    Atypical isolates of the pathogenic yeast Candida albicans have been reported with increasing frequency. To investigate the origin of a set of atypical isolates and their relationship to typical isolates, we employed a combination of molecular phylogenetic and population genetic analyses using rDNA sequencing, PCR fingerprinting, and analysis of co-dominant DNA nucleotide polymorphisms to characterize the population structure of one typical and two atypical populations of C. albicans from Angola and Madagascar. The extent of clonality and recombination was assessed in each population. The analyses revealed that the structure of all three populations of C. albicans was predominantly clonal but, as in previous studies, there was also evidence for recombination. Allele frequencies differed significantly between the typical and the atypical populations, suggesting very low levels of gene flow between them. However, allele frequencies were quite similar in the two atypical C. albicans populations, suggesting that they are closely related. Phylogenetic analysis of partial sequences encoding the nuclear 26S rDNA demonstrated that all three populations belong to a single monophyletic group, which includes the type strain of C. albicans. Copyright 1999 Academic Press.

  7. Distinct Phylogeographic Structures of Wild Radish (Raphanus sativus L. var. raphanistroides Makino) in Japan

    PubMed Central

    Han, Qingxiang; Higashi, Hiroyuki; Mitsui, Yuki; Setoguchi, Hiroaki

    2015-01-01

    Coastal plants with simple linear distribution ranges along coastlines provide a suitable system for improving our understanding of patterns of intra-specific distributional history and genetic variation. Due to the combination of high seed longevity and high dispersibility of seeds via seawater, we hypothesized that wild radish would poorly represent phylogeographic structure at the local scale. On the other hand, we also hypothesized that wild radish populations might be geographically differentiated, as has been exhibited by their considerable phenotypic variations along the islands of Japan. We conducted nuclear DNA microsatellite loci and chloroplast DNA haplotype analyses for 486 samples and 144 samples, respectively, from 18 populations to investigate the phylogeographic structure of wild radish in Japan. Cluster analysis supported the existence of differential genetic structures between the Ryukyu Islands and mainland Japan populations. A significant strong pattern of isolation by distance and significant evidence of a recent bottleneck were detected. The chloroplast marker analysis resulted in the generation of eight haplotypes, of which two haplotypes (A and B) were broadly distributed in most wild radish populations. High levels of variation in microsatellite loci were identified, whereas cpDNA displayed low levels of genetic diversity within populations. Our results indicate that the Kuroshio Current would have contributed to the sculpting of the phylogeographic structure by shaping genetic gaps between isolated populations. In addition, the Tokara Strait would have created a geographic barrier between the Ryukyu Islands and mainland Japan. Finally, extant habitat disturbances (coastal erosion), migration patterns (linear expansion), and geographic characteristics (small islands and sea currents) have influenced the expansion and historical population dynamics of wild radish. Our study is the first to record the robust phylogeographic structure in wild radish between the Ryukyu Islands and mainland Japan, and might provide new insight into the genetic differentiation of coastal plants across islands. PMID:26247202

  8. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    PubMed

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  9. [New view on the population genetic structure of marine fish].

    PubMed

    Salmenkova, E A

    2011-11-01

    The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.

  10. Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galapagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor)

    PubMed Central

    Levin, Iris I; Parker, Patricia G

    2012-01-01

    Seabirds are considered highly mobile, able to fly great distances with few apparent barriers to dispersal. However, it is often the case that seabird populations exhibit strong population genetic structure despite their potential vagility. Here we show that Galapagos Nazca booby (Sula granti) populations are substantially differentiated, even within the small geographic scale of this archipelago. On the other hand, Galapagos great frigatebird (Fregata minor) populations do not show any genetic structure. We characterized the genetic differentiation by sampling five colonies of both species in the Galapagos archipelago and analyzing eight microsatellite loci and three mitochondrial genes. Using an F-statistic approach on the multilocus data, we found significant differentiation between nearly all island pairs of Nazca booby populations and a Bayesian clustering analysis provided support for three distinct genetic clusters. Mitochondrial DNA showed less differentiation of Nazca booby colonies; only Nazca boobies from the island of Darwin were significantly differentiated from individuals throughout the rest of the archipelago. Great frigatebird populations showed little to no evidence for genetic differentiation at the same scale. Only two island pairs (Darwin – Wolf, N. Seymour – Wolf) were significantly differentiated using the multilocus data, and only two island pairs had statistically significant φST values (N. Seymour – Darwin, N. Seymour – Wolf) according to the mitochondrial data. There was no significant pattern of isolation by distance for either species calculated using both markers. Seven of the ten Nazca booby migration rates calculated between island pairs were in the south or southeast to north or northwest direction. The population differentiation found among Galapagos Nazca booby colonies, but not great frigatebird colonies, is most likely due to differences in natal and breeding philopatry. PMID:23170212

  11. Population genetics suggest that multiple invasion processes need to be addressed in the management plan of a plant disease vector.

    PubMed

    Anderson, Kylie L; Congdon, Bradley C

    2013-06-01

    The use of a multidisciplinary approach is becoming increasingly important when developing management strategies that mitigate the economic and biological costs associated with invasive pests. A framework of simulated dispersal is combined with life-history information and analyses of population genetic structure to investigate the invasion dynamics of a plant disease vector, the island sugarcane planthopper (Eumetopina flavipes), through an archipelago of significant Australian quarantine concern. Analysis of eight microsatellite loci from 648 individuals suggests that frequent, wind-assisted immigration from multiple sources in Papua New Guinea contributes significantly to repeated colonization of far northern islands. However, intermittent wind-assisted immigration better explains patterns of genetic diversity and structure in the southern islands and on the tip of mainland Australia. Significant population structuring associated with the presence of clusters of highly related individuals results from breeding in-situ following colonization, with little postestablishment movement. Results also suggest that less important secondary movements occur between islands; these appear to be human mediated and restricted by quarantine zones. Control of the planthopper may be very difficult on islands close to Papua New Guinea given the apparent propensity for multiple invasion, but may be achievable further south where local populations appear highly independent and isolated.

  12. High Connectivity among Blue Crab (Callinectes sapidus) Populations in the Western South Atlantic

    PubMed Central

    Kersanach, Ralf; Cortinhas, Maria Cristina Silva; Prata, Pedro Fernandes Sanmartin; Dumont, Luiz Felipe Cestari; Proietti, Maíra Carneiro; Maggioni, Rodrigo; D’Incao, Fernando

    2016-01-01

    Population connectivity in the blue crab Callinectes sapidus was evaluated along 740 km of the Western South Atlantic coast. Blue crabs are the most exploited portunid in Brazil. Despite their economic importance, few studies report their ecology or population structure. Here we sampled four estuarine areas in southern Brazil during winter 2013 and summer 2014 in order to evaluate diversity, gene flow and structure of these populations. Nine microsatellite markers were evaluated for 213 adult crabs, with identification of seven polymorphic loci and 183 alleles. Pairwise FST values indicated low population structure ranging from -0.00023 to 0.01755. A Mantel test revealed that the geographic distance does not influence genetic (r = -0.48), and structure/migration rates confirmed this, showing that even the populations located at the opposite extremities of our covered region presented low FST and exchanged migrants. These findings show that there is a significant amount of gene flow between blue crab populations in South Brazil, likely influenced by local current dynamics that allow the transport of a high number of larvae between estuaries. Considering the elevated gene flow, the populations can be considered a single genetic stock. However, further information on population size and dynamics, as well as fishery demands and impacts at different regions, are necessary for harvest management purposes. PMID:27064977

  13. Environmental Variables Explain Genetic Structure in a Beetle-Associated Nematode

    PubMed Central

    McGaughran, Angela; Morgan, Katy; Sommer, Ralf J.

    2014-01-01

    The distribution of a species is a complex expression of its ecological and evolutionary history and integrating population genetic, environmental, and ecological data can provide new insights into the effects of the environment on the population structure of species. Previous work demonstrated strong patterns of genetic differentiation in natural populations of the hermaphroditic nematode Pristionchus pacificus in its La Réunion Island habitat, but gave no clear understanding of the role of the environment in structuring this variation. Here, we present what is to our knowledge the first study to statistically evaluate the role of the environment in shaping the structure and distribution of nematode populations. We test the hypothesis that genetic structure in P. pacificus is influenced by environmental variables, by combining population genetic analyses of microsatellite data from 18 populations and 370 strains, with multivariate statistics on environmental data, and species distribution modelling. We assess and quantify the relative importance of environmental factors (geographic distance, altitude, temperature, precipitation, and beetle host) on genetic variation among populations. Despite the fact that geographic populations of P. pacificus comprise vast genetic diversity sourced from multiple ancestral lineages, we find strong evidence for local associations between environment and genetic variation. Further, we show that significantly more genetic variation in P. pacificus populations is explained by environmental variation than by geographic distances. This supports a strong role for environmental heterogeneity vs. genetic drift in the divergence of populations, which we suggest may be influenced by adaptive forces. PMID:24498073

  14. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics.

    PubMed

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant.

  15. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics

    PubMed Central

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Background Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. Results We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Conclusions Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant. PMID:27711241

  16. Small-scale genetic structure in an endangered wetland specialist: possible effects of landscape change and population recovery

    USGS Publications Warehouse

    van Rees, Charles B.; Reed, J. Michael; Wilson, Robert E.; Underwood, Jared G.; Sonsthagen, Sarah A.

    2018-01-01

    The effects of anthropogenic landscape change on genetic population structure are well studied, but the temporal and spatial scales at which genetic structure can develop, especially in taxa with high dispersal capabilities like birds, are less well understood. We investigated population structure in the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered wetland specialist bird on the island of O`ahu (Hawai`i, USA). Hawaiian gallinules have experienced a gradual population recovery from near extinction in the 1950s, and have recolonized wetlands on O`ahu in the context of a rapidly urbanizing landscape. We genotyped 152 Hawaiian gallinules at 12 microsatellite loci and sequenced a 520 base-pair fragment of the ND2 region of mitochondrial DNA (mtDNA) from individuals captured at 13 wetland locations on O`ahu in 2014–2016. We observed moderate to high genetic structuring (overall microsatellite FST = 0.098, mtDNA FST = 0.248) among populations of Hawaiian gallinules occupying wetlands at very close geographic proximity (e.g., 1.5–55 km). Asymmetry in gene flow estimates suggests that Hawaiian gallinules may have persisted in 2–3 strongholds which served as source populations that recolonized more recently restored habitats currently supporting large numbers of birds. Our results highlight that genetic structure can develop in taxa that are expanding their range after severe population decline, and that biologically significant structuring can occur over small geographic distances, even in avian taxa.

  17. Evidence for population bottlenecks and subtle genetic structure in the yellow rail

    USGS Publications Warehouse

    Popper, Kenneth J.; Miller, Leonard F.; Green, Michael; Haig, Susan M.; Mullins, Thomas D.

    2012-01-01

    The Yellow Rail (Coturnicops noveboracencis) is among the most enigmatic and least studied North American birds. Nesting exclusively in marshes and wetlands, it breeds largely east of the Rocky Mountains in the northern United States and Canada, but there is an isolated population in southern Oregon once believed extirpated. The degree of connectivity of the Oregon population with the main population is unknown. We used mitochondrial DNA sequences (mtDNA) and six microsatellite loci to characterize the Yellow Rail's genetic structure and diversity patterns in six areas. Our mtDNA-based analyses of genetic structure identified significant population differentiation, but pairwise comparison of regions identified no clear geographic trends. In contrast, microsatellites suggested subtle genetic structure differentiating the Oregon population from those in the five regions sampled in the Yellow Rail's main breeding range. The genetic diversity of the Oregon population was also the lowest of the six regions sampled, and Oregon was one of three regions that demonstrated evidence of recent population bottlenecks. Factors that produced population reductions may include loss of wetlands to development and agricultural conversion, drought, and wildfire. At this time, we are unable to determine if the high percentage (50%) of populations having experienced bottlenecks is representative of the Yellow Rail's entire range. Further genetic data from additional breeding populations will be required for this issue to be addressed.

  18. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities.

    PubMed

    Zhang, Lai; Andersen, Ken H; Dieckmann, Ulf; Brännström, Åke

    2015-09-07

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microsatellite DNA Analysis Revealed a Drastic Genetic Change of Plasmodium vivax Population in the Republic of Korea During 2002 and 2003

    PubMed Central

    Iwagami, Moritoshi; Hwang, Seung-Young; Kim, So-Hee; Park, So-Jung; Lee, Ga-Young; Matsumoto-Takahashi, Emilie Louise Akiko; Kho, Weon-Gyu; Kano, Shigeyuki

    2013-01-01

    Background Vivax malaria was successfully eliminated in the Republic of Korea (South Korea) in the late 1970s, but it was found to have re-emerged from 1993. In order to control malaria and evaluate the effectiveness of malaria controls, it is important to develop a spatiotemporal understanding of the genetic structure of the parasite population. Here, we estimated the population structure and temporal dynamics of the transmission of Plasmodium vivax in South Korea by analyzing microsatellite DNA markers of the parasite. Methodology/Principal Findings We analyzed 14 microsatellite DNA loci of the P. vivax genome from 163 South Korean isolates collected from 1994 to 2008. Allelic data were used to analyze linkage disequilibrium (LD), genetic differentiation and population structure, in order to make a detailed estimate of temporal change in the parasite population. The LD analysis showed a gradual decrease in LD levels, while the levels of genetic differentiation between successive years and analysis of the population structure based on the Bayesian approach suggested that a drastic genetic change occurred in the South Korean population during 2002 and 2003. Conclusions/Significance Although relapse and asymptomatic parasite carriage might influence the population structure to some extent, our results suggested the continual introduction of P. vivax into South Korea through other parasite population sources. One possible source, particularly during 2002 and 2003, is North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and temporal dynamics of parasite transmission; information that can assist in the elimination of vivax malaria in endemic areas. PMID:24205429

  20. Past climate change drives current genetic structure of an endangered freshwater mussel species.

    PubMed

    Inoue, Kentaro; Lang, Brian K; Berg, David J

    2015-04-01

    Historical-to-recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid-to-late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations. © 2015 John Wiley & Sons Ltd.

  1. [Age structure and dynamics of Quercus wutaishanica population in Lingkong Mountain of Shanxi Province, China].

    PubMed

    Zhang, Jie; Shangguan, Tie-Liang; Duan, Yi-Hao; Guo, Wei; Liu, Wei-Hua; Guo, Dong-Gang

    2014-11-01

    Using the plant survivorship theory, the age structure, and the relationship between tree height and diameter (DBH) of Quercus wutaishanica population in Lingkong Mountain were analyzed, and the static life table was compiled and the survival curve plotted. The shuttle shape in age structure of Q. wutaishanica population suggested its temporal stability. The linear regression significantly fitted the positive correlation between tree height and DBH. The maximal life expectancy was observed among the trees beyond the age of the highest mortality and coincided with the lowest point of mortality density, suggesting the strong vitality of the seedlings and young trees that survived in the natural selection and intraspecific competition. The population stability of the Q. wutaishanica population was characterized by the Deevey-II of the survival curve. The dynamic pattern was characterized by the recession in the early phase, growth in the intermediate phase, and stability in the latter phase.

  2. Variation in Age and Size in Fennoscandian Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2013-01-01

    Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size. PMID:24260496

  3. Variation in age and size in Fennoscandian three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2013-01-01

    Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.

  4. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    USDA-ARS?s Scientific Manuscript database

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...

  5. Substructure of a Tunisian Berber population as inferred from 15 autosomal short tandem repeat loci.

    PubMed

    Khodjet-El-Khil, Houssein; Fadhlaoui-Zid, Karima; Gusmão, Leonor; Alves, Cíntia; Benammar-Elgaaied, Amel; Amorim, Antonio

    2008-08-01

    Currently, language and cultural practices are the only criteria to distinguish between Berber autochthonous Tunisian populations. To evaluate these populations' possible genetic structure and differentiation, we have analyzed 15 autosomal short tandem repeat loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, VWA, D2S1338, and D19S433) in three southern Tunisian Berber groups: Sened, Matmata, and Chenini-Douiret. The exact test of population differentiation based on allele frequencies at the 15 loci shows significant P values at 7 loci between Chenini-Douiret and both Sened and Matmata, whereas just 5 loci show significant P values between Sened and Matmata. Comparative analyses between the three Berber groups based on genetic distances show that P values for F(ST) distances are significant between the three Berber groups. Population analysis performed using Structure shows a clear differentiation between these Berber groups, with strong genetic isolation of Chenini-Douiret. These results confirm at the autosomal level the high degree of heterogeneity of Tunisian Berber populations that had been previously reported for uniparental markers.

  6. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    PubMed

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P < 0·05) in the bacterial populations at each time point. The alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  7. Community- and population-level changes in diatom size structure in a subarctic lake over the last two centuries

    PubMed Central

    Kerrigan, Elizabeth A.; Irwin, Andrew J.

    2015-01-01

    Climate change over the last two centuries has been associated with significant shifts in diatom community structure in lakes from the high arctic to temperate latitudes. To test the hypotheses that recent climate warming selects for species of smaller size within communities and a decrease in the average size of species within populations, we quantified the size of individual diatom valves from 10 depths in a sediment core covering the last ∼200 years from a pristine subarctic lake. Over the last ∼200 years, changes in the relative abundance of species of different average size and changes in the average valve size of populations of species contribute equally to the changes in community size structure, but are often opposite in sign, compensating for one another and moderating temporal changes in community size structure. In the surface sediments that correspond to the recent decades when air temperatures have warmed, the mean size of valves in the diatom community has significantly decreased due to an increase in the proportion of smaller-sized planktonic diatom species. PMID:26157637

  8. A score-statistic approach for determining threshold values in QTL mapping.

    PubMed

    Kao, Chen-Hung; Ho, Hsiang-An

    2012-06-01

    Issues in determining the threshold values of QTL mapping are often investigated for the backcross and F2 populations with relatively simple genome structures so far. The investigations of these issues in the progeny populations after F2 (advanced populations) with relatively more complicated genomes are generally inadequate. As these advanced populations have been well implemented in QTL mapping, it is important to address these issues for them in more details. Due to an increasing number of meiosis cycle, the genomes of the advanced populations can be very different from the backcross and F2 genomes. Therefore, special devices that consider the specific genome structures present in the advanced populations are required to resolve these issues. By considering the differences in genome structure between populations, we formulate more general score test statistics and gaussian processes to evaluate their threshold values. In general, we found that, given a significance level and a genome size, threshold values for QTL detection are higher in the denser marker maps and in the more advanced populations. Simulations were performed to validate our approach.

  9. Population genetic structure of moose (Alces alces) of South-central Alaska

    USGS Publications Warehouse

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  10. Spatial Pattern and Population Structure of Artemisia ordosica Shrub in a Desert Grassland under Enclosure, Northwest China.

    PubMed

    Liu, Jiankang; Zhang, Kebin

    2018-05-09

    Enclosure is an effective practice for restoring and rehabilitating the degraded grassland ecosystem caused by overgrazing. Shrub species, which are dominant in most desert grasslands in arid and semiarid regions, have some beneficial ecological functions for grassland restoration. However, how the population structure and spatial pattern of the Artemisia ordosica shrub changes in a grassland ecosystem under enclosed practice is not well understood. This study, conducted in the Mu Us desert in northwest China, was designed to measure the A. ordosica population according to the chronosequence of enclosure (enclosure periods ranged from 5 years, 10 years, 15 years, and 25 years), contrasting this with an adjacent continuously grazed grassland. The results showed that the enclosed grasslands had a higher number of individuals of different age classes (seedling, adult, aging, and dead group) and greater population coverage, but shrubs had significant lower ( p < 0.05) crown diameter and height in comparison with those in continuously grazed grassland. Further, enclosed grasslands had a significantly higher ( p < 0.05) Shannon-Wiener index (H) and Evenness index (E), but a significantly lower ( p < 0.05) Richness index (R) than continuously grazed grassland. The crown of A. ordosica showed a significant linear positive correlation with height in all plots across succession, indicating that it was feasible to analyze the age structure by crown. The crown-class distribution structure of the A. ordosica population approximated a Gaussian distribution model in all survey plots. Within the population, seedling and adult groups exhibited aggregated spatial distribution at small scales, while aging and dead A. ordosica groups showed random distribution at almost all scales in different plots. The seedling A. ordosica group showed a positive correlation with adults at small scales in all plots except in 10 years of enclosure. However, it showed independent correlation with aging and dead groups at almost all scales. In long-term enclosed plots, the mortality rate of the A. ordosica population increased, therefore assistance management practices, such as fertilization, mowing, interval grazing, and seasonal grazing, must be employed to maintain population stability after long-term enclosure. This study can improve understanding and clarify the effects of enclosures in the desert grasslands of northwest China.

  11. Evolutionary genomics and population structure of Entamoeba histolytica

    PubMed Central

    Das, Koushik; Ganguly, Sandipan

    2014-01-01

    Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba. PMID:25505504

  12. Mitochondrial and nuclear markers reveal a lack of genetic structure in the entocommensal nemertean Malacobdella arrokeana in the Patagonian gulfs

    NASA Astrophysics Data System (ADS)

    Alfaya, José E. F.; Bigatti, Gregorio; Machordom, Annie

    2013-06-01

    Malacobdella arrokeana is an entocommensal nemertean exclusively found in the bivalve geoduck Panopea abbreviata, and it is the only representative of the genus in the southern hemisphere. To characterize its genetic diversity, population structure and recent demographic history, we conducted the first genetic survey on this species, using sequence data for the cytochrome oxidase I gene (COI), 16S rRNA (16S) and the internal transcribed spacer (ITS2). Only four different ITS2 genotypes were found in the whole sample, and the two main haplotypes identified in the mitochondrial dataset were present among all localities with a diversity ranging from 0.583 to 0.939. Nucleotide diversity was low (π = 0.001-0.002). No significant genetic structure was detected between populations, and mismatch distribution patterns and neutrality tests results are consistent with a population in expansion or under selection. Analysis of molecular variance (AMOVA) revealed that the largest level of variance observed was due to intrapopulation variation (100, 100 and 94.39 % for 16S, COI and ITS2, respectively). F st values were also non-significant. The observed lack of population structure is likely due to high levels of genetic connectivity in combination with the lack or permeability of biogeographic barriers and episodes of habitat modification.

  13. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping

    PubMed Central

    Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel

    2015-01-01

    To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in ‘Structure’ grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value. PMID:26111146

  14. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    USGS Publications Warehouse

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  15. Population genetic structure of the point-head flounder, Cleisthenes herzensteini, in the Northwestern Pacific.

    PubMed

    Xiao, Yongshuang; Zhang, Yan; Yanagimoto, Takashi; Li, Jun; Xiao, Zhizhong; Gao, Tianxiang; Xu, Shihong; Ma, Daoyuan

    2011-02-01

    Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5' end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94-376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.

  16. Genetic Variability and Population Structure of Disanthus cercidifolius subsp. longipes (Hamamelidaceae) Based on AFLP Analysis

    PubMed Central

    Yu, Yi; Fan, Qiang; Shen, Rujiang; Guo, Wei; Jin, Jianhua; Cui, Dafang; Liao, Wenbo

    2014-01-01

    Disanthus cercidifolius subsp. longipes is an endangered species in China. Genetic diversity and structure analysis of this species was investigated using amplified fragments length polymorphism (AFLP) fingerprinting. Nei's gene diversity ranged from 0.1290 to 0.1394. The AMOVA indicated that 75.06% of variation was distributed within populations, while the between-group component 5.04% was smaller than the between populations-within-group component 19.90%. Significant genetic differentiation was detected between populations. Genetic and geographical distances were not correlated. PCA and genetic structure analysis showed that populations from East China were together with those of the Nanling Range. These patterns of genetic diversity and levels of genetic variation may be the result of D. c. subsp. longipes restricted to several isolated habitats and “excess flowers production, but little fruit set”. It is necessary to protect all existing populations of D. c. subsp. longipes in order to preserve as much genetic variation as possible. PMID:25250583

  17. Genomic Differentiation and Demographic Histories of Atlantic and Indo-Pacific Yellowfin Tuna (Thunnus albacares) Populations

    PubMed Central

    Damerau, Malte; Matschiner, Michael; Jentoft, Sissel

    2017-01-01

    Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow from the Indo-Pacific to the Atlantic. PMID:28419285

  18. Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum

    PubMed Central

    González-Jara, Pablo; Moreno-Letelier, Alejandra; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2011-01-01

    Management of wild peppers in Mexico has occurred for a long time without clear phenotypic signs of domestication. However, pre-domestication management could have implications for the population's genetic richness. To test this hypothesis we analysed 27 wild (W), let standing (LS) and cultivated (C) populations, plus 7 samples from local markets (LM), with nine polymorphic microsatellite markers. Two hundred and fifty two alleles were identified, averaging 28 per locus. Allele number was higher in W, and 15 and 40% less in LS and C populations, respectively. Genetic variation had a significant population structure. In W populations, structure was associated with ecological and geographic areas according to isolation by distance. When LM and C populations where included in the analysis, differentiation was no longer apparent. Most LM were related to distant populations from Sierra Madre Oriental, which represents their probable origin. Historical demography shows a recent decline in all W populations. Thus, pre-domestication human management is associated with a significant reduction of genetic diversity and with a loss of differentiation suggesting movement among regions by man. Measures to conserve wild and managed populations should be implemented to maintain the source and the architecture of genetic variation in this important crop relative. PMID:22163053

  19. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    PubMed

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  20. Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables

    PubMed Central

    Riccioni, Giulia; Stagioni, Marco; Landi, Monica; Ferrara, Giorgia; Barbujani, Guido; Tinti, Fausto

    2013-01-01

    Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation. PMID:24260341

  1. StrAuto: automation and parallelization of STRUCTURE analysis.

    PubMed

    Chhatre, Vikram E; Emerson, Kevin J

    2017-03-24

    Population structure inference using the software STRUCTURE has become an integral part of population genetic studies covering a broad spectrum of taxa including humans. The ever-expanding size of genetic data sets poses computational challenges for this analysis. Although at least one tool currently implements parallel computing to reduce computational overload of this analysis, it does not fully automate the use of replicate STRUCTURE analysis runs required for downstream inference of optimal K. There is pressing need for a tool that can deploy population structure analysis on high performance computing clusters. We present an updated version of the popular Python program StrAuto, to streamline population structure analysis using parallel computing. StrAuto implements a pipeline that combines STRUCTURE analysis with the Evanno Δ K analysis and visualization of results using STRUCTURE HARVESTER. Using benchmarking tests, we demonstrate that StrAuto significantly reduces the computational time needed to perform iterative STRUCTURE analysis by distributing runs over two or more processors. StrAuto is the first tool to integrate STRUCTURE analysis with post-processing using a pipeline approach in addition to implementing parallel computation - a set up ideal for deployment on computing clusters. StrAuto is distributed under the GNU GPL (General Public License) and available to download from http://strauto.popgen.org .

  2. Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data.

    PubMed

    Chabot, C L; Allen, L G

    2009-02-01

    In order to properly manage and conserve exploited shark species, detailed analyses of their population structure is needed. Global populations of Galeorhinus galeus are in decline due to the exploitation of the fishery over the past 80 years. Currently, the genetic structure of eastern Pacific populations of G. galeus is not known and recent observations in the northeastern Pacific suggest an increase in numbers. To evaluate gene flow among populations of G. galeus, 116 samples were collected and analysed from six geographically dispersed locations: Australia, North America, South Africa, South America (Argentina and Peru), and the UK. Analysis of 968 to 1006 bp of the 1068-bp mitochondrial control region revealed 38 unique haplotypes that were largely restricted to their collecting locality. Significant genetic structure was detected among populations (Phi(ST) = 0.84; P < 0.000001) and migration estimates were low (Nm = 0.05-0.97). Due to an apparent lack of migration, populations of G. galeus appear to be isolated from each other with little to no gene flow occurring among them. As a consequence of this isolation, increasing numbers of G. galeus in the northeastern Pacific can be best explained by local recruitment and not by input from geographically distant populations.

  3. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  4. Objective Sleep Structure and Cardiovascular Risk Factors in the General Population: The HypnoLaus Study

    PubMed Central

    Haba-Rubio, José; Marques-Vidal, Pedro; Andries, Daniela; Tobback, Nadia; Preisig, Martin; Vollenweider, Peter; Waeber, Gérard; Luca, Gianina; Tafti, Mehdi; Heinzer, Raphaël

    2015-01-01

    Study Objectives: To evaluate the association between objective sleep measures and metabolic syndrome (MS), hypertension, diabetes, and obesity. Design: Cross-sectional study. Setting: General population sample. Participants: There were 2,162 patients (51.2% women, mean age 58.4 ± 11.1). Interventions: Patients were evaluated for hypertension, diabetes, overweight/obesity, and MS, and underwent a full polysomnography (PSG). Measurements and Results: PSG measured variables included: total sleep time (TST), percentage and time spent in slow wave sleep (SWS) and in rapid eye movement (REM) sleep, sleep efficiency and arousal index (ArI). In univariate analyses, MS was associated with decreased TST, SWS, REM sleep, and sleep efficiency, and increased ArI. After adjustment for age, sex, smoking, alcohol, physical activity, drugs that affect sleep and depression, the ArI remained significantly higher, but the difference disappeared in patients without significant sleep disordered breathing (SDB). Differences in sleep structure were also found according to the presence or absence of hypertension, diabetes, and overweight/obesity in univariate analysis. However, these differences were attenuated after multivariate adjustment and after excluding subjects with significant SDB. Conclusions: In this population-based sample we found significant associations between sleep structure and metabolic syndrome (MS), hypertension, diabetes, and obesity. However, these associations were cancelled after multivariate adjustment. We conclude that normal variations in sleep contribute little if any to MS and associated disorders. Citation: Haba-Rubio J, Marques-Vidal P, Andries D, Tobback N, Preisig M, Vollenweider P, Waeber G, Luca G, Tafti M, Heinzer R. Objective sleep structure and cardiovascular risk factors in the general population: the HypnoLaus study. SLEEP 2015;38(3):391–400. PMID:25325467

  5. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  6. Genetic structure of Onchidium "struma" (Mollusca: Gastropoda: Eupulmonata) from the coastal area of China based on mtCO I.

    PubMed

    Zhou, Na; Shen, Heding; Chen, Cheng; Sun, Bianna; Zheng, Pei; Wang, Chengnuan

    2016-01-01

    The genetic diversity and population genetic structure of Onchidium "struma" were investigated using mitochondrial cytochrome c oxidase subunit I (CO I) gene sequences. A total of 240 individuals representing 10 collection sites from across a large portion of its known range were included in the analysis. Overall, 42 haplotypes were defined and 97 polymorphic sites were observed. The O. "struma" populations had high haplotype diversity (0.9280) and nucleotide diversity (0.0404). We inferred that the early maturity and extensive survival habitat led to high genetic diversity of O. "struma" populations in China. Bayesian analysis and SAMOVA analysis showed significant genetic differentiation among populations and all populations were divided into two groups, (HK and HN) versus (GY, DF, CX, CN, ND and XM). The Mantel test revealed no significant correlation between geographic distance and genetic distance (r = 0.251; p = 0.058). Restricted gene flow caused by a shorter term pelagic veliger stage and limited dispersal potential were inferred to result in genetic differentiation among populations based on nested analysis. HK population might be an invasive species by artificial transplantation.

  7. Population genetic structure and Wolbachia infection in an endangered butterfly, Zizina emelina (Lepidoptera, Lycaenidae), in Japan.

    PubMed

    Sakamoto, Y; Hirai, N; Tanikawa, T; Yago, M; Ishii, M

    2015-04-01

    Zizina emelina (de l'Orza) is listed on Japan's Red Data List as an endangered species because of loss of its principal food plant and habitat. We compared parts of the mitochondrial and nuclear genes of this species to investigate the level of genetic differentiation among the 14 extant populations. We also examined infection of the butterfly with the bacterium Wolbachia to clarify the bacterium's effects on the host population's genetic structure. Mitochondrial and nuclear DNA analyses revealed that haplotype composition differed significantly among most of the populations, and the fixation index F ST was positively correlated with geographic distance. In addition, we found three strains of Wolbachia, one of which was a male killer; these strains were prevalent in several populations. There was linkage between some host mitochondrial haplotypes and the three Wolbachia strains, although no significant differences were found in a comparison of host mitochondrial genetic diversity with nuclear genetic diversity in Wolbachia-infected or -uninfected populations. These genetic analyses and Wolbachia infection findings show that Z. emelina has little migratory activity and that little gene flow occurs among the current populations.

  8. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    PubMed

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.

  9. Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus).

    PubMed

    Johansson, M L; Banks, M A; Glunt, K D; Hassel-Finnegan, H M; Buonaccorsi, V P

    2008-07-01

    The copper rockfish is a benthic, nonmigratory, temperate rocky reef marine species with pelagic larvae and juveniles. A previous range-wide study of the population-genetic structure of copper rockfish revealed a pattern consistent with isolation-by-distance. This could arise from an intrinsically limited dispersal capability in the species or from regularly-spaced extrinsic barriers that restrict gene flow (offshore jets that advect larvae offshore and/or habitat patchiness). Tissue samples were collected along the West Coast of the contiguous USA between Neah Bay, WA and San Diego, CA, with dense sampling along Oregon. At the whole-coast scale (approximately 2200 km), significant population subdivision (F(ST) = 0.0042), and a significant correlation between genetic and geographical distance were observed based on 11 microsatellite DNA loci. Population divergence was also significant among Oregon collections (approximately 450 km, F(ST) = 0.001). Hierarchical amova identified a weak but significant 130-km habitat break as a possible barrier to gene flow within Oregon, across which we estimated that dispersal (N(e)m) is half that of the coast-wide average. However, individual-based Bayesian analyses failed to identify more than a single population along the Oregon coast. In addition, no correlation between pairwise population genetic and geographical distances was detected at this scale. The offshore jet at Cape Blanco was not a significant barrier to gene flow in this species. These findings are consistent with low larval dispersal distances calculated in previous studies on this species, support a mesoscale dispersal model, and highlight the importance of continuity of habitat and adult population size in maintaining gene flow.

  10. Genomic variation among populations of threatened coral: Acropora cervicornis.

    PubMed

    Drury, C; Dale, K E; Panlilio, J M; Miller, S V; Lirman, D; Larson, E A; Bartels, E; Crawford, D L; Oleksiak, M F

    2016-04-13

    Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with evolutionary implications.

  11. Genetic Structure and the North American Postglacial Expansion of the Barnacle, Semibalanus balanoides

    PubMed Central

    O’Brien, Megan A.; Schmidt, Paul S.; Rand, David M.

    2012-01-01

    Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (∼40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20 000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (φST = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (FST = 0.021) as well as within North America (FST = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10−4). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides. PMID:21885571

  12. New Nuclear SNP Markers Unravel the Genetic Structure and Effective Population Size of Albacore Tuna (Thunnus alalunga).

    PubMed

    Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone

    2015-01-01

    In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.

  13. New Nuclear SNP Markers Unravel the Genetic Structure and Effective Population Size of Albacore Tuna (Thunnus alalunga)

    PubMed Central

    Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone

    2015-01-01

    In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing. PMID:26090851

  14. Population differentiation in the red-legged kittiwake (Rissa brevirostris) as revealed by mitochondrial DNA

    USGS Publications Warehouse

    Patirana, A.; Hatcher, S.A.; Friesen, Vicki L.

    2002-01-01

    Population decline in red-legged kittiwakes (Rissa brevirostris) over recent decades has necessitated the collection of information on the distribution of genetic variation within and among colonies for implementation of suitable management policies. Here we present a preliminary study of the extent of genetic structuring and gene flow among the three principal breeding locations of red-legged kittiwakes using the hypervariable Domain I of the mitochondrial control region. Genetic variation was high relative to other species of seabirds, and was similar among locations. Analysis of molecular variance indicated that population genetic structure was statistically significant, and nested clade analysis suggested that kittiwakes breeding on Bering Island maybe genetically isolated from those elsewhere. However, phylogeographic structure was weak. Although this analysis involved only a single locus and a small number of samples, it suggests that red-legged kittiwakes probably constitute a single evolutionary significant unit; the possibility that they constitute two management units requires further investigation.

  15. How Social Structure Drives the Population Dynamics of the Common Vampire Bat (Desmodus rotundus, Phyllostomidae).

    PubMed

    Huguin, Maïlis; Arechiga-Ceballos, Nidia; Delaval, Marguerite; Guidez, Amandine; de Castro, Isaï Jorge; Lacoste, Vincent; Salmier, Arielle; Setién, Alvaro Aguilar; Silva, Claudia Regina; Lavergne, Anne; de Thoisy, Benoit

    2018-05-11

    Social systems are major drivers of population structure and gene flow, with important effects on dynamics and dispersal of associated populations of parasites. Among bats, the common vampire bat (Desmodus rotundus) has likely one of the most complex social structures. Using autosomal and mitochondrial markers on vampires from Mexico, French Guiana, and North Brazil, from both roosting and foraging areas, we observed an isolation by distance at the wider scale and lower but significant differentiation between closer populations (<50 km). All populations had a low level of relatedness and showed deviations from Hardy-Weinberg equilibrium and a low but significant inbreeding coefficient. The associated heterozygote deficiency was likely related to a Wahlund effect and to cryptic structures, reflecting social groups living in syntopy, both in roosting and foraging areas, with only limited admixture. Discrepancy between mitochondrial and nuclear markers suggests female philopatry and higher dispersal rates in males, associated with peripheral positions in the groups. Vampires are also the main neotropical reservoir for rabies virus, one of the main lethal pathogens for humans. Female social behaviors and trophallaxis may favor a rapid spread of virus to related and unrelated offspring and females. The high dispersal capacity of males may explain the wider circulation of viruses and the inefficacy of bat population controls. In such opportunistic species, gene connectivity should be considered for management decision making. Strategies such as culling could induce immigration of bats from neighboring colonies to fill vacant roosts and feeding areas, associated with the dispersal of viral strains.

  16. Comparative genetic structure between Sedum ussuriense and S. kamtschaticum (Crassulaceae), two stonecrops co-occurring on rocky cliffs.

    PubMed

    Chung, Mi Yoon; López-Pujol, Jordi; Chung, Myong Gi

    2014-06-01

    • Premise of the study: Geographic isolation due to discontinuities of suitable habitat may have significant effects on the genetic structure of plant populations. Even within a few kilometers, physical barriers to gene flow may lead to considerable genetic differentiation among populations.• Methods: Sedum ussuriense is a boreal species that in Korea occurs only in four valleys separated by mountain ranges in Juwangsan National Park and its vicinity (a range of ∼15 km). Its congener S. kamtschaticum, by contrast, co-occurs in the four valleys but also on the intervening mountains. Using 12 allozyme loci, we comparatively assessed genetic variability and structure in 12 population pairs of the two stonecrops.• Key results: While we found high and comparable levels of within-population genetic variation for the two species, among-population divergence was significantly higher in S. ussuriense (F ST = 0.261 vs. F ST = 0.165). Sedum ussuriense also showed a much higher percentage of among-valley variation (19%) than S. kamtschaticum (4%).• Conclusions: High levels of genetic diversity in the two Sedum species are consistent with the previous hypothesis that mountains of the Korean Peninsula served as glacial refugia for many boreal species. Given that the two congeners have similar life-history traits, the lower among-population differentiation in S. kamtschaticum is attributable to its higher abundance and more continuous distribution in the study area. This study confirms the central role of geographic isolation in the genetic structure of plant species even at very small scales. © 2014 Botanical Society of America, Inc.

  17. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    PubMed

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  18. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data

    PubMed Central

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  19. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa

    PubMed Central

    Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica. PMID:27077002

  20. Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i

    USGS Publications Warehouse

    Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.

    2007-01-01

    Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.

  1. Genetic differentiation and phylogeography of Mediterranean-North Eastern Atlantic blue shark (Prionace glauca, L. 1758) using mitochondrial DNA: panmixia or complex stock structure?

    PubMed

    Leone, Agostino; Urso, Ilenia; Damalas, Dimitrios; Martinsohn, Jann; Zanzi, Antonella; Mariani, Stefano; Sperone, Emilio; Micarelli, Primo; Garibaldi, Fulvio; Megalofonou, Persefoni; Bargelloni, Luca; Franch, Rafaella; Macias, David; Prodöhl, Paulo; Fitzpatrick, Séan; Stagioni, Marco; Tinti, Fausto; Cariani, Alessia

    2017-01-01

    The blue shark ( Prionace glauca , Linnaeus 1758) is one of the most abundant epipelagic shark inhabiting all the oceans except the poles, including the Mediterranean Sea, but its genetic structure has not been confirmed at basin and interoceanic distances. Past tagging programs in the Atlantic Ocean failed to find evidence of migration of blue sharks between the Mediterranean and the adjacent Atlantic, despite the extreme vagility of the species. Although the high rate of by-catch in the Mediterranean basin, to date no genetic study on Mediterranean blue shark was carried out, which constitutes a significant knowledge gap, considering that this population is classified as "Critically Endangered", unlike its open-ocean counterpart. Blue shark phylogeography and demography in the Mediterranean Sea and North-Eastern Atlantic Ocean were inferred using two mitochondrial genes (Cytb and control region) amplified from 207 and 170 individuals respectively, collected from six localities across the Mediterranean and two from the North-Eastern Atlantic. Although no obvious pattern of geographical differentiation was apparent from the haplotype network, Φst analyses indicated significant genetic structure among four geographical groups. Demographic analyses suggest that these populations have experienced a constant population expansion in the last 0.4-0.1 million of years. The weak, but significant, differences in Mediterranean and adjacent North-eastern Atlantic blue sharks revealed a complex phylogeographic structure, which appears to reject the assumption of panmixia across the study area, but also supports a certain degree of population connectivity across the Strait of Gibraltar, despite the lack of evidence of migratory movements observed by tagging data. Analyses of spatial genetic structure in relation to sex-ratio and size could indicate some level of sex/stage biased migratory behaviour.

  2. Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia

    PubMed Central

    Pizarro, Juan Carlos; Gilligan, Lauren M.; Stevens, Lori

    2008-01-01

    Background For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies. Methods and Findings The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R ST = 0.14, F ST = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R ST = 0.12 and F ST = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities. Conclusions Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R ST and F ST, supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made. PMID:18365033

  3. Population genetic structure and demographic history of the black fly vector, Simulium nodosum in Thailand.

    PubMed

    Chaiyasan, P; Pramual, P

    2016-09-01

    An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. © 2016 The Royal Entomological Society.

  4. Low Genetic Diversity and Low Gene Flow Corresponded to a Weak Genetic Structure of Ruddy-Breasted Crake (Porzana fusca) in China.

    PubMed

    Zhu, Chaoying; Chen, Peng; Han, Yuqing; Ruan, Luzhang

    2018-05-12

    The Ruddy-breasted Crake (Porzana fusca) is an extremely poorly known species. Although it is not listed as globally endangered, in recent years, with the interference of climate change and human activities, its habitat is rapidly disappearing and its populations have been shrinking. There are two different life history traits for Ruddy-breasted Crake in China, i.e., non-migratory population in the south and migratory population in the north of China. In this study, mitochondrial control sequences and microsatellite datasets of 88 individuals sampled from 8 sites were applied to analyze their genetic diversity, genetic differentiation, and genetic structure. Our results indicated that low genetic diversity and genetic differentiation exit in most populations. The neutrality test suggested significantly negative Fu's Fs value, which, in combination with detection of the mismatch distribution, indicated that population expansion occurred in the interglacier approximately 98,000 years ago, and the time of the most recent common ancestor (TMRCA) was estimated to about 202,705 years ago. Gene flow analysis implied that the gene flow was low, but gene exchange was frequent among adjacent populations. Both phylogenetic and STRUCTURE analyses implied weak genetic structure. In general, the genetic diversity, gene flow, and genetic structure of Ruddy-breasted Crake were low.

  5. Population Genetic Patterns of Threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a Fragmented Landscape: Implications for Conservation Management

    PubMed Central

    Takács, Péter; Erős, Tibor; Specziár, András; Sály, Péter; Vitál, Zoltán; Ferincz, Árpád; Molnár, Tamás; Szabolcsi, Zoltán; Bíró, Péter; Csoma, Eszter

    2015-01-01

    The European mudminnow (Umbra krameri) is a Middle Danubian endemic fish species, which is characterised by isolated populations living mainly in artificial habitats in the centre of its range, in the Carpathian Basin. For their long term preservation, reliable information is needed about the structure of stocks and the level of isolation. The recent distribution pattern, and the population genetic structure within and among regions were investigated to designate the Evolutionary Significant, Conservation and Management Units (ESUs, CUs, MUs) and to explore the conservation biological value of the shrinking populations. In total, eight microsatellite loci were studied in 404 specimens originating from eight regions. The results revealed a pronounced population structure, where strictly limited gene flow was detected among regions, as well as various strengths of connections within regions. Following the results of hierarchical structure analyses, two ESUs were supposed in the Carpathian Basin, corresponding to the Danube and Tisza catchments. Our results recommend designating the borders of CUs in an 80–90km range and 16 clusters should be set up as MUs for the 33 investigated populations. How these genetic findings can be used to better allocate conservation resources for the long term maintenance of the metapopulation structure of this threathened endemic fish is discussed. PMID:26393510

  6. Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans

    PubMed Central

    Rosenbaum, Howard C.; Pomilla, Cristina; Mendez, Martin; Leslie, Matthew S.; Best, Peter B.; Findlay, Ken P.; Minton, Gianna; Ersts, Peter J.; Collins, Timothy; Engel, Marcia H.; Bonatto, Sandro L.; Kotze, Deon P. G. H.; Meÿer, Mike; Barendse, Jaco; Thornton, Meredith; Razafindrakoto, Yvette; Ngouessono, Solange; Vely, Michel; Kiszka, Jeremy

    2009-01-01

    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region. PMID:19812698

  7. Population structure of humpback whales from their breeding grounds in the South Atlantic and Indian Oceans.

    PubMed

    Rosenbaum, Howard C; Pomilla, Cristina; Mendez, Martin; Leslie, Matthew S; Best, Peter B; Findlay, Ken P; Minton, Gianna; Ersts, Peter J; Collins, Timothy; Engel, Marcia H; Bonatto, Sandro L; Kotze, Deon P G H; Meÿer, Mike; Barendse, Jaco; Thornton, Meredith; Razafindrakoto, Yvette; Ngouessono, Solange; Vely, Michel; Kiszka, Jeremy

    2009-10-08

    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.

  8. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are geographically proximal along the south Atlantic coast of the US.

  9. The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States

    USGS Publications Warehouse

    Robinson, Stacie J.; Samuel, Michael D.; Lopez, Davin L.; Shelton, Paul

    2012-01-01

    One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.

  10. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska

    USGS Publications Warehouse

    Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.

    2004-01-01

    Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.

  11. Diversity and genetic structure of the Mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae).

    PubMed

    González-Astorga, Jorge; Cruz-Angón, Andrea; Flores-Palacios, Alejandro; Vovides, Andrew P

    2004-10-01

    The monoecious, bird-pollinated epiphytic Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys is an endemic bromeliad of the tropical dry forests of Mexico with clonal growth. In the Sierra de Huautla Natural Reserve this species shows a host preference for Bursera copallifera (Sessé & Moc ex. DC) Bullock. As a result of deforestation in the study area, B. copallifera has become a rare tree species in the remaining forest patches. This human-induced disturbance has directly affected the population densities of T. achyrostachys. In this study the genetic consequences of habitat fragmentation were assessed by comparing the genetic diversity, gene flow and genetic differentiation in six populations of T. achyrostachys in the Sierra de Huautla Natural Reserve, Mexico. Allozyme electrophoresis of sixteen loci (eleven polymorphic and five monomorphic) were used. The data were analysed with standard statistical approximations for obtaining diversity, genetic structure and gene flow. Genetic diversity and allelic richness were: HE = 0.21 +/- 0.02, A = 1.86 +/- 0.08, respectively. F-statistics revealed a deficiency of heterozygous plants in all populations (Fit = 0.65 +/- 0.02 and Fis = 0.43 +/- 0.06). Significant genetic differentiation between populations was detected (Fst = 0.39 +/- 0.07). Average gene flow between pairs of populations was relatively low and had high variation (Nm = 0.46 +/- 0.21), which denotes a pattern of isolation by distance. The genetic structure of populations of T. achyrostachys suggests that habitat fragmentation has reduced allelic richness and genetic diversity, and increased significant genetic differentiation (by approx. 40 %) between populations. The F-statistic values (>0) and the level of gene flow found suggest that habitat fragmentation has broken up the former population structure. In this context, it is proposed that the host trees of T. achyrostachys should be considered as a conservation priority, since they represent the limiting factor to bromeliad population growth and connectivity.

  12. A Parallel Population Genomic and Hydrodynamic Approach to Fishery Management of Highly-Dispersive Marine Invertebrates: The Case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera.

    PubMed

    Lal, Monal M; Southgate, Paul C; Jerry, Dean R; Bosserelle, Cyprien; Zenger, Kyall R

    2016-01-01

    Fishery management and conservation of marine species increasingly relies on genetic data to delineate biologically relevant stock boundaries. Unfortunately for high gene flow species which may display low, but statistically significant population structure, there is no clear consensus on the level of differentiation required to resolve distinct stocks. The use of fine-scale neutral and adaptive variation, considered together with environmental data can offer additional insights to this problem. Genome-wide genetic data (4,123 SNPs), together with an independent hydrodynamic particle dispersal model were used to inform farm and fishery management in the Fijian black-lip pearl oyster Pinctada margaritifera, where comprehensive fishery management is lacking, and the sustainability of exploitation uncertain. Weak fine-scale patterns of population structure were detected, indicative of broad-scale panmixia among wild oysters, while a hatchery-sourced farmed population exhibited a higher degree of genetic divergence (Fst = 0.0850-0.102). This hatchery-produced population had also experienced a bottleneck (NeLD = 5.1; 95% C.I. = [5.1-5.3]); compared to infinite NeLD estimates for all wild oysters. Simulation of larval transport pathways confirmed the existence of broad-scale mixture by surface ocean currents, correlating well with fine-scale patterns of population structuring. Fst outlier tests failed to detect large numbers of loci supportive of selection, with 2-5 directional outlier SNPs identified (average Fst = 0.116). The lack of biologically significant population genetic structure, absence of evidence for local adaptation and larval dispersal simulation, all indicate the existence of a single genetic stock of P. margaritifera in the Fiji Islands. This approach using independent genomic and oceanographic tools has allowed fundamental insights into stock structure in this species, with transferability to other highly-dispersive marine taxa for their conservation and management.

  13. Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    PubMed Central

    Pilot, Małgorzata; Jędrzejewski, Włodzimierz; Sidorovich, Vadim E.; Meier-Augenstein, Wolfram; Hoelzel, A. Rus

    2012-01-01

    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ 13C and δ 15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores. PMID:22768075

  14. Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa

    PubMed Central

    Sahoo, Sanghamitra; Kashyap, VK

    2005-01-01

    Background We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification. Results The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people. Conclusions The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and coefficient of gene differentiation were fairly small, the studied populations are indeed genetically similar and that the genetic structure of populations in a geographical region is primarily influenced by their ancestry and not by socio-cultural hierarchy or language. The scenario of genetic structure, however, might be different for other regions of the subcontinent where populations have more similar ethnic and linguistic backgrounds and there might be variations in the patterns of genomic and socio-cultural affinities in different geographical regions. PMID:15694006

  15. Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading.

    PubMed

    Ryan, Timothy M; Shaw, Colin N

    2015-01-13

    The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.

  16. Genetic structure in the European endemic seabird, Phalacrocorax aristotelis, shaped by a complex interaction of historical and contemporary, physical and nonphysical drivers.

    PubMed

    Thanou, Evanthia; Sponza, Stefano; Nelson, Emily J; Perry, Annika; Wanless, Sarah; Daunt, Francis; Cavers, Stephen

    2017-05-01

    Geographically separated populations tend to be less connected by gene flow, as a result of physical or nonphysical barriers preventing dispersal, and this can lead to genetic structure. In this context, highly mobile organisms such as seabirds are interesting because the small effect of physical barriers means nonphysical ones may be relatively more important. Here, we use microsatellite and mitochondrial data to explore the genetic structure and phylogeography of Atlantic and Mediterranean populations of a European endemic seabird, the European shag, Phalacrocorax aristotelis, and identify the primary drivers of their diversification. Analyses of mitochondrial markers revealed three phylogenetic lineages grouping the North Atlantic, Spanish/Corsican and eastern Mediterranean populations, apparently arising from fragmentation during the Pleistocene followed by range expansion. These traces of historical fragmentation were also evident in the genetic structure estimated by microsatellite markers, despite significant contemporary gene flow among adjacent populations. Stronger genetic structure, probably promoted by landscape, philopatry and local adaptation, was found among distant populations and those separated by physical and ecological barriers. This study highlights the enduring effect of Pleistocene climatic changes on shag populations, especially within the Mediterranean Basin, and suggests a role for cryptic northern refugia, as well as known southern refugia, on the genetic structure of European seabirds. Finally, it outlines how contemporary ecological barriers and behavioural traits may maintain population divergence, despite long-distance dispersal triggered by extreme environmental conditions (e.g. population crashes). © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae).

    PubMed

    Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan

    2018-01-01

    The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.

  18. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae)

    PubMed Central

    Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan

    2018-01-01

    The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees. PMID:29389969

  19. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  20. Rapid evolution of introduced tree pathogens via episodic selection and horizontal gene transfer

    Treesearch

    Clive Brasier

    2012-01-01

    Routine selection is simply defined as “the ecological constraints experienced by an endemic organism that favor a relatively stable but fluctuating population structure over time.” Its antithesis is episodic selection, defined as “any sudden ecological disturbance likely to lead to a significant alteration in a species’ population structure” (Brasier 1986, 1995). In...

  1. Approach to prevention of obesity of Roma population in the Region of South Bohemia with focus on selected eating behaviors.

    PubMed

    Dolák, František; Šedová, Lenka; Nováková, Dita; Olišarová, Věra

    2016-12-01

    To survey obesity prevention methods for use in the Roma population with a focus on eating behaviors. A semi-structured interview was used to identify potentially useful obesity prevention methods. Basic anthropometric measurements were also gathered at the same time. This study was part of the "Obesity and overweight in the Roma minority in the Region of South Bohemia" research project (grant project 280-COST-LD14114). Participants consisted of members of the Roma minority (302 respondents) as well as the majority (Czech) population for comparisons. Differences in eating behaviors like irregular eating schedules and excessive consumption of fast food were observed. Statistically significant differences between the Roma minority and the majority (Czech/non-Roma) population were found in this area with the help of statistical significance tests. The Chi-square characteristic of independence (χ2) was, in case of this distribution, valued at 30.815 with 5 degrees of freedom, P < 0.001. The analyses, based on the second degree of classification, identified statistically significant differences between the Roma minority and the majority population. Members of the Roma minority attended preventive health check-ups statistically less often than members of the majority population. Differences between the majority and the Roma population were also found in the degree of patient cooperation with general practitioners. The results show that the Roma population is more likely to engage in eating behaviors that can contribute to overweight and obesity than the majority population. Based on the results of a semi-structured interview and on the results of anthropometric measurements, we can say that the Roma population is at a greater health risk, relative to overweight and obesity, than the majority population.

  2. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.

    PubMed

    De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M

    2009-11-01

    Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.

  3. Isolation and characterization of microsatellite loci in the whale shark (Rhincodon typus)

    USGS Publications Warehouse

    Ramirez-Macias, D.; Shaw, K.; Ward, R.; Galvan-Magana, F.; Vazquez-Juarez, R.

    2009-01-01

    In preparation for a study on population structure of the whale shark (Rhincodon typus), nine species-specific polymorphic microsatellite DNA markers were developed. An initial screening of 50 individuals from Holbox Island, Mexico found all nine loci to be polymorphic, with two to 17 alleles observed per locus. Observed and expected heterozygosity per locus ranged from 0.200 to 0.826 and from 0.213 to 0.857, respectively. Neither statistically significant deviations from Hardy–Weinberg expectations nor statistically significant linkage disequilibrium between loci were observed. These microsatellite loci appear suitable for examining population structure, kinship assessment and other applications.

  4. Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus

    USGS Publications Warehouse

    Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.

    2017-01-01

    Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.

  5. The influence of climatic niche preferences on the population genetic structure of a mistletoe species complex.

    PubMed

    Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco

    2017-06-01

    The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific

    PubMed Central

    Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W.; Wini, Lyndes; Harrison, G. L. Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo

    2018-01-01

    The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. PMID:29373596

  7. Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific.

    PubMed

    Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W; Wini, Lyndes; Harrison, G L Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E

    2018-01-01

    The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination.

  8. Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus

    PubMed Central

    Weber de Melo, Vanessa; Sheikh Ali, Hanan; Freise, Jona; Kühnert, Denise; Essbauer, Sandra; Mertens, Marc; Wanka, Konrad M; Drewes, Stephan; Ulrich, Rainer G; Heckel, Gerald

    2015-01-01

    Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population. PMID:26136821

  9. Population structure of Angiostrongylus cantonensis (Nematoda: Metastrongylidae) in Thailand based on PCR-RAPD markers.

    PubMed

    Thaenkham, Urusa; Pakdee, Wallop; Nuamtanong, Supaporn; Maipanich, Wanna; Pubampen, Somchit; Sa-Nguankiat, Surapol; Komalamisra, Chalit

    2012-05-01

    Angiostrongylus cantonensis is the causative agent of angiostrongyliasis, which is widely distributed throughout the world. It can specifically infect many species of intermediate and definitive hosts. This study examined the genetic differentiation and population structure using the RAPD-PCR method of parasites obtained from 8 different geographical areas of Thailand. Based on 8 primers, high levels of genetic diversity and low levels of gene flow among populations were found. Using genetic distance and neighbor-joining dendrogram methods, A. cantonensis in Thailand could be divided into two groups with statistically significant genetic differentiation of the two populations. However, genotypic variations and haplotype relationships need to be further elucidated using other markers.

  10. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-08-12

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  11. Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: single refugium, multiple routes.

    PubMed

    Zinck, John W R; Rajora, Om P

    2016-03-02

    Knowledge of the historical distribution and postglacial phylogeography and evolution of a species is important to better understand its current distribution and population structure and potential fate in the future, especially under climate change conditions, and conservation of its genetic resources. We have addressed this issue in a wide-ranging and heavily exploited keystone forest tree species of eastern North America, eastern white pine (Pinus strobus). We examined the range-wide population genetic structure, tested various hypothetical population history and evolutionary scenarios and inferred the location of glacial refugium and post-glacial recolonization routes. Our hypothesis was that eastern white pine survived in a single glacial refugium and expanded through multiple post-glacial recolonization routes. We studied the range-wide genetic diversity and population structure of 33 eastern white pine populations using 12 nuclear and 3 chloroplast microsatellite DNA markers. We used Approximate Bayesian Computation approach to test various evolutionary scenarios. We observed high levels of genetic diversity, and significant genetic differentiation (F ST = 0.104) and population structure among eastern white pine populations across its range. A south to north trend of declining genetic diversity existed, consistent with repeated founder effects during post-glaciation migration northwards. We observed broad consensus from nuclear and chloroplast genetic markers supporting the presence of two main post-glacial recolonization routes that originated from a single southern refugium in the mid-Atlantic plain. One route gave rise to populations at the western margin of the species' range in Minnesota and western Ontario. The second route gave rise to central-eastern populations, which branched into two subgroups: central and eastern. We observed minimal sharing of chloroplast haplotypes between recolonization routes but there was evidence of admixture between the western and west-central populations. Our study reveals a single southern refugium, two recolonization routes and three genetically distinguishable lineages in eastern white pine that we suggest to be treated as separate Evolutionarily Significant Units. Like many wide-ranging North American species, eastern white pine retains the genetic signatures of post-glacial recolonization and evolution, and its contemporary population genetic structure reflects not just the modern distribution and effects of heavy exploitation but also routes northward from its glacial refugium.

  12. Emotional decisions in structured populations for the evolution of public cooperation

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Chen, Tong; Chen, Qiao; Si, Guangrun

    2017-02-01

    The behaviors of humans are not always profit-driven in public goods games (PGG). In addition, social preference and decision-making might be influenced, even changed by heuristics and conformity in the real life. Motivated by the facts, we would like to investigate the role of emotional system in cooperative behaviors of structured population in PGG. Meantime, the effects of diffusion of influence are studied in structured population. Numerical simulation results are indicated that emotions play very significant role indeed in emergence and maintenance of cooperation in structured populations in PGG. However, the influences of emotions on others are limited due to diminishing of influence diffusion and the existence of pure defectors. What is more, conformity, to some extent, could drive potentially more people to accept cooperative strategy with higher probability. Higher-level cooperation could be promoted as increasing values of synergy factors, but while the effects might diminish gradually as increasing number of positive heuristic players and conformist. Our work may be beneficial to address the social dilemmas in PGG.

  13. Genetic characterization of Colombian Bahman cattle using microsatellites markers.

    PubMed

    Gómez, Y M; Fernandez, M; Rivera, D; Gómez, G; Bernal, J E

    2013-07-01

    Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H(o) = 0.6621. Brahman population in Colombia was a small subdivision within populations (F(it) = 0.045), a geographic subdivision almost non-existent or low differentiation (F(st) = 0.003) and the F(is) calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.

  14. Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested grey wolf (Canis lupus) population in north-eastern Europe.

    PubMed

    Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas

    2013-01-01

    Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.

  15. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa.

    PubMed

    Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve

    2009-05-01

    This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.

  16. Landscape genetics in the subterranean rodent Ctenomys "chasiquensis" associated with highly disturbed habitats from the southeastern Pampas region, Argentina.

    PubMed

    Mora, Matías Sebastián; Mapelli, Fernando J; López, Aldana; Gómez Fernández, María Jimena; Mirol, Patricia M; Kittlein, Marcelo J

    2017-12-01

    Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomys "chasiquensis", a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. "chasiquensis" are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.

  17. Relative Importance of Biotic and Abiotic Forces on the Composition and Dynamics of a Soft-Sediment Intertidal Community

    PubMed Central

    Barbeau, Myriam A.

    2016-01-01

    Top-down, bottom-up, middle-out and abiotic factors are usually viewed as main forces structuring biological communities, although assessment of their relative importance, in a single study, is rarely done. We quantified, using multivariate methods, associations between abiotic and biotic (top-down, bottom-up and middle-out) variables and infaunal population/community variation on intertidal mudflats in the Bay of Fundy, Canada, over two years. Our analysis indicated that spatial structural factors like site and plot accounted for most of the community and population variation. Although we observed a significant relationship between the community/populations and the biotic and abiotic variables, most were of minor importance relative to the structural factors. We suggest that community and population structure were relatively uncoupled from the structuring influences of biotic and abiotic factors in this system because of high concentrations of resources that sustain high densities of infauna and limit exploitative competition. Furthermore, we hypothesize that the infaunal community primarily reflects stochastic spatial events, namely a “first come, first served” process. PMID:26790098

  18. Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia

    PubMed Central

    Gaudeul, Myriam; Giraud, Tatiana; Kiss, Levente; Shykoff, Jacqui A.

    2011-01-01

    Background Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed. Principal Findings We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted. Conclusions This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments. PMID:21423697

  19. Turkish Population Structure and Genetic Ancestry Reveal Relatedness among Eurasian Populations

    PubMed Central

    Hodoğlugil, Uğur; Mahley, Robert W.

    2013-01-01

    Summary Turkey connects the Middle East, Europe, and Asia and has experienced major population movements. We examined the population structure and genetic relatedness of samples from three regions of Turkey using over 500,000 SNP genotypes. The data were analyzed together with Human Genome Diversity Panel data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analyzed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K = 3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42–49), 40% European (95% CI, 36–44), and 15% Central Asian (95% CI, 13–16), whereas at K = 4 the genetic ancestry of the Turks was 38% European (95% CI, 35–42), 35% Middle Eastern (95% CI, 33–38), 18% South Asian (95% CI, 16–19), and 9% Central Asian (95% CI, 7–11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul, and Kayseri) were superimposed, without clear subpopulation structure, suggesting the selected samples were rather homogeneous. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns. PMID:22332727

  20. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean

    NASA Astrophysics Data System (ADS)

    Baums, I. B.; Johnson, M. E.; Devlin-Durante, M. K.; Miller, M. W.

    2010-12-01

    In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.

  1. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae)

    NASA Astrophysics Data System (ADS)

    Jin, Yuqing; Ma, Yongpeng; Wang, Shun; Hu, Xian-Ge; Huang, Li-Sha; Li, Yue; Wang, Xiao-Ru; Mao, Jian-Feng

    2016-10-01

    Platycladus orientalis, a widespread conifer with long lifespan and significant adaptability. It is much used in reforestation in north China and commonly planted in central Asia. With the increasing demand for plantation forest in central to north China, breeding programs are progressively established for this species. Efficient use of breeding resources requires good understanding of the genetic value of the founder breeding materials. This study investigated the distribution of genetic variation in 192 elite trees collected for the breeding program for the central range of the species. We developed first set of 27 polymorphic EST-derived SSR loci for the species from transcriptome/genome data. After examination of amplification quality, 10 loci were used to evaluate the genetic variation in the breeding population. We found moderate genetic diversity (average He = 0.348) and low population differentiation (Fst = 0.011). Extensive admixture and no significant geographic population structure characterized this set of collections. Our analyses of the diversity and population structure are important steps toward a long-term sustainable deployment of the species and provide valuable genetic information for conservation and breeding applications.

  2. RAPD variation and population genetic structure of Physalaemus cuvieri (Anura: Leptodactylidae) in Central Brazil.

    PubMed

    Telles, Mariana Pires de Campos; Bastos, Rogério Pereira; Soares, Thannya Nascimento; Resende, Lucileide Vilela; Diniz-Filho, José Alexandre Felizola

    2006-01-01

    Studies about the organization of the genetic variability and population structure in natural populations are used either to understand microevolutionary processes or the effects of isolation by human-inducted landscape modifications. In this paper, we analyzed patterns of genetic population structure using 126 RAPD loci scored for 214 individuals of Physalaemus cuvieri, sampled from 18 local populations. Around 97% of these loci were polymorphic. The among-population variation component (Phi(ST)) obtained by AMOVA was equal to 0.101 and theta B obtained using a Bayesian approach for dominant markers was 0.103. Genetic divergence, analyzed by Mantel spatial correlogram, revealed only a short-distance significant correlation between genetic and geographic distances. This is expected if low levels of population differentiation, due to high abundance buffering the effect of stochastic processes, are combined with low spatially restricted gene flow. Although this may be consistent with the current knowledge of species' biology, the spatial distribution of local populations observed in this study also suggest that, at least in part, recent human occupation and habitat fragmentation may also explain part of the interpopulational component of the genetic variation.

  3. Calls reveal population structure of blue whales across the southeast Indian Ocean and the southwest Pacific Ocean.

    PubMed

    Balcazar, Naysa E; Tripovich, Joy S; Klinck, Holger; Nieukirk, Sharon L; Mellinger, David K; Dziak, Robert P; Rogers, Tracey L

    2015-11-24

    For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale ( Balaenoptera musculus ) complex is extremely diverse but difficult to study. Using automated detector methods, we identified "acoustic populations" of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale.

  4. Genetic structure is determined by stochastic factors in a natural population of Drosophila buzzatii in Argentina.

    PubMed

    Vilardi, J C; Hasson, E; Rodriguez, C; Fanara, J J

    1994-01-01

    D. buzzatii is a cactophilic species associated with several cactaceae in Argentina. This particular ecological niche implies that this species is faced with a non-uniform environment constituted by discrete and ephemeral breeding sites, which are colonized by a finite number of inseminated females. The genetic consequences of this population structure upon the second chromosome polymorphism were investigated by means of F-statistics in a natural endemic population of Argentina. The present study suggests that differentiation of inversion frequencies in third instar larvae among breeding sites has taken place mainly at random and selection is not operating to determine the structure of this population. The average number of parents breeding on a single pad seems to be similar to the number colonizing Opuntia ficus indica rotting cladodes in Carboneras, a derived population from Spain. There is no significant excess of heterokaryotypes within pads or in the population as a whole. The results obtained in the present study suggest that the potential role of selective versus stochastic factors relative to the among pad heterogeneity in the population here studied is different from that of the Spanish population previously reported. Potential mechanisms responsible for these differences are discussed.

  5. Genetic structure of Culex erraticus populations across the Americas.

    PubMed

    Mendenhall, Ian H; Bahl, Justin; Blum, Michael J; Wesson, Dawn M

    2012-05-01

    Culex erraticus (Dyar & Knab) is a potential competent vector for several arboviruses such as Eastern and Venezuelan equine encephalitis viruses and West Nile virus. It therefore may play a role in the maintenance and spread of viral populations in areas of concern, including the United States where it occurs in >33 states. However, little information is available on potential barriers to movement across the species' distribution. Here, we analyze genetic variation among Cx. erraticus collected from Colombia, Guatemala, and nine locations in the United States to better understand population structure and connectivity. Comparative sequence analysis of the second internal transcribed spacer and mitochondrial NADH dehydrogenase genes identified two major lineages of sampled populations. One lineage represented the central and eastern United States, whereas the other corresponded to Central America, South America, and the western United States. Hierarchical analysis of genetic variation provided further evidence of regional population structure, although the majority of genetic variation was found to reside within populations, suggestive of large population sizes. Although significant physical barriers such as the Chihuahuan Desert probably constrain the spread of Cx. erraticus, large population sizes and connectivity within regions remain important risk factors that probably contribute to the movement of arboviruses within and between these regions.

  6. Early abnormalities of cardiovascular structure and function in middle-aged Korean adults with prehypertension: The Korean Genome Epidemiology study.

    PubMed

    Kim, Seong Hwan; Cho, Goo-Yeong; Baik, Inkyung; Lim, Sang Yup; Choi, Cheol Ung; Lim, Hong Euy; Kim, Eung Ju; Park, Chang Gyu; Park, Juri; Kim, Jinyoung; Shin, Chol

    2011-02-01

    Prehypertension is associated with increased cardiovascular morbidity and mortality. However, there are few population-based studies on the changes of cardiovascular structure and function that characterize prehypertension. The aim of this study was to assess whether prehypertension is associated with abnormalities of cardiovascular structure and function in the general Korean population. We analyzed the cross-sectional relationships between prehypertension and cardiovascular structure and function in a sample from the Korean Genome Epidemiology Study. A total of 1,671 individuals (54.5% women; mean age: 53 ± 6 years) without hypertension and diabetes mellitus were enrolled. Cardiovascular structure and function were assessed by conventional echocardiography, tissue Doppler imaging (TDI), carotid ultrasonography, and pulse wave velocity (PWV). The left ventricular (LV) mass index was significantly higher in subjects with prehypertension than in those with normotension (41 ± 8 g/m²·⁷ vs. 38 ± 7 g/m²·⁷, P < 0.001). LV diastolic parameters, such as the E/A ratio, TDI E(a) velocity, and E/E(a) ratio, were also impaired in subjects with prehypertension (all P < 0.001). Compared with normotension, prehypertension was characterized by a significantly higher common carotid artery intima-media thickness and a higher brachial-ankle PWV (all P < 0.001). These abnormalities of cardiovascular structure and function remained significant after adjustment for covariates. In this population-based cohort, we found that subtle alterations in cardiovascular structure and function were already present at the prehypertensive stage. Whether such subtle alterations convey an increased risk of cardiovascular events and whether the changes are reversible with treatment warrant further study.

  7. A population genetic analysis of the midget faded rattlesnake in Wyoming

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Parker, J.M.

    2010-01-01

    Little is known about the population biology of midget faded rattlesnakes, a sensitive subspecies of the Western Rattlesnake, despite conservation efforts to protect them. We conducted a molecular genetic study of midget faded rattlesnakes in southwestern Wyoming to investigate population genetic structure in this area, particularly with reference to Flaming Gorge Reservoir and its associated human activities, and to document levels of genetic diversity. We genotyped 229 snakes from 11 sampling sites using 9 microsatellite loci. We found significant levels of genetic structure among sites that were better explained by geographic region and isolation by distance than by position relative to waterways. Sites on either side of the reservoir at its widest point were not significantly different. Six of the sites showed signatures of a population bottleneck using an alpha value of 0.05. Three of these bottlenecked sites (the three most northern) were the most genetically distinct and occur in areas of greatest impact from human activity.

  8. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  9. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae) Population of the Araguaia-Tocantins Basin.

    PubMed

    Vitorino, Carla A; Nogueira, Fabrícia; Souza, Issakar L; Araripe, Juliana; Venere, Paulo C

    2017-01-01

    The arapaima, Arapaima gigas , is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas , although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise F ST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin.

  10. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae) Population of the Araguaia-Tocantins Basin

    PubMed Central

    Vitorino, Carla A.; Nogueira, Fabrícia; Souza, Issakar L.; Araripe, Juliana; Venere, Paulo C.

    2017-01-01

    The arapaima, Arapaima gigas, is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas, although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise FST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin. PMID:29114261

  11. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection.

    PubMed

    Tollenaere, C; Duplantier, J-M; Rahalison, L; Ranjalahy, M; Brouat, C

    2011-03-01

    The black rat (Rattus rattus) is the main reservoir of plague (Yersinia pestis infection) in Madagascar's rural zones. Black rats are highly resistant to plague within the plague focus (central highland), whereas they are susceptible where the disease is absent (low altitude zone). To better understand plague wildlife circulation and host evolution in response to a highly virulent pathogen, we attempted to determine genetic markers associated with plague resistance in this species. To this purpose, we combined a population genomics approach and an association study, both performed on 249 AFLP markers, in Malagasy R. rattus. Simulated distributions of genetic differentiation were compared to observed data in four independent pairs, each consisting of one population from the plague focus and one from the plague-free zone. We found 22 loci (9% of 249) with higher differentiation in at least two independent population pairs or with combining P-values over the four pairs significant. Among the 22 outlier loci, 16 presented significant association with plague zone (plague focus vs. plague-free zone). Population genetic structure inferred from outlier loci was structured by plague zone, whereas the neutral loci dataset revealed structure by geography (eastern vs. western populations). A phenotype association study revealed that two of the 22 loci were significantly associated with differentiation between dying and surviving rats following experimental plague challenge. The 22 outlier loci identified in this study may undergo plague selective pressure either directly or more probably indirectly due to hitchhiking with selected loci. © 2010 Blackwell Publishing Ltd.

  12. Mitochondrial DNA sequence variation and phylogeography of the scarlet kingsnake (Lampropeltis elapsoides).

    PubMed

    Friedman, Michael; Schaffer, Les

    2011-02-01

    BACKGROUND AND AIMS. With the goal of assessing population structure and geographic distribution of haplotype lineages among Lampropeltis elapsoides, we sequenced the ND4 mitochondrial DNA locus from 96 specimens of this snake across its area of distribution. MATERIALS AND METHODS. We relied heavily on formalin-fixed museum specimens to accomplish this analysis. RESULTS. The sequence alignment consisted of 491 bp of the selected gene, with 28% missing data. A simulation used to assess the effect of missing data on population genetic and phylogenetic resolution indicated increased character conflict, but with minimal loss of phylogenetic structure. CONCLUSION. This limited dataset suggests that L. elapsoides constitutes a largely unstructured population, with both widespread haplotypes and large number of private haplotypes, a moderate level of nucleotide diversity, and a low, but significant, degree of north-south population differentiation. Haplotype structure and frequency, nucleotide frequency, and values for Tajima's D and Fu's F(S) indicate a recent range or population expansion following a historic bottleneck.

  13. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history.

    PubMed

    Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C

    2014-01-01

    Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.

  14. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  15. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    PubMed

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  16. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    PubMed

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes from the A and B subgenomes.

  17. Spatial and temporal determinants of genetic structure in Gentianella bohemica

    PubMed Central

    Königer, Julia; Rebernig, Carolin A; Brabec, Jiří; Kiehl, Kathrin; Greimler, Josef

    2012-01-01

    The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (Ne) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise FST= 0.29–0.60) and from all other populations (FST= 0.24–0.49). We found a pattern of near panmixis among the latter (FST= 0.15–0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise FST= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, HSh) was significantly correlated with Ne (RS= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked demographic fluctuations in declining populations. PMID:22822440

  18. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yayun; Zhao, Tao; Wang, Yanan, E-mail: wyn3615@126.com

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions,more » and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.« less

  19. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L.

    PubMed

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.

  20. Environmental heterogeneity explains the genetic structure of Continental and Mediterranean populations of Fraxinus angustifolia Vahl.

    PubMed

    Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F

    2012-01-01

    Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.

  1. Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl

    PubMed Central

    Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.

    2012-01-01

    Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171

  2. Genomic differentiation and demographic histories of Atlantic and Indo-Pacific yellowfin tuna (Thunnus albacares) populations.

    PubMed

    Barth, J M I; Damerau, M; Matschiner, M; Jentoft, S; Hanel, R

    2017-04-13

    Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow from the Indo-Pacific to the Atlantic. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters.

    PubMed

    Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

  4. Genetic Structure and Natal Origins of Immature Hawksbill Turtles (Eretmochelys imbricata) in Brazilian Waters

    PubMed Central

    Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419

  5. Population genetics of seaside Sparrow (Ammodramus maritimus) subspecies along the gulf of Mexico.

    PubMed

    Woltmann, Stefan; Stouffer, Philip C; Bergeon Burns, Christine M; Woodrey, Mark S; Cashner, Mollie F; Taylor, Sabrina S

    2014-01-01

    Seaside Sparrows (Ammodramus maritimus) along the Gulf of Mexico are currently recognized as four subspecies, including taxa in Florida (A. m. juncicola and A. m. peninsulae) and southern Texas (Ammodramus m. sennetti), plus a widespread taxon between them (A. m. fisheri). We examined population genetic structure of this "Gulf Coast" clade using microsatellite and mtDNA data. Results of Bayesian analyses (Structure, GeneLand) of microsatellite data from nine locations do not entirely align with current subspecific taxonomy. Ammodramus m. sennetti from southern Texas is significantly differentiated from all other populations, but we found evidence of an admixture zone with A. m. fisheri near Corpus Christi. The two subspecies along the northern Gulf Coast of Florida are significantly differentiated from both A. m. sennetti and A. m. fisheri, but are not distinct from each other. We found a weak signal of isolation by distance within A. m. fisheri, indicating this population is not entirely panmictic throughout its range. Although continued conservation concern is warranted for all populations along the Gulf Coast, A. m. fisheri appears to be more secure than the far smaller populations in south Texas and the northern Florida Gulf Coast. In particular, the most genetically distinct populations, those in Texas south of Corpus Christi, occupy unique habitats within a very small geographic range.

  6. Microsatellite markers from the 'South American fruit fly' Anastrepha fraterculus: a valuable tool for population genetic analysis and SIT applications

    PubMed Central

    2014-01-01

    Background Anastrepha fraterculus Wiedemann is a horticultural pest which causes significant economic losses in the fruit-producing areas of the American continent and limits the access of products to international markets. The use of environmentally friendly control strategies against this pest is constrained due to the limited knowledge of its population structure. Results We developed microsatellite markers for A. fraterculus from four genomic libraries, which were enriched in CA, CAA, GA and CAT microsatellite motifs. Fifty microsatellite regions were evaluated and 14 loci were selected for population genetics studies. Genotypes of 122 individuals sampled from four A. fraterculus populations were analyzed. The level of polymorphism ranged from three to 13 alleles per locus and the mean expected heterozygosity ranged from 0.60 to 0.64. Comparison between allelic and genotypic frequencies showed significant differences among all pairs of populations. Conclusions This novel set of microsatellite markers provides valuable information for the description of genetic variability and population structure of wild populations and laboratory strains of A. fraterculus. This information will be used to identify and characterize candidate strains suitable to implement effective pest control strategies and might represent a first step towards having a more comprehensive knowledge about the genetics of this pest. PMID:25471285

  7. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus.

    PubMed

    Kashtan, Nadav; Roggensack, Sara E; Berta-Thompson, Jessie W; Grinberg, Maor; Stepanauskas, Ramunas; Chisholm, Sallie W

    2017-09-01

    The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.

  8. Lowered Diversity and Increased Inbreeding Depression within Peripheral Populations of Wild Rice Oryza rufipogon.

    PubMed

    Gao, Li-Zhi; Gao, Cheng-Wen

    2016-01-01

    The distribution of genetic variability from the interior towards the periphery of a species' range is of great interest to evolutionary biologists. Although it has been long presumed that population genetic variation should decrease as a species' range is approached, results of empirical investigations still remain ambiguous. Knowledge regarding patterns of genetic variability as well as affected factors is particularly not conclusive in plants. To determine genetic divergence in peripheral populations of the wild rice Oryza rufipogon Griff. from China, genetic diversity and population structure were studied in five northern & northeastern peripheral and 16 central populations using six microsatellite loci. We found that populations resided at peripheries of the species possessed markedly decreased microsatellite diversity than those located in its center. Population size was observed to be positively correlated with microsatellite diversity. Moreover, there are significantly positive correlations between levels of microsatellite diversity and distances from the northern and northeastern periphery of this species. To investigate genetic structure and heterozygosity variation between generations of O. rufipogon, a total of 2382 progeny seeds from 186 maternal families were further assayed from three peripheral and central populations, respectively. Peripheral populations exhibited significantly lower levels of heterozygosities than central populations for both seed and maternal generations. In comparisons with maternal samples, significantly low observed heterozygosity (HO) and high heterozygote deficit within populations (FIS) values were detected in seed samples from both peripheral and central populations. Significantly lower observed heterozygosity (HO) and higher FIS values were further observed in peripheral populations than those in central populations for seed samples. The results indicate an excess of homozygotes and thus high inbreeding depression in peripheral populations. Our results together suggest that historical contraction of geographical range, demographic changes, and environmental conditions near the northern and northeastern margins of O. rufipogon favor inbreeding and possibly selfing, leading to the rapidly decreased effective population size. Genetic drift, reduced gene flow, and possible local selection, consequently lead to lowered gene diversity, accelerated genetic divergence and increased inbreeding depression found in peripheral populations of O. rufipogon. Given these characteristics observed, northern and northeastern peripheral populations deserve relatively different conservation strategies for either germplasm sampling of ex situ conservation or setting in situ reserves for the adaptation to possible environmental changes and the future germplasm utilization of wild rice.

  9. [Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].

    PubMed

    Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing

    2013-08-01

    This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.

  10. Genetic structure in the southernmost populations of black-and-gold howler monkeys (Alouatta caraya) and its conservation implications

    PubMed Central

    Miño, Carolina Isabel; Fernández, Gabriela; Caputo, Mariela; Corach, Daniel

    2017-01-01

    Black-and-gold howler monkeys Alouatta caraya, are arboreal primates, inhabitants of Neotropical forests, highly susceptible to the yellow fever virus, considered early 'sentinels' of outbreaks, and thus, of major epidemiological importance. Currently, anthropogenic habitat loss and modifications threatens their survival. Habitat modification can prevent, reduce or change dispersal behavior, which, in turn, may influence patterns of gene flow. We explored past and contemporary levels of genetic diversity, elucidated genetic structure and identified its possible drivers, in ten populations (n = 138) located in the southernmost distribution range of the species in South America, in Argentina and Paraguay. Overall, genetic variability was moderate (ten microsatellites: 3.16 ± 0.18 alleles per locus, allelic richness of 2.93 ± 0.81, 0.443±0.025 unbiased expected heterozygosity; 22 haplotypes of 491-bp mitochondrial Control Region, haplotypic diversity of 0.930 ± 0.11, and nucleotide diversity of0.01± 0.007). Significant evidence of inbreeding was found in a population that was, later, decimated by yellow fever. Population-based gene flow measures (FST = 0.13; θST = 018), hierarchical analysis of molecular variance and Bayesian clustering methods revealed significant genetic structure, grouping individuals into four clusters. Shared haplotypes and lack of mitochondrial differentiation (non-significant θST) among some populations seem to support the hypothesis of historical dispersal via riparian forests. Current resistance analyses revealed a significant role of landscape features in modeling contemporary gene flow: continuous forest and riparian forests could promote genetic exchange, whereas disturbed forests or crop/grassland fields may restrict it. Estimates of effective population size allow anticipating that the studied populations will lose 75% of heterozygosity in less than 50 generations. Our findings suggest that anthropogenic modifications on native forests, increasingly ongoing in Northeastern Argentina, Southern Paraguay and Southeastern Brazil, might prevent the dispersal of howlers, leading to population isolation. To ensure long-term viability and maintain genetic connectivity of A. caraya remnant populations, we recommend preserving and restoring habitat continuity. To conserve the species genetic pool, as well, the four genetic clusters identified here should be considered separate Management Units and given high conservation priority. In light of our findings and considering complementary non-genetic information, we suggest upgrading the international conservation status of A. caraya to “Vulnerable”. PMID:28968440

  11. Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation.

    PubMed

    Liu, Yang; Yang, Shi-xiong; Ji, Peng-zhang; Gao, Li-zhi

    2012-06-21

    As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h = 0.841; π = 0.00314) were almost as high as at PAL (h = 0.836; π = 0.00417). Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989), suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a moderate nrDNA population subdivision (GST = 0.222; NST = 0.301) provided the evidence of efficient pollen-mediated gene flow among populations and significant phylogeographical structure (NST > GST; P < 0.01). The analysis of PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by restricted gene flow with isolation by distance, which was also supported by Mantel's test of nrDNA haplotypes (r = 0.234, P < 0.001). We found that chlorotype C1 was fixed in seven populations of Lancang River Region, implying that the Lancang River might have provided a corridor for the long-distance dispersal of the species. We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and habitat fragmentation. This phylogeographical study gives us deep insights into population structure of the species and conservation strategies for germplasm sampling and developing in situ conservation of natural populations.

  12. Metapopulation structure of the specialized herbivore Macrosiphoniella tanacetaria (Homoptera, Aphididae).

    PubMed

    Massonnet, Blandine; Simon, Jean-Christophe; Weisser, Wolfgang W

    2002-12-01

    We investigated population dynamics, genetic diversity and spatial structure in the aphid species Macrosiphoniella tanacetaria, a specialist herbivore feeding on tansy, Tanacetum vulgare. Tansy plants (genets) consist of many shoots (ramets), and genets are grouped in sites. Thus, aphids feeding on tansy can cluster at the level of ramets, genets and sites. We studied aphid population dynamics in 1997 and 2001 and found that within sites: (i). at any time, aphids used only a fraction of the available ramets and genets; (ii). at the level of ramets, most aphid colonies survived only one week; (iii). at the level of genets, mean survival time was less than 4 weeks; and (iv). colonization and extinction events occurred throughout the season. We sampled aphids in seven sites in the Alsace region, France (4-45 km apart) and two sites in Germany in 1999 to study genetic structure within and between populations. Genetic analyses using nine microsatellite loci showed that: (i). genotypic variability was high, (ii). none of the populations was in Hardy-Weinberg equilibrium, (iii). heterozygote deficits and linkage disequilibria were frequent, and (iv). all populations were genetically differentiated, even at a small geographical scale. Renewed sampling of the Alsace sites in 2001 showed that three populations had become extinct and significant genetic changes had occurred in the remaining four populations. The frequencies of extinction and colonization events at several spatial scales suggest a hierarchical metapopulation structure for M. tanacetaria. Frequent population turnover and drift are likely causes for the genetic differentiation of M. tanacetaria populations.

  13. Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets.

    PubMed

    Kohl, Kevin D; Varner, Johanna; Wilkening, Jennifer L; Dearing, M Denise

    2018-03-01

    Gut microbial communities provide many physiological functions to their hosts, especially in herbivorous animals. We still lack an understanding of how these microbial communities are structured across hosts in nature, especially within a given host species. Studies on laboratory mice have demonstrated that host genetics can influence microbial community structure, but that diet can overwhelm these genetic effects. We aimed to test these ideas in a natural system, the American pika (Ochotona princeps). First, pikas are high-elevation specialists with significant population structure across various mountain ranges in the USA, allowing us to investigate whether similarities in microbial communities match host genetic differences. Additionally, pikas are herbivorous, with some populations exhibiting remarkable dietary plasticity and consuming high levels of moss, which is exceptionally high in fibre and low in protein. This allows us to investigate adaptations to an herbivorous diet, as well as to the especially challenging diet of moss. Here, we inventoried the microbial communities of pika caecal pellets from various populations using 16S rRNA sequencing to investigate structuring of microbial communities across various populations with different natural diets. Microbial communities varied significantly across populations, and differences in microbial community structure were congruent with genetic differences in host population structure, a pattern known as "phylosymbiosis." Several microbial members (Ruminococcus, Prevotella, Oxalobacter and Coprococcus) were detected across all samples, and thus likely represent a "core microbiome." These genera are known to perform a number of services for herbivorous hosts such as fibre fermentation and the degradation of plant defensive compounds, and thus are likely important for herbivory in pikas. Moreover, pikas that feed on moss harboured microbial communities highly enriched in Melainabacteria. This uncultivable candidate phylum has been proposed to ferment fibre for herbivores, and thus may contribute to the ability of some pika populations to consume high amounts of moss. These findings demonstrate that both host genetics and diet can influence the microbial communities of the American pika. These animals may be novel sources of fibre-degrading microbes. Last, we discuss the implications of population-specific microbial communities for conservation efforts in this species. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  14. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana)

    PubMed Central

    Shih, Kai-Ming; Chang, Chung-Te; Chung, Jeng-Der; Chiang, Yu-Chung; Hwang, Shih-Ying

    2018-01-01

    Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana. PMID:29449860

  15. Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management

    PubMed Central

    Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name “eelgrass”) is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061–0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of the Korean Peninsula, for this ecologically important species. PMID:28323864

  16. Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management.

    PubMed

    Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass") is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of the Korean Peninsula, for this ecologically important species.

  17. Microsatellite and mtDNA analysis of lake trout, Salvelinus namaycush, from Great Bear Lake, Northwest Territories: impacts of historical and contemporary evolutionary forces on Arctic ecosystems

    PubMed Central

    Harris, Les N; Howland, Kimberly L; Kowalchuk, Matthew W; Bajno, Robert; Lindsay, Melissa M; Taylor, Eric B

    2013-01-01

    Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post-glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d-loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present-day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post-glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long-lived salmonids in pristine, interconnected habitats. PMID:23404390

  18. Microsatellite and mtDNA analysis of lake trout, Salvelinus namaycush, from Great Bear Lake, Northwest Territories: impacts of historical and contemporary evolutionary forces on Arctic ecosystems.

    PubMed

    Harris, Les N; Howland, Kimberly L; Kowalchuk, Matthew W; Bajno, Robert; Lindsay, Melissa M; Taylor, Eric B

    2012-01-01

    Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post-glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d-loop). Overall, population subdivision was low, but significant (global F(ST) θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global F(ST) = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present-day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post-glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long-lived salmonids in pristine, interconnected habitats.

  19. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti

    PubMed Central

    Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana

    2017-01-01

    Background Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. Principal findings We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. Significance The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti. PMID:28248964

  20. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation.

    PubMed

    Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji

    2014-04-01

    The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.

  1. Rapid recovery of genetic diversity of dogwhelk (Nucella lapillus L.) populations after local extinction and recolonization contradicts predictions from life-history characteristics.

    PubMed

    Colson, I; Hughes, R N

    2004-08-01

    The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations. Copyright 2004 Blackwell Publishing Ltd

  2. Comparative Genetic Structure and Demographic History in Endemic Galápagos Weevils

    PubMed Central

    Stepien, Courtney C.; Sijapati, Manisha; Roque Albelo, Lázaro

    2012-01-01

    The challenge of maintaining genetic diversity within populations can be exacerbated for island endemics if they display population dynamics and behavioral attributes that expose them to genetic drift without the benefits of gene flow. We assess patterns of the genetic structure and demographic history in 27 populations of 9 species of flightless endemic Galápagos weevils from 9 of the islands and 1 winged introduced close relative. Analysis of mitochondrial DNA reveals a significant population structure and moderately variable, though demographically stable, populations for lowland endemics (FST = 0.094–0.541; π: 0.014–0.042; Mismatch P = 0.003–0.026; and D(Tajima) = −0.601 to 1.203), in contrast to signals of past contractions and expansions in highland specialists on 2 islands (Mismatch P = 0.003–0.026 and D(Tajima) = −0.601 to 1.203). We interpret this series of variable and highly structured population groups as a system of long-established, independently founded island units, where structuring could be a signal of microallopatric differentiation due to patchy host plant distribution and poor dispersal abilities. We suggest that the severe reduction and subsequent increase of a suitably moist habitat that accompanied past climatic variation could have contributed to the observed population fluctuations in highland specialists. We propose the future exploration of hybridization between the introduced and highland endemic species on Santa Cruz, especially given the expansion of the introduced species into the highlands, the sensitivity to past climatic variation detected in highland populations, and the potentially threatened state of single-island endemics. PMID:22174444

  3. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    PubMed

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-06-10

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity.

  4. Intercontinental gene flow among western arctic populations of Lesser Snow Geese

    USGS Publications Warehouse

    Shorey, Rainy I.; Scribner, Kim T.; Kanefsky, Jeannette; Samuel, Michael D.; Libants, Scot V.

    2011-01-01

    Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced.

  5. [The dynamic nature of the nutrition of the population of 1 of the districts of Moscow over a 10-year period].

    PubMed

    Eganian, R A; Kalinina, A M; Izmaĭlova, O V; Shaternikova, I N

    2000-01-01

    On the basis of three-multiple research of character of a feed of the inhabitants of one of Moscow district by the standardized method of the 24-th hour interrogation reveals significant changes in structure of a feed of the population from 1986 to 1996. The shifts have appeared more dynamical in the second five-year from 1991 to 1996. Nevertheless, atherogenicity of ration of a researched population with superfluous consumption of the saturated fats and simple carbohydrates remains. Is established, in a feed of the women there were large shifts, than at the men. The structure of a feed of the inhabitants of Moscow differed from structure of a feed of the inhabitants of Russia.

  6. The Structure and Kinematics of Little Blue Spheroid Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Phillipps, Steven; Robotham, Aaron; Driver, Simon; Bremer, Malcolm; GAMA survey team, SAMI survey team

    2018-01-01

    A population of blue, morphologically early-type galaxies, dubbed "Little Blue Spheroids" (LBSs), has been identified as a significant contributor to the low redshift galaxy population in the GAMA survey. Using deep, high-resolution optical imaging from KiDS and the new Bayesian, two-dimensional galaxy profile modelling code PROFIT, we examine the detailed structural characteristics of LBSs, including low surface brightness components not detected in previous SDSS imaging. We find that these LBS galaxies combine features typical of early-type and late-type populations, with structural properties similar to other low-mass early types and star formation rates similar to low-mass late types. We further consider the environments and SAMI-derived IFU kinematics of LBSs in order to investigate the conditions of their formation and the current state of their dynamical evolution.

  7. [Prospect and application of microsatellite population genetics in study of geoherbs].

    PubMed

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  8. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba

    PubMed Central

    2011-01-01

    Background Southern Ocean fauna represent a significant amount of global biodiversity, whose origin may be linked to glacial cycles determining local extinction/eradication with ice advance, survival of refugee populations and post-glacial re-colonization. This pattern implies high potential for differentiation in benthic shelf species with limited dispersal, yet consequences for pelagic organisms are less clear. The present study investigates levels of genetic variation and population structure of the Antarctic krill Euphausia superba using mitochondrial DNA and EST-linked microsatellite markers for an unprecedentedly comprehensive sampling of its populations over a circum-Antarctic range. Results MtDNA (ND1) sequences and EST-linked microsatellite markers indicated no clear sign of genetic structure among populations over large geographic scales, despite considerable power to detect differences inferred from forward-time simulations. Based on ND1, few instances of genetic heterogeneity, not significant after correction for multiple tests, were detected between geographic or temporal samples. Neutrality tests and mismatch distribution based on mtDNA sequences revealed strong evidence of past population expansion. Significant positive values of the parameter g (a measure of population growth) were obtained from microsatellite markers using a coalescent-based genealogical method and suggested a recent start (60 000 - 40 000 years ago) for the expansion. Conclusions The results provide evidence of lack of genetic heterogeneity of Antarctic krill at large geographic scales and unequivocal support for recent population expansion. Lack of genetic structuring likely reflects the tight link between krill and circum-Antarctic ocean currents and is consistent with the hypothesis that differentiation processes in Antarctic species are largely influenced by dispersal potential, whereas small-scale spatial and temporal differentiation might be due to local conditions leading to genetic patchiness. The signal of recent population growth suggests differential impact of glacial cycles on pelagic Antarctic species, which experienced population expansion during glaciations with increased available habitat, versus sedentary benthic shelf species. EST-linked microsatellites provide new perspectives to complement the results based on mtDNA and suggest that data-mining of EST libraries will be a useful approach to facilitate use of microsatellites for additional species. PMID:21486439

  9. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    PubMed

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics.

  10. Population Explosion in the Yellow-Spined Bamboo Locust Ceracris kiangsu and Inferences for the Impact of Human Activity

    PubMed Central

    Fan, Zhou; Jiang, Guo-Fang; Liu, Yu-Xiang; He, Qi-Xin; Blanchard, Benjamin

    2014-01-01

    Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei's genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow. PMID:24603526

  11. Genetic structuring of remnant forest patches in an endangered medicinal tree in North-western Ethiopia

    PubMed Central

    2014-01-01

    Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions. PMID:24602239

  12. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico.

    PubMed

    Rampersad, Sephra N; Perez-Brito, Daisy; Torres-Calzada, Claudia; Tapia-Tussell, Raul; Carrington, Christine V F

    2013-06-22

    C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical.

  13. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico

    PubMed Central

    2013-01-01

    Background C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. Results The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. Conclusions The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical. PMID:23800297

  14. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  15. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    PubMed

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice.

    PubMed

    Wallace, Ian J; Judex, Stefan; Demes, Brigitte

    2015-03-01

    Effects of load-bearing exercise on skeletal structure and mechanical properties can vary between inbred strains of mice. Here, we examine whether such variation also exists at the population level. An experiment was performed with two outbred mouse stocks that have been reproductively isolated for >120 generations (Hsd:ICR, Crl:CD1). Growing females from each stock were either treated with a treadmill-running regimen for 1 month or served as controls. Limb forces were recorded with a force plate and cage activity monitored to verify that they were similar between stocks. After the experiment, femoral cortical and trabecular bone structure were quantified with micro-CT in the mid-diaphysis and distal metaphysis, respectively, and diaphyseal structural strength was determined with mechanical testing. Among Hsd:ICR mice, running led to significant improvements in diaphyseal bone quantity, structural geometry, and mechanical properties, as well as enhanced trabecular morphology. In contrast, among Crl:CD1 mice, the same running regimen had little effect on cortical and trabecular structure and significantly reduced diaphyseal resistance to fracture. In neither stock was body mass, muscle mass, or cage activity level different between runners and controls. Given that most environmental variables were controlled in this study, the differential effects of exercise on Hsd:ICR and Crl:CD1 bones were likely due to genetic differences between stocks. These results suggest that the benefits of loading for bone may vary between human populations (e.g., ethnic groups), in which case exercise programs and technologies designed to promote bone health with mechanical signals may be more advantageous to certain populations than others. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The hOGG1 Ser326Cys Gene Polymorphism and Breast Cancer Risk in Saudi Population.

    PubMed

    Alanazi, Mohammed; Pathan, Akbar Ali Khan; Shaik, Jilani P; Alhadheq, Abdullah; Khan, Zahid; Khan, Wajahatullah; Al Naeem, Abdulrahman; Parine, Narasimha Reddy

    2017-07-01

    The purpose of this study was to test the association between human 8-oxoguanine glycosylase 1 (hOGG1) gene polymorphisms and susceptibility to breast cancer in Saudi population. We have also aimed to screen the hOGG1 Ser326Cys polymorphism effect on structural and functional properties of the hOGG1 protein using in silico tools. We have analyzed four SNPs of hOGG1 gene among Saudi breast cancer patients along with healthy controls. Genotypes were screened using TaqMan SNP genotype analysis method. Experimental data was analyzed using Chi-square, t test and logistic regression analysis using SPSS software (v.16). In silco analysis was conducted using discovery studio and HOPE program. Genotypic analysis showed that hOGG1 rs1052133 (Ser326Cys) is significantly associated with breast cancer samples in Saudi population, however rs293795 (T >C), rs2072668 (C>G) and rs2075747 (G >A) did not show any association with breast cancer. The hOGG1 SNP rs1052133 (Ser326Cys) minor allele T showed a significant association with breast cancer samples (OR = 1.78, χ2 = 7.86, p = 0.02024). In silico structural analysis was carried out to compare the wild type (Ser326) and mutant (Cys326) protein structures. The structural prediction studies revealed that Ser326Cys variant may destabilize the protein structure and it may disturb the hOGG1 function. Taken together this is the first In silico study report to confirm Ser326Cys variant effect on structural and functional properties of hOGG1 gene and Ser326Cys role in breast cancer susceptibility in Saudi population.

  18. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  19. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  20. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India

    PubMed Central

    Singh, Sujeet Kumar; Aspi, Jouni; Kvist, Laura; Sharma, Reeta; Pandey, Puneet; Mishra, Sudhanshu; Singh, Randeep; Agrawal, Manoj; Goyal, Surendra Prakash

    2017-01-01

    Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL) at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL) of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6) and genetic variation (Ho = 0.50, HE = 0.64) were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060) and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries, prevention of encroachment, and banning sand and boulder mining in the corridors. PMID:28445499

  1. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India.

    PubMed

    Singh, Sujeet Kumar; Aspi, Jouni; Kvist, Laura; Sharma, Reeta; Pandey, Puneet; Mishra, Sudhanshu; Singh, Randeep; Agrawal, Manoj; Goyal, Surendra Prakash

    2017-01-01

    Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL) at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL) of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6) and genetic variation (Ho = 0.50, HE = 0.64) were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060) and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries, prevention of encroachment, and banning sand and boulder mining in the corridors.

  2. Effects of aging on sleep structure throughout adulthood: a population-based study.

    PubMed

    Moraes, Walter; Piovezan, Ronaldo; Poyares, Dalva; Bittencourt, Lia Rita; Santos-Silva, Rogerio; Tufik, Sergio

    2014-04-01

    Although many studies have shown the evolution of sleep parameters across the lifespan, not many have included a representative sample of the general population. The objective of this study was to describe age-related changes in sleep structure, sleep respiratory parameters and periodic limb movements of the adult population of São Paulo. We selected a representative sample of the city of São Paulo, Brazil that included both genders and an age range of 20-80 years. Pregnant and lactating women, people with physical or mental impairments that prevent self-care and people who work every night were not included. This sample included 1024 individuals who were submitted to polysomnography and structured interviews. We subdivided our sample into five-year age groups. One-way analysis of variance was used to compare age groups. Pearson product-moment was used to evaluate correlation between age and sleep parameters. Total sleep time, sleep efficiency, percentage of rapid eye movement (REM) sleep and slow wave sleep showed a significant age-related decrease (P<0.05). WASO (night-time spent awake after sleep onset), arousal index, sleep latency, REM sleep latency, and the percentage of stages 1 and 2 showed a significant increase (P<0.05). Furthermore, apnea-hypopnea index increased and oxygen saturation decreased with age. The reduction in the percentage of REM sleep significantly correlated with age in women, whereas the reduction in the percentage of slow wave sleep correlated with age in men. The periodic limb movement (PLM) index increased with age in men and women. Sleep structure and duration underwent significant alterations throughout the aging process in the general population. There was an important correlation between age, sleep respiratory parameters and PLM index. In addition, men and women showed similar trends but with different effect sizes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication

    PubMed Central

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene flow and the maintenance of high levels of variation within all populations. The slight differentiation associated with management indicates that domestication is in an incipient stage. PMID:26433707

  4. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  5. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern

    PubMed Central

    2010-01-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. He and H B were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θB values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species. PMID:21637500

  6. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern.

    PubMed

    Nascimento, Marcília A; Batalha-Filho, Henrique; Waldschmidt, Ana M; Tavares, Mara G; Campos, Lucio A O; Salomão, Tânia M F

    2010-04-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. H(e) and H (B) were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θ(B) values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species.

  7. Diversity and Genetic Structure of the Mexican Endemic Epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae)

    PubMed Central

    GONZÁLEZ-ASTORGA, JORGE; CRUZ-ANGÓN, ANDREA; FLORES-PALACIOS, ALEJANDRO; VOVIDES, ANDREW P.

    2004-01-01

    • Background and Aims The monoecious, bird-pollinated epiphytic Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys is an endemic bromeliad of the tropical dry forests of Mexico with clonal growth. In the Sierra de Huautla Natural Reserve this species shows a host preference for Bursera copallifera (Sessé & Moc ex. DC) Bullock. As a result of deforestation in the study area, B. copallifera has become a rare tree species in the remaining forest patches. This human-induced disturbance has directly affected the population densities of T. achyrostachys. In this study the genetic consequences of habitat fragmentation were assessed by comparing the genetic diversity, gene flow and genetic differentiation in six populations of T. achyrostachys in the Sierra de Huautla Natural Reserve, Mexico. • Methods Allozyme electrophoresis of sixteen loci (eleven polymorphic and five monomorphic) were used. The data were analysed with standard statistical approximations for obtaining diversity, genetic structure and gene flow. • Key Results Genetic diversity and allelic richness were: HE = 0·21 ± 0·02, A = 1·86 ± 0·08, respectively. F-statistics revealed a deficiency of heterozygous plants in all populations (Fit = 0·65 ± 0·02 and Fis = 0·43 ± 0·06). Significant genetic differentiation between populations was detected (Fst = 0·39 ± 0·07). Average gene flow between pairs of populations was relatively low and had high variation (Nm = 0·46 ± 0·21), which denotes a pattern of isolation by distance. The genetic structure of populations of T. achyrostachys suggests that habitat fragmentation has reduced allelic richness and genetic diversity, and increased significant genetic differentiation (by approx. 40 %) between populations. • Conclusions The F-statistic values (>0) and the level of gene flow found suggest that habitat fragmentation has broken up the former population structure. In this context, it is proposed that the host trees of T. achyrostachys should be considered as a conservation priority, since they represent the limiting factor to bromeliad population growth and connectivity. PMID:15319228

  8. A Demographic Deficit? Local Population Aging and Access to Services in Rural America, 1990–2010

    PubMed Central

    Thiede, Brian; Brown, David L.; Sanders, Scott R.; Glasgow, Nina; Kulcsar, Laszlo J.

    2017-01-01

    Population aging is being experienced by many rural communities in the U.S., as evidenced by increases in the median age and the high incidence of natural population decrease. The implications of these changes in population structure for the daily lives of the residents in such communities have received little attention. We address this issue in the current study by examining the relationship between population aging and the availability of service-providing establishments in the rural U.S. between 1990 and 2010. Using data mainly from the U.S. Census Bureau and the Bureau of Labor Statistics, we estimate a series of fixed-effects regression models to identify the relationship between median age and establishment counts net of changes in overall population and other factors. We find a significant, but non-linear relationship between county median age and the total number of service-providing establishments, and counts of most specific types of services. We find a positive effect of total population size across all of our models. This total population effect is consistent with other research, but the independent effects of age structure that we observe represent a novel finding and suggest that age structure is a salient factor in local rural development and community wellbeing. PMID:28757660

  9. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    PubMed

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  10. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters

    PubMed Central

    Yoon, M.; Park, W.; Nam, Y. K.; Kim, D. S.

    2012-01-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05), and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species. PMID:25049547

  11. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach.

    PubMed

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-12-14

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean F ST  = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.

  12. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach

    PubMed Central

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M.; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-01-01

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds. PMID:27966592

  13. Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments.

    PubMed

    Chin, A; Tobin, A J; Heupel, M R; Simpfendorfer, C A

    2013-04-01

    This study examined the characteristics of a blacktip reef shark Carcharhinus melanopterus population in turbid coastal habitats through a multi-year fishery-independent sampling and tag-recapture programme. Results revealed a highly structured population comprised almost entirely of juveniles and adult females with individuals between 850 and 1050 mm total length effectively absent. Mature males were also rarely encountered with adult sex ratio highly biased towards females (female:male = 7:1). Mating scars were observed on adult females between December and April, and parturition was observed from December to March. Regression analysis showed that catch rates were significantly higher during the summer wet season between November and May. Recapture data suggested a highly resident population with a recapture rate of 21% and a mean recapture distance of 0·8 km. In addition, 33% of recaptured animals were captured multiple times, indicating long-term residency. Most recaptures were, however, of adults with few juveniles recaptured. Widespread sampling at the study site and in adjacent areas suggested that the population was highly localized to a specific bay. The bimodal and sex-segregated population structure observed here differs from previous reports for this species, and in combination with reproductive observations, suggests population structuring to facilitate reproductive and recruitment success. These data also highlight the potential ecosystem functions performed by coastal habitats in sustaining C. melanopterus populations. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  14. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range.

    PubMed

    Vignaud, Thomas M; Mourier, Johann; Maynard, Jeffrey A; Leblois, Raphael; Spaet, Julia; Clua, Eric; Neglia, Valentina; Planes, Serge

    2014-11-01

    For free-swimming marine species like sharks, only population genetics and demographic history analyses can be used to assess population health/status as baseline population numbers are usually unknown. We investigated the population genetics of blacktip reef sharks, Carcharhinus melanopterus; one of the most abundant reef-associated sharks and the apex predator of many shallow water reefs of the Indian and Pacific Oceans. Our sampling includes 4 widely separated locations in the Indo-Pacific and 11 islands in French Polynesia with different levels of coastal development. Four-teen microsatellite loci were analysed for samples from all locations and two mitochondrial DNA fragments, the control region and cytochrome b, were examined for 10 locations. For microsatellites, genetic diversity is higher for the locations in the large open systems of the Red Sea and Australia than for the fragmented habitat of the smaller islands of French Polynesia. Strong significant structure was found for distant locations with FST values as high as ~0.3, and a smaller but still significant structure is found within French Polynesia. Both mitochondrial genes show only a few mutations across the sequences with a dominant shared haplotype in French Polynesia and New Caledonia suggesting a common lineage different to that of East Australia. Demographic history analyses indicate population expansions in the Red Sea and Australia that may coincide with sea level changes after climatic events. Expansions and flat signals are indicated for French Polynesia as well as a significant recent bottleneck for Moorea, the most human-impacted lagoon of the locations in French Polynesia. © 2014 John Wiley & Sons Ltd.

  15. Optimal control of Atlantic population Canada geese

    USGS Publications Warehouse

    Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.

    2007-01-01

    Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.

  16. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness.

    PubMed

    Conomos, Matthew P; Miller, Michael B; Thornton, Timothy A

    2015-05-01

    Population structure inference with genetic data has been motivated by a variety of applications in population genetics and genetic association studies. Several approaches have been proposed for the identification of genetic ancestry differences in samples where study participants are assumed to be unrelated, including principal components analysis (PCA), multidimensional scaling (MDS), and model-based methods for proportional ancestry estimation. Many genetic studies, however, include individuals with some degree of relatedness, and existing methods for inferring genetic ancestry fail in related samples. We present a method, PC-AiR, for robust population structure inference in the presence of known or cryptic relatedness. PC-AiR utilizes genome-screen data and an efficient algorithm to identify a diverse subset of unrelated individuals that is representative of all ancestries in the sample. The PC-AiR method directly performs PCA on the identified ancestry representative subset and then predicts components of variation for all remaining individuals based on genetic similarities. In simulation studies and in applications to real data from Phase III of the HapMap Project, we demonstrate that PC-AiR provides a substantial improvement over existing approaches for population structure inference in related samples. We also demonstrate significant efficiency gains, where a single axis of variation from PC-AiR provides better prediction of ancestry in a variety of structure settings than using 10 (or more) components of variation from widely used PCA and MDS approaches. Finally, we illustrate that PC-AiR can provide improved population stratification correction over existing methods in genetic association studies with population structure and relatedness. © 2015 WILEY PERIODICALS, INC.

  17. The structure of genetic diversity in eelgrass (Zostera marina L.) along the North Pacific and Bering Sea coasts of Alaska

    USGS Publications Warehouse

    Talbot, Sandra L.; Sage, Kevin; Rearick, Jolene; Fowler, Megan C.; Muñiz-Salazar, Raquel; Baibak, Bethany; Wyllie-Echeverria, Sandy; Cabello-Pasini, Alehandro; Ward, David H.

    2016-01-01

    Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128–0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.

  18. The Structure of Genetic Diversity in Eelgrass (Zostera marina L.) along the North Pacific and Bering Sea Coasts of Alaska

    PubMed Central

    Talbot, Sandra L.; Sage, George K; Rearick, Jolene R.; Fowler, Meg C.; Muñiz-Salazar, Raquel; Baibak, Bethany; Wyllie-Echeverria, Sandy; Cabello-Pasini, Alejandro; Ward, David H.

    2016-01-01

    Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128–0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation. PMID:27104836

  19. The Structure of Genetic Diversity in Eelgrass (Zostera marina L.) along the North Pacific and Bering Sea Coasts of Alaska.

    PubMed

    Talbot, Sandra L; Sage, George K; Rearick, Jolene R; Fowler, Meg C; Muñiz-Salazar, Raquel; Baibak, Bethany; Wyllie-Echeverria, Sandy; Cabello-Pasini, Alejandro; Ward, David H

    2016-01-01

    Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128-0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.

  20. Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae).

    PubMed

    Wang, Q Z; Huang, M; Downie, S R; Chen, Z X

    2016-05-23

    Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.

  1. Genetic differentiation and phylogeography of Mediterranean-North Eastern Atlantic blue shark (Prionace glauca, L. 1758) using mitochondrial DNA: panmixia or complex stock structure?

    PubMed Central

    Damalas, Dimitrios; Martinsohn, Jann; Zanzi, Antonella; Mariani, Stefano; Sperone, Emilio; Micarelli, Primo; Garibaldi, Fulvio; Megalofonou, Persefoni; Bargelloni, Luca; Franch, Rafaella; Macias, David; Prodöhl, Paulo; Fitzpatrick, Séan; Stagioni, Marco; Tinti, Fausto; Cariani, Alessia

    2017-01-01

    Background The blue shark (Prionace glauca, Linnaeus 1758) is one of the most abundant epipelagic shark inhabiting all the oceans except the poles, including the Mediterranean Sea, but its genetic structure has not been confirmed at basin and interoceanic distances. Past tagging programs in the Atlantic Ocean failed to find evidence of migration of blue sharks between the Mediterranean and the adjacent Atlantic, despite the extreme vagility of the species. Although the high rate of by-catch in the Mediterranean basin, to date no genetic study on Mediterranean blue shark was carried out, which constitutes a significant knowledge gap, considering that this population is classified as “Critically Endangered”, unlike its open-ocean counterpart. Methods Blue shark phylogeography and demography in the Mediterranean Sea and North-Eastern Atlantic Ocean were inferred using two mitochondrial genes (Cytb and control region) amplified from 207 and 170 individuals respectively, collected from six localities across the Mediterranean and two from the North-Eastern Atlantic. Results Although no obvious pattern of geographical differentiation was apparent from the haplotype network, Φst analyses indicated significant genetic structure among four geographical groups. Demographic analyses suggest that these populations have experienced a constant population expansion in the last 0.4–0.1 million of years. Discussion The weak, but significant, differences in Mediterranean and adjacent North-eastern Atlantic blue sharks revealed a complex phylogeographic structure, which appears to reject the assumption of panmixia across the study area, but also supports a certain degree of population connectivity across the Strait of Gibraltar, despite the lack of evidence of migratory movements observed by tagging data. Analyses of spatial genetic structure in relation to sex-ratio and size could indicate some level of sex/stage biased migratory behaviour. PMID:29230359

  2. Zebra Finch Song Phonology and Syntactical Structure across Populations and Continents-A Computational Comparison.

    PubMed

    Lachlan, Robert F; van Heijningen, Caroline A A; Ter Haar, Sita M; Ten Cate, Carel

    2016-01-01

    Learned bird songs are often characterized by a high degree of variation between individuals and sometimes between populations, while at the same time maintaining species specificity. The evolution of such songs depends on the balance between plasticity and constraints. Captive populations provide an opportunity to examine signal variation and differentiation in detail, so we analyzed adult male zebra finch (Taeniopygia guttata) songs recorded from 13 populations across the world, including one sample of songs from wild-caught males in their native Australia. Cluster analysis suggested some, albeit limited, evidence that zebra finch song units belonged to universal, species-wide categories, linked to restrictions in vocal production and non-song parts of the vocal repertoire. Across populations, songs also showed some syntactical structure, although any song unit could be placed anywhere within the song. On the other hand, there was a statistically significant differentiation between populations, but the effect size was very small, and its communicative significance dubious. Our results suggest that variation in zebra finch songs within a population is largely determined by species-wide constraints rather than population-specific features. Although captive zebra finch populations have been sufficiently isolated to allow them to genetically diverge, there does not appear to have been any divergence in the genetically determined constraints that underlie song learning. Perhaps more surprising is the lack of locally diverged cultural traditions. Zebra finches serve as an example of a system where frequent learning errors may rapidly create within-population diversity, within broad phonological and syntactical constraints, and prevent the formation of long-term cultural traditions that allow populations to diverge.

  3. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens).

    PubMed

    Oliveira, Larissa Rosa de; Gehara, Marcelo C M; Fraga, Lúcia D; Lopes, Fernando; Túnez, Juan Ignacio; Cassini, Marcelo H; Majluf, Patricia; Cárdenas-Alayza, Susana; Pavés, Héctor J; Crespo, Enrique Alberto; García, Nestor; Loizaga de Castro, Rocío; Hoelzel, A Rus; Sepúlveda, Maritza; Olavarría, Carlos; Valiati, Victor Hugo; Quiñones, Renato; Pérez-Alvarez, Maria Jose; Ott, Paulo Henrique; Bonatto, Sandro L

    2017-01-01

    The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean.

  4. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens)

    PubMed Central

    Gehara, Marcelo C. M.; Fraga, Lúcia D.; Lopes, Fernando; Túnez, Juan Ignacio; Cassini, Marcelo H.; Majluf, Patricia; Cárdenas-Alayza, Susana; Pavés, Héctor J.; Crespo, Enrique Alberto; García, Nestor; Loizaga de Castro, Rocío; Hoelzel, A. Rus; Sepúlveda, Maritza; Olavarría, Carlos; Valiati, Victor Hugo; Quiñones, Renato; Pérez-Alvarez, Maria Jose; Ott, Paulo Henrique

    2017-01-01

    The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean. PMID:28654647

  5. Disturbance and density-dependent processes (competition and facilitation) influence the fine-scale genetic structure of a tree species' population.

    PubMed

    Fajardo, Alex; Torres-Díaz, Cristian; Till-Bottraud, Irène

    2016-01-01

    Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters). The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions. All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10 m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation. Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The spatial and temporal evolution of carbon emissions drivers in the United States

    NASA Astrophysics Data System (ADS)

    Baldwin, James George

    This dissertation addresses two important environmental policy questions: how has the structure of the drivers of U.S. carbon dioxide ( CO2) emissions evolved through time and across regions, and what role have economic forces played in shaping these factors? First, prior research on the drivers of CO2 emissions at the state level and the use of index number decomposition techniques to analyze CO2's fossil-fuel precursors are reviewed. Second, a novel Kaya identity decomposition method is developed which partitions the historical series of energy-related emissions into five factors: the CO2 intensity of energy use, the energy intensity of economic activity, changes in economic structure, affluence and population growth. While aggregate growth in emissions has been driven almost entirely by increases in population and affluence, the results demonstrate significant regional heterogeneity. Third, the influences of affluence and population, along with regional energy prices, investment patterns, and weather, on CO 2 intensity, energy intensity and structural change, are analyzed statistically. The contributions of carbon-intensive fuels exhibit significant but inelastic relationships to income, capital availability and fossil fuel prices. Contributions due to energy intensity exhibit significant and negative relationships to all factors examined excluding petroleum and electricity prices. Energy intensity is inelastic in the short run but elastic in the long run to income, weather, petroleum and coal prices. Contributions due to economic structure are significant but inelastic to income, cool weather and petroleum price. The contribution of energy intensity to emissions growth is more strongly influenced by increases in personal income than by value added, suggesting that consumption rather than production plays the more important role. Controlling for the scale of economic activity, larger populations, faster rates of investment and greater capital availability are associated with lower energy intensity. The low elasticity of carbon intensity, energy intensity and structural change with respect to trends in the economy imply a need for a fundamental shift in U.S. energy use and production. The implication of these findings is that current economic and demographic trends are unlikely to lead to declines in emissions, and that policy intervention will be required to achieve emissions reductions.

  7. Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.

    PubMed

    Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R

    2010-08-01

    Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.

  8. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population.

    PubMed

    Aykanat, Tutku; Johnston, Susan E; Orell, Panu; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2015-10-01

    Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST  = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. © 2015 John Wiley & Sons Ltd.

  9. Genetic structure in the Anaxyrus boreas species group (anura, Bufonidae): an evaluation of the Southern Rocky Mountain population

    USGS Publications Warehouse

    Switzer, John F.; Johnson, Robin L.; Lubinski, Barbara A.; King, Tim L.

    2009-01-01

    The Anaxyrus boreas species group is comprised of four species endemic to the western United States: A. boreas, A. canorus, A. exsul, and A. nelsoni. Disjunct populations of the widespread western toad Anaxyrus boreas from Colorado and southern Wyoming, the southern rocky mountain population (SRMP), were previously candidates for listing under the United States Endangered Species Act (ESA) as a distinct population segment (DPS), but were removed due to a lack of significant genetic differentiation in preliminary studies. The purpose of this study was to conduct phylogeographic and population genetic analyses of A. boreas and three related species using mitochondrial DNA sequence data and nuclear microsatellite genotype data. The study is specifically focused on testing the evolutionary significance of the SRMP.

  10. Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus.

    PubMed

    Ball, Sarah E; Bovero, Stefano; Sotgiu, Giuseppe; Tessa, Giulia; Angelini, Claudio; Bielby, Jon; Durrant, Christopher; Favelli, Marco; Gazzaniga, Enrico; Garner, Trenton W J

    2017-02-01

    The identification of historic and contemporary barriers to dispersal is central to the conservation of endangered amphibians, but may be hindered by their complex life history and elusive nature. The complementary information generated by mitochondrial (mtDNA) and microsatellite markers generates a valuable tool in elucidating population structure and the impact of habitat fragmentation. We applied this approach to the study of an endangered montane newt, Euproctus platycephalus . Endemic to the Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease, and climate change. We have demonstrated a clear hierarchy of structure across genetically divergent and spatially distinct subpopulations. Divergence between three main mountain regions dominated genetic partitioning with both markers. Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years ago (Mya), isolating the northern region, and further differentiation between the central and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene severe glacial oscillations. Our findings are consistent with a model of southward range expansion during glacial periods, with postglacial range retraction to montane habitat and subsequent genetic isolation. Microsatellite markers revealed further strong population structure, demonstrating significant divergence within the central region, and partial differentiation within the south. The northern population showed reduced genetic diversity. Discordance between mitochondrial and microsatellite markers at this scale indicated a further complexity of population structure, in keeping with male-biased dispersal and female philopatry. Our study underscores the need to elucidate cryptic population structure in the ecology and conservation strategies for endangered island-restricted amphibians, especially in the context of disease and climate change.

  11. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific.

    PubMed

    Otwoma, Levy Michael; Kochzius, Marc

    2016-01-01

    The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI) gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO) and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA). A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1) Kenya (Watamu, Mombasa, Diani) and Tanzanian Island populations (Misali and Jambiani) and (2) the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03). The genetic population structure was stronger and more significant (ΦST = 0.13) in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001) suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1) WIO (2) Eastern Indian Ocean (3) IMPA and (4) Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.

  12. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific

    PubMed Central

    Kochzius, Marc

    2016-01-01

    The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI) gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO) and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA). A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1) Kenya (Watamu, Mombasa, Diani) and Tanzanian Island populations (Misali and Jambiani) and (2) the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03). The genetic population structure was stronger and more significant (ΦST = 0.13) in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001) suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1) WIO (2) Eastern Indian Ocean (3) IMPA and (4) Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean. PMID:27798700

  13. Spatial structure of morphological and neutral genetic variation in Brook Trout

    USGS Publications Warehouse

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  14. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems

    PubMed Central

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G” ST = 0.269 and 0.164 and D EST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  15. Genetic Diversity and Population Structure of Ethiopian Sheep Populations Revealed by High-Density SNP Markers

    PubMed Central

    Edea, Zewdu; Dessie, Tadelle; Dadi, Hailu; Do, Kyoung-Tag; Kim, Kwan-Suk

    2017-01-01

    Sheep in Ethiopia are adapted to a wide range of environments, including extreme habitats. Elucidating their genetic diversity is critical for improving breeding strategies and mapping quantitative trait loci associated with productivity. To this end, the present study investigated the genetic diversity and population structure of five Ethiopian sheep populations exhibiting distinct phenotypes and sampled from distinct production environments, including arid lowlands and highlands. To investigate the genetic relationships in greater detail and infer population structure of Ethiopian sheep breeds at the continental and global levels, we analyzed genotypic data of selected sheep breeds from the Ovine SNP50K HapMap dataset. All Ethiopian sheep samples were genotyped with Ovine Infinium HD SNP BeadChip (600K). Mean genetic diversity ranged from 0.29 in Arsi-Bale to 0.32 in Menz sheep, while estimates of genetic differentiation among populations ranged from 0.02 to 0.07, indicating low to moderate differentiation. An analysis of molecular variance revealed that 94.62 and 5.38% of the genetic variation was attributable to differences within and among populations, respectively. Our population structure analysis revealed clustering of five Ethiopian sheep populations according to tail phenotype and geographic origin—i.e., short fat-tailed (very cool high-altitude), long fat-tailed (mid to high-altitude), and fat-rumped (arid low-altitude), with clear evidence of admixture between long fat-tailed populations. North African sheep breeds showed higher levels of within-breed diversity, but were less differentiated than breeds from Eastern and Southern Africa. When African breeds were grouped according to geographic origin (North, South, and East), statistically significant differences were detected among groups (regions). A comparison of population structure between Ethiopian and global sheep breeds showed that fat-tailed breeds from Eastern and Southern Africa clustered together, suggesting that these breeds were introduced to the African continent via the Horn and migrated further south. PMID:29312441

  16. Population connectivity and larval dispersal of the exploited mangrove crab Ucides cordatus along the Brazilian coast.

    PubMed

    Britto, Fábio B; Schmidt, Anders J; Carvalho, Adriana M F; Vasconcelos, Carolina C M P; Farias, Antonia M; Bentzen, Paul; Diniz, Fábio M

    2018-01-01

    The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of F ST (= 0.019; P < 0.001). F ST and Jost's D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs ( P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition ( P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation ( F CT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus . Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs.

  17. Population connectivity and larval dispersal of the exploited mangrove crab Ucides cordatus along the Brazilian coast

    PubMed Central

    Schmidt, Anders J.; Carvalho, Adriana M.F.; Vasconcelos, Carolina C.M.P.; Farias, Antonia M.; Bentzen, Paul

    2018-01-01

    Background The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Methods Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Results Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of FST (= 0.019; P < 0.001). FST and Jost’s D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs (P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition (P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation (FCT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. Discussion The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus. Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs. PMID:29736340

  18. People of the British Isles: preliminary analysis of genotypes and surnames in a UK-control population

    PubMed Central

    Winney, Bruce; Boumertit, Abdelhamid; Day, Tammy; Davison, Dan; Echeta, Chikodi; Evseeva, Irina; Hutnik, Katarzyna; Leslie, Stephen; Nicodemus, Kristin; Royrvik, Ellen C; Tonks, Susan; Yang, Xiaofeng; Cheshire, James; Longley, Paul; Mateos, Pablo; Groom, Alexandra; Relton, Caroline; Bishop, D Tim; Black, Kathryn; Northwood, Emma; Parkinson, Louise; Frayling, Timothy M; Steele, Anna; Sampson, Julian R; King, Turi; Dixon, Ron; Middleton, Derek; Jennings, Barbara; Bowden, Rory; Donnelly, Peter; Bodmer, Walter

    2012-01-01

    There is a great deal of interest in a fine-scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to have a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. In this study, we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK-control population that can be used as a resource by the research community, as well as providing a fine-scale genetic information on the British population. So far, some 4000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3 km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1057 samples demonstrates the value of these samples for investigating a fine-scale population structure within the UK, and shows how this can be enhanced by the use of surnames. PMID:21829225

  19. People of the British Isles: preliminary analysis of genotypes and surnames in a UK-control population.

    PubMed

    Winney, Bruce; Boumertit, Abdelhamid; Day, Tammy; Davison, Dan; Echeta, Chikodi; Evseeva, Irina; Hutnik, Katarzyna; Leslie, Stephen; Nicodemus, Kristin; Royrvik, Ellen C; Tonks, Susan; Yang, Xiaofeng; Cheshire, James; Longley, Paul; Mateos, Pablo; Groom, Alexandra; Relton, Caroline; Bishop, D Tim; Black, Kathryn; Northwood, Emma; Parkinson, Louise; Frayling, Timothy M; Steele, Anna; Sampson, Julian R; King, Turi; Dixon, Ron; Middleton, Derek; Jennings, Barbara; Bowden, Rory; Donnelly, Peter; Bodmer, Walter

    2012-02-01

    There is a great deal of interest in a fine-scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to have a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. In this study, we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK-control population that can be used as a resource by the research community, as well as providing a fine-scale genetic information on the British population. So far, some 4000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3 km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1057 samples demonstrates the value of these samples for investigating a fine-scale population structure within the UK, and shows how this can be enhanced by the use of surnames.

  20. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    USGS Publications Warehouse

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra L.

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  1. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged and commercial orchard interface.

    PubMed

    Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C

    2014-04-01

    The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control.

  2. An ecological genetic delineation of local seed-source provenance for ecological restoration

    PubMed Central

    Krauss, Siegfried L; Sinclair, Elizabeth A; Bussell, John D; Hobbs, Richard J

    2013-01-01

    An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range-wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R-statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ∼60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat-matched sites within a 30-km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability-based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration. PMID:23919158

  3. Population genetic structure and dispersal across a fragmented landscape in cerulean warblers (Dendroica cerulea)

    Treesearch

    M.L. Veit; R.J. Robertson; P.B. Hamel; V.L. Friesen

    2005-01-01

    Cerulean warblers (Dendroica cerulea) have experienced significant declines across their breeding range and presently exist in disjunct populations, largely because of extensive loss and fragmentation of their breeding and wintering habitat. Despite this overall decline, a recent north-eastern expansion of the breeding range has been proposed, and...

  4. Molecular Evidence of Demographic Expansion of the Chagas Disease Vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia

    PubMed Central

    Gómez-Palacio, Andrés; Triana, Omar

    2014-01-01

    Background Triatoma dimidiata is one of the most significant vectors of Chagas disease in Central America and Colombia, and, as in most species, its pattern of genetic variation within and among populations is strongly affected by its phylogeographic history. A putative origin from Central America has been proposed for Colombian populations, and high genetic differentiation among three biographically different population groups has recently been evidenced. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonization, can be inferred. We analyzed the genealogies of the nicotinamide adenine dinucleotide dehydrogenase 4 (ND4) and the cytochrome oxidase subunit 1-mitochondrial genes, as well as partial nuclear ITS-2 DNA sequences obtained across most of the eco-geographical range in Colombia, to assess the population structure and demographic factors that may explain the geographical distribution of T. dimidiata in this country. Results The population structure results support a significant association between genetic divergence and the eco-geographical location of population groups, suggesting that clear signals of demographic expansion can explain the geographical distribution of haplotypes of population groups. Additionally, empirical date estimation of the event suggests that the population's expansion can be placed after the emergence of the Panama Isthmus, and that it was possibly followed by a population fragmentation process, perhaps resulting from local adaptation accomplished by orographic factors such as geographical isolation. Conclusion Inferences about the historical population processes in Colombian T. dimidiata populations are generally in accordance with population expansions that may have been accomplished by two important biotic and orographic events such as the Great American Interchange and the uplift of the eastern range of the Andes mountains in central Colombia. PMID:24625572

  5. Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation

    PubMed Central

    HE, Ya; WANG, Zheng-Huan; WANG, Xiao-Ming

    2014-01-01

    Cervus sichuanicus is a species of sika deer (Cervus nippon Group). To date, research has mainly focused on quantity surveying and behavior studies, with genetic information on this species currently deficient. To provide scientific evidence to assist in the protection of this species, we collected Sichuan sika deer fecal samples from the Sichuan Tiebu Nature Reserve (TNR) and extracted DNA from those samples. Microsatellite loci of bovine were used for PCR amplification. After GeneScan, the genotype data were used to analyze the genetic diversity and population structure of the Sichuan sika deer in TNR. Results showed that the average expected heterozygosity of the Sichuan sika deer population in TNR was 0.562, equivalent to the average expected heterozygosity of endangered animals, such as Procapra przewalskii. Furthermore, 8 of 9 microsatellite loci significantly deviated from the Hardy-Weinberg equilibrium and two groups existed within the Sichuan sika deer TNR population. This genetic structure may be caused by a group of Manchurian sika deer (Cervus hortulorum) released in TNR. PMID:25465089

  6. Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation.

    PubMed

    He, Ya; Wang, Zheng-Huan; Wang, Xiao-Ming

    2014-11-18

    Cervus sichuanicus is a species of sika deer (Cervus nippon Group). To date, research has mainly focused on quantity surveying and behavior studies, with genetic information on this species currently deficient. To provide scientific evidence to assist in the protection of this species, we collected Sichuan sika deer fecal samples from the Sichuan Tiebu Nature Reserve (TNR) and extracted DNA from those samples. Microsatellite loci of bovine were used for PCR amplification. After GeneScan, the genotype data were used to analyze the genetic diversity and population structure of the Sichuan sika deer in TNR. Results showed that the average expected heterozygosity of the Sichuan sika deer population in TNR was 0.562, equivalent to the average expected heterozygosity of endangered animals, such as Procapra przewalskii. Furthermore, 8 of 9 microsatellite loci significantly deviated from the Hardy-Weinberg equilibrium and two groups existed within the Sichuan sika deer TNR population. This genetic structure may be caused by a group of Manchurian sika deer (Cervus hortulorum) released in TNR.

  7. Viability of piping plover Charadrius melodus metapopulations

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.

    2000-01-01

    The metapopulation viability analysis package, VORTEX, was used to examine viability and recovery objectives for piping plovers Charadrius melodus, an endangered shorebird that breeds in three distinct regions of North America. Baseline models indicate that while Atlantic Coast populations, under current management practices, are at little risk of near-term extinction, Great Plains and Great Lakes populations require 36% higher mean fecundity for a significant probability of persisting for the next 100 years. Metapopulation structure (i.e. the delineation of populations within the metapopulation) and interpopulation dispersal rates had varying effects on model results; however, spatially-structured metapopulations exhibited lower viability than that reported for single-population models. The models were most sensitive to variation in survivorship; hence, additional mortality data will improve their accuracy. With this information, such models become useful tools in identifying successful management objectives; and sensitivity analyses, even in the absence of some data, may indicate which options are likely to be most effective. Metapopulation viability models are best suited for developing conservation strategies for achieving recovery objectives based on maintaining an externally derived, target population size and structure.

  8. Forensic STR loci reveal common genetic ancestry of the Thai-Malay Muslims and Thai Buddhists in the deep Southern region of Thailand.

    PubMed

    Kutanan, Wibhu; Kitpipit, Thitika; Phetpeng, Sukanya; Thanakiatkrai, Phuvadol

    2014-12-01

    Among the people living in the five deep Southern Thai provinces, Thai-Malay Muslims (MUS) constitute the majority, while the remaining are Thai Buddhists (BUD). Cultural, linguistic and religious differences between these two populations have been previously reported. However, their biological relationship has never been investigated. In this study, we aimed to reveal the genetic structure and genetic affinity between MUS and BUD by analyzing 15 autosomal short tandem repeats. Both distance and model-based clustering methods showed significant genetic homogeneity between these two populations, suggesting a common biological ancestry. After Islamization in this region during the fourteenth century AD, gradual albeit nonstatistically significant genetic changes occurred within these two populations. Cultural barriers possibly influenced these genetic changes. MUS have closer admixture to Malaysian-Malay Muslims than BUD countrywide. Admixture proportions also support certain degree of genetic dissimilarity between the two studied populations, as shown by the unequal genetic contribution from Malaysian-Malay Muslims. Cultural transformation and recent minor genetic admixture are the likely processes that shaped the genetic structure of both MUS and BUD.

  9. Inferring Epidemic Contact Structure from Phylogenetic Trees

    PubMed Central

    Leventhal, Gabriel E.; Kouyos, Roger; Stadler, Tanja; von Wyl, Viktor; Yerly, Sabine; Böni, Jürg; Cellerai, Cristina; Klimkait, Thomas; Günthard, Huldrych F.; Bonhoeffer, Sebastian

    2012-01-01

    Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing. PMID:22412361

  10. Exploring Demographic, Physical, and Historical Explanations for the Genetic Structure of Two Lineages of Greater Antillean Bats

    PubMed Central

    Muscarella, Robert A.; Murray, Kevin L.; Ortt, Derek; Russell, Amy L.; Fleming, Theodore H.

    2011-01-01

    Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern. PMID:21445291

  11. Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru.

    PubMed

    Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola

    2006-09-01

    Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.

  12. SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions.

    PubMed

    Choudhary, Shashi Bhushan; Sharma, Hariom Kumar; Kumar, Arroju Anil; Maruthi, Rangappa Thimmaiah; Mitra, Jiban; Chowdhury, Isholeena; Singh, Binay Kumar; Karmakar, Pran Gobinda

    2017-02-01

    A total of 130 flax accessions of diverse morphotypes and worldwide origin were assessed for genetic diversity and population structure using 11 morphological traits and microsatellite markers (15 gSSRs and 7 EST-SSRs). Analysis performed after classifying these accessions on the basis of plant height, branching pattern, seed size, Indian/foreign origin into six categories called sub-populations viz. fibre type exotic, fibre type indigenous, intermediate type exotic, intermediate type indigenous, linseed type exotic and linseed type indigenous. The study assessed different diversity indices, AMOVA, population structure and included a principal coordinate analysis based on different marker systems. The highest diversity was exhibited by gSSR markers (SI=0.46; He=0.31; P=85.11). AMOVA based on all markers explained significant difference among fibre type, intermediate type and linseed type populations of flax. In terms of variation explained by different markers, EST-SSR markers (12%) better differentiated flax populations compared to morphological (9%) and gSSR (6%) markers at P=0.01. The maximum Nei's unbiased genetic distance (D=0.11) was observed between fibre type and linseed type exotic sub-populations based on EST-SSR markers. The combined structure analysis by using all markers grouped Indian fibre type accessions (63.4%) in a separate cluster along with the Indian intermediate type (48.7%), whereas Indian accessions (82.16%) of linseed type constituted an independent cluster. These findings were supported by the results of the principal coordinate analysis. Morphological markers employed in the study found complementary with microsatellite based markers in deciphering genetic diversity and population structure of the flax germplasm. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  14. Population genetic diversity and genetic structure of Spodoptera exigua around the Bohai Gulf area of China based on mitochondrial DNA signatures.

    PubMed

    Zhou, L-H; Wang, X-Y; Lei, J-J

    2016-09-30

    The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is an economically important pest that causes major losses in some main crop-producing areas of China. To control this pest effectively, it is necessary to investigate its population genetic diversity and genetic structure around the Bohai Gulf area of China. In this study, we used two mitochondrial genes, COI (578 bp) and Cytb (724 bp), to investigate its genetic diversity. We obtained 622 COI sequences and 462 Cytb sequences from 23 populations, and 28 and 73 haplotypes, respectively, were identified. Low to moderate levels of genetic diversity (COI: Hd = 0.267 ± 0.023, Pi = 0.00082 ± 0.00010; Cytb: Hd = 0.689 ± 0.018, Pi = 0.00255 ± 0.00029) for the total populations were observed. Phylogenetic and median-joining network analyses indicated no distinct geographical distribution pattern among the haplotypes. Overall, this study revealed that there was significant differentiation among the populations (COI: F ST = 0.158, P < 0.001; Cytb: F ST = 0.148, P < 0.001). F ST values for Shenyang, Baoding, and Funing were significantly different to those for most of the other populations. Finally, unimodal mismatch distribution analysis, combined with negative neutrality test results, showed a recent population expansion of the beet armyworm around the Bohai Gulf area of China.

  15. [Dynamic of marriage structure in three cities of Ukraine from 1960 to 1992].

    PubMed

    Timchenko, O I; Omel'chenko, E M; Nikula, E T

    2000-04-01

    Marriage structure was studied in the city of Kiev and in two cities of the Sumy oblast, Shostka and Trostyanets. Ethnic affiliations and birthplaces of persons contracting marriage were analyzed as the main characteristics of population genetic diversity. The ethnic composition of persons contracting marriage and the proportions of mono- and interethnic marriages remained almost unchanged during one generation. The majority of the persons contracting marriage were Ukrainians (66-91%); among other ethnic groups, only Russians considerably contributed to ethnic diversity (up to 26%). During the period studied, coefficients of marital migration substantially decreased in Kiev (from 0.66-0.82 to 0.34) and Shostka (from 0.72 to 0.52) and changed only insignificantly in Trostyanets. Outbreeding was estimated based on the migration parameters, exogamy level, and marital migration distances. The outbreeding level in the Shostka population (100,000 people) was comparable with that for the considerably larger Kiev population (two million people); however, it was significantly higher than that for the Trostyanets population, the size of which was close to the size of the Shostka population. It is supposed that "migration stress" may unfavorably affect the adaptive genetic structure of the Shostka population.

  16. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    PubMed

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  17. Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin

    PubMed Central

    Williams, Samuel M.; Otway, Nicholas M.; Nielsen, Einar E.; Maher, Safia L.; Bennett, Mike B.; Ovenden, Jennifer R.

    2017-01-01

    Population genetic structure using nine polymorphic nuclear microsatellite loci was assessed for the tiger shark (Galeocerdo cuvier) at seven locations across the Indo-Pacific, and one location in the southern Atlantic. Genetic analyses revealed considerable genetic structuring (FST > 0.14, p < 0.001) between all Indo-Pacific locations and Brazil. By contrast, no significant genetic differences were observed between locations from within the Pacific or Indian Oceans, identifying an apparent large, single Indo-Pacific population. A lack of differentiation between tiger sharks sampled in Hawaii and other Indo-Pacific locations identified herein is in contrast to an earlier global tiger shark nDNA study. The results of our power analysis provide evidence to suggest that the larger sample sizes used here negated any weak population subdivision observed previously. These results further highlight the need for cross-jurisdictional efforts to manage the sustainable exploitation of large migratory sharks like G. cuvier. PMID:28791159

  18. Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin.

    PubMed

    Holmes, Bonnie J; Williams, Samuel M; Otway, Nicholas M; Nielsen, Einar E; Maher, Safia L; Bennett, Mike B; Ovenden, Jennifer R

    2017-07-01

    Population genetic structure using nine polymorphic nuclear microsatellite loci was assessed for the tiger shark ( Galeocerdo cuvier ) at seven locations across the Indo-Pacific, and one location in the southern Atlantic. Genetic analyses revealed considerable genetic structuring ( F ST  > 0.14, p  < 0.001) between all Indo-Pacific locations and Brazil. By contrast, no significant genetic differences were observed between locations from within the Pacific or Indian Oceans, identifying an apparent large, single Indo-Pacific population. A lack of differentiation between tiger sharks sampled in Hawaii and other Indo-Pacific locations identified herein is in contrast to an earlier global tiger shark nDNA study. The results of our power analysis provide evidence to suggest that the larger sample sizes used here negated any weak population subdivision observed previously. These results further highlight the need for cross-jurisdictional efforts to manage the sustainable exploitation of large migratory sharks like G. cuvier .

  19. Population Genetic Analysis of Streptomyces albidoflavus Reveals Habitat Barriers to Homologous Recombination in the Diversification of Streptomycetes

    PubMed Central

    Cheng, Kun; Rong, Xiaoying; Pinto-Tomás, Adrián A.; Fernández-Villalobos, Marcela; Murillo-Cruz, Catalina

    2014-01-01

    Examining the population structure and the influence of recombination and ecology on microbial populations makes great sense for understanding microbial evolution and speciation. Streptomycetes are a diverse group of bacteria that are widely distributed in nature and a rich source of useful bioactive compounds; however, they are rarely subjected to population genetic investigations. In this study, we applied a five-gene-based multilocus sequence analysis (MLSA) scheme to 41 strains of Streptomyces albidoflavus derived from diverse sources, mainly insects, sea, and soil. Frequent recombination was detected in S. albidoflavus, supported by multiple lines of evidence from the pairwise homoplasy index (Φw) test, phylogenetic discordance, the Shimodaira-Hasegawa (SH) test, and network analysis, underpinning the predominance of homologous recombination within Streptomyces species. A strong habitat signal was also observed in both phylogenetic and Structure 2.3.3 analyses, indicating the importance of ecological difference in shaping the population structure. Moreover, all three habitat-associated groups, particularly the entomic group, demonstrated significantly reduced levels of gene flow with one another, generally revealing habitat barriers to recombination. Therefore, a combined effect of homologous recombination and ecology is inferred for S. albidoflavus, where dynamic evolution is at least partly balanced by the extent that differential distributions of strains among habitats limit genetic exchange. Our study stresses the significance of ecology in microbial speciation and reveals the coexistence of homologous recombination and ecological divergence in the evolution of streptomycetes. PMID:25416769

  20. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    PubMed

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  1. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    PubMed

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  2. Long-distance dispersal and recolonization of a fire-destroyed niche by a mite-associated fungus.

    PubMed

    Aylward, Janneke; Dreyer, Léanne L; Steenkamp, Emma T; Wingfield, Michael J; Roets, Francois

    2015-04-01

    The Fynbos Biome in the Core Cape Subregion of South Africa is prone to recurrent fires that can clear vast areas of vegetation. Between periods of fire, ophiostomatoid fungi colonize the fruiting structures of serotinous Protea species through arthropod-mediated dispersal. Using microsatellite markers, this study considered the process whereby a Protea-associated ophiostomatoid fungus, Knoxdaviesia proteae, recolonizes a burnt area. The genetic diversity, composition and structure of fungal populations from young P. repens plants in a recently burnt area were compared to populations from the adjacent, unburnt Protea population. The only difference between K. proteae populations from the two areas was found in the number of private alleles, which was significantly higher in the unburnt population. The population structure, although weak, indicated that most K. proteae individuals from recently burnt areas originated from the unburnt population. However, individuals from unsampled source populations were also detected. This, together with the lack of isolation-by-distance across the landscape, suggested that long-distance dispersal is important for K. proteae to recolonize burnt areas. Similarly, the high level of gene flow and low differentiation observed between two distantly separated K. proteae populations also supported the existence of long-distance dispersal. The genetic cohesiveness of populations over long distances and the genetic diversity within populations could be attributed to frequent multiple fungal migration events mediated primarily by arthropods but, potentially, also by birds. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Intercontinental gene flow among western arctic populations of lesser snow geese

    USGS Publications Warehouse

    Shorey, Rainy I.; Scribner, K.T.; Kanefsky, Jeannette; Samuel, M.D.; Libants, S.V.

    2011-01-01

    Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced. ?? The Cooper Ornithological Society 2011.

  4. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range

    PubMed Central

    Muñoz, Joaquín; Amat, Francisco; Green, Andy J.; Figuerola, Jordi

    2013-01-01

    Since Darwin’s time, waterbirds have been considered an important vector for the dispersal of continental aquatic invertebrates. Bird movements have facilitated the worldwide invasion of the American brine shrimp Artemia franciscana, transporting cysts (diapausing eggs), and favouring rapid range expansions from introduction sites. Here we address the impact of bird migratory flyways on the population genetic structure and phylogeography of A. franciscana in its native range in the Americas. We examined sequence variation for two mitochondrial gene fragments (COI and 16S for a subset of the data) in a large set of population samples representing the entire native range of A. franciscana. Furthermore, we performed Mantel tests and redundancy analyses (RDA) to test the role of flyways, geography and human introductions on the phylogeography and population genetic structure at a continental scale. A. franciscana mitochondrial DNA was very diverse, with two main clades, largely corresponding to Pacific and Atlantic populations, mirroring American bird flyways. There was a high degree of regional endemism, with populations subdivided into at least 12 divergent, geographically restricted and largely allopatric mitochondrial lineages, and high levels of population structure (ΦST of 0.92), indicating low ongoing gene flow. We found evidence of human-mediated introductions in nine out of 39 populations analysed. Once these populations were removed, Mantel tests revealed a strong association between genetic variation and geographic distance (i.e., isolation-by-distance pattern). RDA showed that shared bird flyways explained around 20% of the variance in genetic distance between populations and this was highly significant, once geographic distance was controlled for. The variance explained increased to 30% when the factor human introduction was included in the model. Our findings suggest that bird-mediated transport of brine shrimp propagules does not result in substantial ongoing gene flow; instead, it had a significant historical role on the current species phylogeography, facilitating the colonisation of new aquatic environments as they become available along their main migratory flyways. PMID:24255814

  5. Population structure and fruit production of Pyrus bourgaeana D. are affected by land-use

    NASA Astrophysics Data System (ADS)

    Arenas-Castro, Salvador; Fernández-Haeger, Juan; Jordano-Barbudo, Diego

    2016-11-01

    The Iberian wild pear (Pyrus bourgaeana D.) is a rare, fleshy-fruited tree restricted to dehesas and evergreen sclerophyllous Mediterranean forests in the southwestern Iberian Peninsula. It produces palatable fruits and leaves attractive to different species groups, playing an important trophic role in the ecological networks of Mediterranean ecosystems. However, the intensification in the traditional land-use linked to these areas could threaten the stability of the wild pear populations in the short/medium-term. In order to determine the population dynamics of this relevant species in relation to the land-use history, we selected two populations (southern Spain) subjected to different land-use management, dehesa (D) and abandoned olive grove (AOG). An analysis of 122 adult trees reported an overall density of 0.6 trees ha-1. The tree age was estimated by tree-rings analysis in all adult trees. Dendrometric parameters, reproductive features, and germination rates were also measured. Regeneration was clearly biased, as evidenced by the truncated age structure. A low correlation (R2 = 34%) between age and DBH (diameter at breast height) (244 cores analysed) showed that diameter seems not to be a reliable predictor of tree age. Trees from AOG populations had significantly-higher values of DBH, height and crown diameter, but were less productive in terms of fruits and seeds. Nested analysis of variance showed significant variation in fruit production, fruit size, dry mass, water content and seed viability. There were also significant differences in masting. No evidence was found to demonstrate that fruit production, seed viability, or germination rate influence the low natural recruitment of this species. These findings indicate that the traditional agrosilvopastoral practices carried out in the study area for decades, and its subsequent intensification, have strongly influenced the ecological structure of the Iberian wild pear populations at the local scale, which could compromise its stability in the near future.

  6. Stable Isotopes Provide Insight into Population Structure and Segregation in Eastern North Atlantic Sperm Whales

    PubMed Central

    Borrell, Asunción; Velásquez Vacca, Adriana; Pinela, Ana M.; Kinze, Carl; Lockyer, Christina H.; Vighi, Morgana; Aguilar, Alex

    2013-01-01

    In pelagic species inhabiting large oceans, genetic differentiation tends to be mild and populations devoid of structure. However, large cetaceans have provided many examples of structuring. Here we investigate whether the sperm whale, a pelagic species with large population sizes and reputedly highly mobile, shows indication of structuring in the eastern North Atlantic, an ocean basin in which a single population is believed to occur. To do so, we examined stable isotope values in sequential growth layer groups of teeth from individuals sampled in Denmark and NW Spain. In each layer we measured oxygen- isotope ratios (δ18O) in the inorganic component (hydroxyapatite), and nitrogen and carbon isotope ratios (δ15N: δ13C) in the organic component (primarily collagenous). We found significant differences between Denmark and NW Spain in δ15N and δ18O values in the layer deposited at age 3, considered to be the one best representing the baseline of the breeding ground, in δ15N, δ13C and δ18O values in the period up to age 20, and in the ontogenetic variation of δ15N and δ18O values. These differences evidence that diet composition, use of habitat and/or migratory destinations are dissimilar between whales from the two regions and suggest that the North Atlantic population of sperm whales is more structured than traditionally accepted. PMID:24324782

  7. Population structure, migration, and diversifying selection in the Netherlands

    PubMed Central

    Abdellaoui, Abdel; Hottenga, Jouke-Jan; Knijff, Peter de; Nivard, Michel G; Xiao, Xiangjun; Scheet, Paul; Brooks, Andrew; Ehli, Erik A; Hu, Yueshan; Davies, Gareth E; Hudziak, James J; Sullivan, Patrick F; van Beijsterveldt, Toos; Willemsen, Gonneke; de Geus, Eco J; Penninx, Brenda W J H; Boomsma, Dorret I

    2013-01-01

    Genetic variation in a population can be summarized through principal component analysis (PCA) on genome-wide data. PCs derived from such analyses are valuable for genetic association studies, where they can correct for population stratification. We investigated how to capture the genetic population structure in a well-characterized sample from the Netherlands and in a worldwide data set and examined whether (1) removing long-range linkage disequilibrium (LD) regions and LD-based SNP pruning significantly improves correlations between PCs and geography and (2) whether genetic differentiation may have been influenced by migration and/or selection. In the Netherlands, three PCs showed significant correlations with geography, distinguishing between: (1) North and South; (2) East and West; and (3) the middle-band and the rest of the country. The third PC only emerged with minimized LD, which also significantly increased correlations with geography for the other two PCs. In addition to geography, the Dutch North–South PC showed correlations with genome-wide homozygosity (r=0.245), which may reflect a serial-founder effect due to northwards migration, and also with height (♂: r=0.142, ♀: r=0.153). The divergence between subpopulations identified by PCs is partly driven by selection pressures. The first three PCs showed significant signals for diversifying selection (545 SNPs - the majority within 184 genes). The strongest signal was observed between North and South for the functional SNP in HERC2 that determines human blue/brown eye color. Thus, this study demonstrates how to increase ancestry signals in a relatively homogeneous population and how those signals can reveal evolutionary history. PMID:23531865

  8. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria)?

    PubMed

    Lenhardt, Patrick P; Brühl, Carsten A; Leeb, Christoph; Theissinger, Kathrin

    2017-01-01

    Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity) on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog ( Rana temporaria ) populations in Southern Palatinate (Germany). We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise F ST  = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance) than between viniculture populations (median pairwise F ST  = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance). Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat, inhibiting genetic exchange and causing genetic differentiation of pond populations in agricultural areas. In viniculture, pesticides could be a driving factor for the observed genetic impoverishment, since pesticides are more frequently applied than any other management measure and can be highly toxic for terrestrial life stages of amphibians.

  9. Modeling livestock population structure: a geospatial database for Ontario swine farms.

    PubMed

    Khan, Salah Uddin; O'Sullivan, Terri L; Poljak, Zvonimir; Alsop, Janet; Greer, Amy L

    2018-01-30

    Infectious diseases in farmed animals have economic, social, and health consequences. Foreign animal diseases (FAD) of swine are of significant concern. Mathematical and simulation models are often used to simulate FAD outbreaks and best practices for control. However, simulation outcomes are sensitive to the population structure used. Within Canada, access to individual swine farm population data with which to parameterize models is a challenge because of privacy concerns. Our objective was to develop a methodology to model the farmed swine population in Ontario, Canada that could represent the existing population structure and improve the efficacy of simulation models. We developed a swine population model based on the factors such as facilities supporting farm infrastructure, land availability, zoning and local regulations, and natural geographic barriers that could affect swine farming in Ontario. Assigned farm locations were equal to the swine farm density described in the 2011 Canadian Census of Agriculture. Farms were then randomly assigned to farm types proportional to the existing swine herd types. We compared the swine population models with a known database of swine farm locations in Ontario and found that the modeled population was representative of farm locations with a high accuracy (AUC: 0.91, Standard deviation: 0.02) suggesting that our algorithm generated a reasonable approximation of farm locations in Ontario. In the absence of a readily accessible dataset providing details of the relative locations of swine farms in Ontario, development of a model livestock population that captures key characteristics of the true population structure while protecting privacy concerns is an important methodological advancement. This methodology will be useful for individuals interested in modeling the spread of pathogens between farms across a landscape and using these models to evaluate disease control strategies.

  10. Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure

    PubMed Central

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-01-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926

  11. M13-Tailed Simple Sequence Repeat (SSR) Markers in Studies of Genetic Diversity and Population Structure of Common Oat Germplasm.

    PubMed

    Onyśk, Agnieszka; Boczkowska, Maja

    2017-01-01

    Simple Sequence Repeat (SSR) markers are one of the most frequently used molecular markers in studies of crop diversity and population structure. This is due to their uniform distribution in the genome, the high polymorphism, reproducibility, and codominant character. Additional advantages are the possibility of automatic analysis and simple interpretation of the results. The M13 tagged PCR reaction significantly reduces the costs of analysis by the automatic genetic analyzers. Here, we also disclose a short protocol of SSR data analysis.

  12. Ramifying feedback networks, cross-scale interactions, and emergent quasi individuals in Conway's game of Life.

    PubMed

    Gotts, Nicholas M

    2009-01-01

    Small patterns of state 1 cells on an infinite, otherwise empty array of Conway's game of Life can produce sets of growing structures resembling in significant ways a population of spatially situated individuals in a nonuniform, highly structured environment. Ramifying feedback networks and cross-scale interactions play a central role in the emergence and subsequent dynamics of the quasi population. The implications are discussed: It is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  13. Geographic variation and genetic structure in the Bahama Oriole (Icterus northropi), a critically endangered synanthropic species

    PubMed Central

    Person, Carl; Hayes, William K.

    2015-01-01

    Bird species may exhibit unexpected population structuring over small distances, with gene flow restricted by geographic features such as water or mountains. The Bahama Oriole (Icterus northropi) is a critically endangered, synanthropic island endemic with a declining population of fewer than 300 individuals. It now remains only on Andros Island (The Bahamas), which is riddled with waterways that past studies assumed did not hinder gene flow. We examined 1,858 base pairs of mitochondrial DNA sequenced from four gene regions in 14 birds (roughly 5% of the remaining population) found on the largest land masses of Andros Island (North Andros and Mangrove Cay/South Andros). We sought to discern genetic structuring between the remaining subpopulations and its relationship to current conservation concerns. Four unique haplotypes were identified, with only one shared between the two subpopulations. Nucleotide and haplotype diversity were higher for the North Andros subpopulation than for the Mangrove Cay/South Andros subpopulation. Analysis of molecular variance (AMOVA) yielded a Wright’s fixation index (Fst) of 0.60 (PFst = 0.016), with 40.2% of the molecular variation explained by within-population differences and 59.8% by among-population differences. Based on the mitochondrial regions examined in this study, we suggest the extant subpopulations of Bahama Oriole exhibit significant population structuring over short distances, consistent with some other non-migratory tropical songbird species. PMID:26644974

  14. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China.

    PubMed

    Hu, Li-Jiang; Uchiyama, Kentaro; Shen, Hai-Long; Saito, Yoko; Tsuda, Yoshiaki; Ide, Yuji

    2008-08-01

    The widely accepted paradigm that the modern genetic structure of plant species in the northern hemisphere has been largely determined by recolonization from refugia after the last glacial maximum fails to explain the presence of cold-tolerant species at intermediate latitudes. Another generally accepted paradigm is that mountain ridges act as important barriers causing genetic isolation of species, but this too has been challenged in recent studies. The aims of the work reported here were to determine the genetic diversity and distribution patterns of extant natural populations of an endangered cool temperate species, Faxinus mandshurica, and to examine whether these two paradigms are appropriate when applied to this species over a wide geographical scale. 1435 adult individuals were sampled from 30 natural populations across the main and central range of the species, covering major mountain ranges across North-east China (NEC). Genetic variation was estimated based on nine polymorphic nuclear microsatellite loci. Phylogeographical analyses were employed using various approaches, including Bayesian clustering, spatial analysis of molecular variance, Monmonier's algorithm, neighbor-joining trees, principal co-ordinate analysis and isolation by distance. Genetic diversity within populations was relatively high, and no significant recent bottlenecks were detected in any of the populations. A significant negative correlation between intra-population genetic diversity and latitude was identified. In contrast, genetic differentiation among all the populations examined was extremely low and no clear geographic genetic structure was identified, with the exception of one distinct population. The modern genetic structure in this species can be explained by extensive gene flow, an absence of mountains acting as barriers, and the presence of a wide refuge across NEC rather than multiple small refugia. Intra-population genetic variation along latitudes is probably associated with the systematically northward shifts of forest biomes in eastern China during the mid-Holocene. To determine important genetic patterns and identify resources for conservation, however, it will be necessary to examine differentially inherited genetic markers exposed to selection pressures (e.g. chloroplast DNA) and to investigate different generations.

  15. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    PubMed

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  16. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections.

    PubMed

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-05-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors.

  17. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections

    PubMed Central

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-01-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  18. Macrogeographic and microgeographic genetic structure of the Chagas' disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina.

    PubMed

    Pérez de Rosas, Alicia R; Segura, Elsa L; Fichera, Laura; García, Beatriz Alicia

    2008-07-01

    The genetic structure in populations of the Chagas' disease vector Triatoma infestans from six localities belonging to areas under the same insecticide treatment conditions of Catamarca province (Argentina) was examined at macrogeographical and microgeographical scales. A total of 238 insects were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.319 to 0.549 and from 0.389 to 0.689, respectively. The present results confirm that populations of T. infestans are highly structured. Spatial genetic structure was detectable at macrogeographical and microgeographical levels. Comparisons of the levels of genetic variability between two temporal samples were carried out to assess the impact of the insecticide treatment. The genetic diversity of the population was not significantly affected after insecticide use since different genetic parameters (allele number, observed and expected heterozygosities) remained stable. However, loss of low frequency alleles and not previously found alleles were detected. The effective population size (N(e)) estimated was substantially lower in the second temporal sample than in the first; nevertheless, it is possible that the size of the remnant population after insecticide treatment was still large enough to retain the genetic diversity. Very few individuals did not belong to the local T. infestans populations as determined by assignment analyses, suggesting a low level of immigration in the population. The results of the assignment and first-generation migrant tests suggest male-biased dispersal at microgeographical level.

  19. Genetic population structure and relatedness in the narrow-striped mongoose (Mungotictis decemlineata), a social Malagasy carnivore with sexual segregation.

    PubMed

    Schneider, Tilman C; Kappeler, Peter M; Pozzi, Luca

    2016-06-01

    Information on the genetic structure of animal populations can allow inferences about mechanisms shaping their social organization, dispersal, and mating system. The mongooses (Herpestidae) include some of the best-studied mammalian systems in this respect, but much less is known about their closest relatives, the Malagasy carnivores (Eupleridae), even though some of them exhibit unusual association patterns. We investigated the genetic structure of the Malagasy narrow-striped mongoose ( Mungotictis decemlineata ), a small forest-dwelling gregarious carnivore exhibiting sexual segregation. Based on mtDNA and microsatellite analyses, we determined population-wide haplotype structure and sex-specific and within-group relatedness. Furthermore, we analyzed parentage and sibship relationships and the level of reproductive skew. We found a matrilinear population structure, with several neighboring female units sharing identical haplotypes. Within-group female relatedness was significantly higher than expected by chance in the majority of units. Haplotype diversity of males was significantly higher than in females, indicating male-biased dispersal. Relatedness within the majority of male associations did not differ from random, not proving any kin-directed benefits of male sociality in this case. We found indications for a mildly promiscuous mating system without monopolization of females by males, and low levels of reproductive skew in both sexes based on parentages of emergent young. Low relatedness within breeding pairs confirmed immigration by males and suggested similarities with patterns in social mongooses, providing a starting point for further investigations of mate choice and female control of reproduction and the connected behavioral mechanisms. Our study contributes to the understanding of the determinants of male sociality in carnivores as well as the mechanisms of female competition in species with small social units.

  20. Identification of kin structure among Guam rail founders: a comparison of pedigrees and DNA profiles

    USGS Publications Warehouse

    Haig, Susan M.; Ballou, J.D.; Casna, N.J.

    1994-01-01

    Kin structure among founders can have a significant effect on subsequent population structure. Here we use the correlation between DNA profile similarity and relatedness calculated from pedigrees to test hypotheses regarding kin structure among founders to the captive Guam rail (Rallus owstoni) population. Five different pedigrees were generated under the following hypotheses: (i) founders are unrelated; (ii) founders are unrelated except for same-nest chicks; (iii) founders from the same major site are siblings; (iv) founders from the same local site are siblings; and (v) founders are related as defined by a UPGMA cluster analysis of DNA similarity data. Relatedness values from pedigrees 1, 2 and 5 had the highest correlation with DNA similarity but the correlation between relatedness and similarity were not significantly different among pedigrees. Pedigree 5 resulted in the highest correlation overall when using only relatedness values that changed as a result of different founder hypotheses. Thus, founders were assigned relatedness based on pedigree 5 because it had the highest correlations with DNA similarity, was the most conservative approach, and incorporated all field data. The analyses indicated that estimating relatedness using DNA profiles remains problematic, therefore we compared mean kinship, a measure of genetic importance, with mean DNA profile similarity to determine if genetic importance among individuals could be determined via use of DNA profiles alone. The significant correlation suggests this method may provide more information about population structure than was previously thought. Thus, DNA profiles can provide a reasonable explanation for founder relatedness and mean DNA profile similarity may be helpful in determining relative genetic importance of individuals when detailed pedigrees are absent.

  1. Phenetic Comparison of Prokaryotic Genomes Using k-mers

    PubMed Central

    Déraspe, Maxime; Raymond, Frédéric; Boisvert, Sébastien; Culley, Alexander; Roy, Paul H.; Laviolette, François; Corbeil, Jacques

    2017-01-01

    Abstract Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. PMID:28957508

  2. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    PubMed

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.

  3. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex

    NASA Astrophysics Data System (ADS)

    Marengo, M.; Baudouin, M.; Viret, A.; Laporte, M.; Berrebi, P.; Vignon, M.; Marchand, B.; Durieux, E. D. H.

    2017-10-01

    The common dentex, Dentex dentex, is an iconic marine coastal fish of the Mediterranean Sea. Despite its economic and ecological importance, data on the population structure of this species are still very limited. The aim of this study was to identify the stock structure of the common dentex at relatively fine spatial scale around Corsica Island, using a combination of markers that have different spatial and temporal scales of integration: microsatellite DNA markers, otolith shape analysis and parasites communities. Microsatellite analysis indicated that there was no significant genetic differentiation in D. dentex between the four sampling sites around Corsica. Otolith shape analysis suggests one potential distinct population unit of D. dentex centered in one site (Cap Corse) varying in their degree of differentiation from those in the other zones. Multivariate analysis on parasite abundance data highlights to a lower extent two sites (Bonifacio and Galeria) with some connectivity between adjacent zones. The combination of these three markers together highlights the resulting three sites while giving complementary insights and an opportunity to compare their utility and potential to understand population interactions. A complex population structure around Corsican coasts is then proposed, providing a new perspective on common dentex fishery stock conservation and management strategies.

  4. Evaluation of a Diverse, Worldwide Collection of Wild, Cultivated, and Landrace Pepper (Capsicum annuum) for Resistance to Phytophthora Fruit Rot, Genetic Diversity, and Population Structure.

    PubMed

    Naegele, R P; Tomlinson, A J; Hausbeck, M K

    2015-01-01

    Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.

  5. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions

    PubMed Central

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  6. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii).

    PubMed

    Buj, Ivana; Ćaleta, Marko; Marčić, Zoran; Šanda, Radek; Vukić, Jasna; Mrakovčić, Milorad

    2015-01-01

    The region of Balkans is often considered as an ichthyologic "hot spot", with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis) whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy) and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences among closely located and related species and estimate extinction risk even more accurately than currently applied IUCN criteria.

  7. Molecular diversity of methanogens in fecal samples from Bactrian camels (Camelus bactrianus) at two zoos.

    PubMed

    Turnbull, Kathryn L; Smith, Rachel P; St-Pierre, Benoit; Wright, André-Denis G

    2012-08-01

    Animals are dependent on mutualistic microbial communities that reside in their gastrointestinal track for essential physiological functions such as nutrition and pathogen resistance. The composition of microbial communities in an animal is influenced by various factors, including species, diet and geographical location. In this preliminary study, the population structure of fecal methanogens in Bactrian camels (Camelus bactrianus) from two zoos was studied using separate 16S rRNA gene libraries for each zoo. While methanogen sequences belonging to the genus Methanobrevibacter were dominant in both libraries, they showed significant differences in diversity (p=0.05) and structure (p<0.0001). Population structure analysis revealed that only two operational taxonomic units (OTUs) were shared between libraries, while two OTUs were unique to the Southwick Zoo library and seven OTUs were unique to the Potter Park Zoo library. These preliminary results highlight how methanogen population structures can vary greatly between animals of the same species maintained in captivity at different locations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Genetic structure among continental and island populations of gyrfalcons.

    PubMed

    Johnson, Jeff A; Burnham, Kurt K; Burnham, William A; Mindell, David P

    2007-08-01

    Little is known about the possible influence that past glacial events have had on the phylogeography and population structure of avian predators in the Arctic and sub-Arctic. In this study, we use microsatellite and mitochondrial control region DNA variation to investigate the population genetic structure of gyrfalcons (Falco rusticolus) throughout a large portion of their circumpolar distribution. In most locations sampled, the mtDNA data revealed little geographic structure; however, five out of eight mtDNA haplotypes were unique to a particular geographic area (Greenland, Iceland, or Alaska) and the Iceland population differed from others based on haplotype frequency differences (F(ST)). With the microsatellite results, significant population structure (F(ST), principal components analysis, and cluster analysis) was observed identifying Greenland and Iceland as separate populations, while Norway, Alaska and Canada were identified as a single population consistent with contemporary gene flow across Russia. Within Greenland, differing levels of gene flow between western and eastern sampling locations was indicated with apparent asymmetric dispersal in western Greenland from north to south. This dispersal bias is in agreement with the distribution of plumage colour variants with white gyrfalcons in much higher proportion in northern Greenland. Lastly, because the mtDNA control region sequence differed by only one to four nucleotides from a common haplotype among all gyrfalcons, we infer that the observed microsatellite population genetic structure has developed since the last glacial maximum. This conclusion is further supported by our finding that a closely related species, the saker falcon (Falco cherrug), has greater genetic heterogeneity, including mtDNA haplotypes differing by 1-16 nucleotide substitutions from a common gyrfalcon haplotype. This is consistent with gyrfalcons having expanded rapidly from a single glacial-age refugium to their current circumpolar distribution. Additional sampling of gyrfalcons from Fennoscandia and Russia throughout Siberia is necessary to test putative gene flow between Norway and Alaska and Canada as suggested by this study.

  9. MC1R Genotype and Plumage Colouration in the Zebra Finch (Taeniopygia guttata): Population Structure Generates Artefactual Associations

    PubMed Central

    Hoffman, Joseph I.; Krause, E. Tobias; Lehmann, Katrin; Krüger, Oliver

    2014-01-01

    Polymorphisms at the melanocortin-1 receptor (MC1R) gene have been linked to coloration in many vertebrate species. However, the potentially confounding influence of population structure has rarely been controlled for. We explored the role of the MC1R in a model avian system by sequencing the coding region in 162 zebra finches comprising 79 wild type and 83 white individuals from five stocks. Allelic counts differed significantly between the two plumage morphs at multiple segregating sites, but these were mostly synonymous. To provide a control, the birds were genotyped at eight microsatellites and subjected to Bayesian cluster analysis, revealing two distinct groups. We therefore crossed wild type with white individuals and backcrossed the F1s with white birds. No significant associations were detected in the resulting offspring, suggesting that our original findings were a byproduct of genome-wide divergence. Our results are consistent with a previous study that found no association between MC1R polymorphism and plumage coloration in leaf warblers. They also contribute towards a growing body of evidence suggesting that care should be taken to quantify, and where necessary control for, population structure in association studies. PMID:24489736

  10. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    PubMed

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  11. Mechanisms of population differentiation in marbled murrelets: historical versus contemporary processes

    USGS Publications Warehouse

    Congdon, B.C.; Piatt, John F.; Martin, Kathy; Friesen, Vicki L.

    2000-01-01

    Mechanisms of population differentiation in highly vagile species such as seabirds are poorly understood. Previous studies of marbled murrelets (Brachyramphus marmoratus; Charadriiformes: Alcidae) found significant population genetic structure, but could not determine whether this structure is due to historical vicariance (e.g., due to Pleistocene glaciers), isolation by distance, drift or selection in peripheral populations, or nesting habitat selection. To discriminate among these possibilities, we analyzed sequence variation in nine nuclear introns from 120 marbled murrelets sampled from British Columbia to the western Aleutian Islands. Mismatch distributions indicated that murrelets underwent at least one population expansion during the Pleistocene and probably are not in genetic equilibrium. Maximum-likelihood analysis of allele frequencies suggested that murrelets from 'mainland' sites (from the Alaskan Peninsula east) are genetically different from those in the Aleutians and that these two lineages diverged prior to the last glaciation. Analyses of molecular variance, as well as estimates of gene flow derived using coalescent theory, indicate that population genetic structure is best explained by peripheral isolation of murrelets in the Aleutian Islands, rather than by selection associated with different nesting habitats. No isolation-by-distance effects could be detected. Our results are consistent with a rapid expansion of murrelets from a single refugium during the early-mid Pleistocene, subsequent isolation and divergence in two or more refugia during the final Pleistocene glacial advance, and secondary contact following retreat of the ice sheets. Population genetic structure now appears to be maintained by distance effects combined with small populations and a highly fragmented habitat in the Aleutian Islands.

  12. Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus

    PubMed Central

    Brouat, Carine; Rahelinirina, Soanandrasana; Loiseau, Anne; Rahalison, Lila; Rajerison, Minoariso; Laffly, Dominique; Handschumacher, Pascal; Duplantier, Jean-Marc

    2013-01-01

    Background Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. Methodology/Principal Findings We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150–200 km2 within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. Conclusions/Significance Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations. PMID:23755317

  13. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population

    PubMed Central

    Barua, Nabanita; Sitaraman, Chitra; Goel, Sonu; Chakraborti, Chandana; Mukherjee, Sonai; Parashar, Hemandra

    2016-01-01

    Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL) in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD) optical coherence tomography (OCT) among primary open angle glaucoma (POAG) and ocular hypertension (OHT) versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group). After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC) parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson's coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P < 0.001). Inferior GCC had highest area under curve (AUC) for detecting glaucoma (0.827) in POAG from normal population. However, the difference was not statistically significant (P > 0.5) when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715). Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable. PMID:27221682

  14. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini.

    PubMed

    Nance, Holly A; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B

    2011-01-01

    Genetic diversity (θ), effective population size (N(e)), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in N(e) (θ = 4N(e)μ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1-16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in N(e) predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present.

  15. Demographic Processes Underlying Subtle Patterns of Population Structure in the Scalloped Hammerhead Shark, Sphyrna lewini

    PubMed Central

    Nance, Holly A.; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B.

    2011-01-01

    Genetic diversity (θ), effective population size (Ne), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in Ne (θ = 4Neμ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1–16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in Ne predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present. PMID:21789171

  16. Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata

    PubMed Central

    Aplasca, Andrea C.; Iverson, John B.; Welch, Mark E.; Colosimo, Giuliano

    2016-01-01

    The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata) is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each). However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp) and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations. PMID:26989628

  17. The population biology and genetics of the deep-sea spider crab, Encephaloides armstrongi Wood-Mason 1891 (Decapoda: Majidae)

    PubMed Central

    Creasey, S.; Rogers, A. D.; Tyler, P.; Young, C.; Gage, J.

    1997-01-01

    Numerous specimens of the majid spider crab, Encephaloides armstrongi, were sampled from six stations (populations) between 150 and 650 m depth, on the continental slope off the coast of Oman. This extended the known geographic and bathymetric range of E. armstrongi, which is now known to occur along the continental margins of the northern Indian Ocean from the western coast of Burma to the coast of Oman. This band-like distribution is contiguous to the oxygen minimum zone in this region. The biology and genetics of populations of Encephaloides armstrongi separated by depth were studied. The overall sex ratio of the E. armstrongi sampled was male-biased (p less than 0.01; 3.3 males: 1 female; So = 0.538). However, sex ratio varied both between populations (p less than 0.01) and between size classes of crabs. Size frequency analysis indicated that the male and female crabs consisted of at least two instars, one between 6 and 16mm carapace length and one between 16 and 29 mm carapace length, which probably represented the terminal (pubertal) moult for most individuals. Accumulation of female crabs in the terminal instar probably caused the variation of sex ratio with size classes. Some male crabs grew to a larger size (up to 38 mm carapace length), possibly as a result of maturity at later instars. Length frequency distribution was significantly different between sexes (one-way ANOVA p less than 0.001). Within sexes, length frequency distributions varied between different populations. In both male and female Encephaloides armstrongi the individuals from a single population located at 150 m depth were significantly smaller than individuals at all other stations and were considered to represent a juvenile cohort. For female crabs no other significant differences were detected in length frequency between populations from 300 m to 650 m depth. Significant differences in length frequency were detected between male crabs from populations between 300 and 650 m depth. Horizontal starch gel electrophoresis was used to detect six enzyme systems coding for eight loci for individuals sampled from each population of Encephaloides armstrongi. Genetic identity (I) values between populations of E. armstrongi (I = 0.98-1.00) were within the normal range for conspecific populations. Observed heterozygosity (Ho = 0.080-0.146) was lower than expected heterozygosity (He = 0.111-0.160), but in the normal range detected for eukaryotic organisms. F-statistics were used to analyse between population (FST) and within population (F ) genetic structure. For both male and female E. armstrongi significant genetic differentiation was detected between the population located at 150 m depth and all other populations. Analyses of FIS and FST, excluding the 150 m population indicated that for female E. armstrongi there was no significant structuring within or between populations. For male E. armstrongi significant heterozygote deficiencies were detected within populations and significant genetic differentiation between populations. The most likely explanations for the observations of the present study are: the population of Encephaloides armstrongi located at 150 m depth represented a juvenile cohort that is genetically distinct from deeper populations; female E. armstrongi formed a single population between 300 m and 650 m depth in the sampling area; male E. armstrongi were from two or more genetically distinct populations which are represented by different numbers of individuals at stations between 300 m and 650 m depth. This caused the observed significant differences in morphology (size distribition) and allele frequencies of male populations. It is likely that E. armstrongi exhibits gender-biased dispersal and that the crabs collected between 300 m and 650 m depth formed spawning aggressions. This also explains the bias in sex ratio of individuals sampled in the present study.

  18. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Pyralidae) populations in West Africa

    USDA-ARS?s Scientific Manuscript database

    The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa, and contributes to food shortages and malnutrition in native human populations. The genetic structure of Maruca vitrata was investigated among five sites from Burkin...

  19. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Treesearch

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  20. Loss of Genetic Diversity Means Loss of Geological Information: The Endangered Japanese Crayfish Exhibits Remarkable Historical Footprints

    PubMed Central

    Koizumi, Itsuro; Usio, Nisikawa; Kawai, Tadashi; Azuma, Noriko; Masuda, Ryuichi

    2012-01-01

    Intra-specific genetic diversity is important not only because it influences population persistence and evolutionary potential, but also because it contains past geological, climatic and environmental information. In this paper, we show unusually clear genetic structure of the endangered Japanese crayfish that, as a sedentary species, provides many insights into lesser-known past environments in northern Japan. Over the native range, most populations consisted of unique 16S mtDNA haplotypes, resulting in significant genetic divergence (overall F ST = 0.96). Owing to the simple and clear structure, a new graphic approach unraveled a detailed evolutionary history; regional crayfish populations were comprised of two distinct lineages that had experienced contrasting demographic processes (i.e. rapid expansion vs. slow stepwise range expansion) following differential drainage topologies and past climate events. Nuclear DNA sequences also showed deep separation between the lineages. Current ocean barriers to dispersal did not significantly affect the genetic structure of the freshwater crayfish, indicating the formation of relatively recent land bridges. This study provides one of the best examples of how phylogeographic analysis can unravel a detailed evolutionary history of a species and how this history contributes to the understanding of the past environment in the region. Ongoing local extinctions of the crayfish lead not only to loss of biodiversity but also to the loss of a significant information regarding past geological and climatic events. PMID:22470505

  1. Population structure of the large Japanese field mouse, Apodemus speciosus (Rodentia: Muridae), in suburban landscape, based on mitochondrial D-loop sequences.

    PubMed

    Hirota, Tadao; Hirohata, Tetsuo; Mashima, Hiroshi; Satoh, Toshiyuki; Obara, Yoshiaki

    2004-11-01

    Genetic structure of the large Japanese field mouse populations in suburban landscape of West Tokyo, Japan was determined using mitochondrial DNA control region sequence. Samples were collected from six habitats linked by forests and green tract along the Tama River, and from two forests segregated by urban areas from those continuous habitats. Thirty-five haplotypes were detected in 221 animals. Four to eight haplotypes were found within each local population belonging to the continuous landscape. Some haplotypes were shared by two or three adjacent local populations. On the other hand, two isolated habitats were occupied by one or two indigenous haplotypes. Significant genetic differentiation between all pairs of local populations, except for one pair in the continuous habitats, was found by analysis of molecular variance (amova). The geographical distance between habitats did not explain the large variance of pairwise F(ST)-values among local populations. F(ST)-values between local populations segregated by urban areas were higher than those between local populations in the continuous habitat, regardless of geographical distance. The results of this study demonstrated quantitatively that urban areas inhibit the migration of Apodemus speciosus, whereas a linear green tract along a river functions as a corridor. Moreover, it preserves the metapopulation structure of A. speciosus as well as the corridors in suburban landscape.

  2. Weighted social networks for a large scale artificial society

    NASA Astrophysics Data System (ADS)

    Fan, Zong Chen; Duan, Wei; Zhang, Peng; Qiu, Xiao Gang

    2016-12-01

    The method of artificial society has provided a powerful way to study and explain how individual behaviors at micro level give rise to the emergence of global social phenomenon. It also creates the need for an appropriate representation of social structure which usually has a significant influence on human behaviors. It has been widely acknowledged that social networks are the main paradigm to describe social structure and reflect social relationships within a population. To generate social networks for a population of interest, considering physical distance and social distance among people, we propose a generation model of social networks for a large-scale artificial society based on human choice behavior theory under the principle of random utility maximization. As a premise, we first build an artificial society through constructing a synthetic population with a series of attributes in line with the statistical (census) data for Beijing. Then the generation model is applied to assign social relationships to each individual in the synthetic population. Compared with previous empirical findings, the results show that our model can reproduce the general characteristics of social networks, such as high clustering coefficient, significant community structure and small-world property. Our model can also be extended to a larger social micro-simulation as an input initial. It will facilitate to research and predict some social phenomenon or issues, for example, epidemic transition and rumor spreading.

  3. Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish

    PubMed Central

    Spivakov, Mikhail; Auer, Thomas O.; Peravali, Ravindra; Dunham, Ian; Dolle, Dirk; Fujiyama, Asao; Toyoda, Atsushi; Aizu, Tomoyuki; Minakuchi, Yohei; Loosli, Felix; Naruse, Kiyoshi; Birney, Ewan; Wittbrodt, Joachim

    2014-01-01

    Oryzias latipes (medaka) has been established as a vertebrate genetic model for more than a century and recently has been rediscovered outside its native Japan. The power of new sequencing methods now makes it possible to reinvigorate medaka genetics, in particular by establishing a near-isogenic panel derived from a single wild population. Here we characterize the genomes of wild medaka catches obtained from a single Southern Japanese population in Kiyosu as a precursor for the establishment of a near-isogenic panel of wild lines. The population is free of significant detrimental population structure and has advantageous linkage disequilibrium properties suitable for the establishment of the proposed panel. Analysis of morphometric traits in five representative inbred strains suggests phenotypic mapping will be feasible in the panel. In addition, high-throughput genome sequencing of these medaka strains confirms their evolutionary relationships on lines of geographic separation and provides further evidence that there has been little significant interbreeding between the Southern and Northern medaka population since the Southern/Northern population split. The sequence data suggest that the Southern Japanese medaka existed as a larger older population that went through a relatively recent bottleneck approximately 10,000 years ago. In addition, we detect patterns of recent positive selection in the Southern population. These data indicate that the genetic structure of the Kiyosu medaka samples is suitable for the establishment of a vertebrate near-isogenic panel and therefore inbreeding of 200 lines based on this population has commenced. Progress of this project can be tracked at http://www.ebi.ac.uk/birney-srv/medaka-ref-panel. PMID:24408034

  4. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  5. Analysis of the SNPforID 52-plex markers in four Native American populations from Venezuela.

    PubMed

    Ruiz, Y; Chiurillo, M A; Borjas, L; Phillips, C; Lareu, M V; Carracedo, Á

    2012-09-01

    The SNPforID 52-plex single nucleotide polymorphisms (SNPs) were analyzed in four native Venezuelan populations: Bari, Pemon, Panare and Warao. None of the population-locus combinations showed significant departure from Hardy-Weinberg equilibrium. Calculation of forensic and statistical parameters showed lower values of genetic diversity in comparison with African and European populations, as well as other, admixed populations of neighboring regions of Caribbean, Central and South America. Significant levels of divergence were observed between the four Native Venezuelan populations as well as with other previously studied populations. Analysis of the 52-plex SNP loci with Structure provided an optimum number of population clusters of three, corresponding to Africans, Europeans and Native Americans. Analysis of admixed populations indicated a range of membership proportions for ancestral populations consisting of Native American, African and European components. The genetic differences observed in the Native American groups suggested by the 52 SNPs typed in our study are in agreement with current knowledge of the demographic history of the Americas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid.

    PubMed

    Pandey, Madhav; Richards, Matt; Sharma, Jyotsna

    2015-12-01

    We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.

  7. Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    PubMed Central

    2010-01-01

    Background The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales. Results Our results show that dispersal in C. australis is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females. Conclusions Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females. PMID:20109219

  8. Phylogeography of Quercus variabilis Based on Chloroplast DNA Sequence in East Asia: Multiple Glacial Refugia and Mainland-Migrated Island Populations

    PubMed Central

    Kang, Hongzhang; Sun, Xiao; Yin, Shan; Du, Hongmei; Yamanaka, Norikazu; Gapare, Washington; Wu, Harry X.; Liu, Chunjiang

    2012-01-01

    The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N ST = 0.751> G ST = 0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu’s FS indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia. PMID:23115642

  9. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events.

    PubMed

    Gaskin, John F; Schwarzländer, Mark; Gibson, Robert D; Simpson, Heather; Marshall, Diane L; Gerber, Esther; Hinz, Hariet

    2018-04-01

    Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift and founding events. Some invasions are also molded by specific human activities such as selection for cultivars and intentional introduction of desired phenotypes, which can lead to low genetic diversity in the resulting invasion. We investigated the population structure, diversity and origins of a species with both accidental and intentional introduction histories, as well as long-term selection as a cultivar. Dyer's woad ( Isatis tinctoria ; Brassicaceae) has been used as a dye source for at least eight centuries in Eurasia, was introduced to eastern USA in the 1600s, and is now considered invasive in the western USA. Our analyses of amplified fragment length polymorphisms (AFLPs) from 645 plants from the USA and Eurasia did not find significantly lower gene diversity ( H j ) in the invaded compared to the native range. This suggests that even though the species was under cultivation for many centuries, human selection of plants may not have had a strong influence on diversity in the invasion. We did find significantly lower genetic differentiation ( F st ) in the invasive range but our results still suggested that there are two distinct invasions in the western USA. Our data suggest that these invasions most likely originated from Switzerland, Ukraine and Germany, which correlates with initial biological control agent survey findings. Genetic information on population structure, diversity and origins assists in efforts to control invasive species, and continued combination of ecological and molecular analyses will help bring us closer to sustainable management of plant invasions.

  10. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds' most traded snake species.

    PubMed

    Murray-Dickson, Gillian; Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins-which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python's native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley's modification of Wallace's line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans.

  11. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species

    PubMed Central

    Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins—which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python’s native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley’s modification of Wallace’s line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans. PMID:28817588

  12. A molecular analysis of African lion (Panthera leo) mating structure and extra-group paternity in Etosha National Park.

    PubMed

    Lyke, M M; Dubach, J; Briggs, M B

    2013-05-01

    The recent incorporation of molecular methods into analyses of social and mating systems has provided evidence that mating patterns often differ from those predicted by group social organization. Based on field studies and paternity analyses at a limited number of sites, African lions are predicted to exhibit a strict within-pride mating system. Extra-group paternity has not been previously reported in African lions; however, observations of extra-group associations among lions inhabiting Etosha National Park in Namibia suggest deviation from the predicted within-pride mating pattern. We analysed variation in 14 microsatellite loci in a population of 164 African lions in Etosha National Park. Genetic analysis was coupled with demographic and observational data to examine pride structure, relatedness and extra-group paternity (EGP). EGP was found to occur in 57% of prides where paternity was analysed (n = 7), and the overall rate of EGP in this population was 41% (n = 34). Group sex ratio had a significant effect on the occurrence of EGP (P < 0.05), indicating that variation in pride-level social structure may explain intergroup variation in EGP. Prides with a lower male-to-female ratio were significantly more likely to experience EGP in this population. The results of this study challenge the current models of African lion mating systems and provide evidence that social structure may not reflect breeding structure in some social mammals. © 2013 Blackwell Publishing Ltd.

  13. Microsatellites loci reveal heterozygosis and population structure in vampire bats (Desmodus rotundus) (Chiroptera: Phyllostomidae) of Mexico.

    PubMed

    Romero-Nava, Claudia; León-Paniagua, Livia; Ortega, Jorge

    2014-06-01

    A limited number of studies have focused on the population genetic structure of vampire bats (Desmous rotundus) in America. This medium-sized bat is distributed in tropical areas of the continent with high prevalence in forested livestock areas. The aim of this work was to characterize the vampire population structure and their genetic differentiation. For this, we followed standard methods by which live vampires (caught by mist-netting) and preserved material from scientific collections, were obtained for a total of 15 different locations, ranging from Chihuahua (North) to Quintana Roo (Southeast). Tissue samples were obtained from both live and collected animals, and the genetic differentiation, within and among localities, was assessed by the use of seven microsatellite loci. Our results showed that all loci were polymorphic and no private alleles were detected. High levels of heterozygosis were detected when the proportion of alleles in each locus were compared. Pairwise (ST) and R(ST) detected significant genetic differentiation among individuals from different localities. Our population structure results indicate the presence of eleven clusters, with a high percentage of assigned individuals to some specific collecting site.

  14. Population structure of resident, immigrant, and swimming Corophium volutator (Amphipoda) on an intertidal mudflat in the Bay of Fundy, Canada

    NASA Astrophysics Data System (ADS)

    Drolet, David; Barbeau, Myriam A.

    2012-05-01

    Spatial variation in biotic and abiotic conditions, and differences in dispersive behavior of different life history stages can result in the formation of zones with different demography for infaunal and epifaunal species within vast intertidal flats. In this study, we evaluated within-mudflat homogeneity of the infaunal amphipod Corophium volutator found in the mud (residents), colonizing artificially disturbed areas (immigrants), and caught in the water column (swimmers) on a large mudflat in the upper Bay of Fundy, Canada. Densities of residents, immigrants, and swimmers were well structured in space (both along and across shore). Occasionally, significant differences in size structure, sex ratio, and proportion of ovigerous females were found at different intertidal levels, but these were short-lived. Comparisons of size and sex structure of residents, immigrants, and swimmers revealed occasional marked differences, with small juveniles and large adult males moving most. However, this size-bias in movement did not translate into zones with different population dynamics, suggesting that ample dispersal, through swimming and drifting in the water column, homogenized the population and masked potential effects of variation in environmental conditions. We therefore conclude that the mudflat represents one homogeneous population.

  15. Towards sustainable fishery management for skates in South America: The genetic population structure of Zearaja chilensis and Dipturus trachyderma (Chondrichthyes, Rajiformes) in the south-east Pacific Ocean.

    PubMed

    Vargas-Caro, Carolina; Bustamante, Carlos; Bennett, Michael B; Ovenden, Jennifer R

    2017-01-01

    The longnose skates (Zearaja chilensis and Dipturus trachyderma) are the main component of the elasmobranch fisheries in the south-east Pacific Ocean. Both species are considered to be a single stock by the fishery management in Chile however, little is known about the level of demographic connectivity within the fishery. In this study, we used a genetic variation (560 bp of the control region of the mitochondrial genome and ten microsatellite loci) to explore population connectivity at five locations along the Chilean coast. Analysis of Z. chilensis populations revealed significant genetic structure among off-shore locations (San Antonio, Valdivia), two locations in the Chiloé Interior Sea (Puerto Montt and Aysén) and Punta Arenas in southern Chile. For example, mtDNA haplotype diversity was similar across off-shore locations and Punta Arenas (h = 0.46-0.50), it was significantly different to those in the Chiloé Interior Sea (h = 0.08). These results raise concerns about the long-term survival of the species within the interior sea, as population resilience will rely almost exclusively on self-recruitment. In contrast, little evidence of genetic structure was found for D. trachyderma. Our results provide evidence for three management units for Z. chilensis, and we recommend that separate management arrangements are required for each of these units. However, there is no evidence to discriminate the extant population of Dipturus trachyderma as separate management units. The lack of genetic population subdivision for D. trachyderma appears to correspond with their higher dispersal ability and more offshore habitat preference.

  16. Towards sustainable fishery management for skates in South America: The genetic population structure of Zearaja chilensis and Dipturus trachyderma (Chondrichthyes, Rajiformes) in the south-east Pacific Ocean

    PubMed Central

    Bustamante, Carlos; Bennett, Michael B.; Ovenden, Jennifer R.

    2017-01-01

    The longnose skates (Zearaja chilensis and Dipturus trachyderma) are the main component of the elasmobranch fisheries in the south-east Pacific Ocean. Both species are considered to be a single stock by the fishery management in Chile however, little is known about the level of demographic connectivity within the fishery. In this study, we used a genetic variation (560 bp of the control region of the mitochondrial genome and ten microsatellite loci) to explore population connectivity at five locations along the Chilean coast. Analysis of Z. chilensis populations revealed significant genetic structure among off-shore locations (San Antonio, Valdivia), two locations in the Chiloé Interior Sea (Puerto Montt and Aysén) and Punta Arenas in southern Chile. For example, mtDNA haplotype diversity was similar across off-shore locations and Punta Arenas (h = 0.46–0.50), it was significantly different to those in the Chiloé Interior Sea (h = 0.08). These results raise concerns about the long-term survival of the species within the interior sea, as population resilience will rely almost exclusively on self-recruitment. In contrast, little evidence of genetic structure was found for D. trachyderma. Our results provide evidence for three management units for Z. chilensis, and we recommend that separate management arrangements are required for each of these units. However, there is no evidence to discriminate the extant population of Dipturus trachyderma as separate management units. The lack of genetic population subdivision for D. trachyderma appears to correspond with their higher dispersal ability and more offshore habitat preference. PMID:28207832

  17. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    PubMed

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic structure of P. falciparum populations in Thailand with those in the French Guyana, Congo and Cameroon revealed a significant genetic differentiation between all of them, except the two African countries, whilst the genetic variability of P. falciparum amongst countries showed overlapping distributions. Plasmodium falciparum shows genetically structured populations across local areas of Thailand. Although Thailand is considered to be a low transmission area, a relatively high level of genetic diversity and no linkage disequilibrium was found in five of the studied areas, the exception being the Yala province (Southern peninsular Thailand), where a clonal population structure was revealed and in Kanchanaburi province (Western Thailand). This finding is particularly relevant in the context of malaria control, because it could help in understanding the special dynamics of parasite populations in areas with different histories of, and exposure to, drug regimens.

  18. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    PubMed

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  19. Genetic diversity and population structure of an Italian landrace of runner bean (Phaseolus coccineus L.): inferences for its safeguard and on-farm conservation.

    PubMed

    Mercati, F; Catarcione, G; Paolacci, A R; Abenavoli, M R; Sunseri, F; Ciaffi, M

    2015-08-01

    The landraces are considered important sources of valuable germplasm for breeding activities to face climatic changes as well as to satisfy the requirement of new varieties for marginal areas. Runner bean (Phaseolus coccineus L.) is one of the most cultivated Phaseolus species worldwide, but few studies have been addressed to assess the genetic diversity and structure within and among landrace populations. In the present study, 20 different populations of a runner bean landrace from Central Italy named "Fagiolone," together with 41 accessions from Italy and Mesoamerica, were evaluated by using 14 nuclear SSRs to establish its genetic structure and distinctiveness. Results indicated that "Fagiolone" landrace can be considered as a dynamic evolving open-pollinated population that shows a significant level of genetic variation, mostly detected within populations, and the presence of two main genetic groups, of which one distinguished from other Italian runner bean landraces. Results highlighted also a relevant importance of farmers' management practices able to influence the genetic structure of this landrace, in particular the seed exchanges and selection, and the past introduction in cultivation of landraces/cultivars similar to seed morphology, but genetically rather far from "Fagiolone." The most suitable on-farm strategies for seed collection, conservation and multiplication will be defined based on our results, as a model for threatened populations of other allogamous crop species. STRUCTURE and phylogenetic analyses indicated that Mesoamerican accessions and Italian landraces belong to two distinct gene pools confirming the hypothesis that Europe could be considered a secondary diversification center for P. coccineus.

  20. Population genetic structure and conservation of marbled murrelets (Brachyramphus marmoratus)

    USGS Publications Warehouse

    Friesen, Vicki L.; Birt, T.P.; Piatt, John F.; Golightly, R.T.; Newman, S.H.; Hebert, P.N.; Congdon, B.C.; Gissing, G.

    2005-01-01

    Marbled murrelets (Brachyramphus marmoratus) are coastal seabirds that nest from California to the Aleutian Islands. They are declining and considered threatened in several regions. We compared variation in the mitochondrial control region, four nuclear introns and three microsatellite loci among 194 murrelets from throughout their range except Washington and Oregon. Significant population genetic structure was found: nine private control region haplotypes and three private intron alleles occurred at high frequency in the Aleutians and California; global estimates of FST or ??ST and most pairwise estimates involving the Aleutians and/or California were significant; and marked isolation-by-distance was found. Given the available samples, murrelets appear to comprise five genetic management units: (1) western Aleutian Islands, (2) central Aleutian Islands, (3) mainland Alaska and British Columbia, (4) northern California, and (5) central California.

  1. Mitochondrial and morphological variation of Tilapia zillii in Israel.

    PubMed

    Szitenberg, Amir; Goren, Menachem; Huchon, Dorothée

    2012-04-02

    Tilapia zillii is widespread in the East Levant inland aquatic systems as well as in artificial water reservoirs. In this study we explore the genetic and morphological variation of this widespread species, using mitochondrial control region sequences and meristic characters. We examine the hypothesis that T. zillii's population structure corresponds to the four Israeli aquatic systems. Out of seven natural water bodies, only two were found to possess genetically divergent populations of T. zillii. In addition to its presence in fish farms, the species was found in two artificial recreational ponds which were supposed to have been stocked only with other fish species. In these two artificial habitats, the haplotype frequencies diverged significantly from those of natural populations. Finally, fish from the Dead Sea springs of Ne'ot HaKikar appear to differ both genetically and morphologically from fish of the same aquatic system but not from fish of other water systems. Our results show that the population structure of T. zillii does not match the geography of the Israeli water-basins, with the exception of the Dead Sea and Kishon River, when considering natural populations only. The absence of a significant divergence between basins is discussed. Our results and observations suggest that the Ne'ot HaKikar Dead Sea population and those of artificial ponds could have originated from the "hitchhiking" of T. zillii, at the expense of some other cultivated tilapiine species.

  2. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    PubMed

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  3. Separate and unequal: Structural racism and infant mortality in the US.

    PubMed

    Wallace, Maeve; Crear-Perry, Joia; Richardson, Lisa; Tarver, Meshawn; Theall, Katherine

    2017-05-01

    We examined associations between state-level measures of structural racism and infant mortality among black and white populations across the US. Overall and race-specific infant mortality rates in each state were calculated from national linked birth and infant death records from 2010 to 2013. Structural racism in each state was characterized by racial inequity (ratio of black to white population estimates) in educational attainment, median household income, employment, imprisonment, and juvenile custody. Poisson regression with robust standard errors estimated infant mortality rate ratios (RR) and 95% confidence intervals (CI) associated with an IQR increase in indicators of structural racism overall and separately within black and white populations. Across all states, increasing racial inequity in unemployment was associated with a 5% increase in black infant mortality (RR=1.05, 95% CI=1.01, 1.10). Decreasing racial inequity in education was associated with an almost 10% reduction in the black infant mortality rate (RR=0.92, 95% CI=0.85, 0.99). None of the structural racism measures were significantly associated with infant mortality among whites. Structural racism may contribute to the persisting racial inequity in infant mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Elevated genetic structure in the coastal tailed frog (Ascaphus truei) in managed redwood forests.

    PubMed

    Aguilar, Andres; Douglas, Robert B; Gordon, Eric; Baumsteiger, Jason; Goldsworthy, Matthew O

    2013-03-01

    Landscape alterations have dramatic impacts on the distribution of genetic variation within and among populations and understanding these effects can guide contemporary and future conservation strategies. We initiated a landscape-scale genetic study of the coastal tailed frog (Ascaphus truei) on commercial timberlands within the southern range of the species in Mendocino County (CA, USA). In total, 294 individuals from 13 populations were analyzed at 9 microsatellite loci. None of the sampled populations departed from mutation-drift equilibrium, indicating recent population bottlenecks were not detected in contemporary samples. Fine-scale analysis indicated sampled populations were structured at the watershed level (mean F (ST) = 0.077 and mean G'(ST) = 0.425). Landscape analyses suggested wet and moist areas may serve as significant corridors for gene flow within watersheds in this region (r (2) = 0.32-0.54 for moisture-related features). Results indicate populations of frogs may have persisted at this scale through intense periods of timber harvest, making southern range edge populations of coastal tailed frogs resilient to past land use practices.

  5. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    PubMed

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  6. Absence of population genetic structure in Heterakis gallinarum of chicken from Sichuan, inferred from mitochondrial cytochrome c oxidase subunit I gene.

    PubMed

    Gu, Xiaobin; Zhu, Jun-Yang; Jian, Ke-Ling; Wang, Bao-Jian; Peng, Xue-Rong; Yang, Guang-You; Wang, Tao; Zhong, Zhi-Jun; Peng, Ke-Yun

    2016-09-01

    Population genetics information provides a foundation for understanding the transmission and epidemiology of parasite and, therefore, may be used to assist in the control of parasitosis. However, limited available sequence information in Heterakis gallinarum has greatly impeded the study in this area. In this study, we first investigated the genetic variability and genetic structure of H. gallinarum. The 1325 bp fragments of the mitochondrial COX1 gene were amplified in 56 isolates of H. gallinarum from seven different geographical regions in Sichuan province, China. The 56 sequences were classified into 22 haplotypes (H1-H22). The values of haplotype diversity (0.712) and nucleotide diversity (0.00158) in Sichuan population indicate a rapid expansion occurred from a relatively small, short-term effective population in the past. The haplotype network formed a distribution around H1 in a star-like topology, and the haplotypes did not cluster according to their geographical location. Similar conclusions could be made from MP phylogenetic tree. The Fst value (Fst<0.16965) and AMOVA analysis revealed that no significant genetic differentiation was observed among the seven different geographical populations. Neutrality tests (Tajima's D and Fu's Fs) and mismatch analysis indicated that H. gallinarum experienced a population expansion in the past. Our results indicated that H. gallinarum experienced a rapid population expansion in the past, and there was a low genetic diversity and an absence of population structure across the population.

  7. Extensive Copy Number Variations in Admixed Indian Population of African Ancestry: Potential Involvement in Adaptation

    PubMed Central

    Dash, Debasis; Mukerji, Mitali

    2014-01-01

    Admixture mapping has been enormously resourceful in identifying genetic variations linked to phenotypes, adaptation, and diseases. In this study through analysis of copy number variable regions (CNVRs), we report extensive restructuring in the genomes of the recently admixed African-Indian population (OG-W-IP) that inhabits a highly saline environment in Western India. The study included subjects from OG-W-IP (OG), five different Indian and three HapMap populations that were genotyped using Affymetrix version 6.0 arrays. Copy number variations (CNVs) detected using Birdsuite were used to define CNVRs. Population structure with respect to CNVRs was delineated using random forest approach. OG genomes have a surprising excess of CNVs in comparison to other studied populations. Individual ancestry proportions computed using STRUCTURE also reveals a unique genetic component in OGs. Population structure analysis with CNV genotypes indicates OG to be distant from both the African and Indian ancestral populations. Interestingly, it shows genetic proximity with respect to CNVs to only one Indian population IE-W-LP4, which also happens to reside in the same geographical region. We also observe a significant enrichment of molecular processes related to ion binding and receptor activity in genes encompassing OG-specific CNVRs. Our results suggest that retention of CNVRs from ancestral natives and de novo acquisition of CNVRs could accelerate the process of adaptation especially in an extreme environment. Additionally, this population would be enormously useful for dissecting genes and delineating the involvement of CNVs in salt adaptation. PMID:25398783

  8. Population genetic structure of the acanthocephalan Acanthosentis cheni in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus.

    PubMed

    Song, Rui; Li, Wen X; Wu, Shan G; Zou, Hong; Wang, Gui T

    2014-04-01

    The acanthocephalan Acanthosentis cheni was found in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus. To examine the genetic variations of the acanthocephalan among the 3 populations with the adaptation of the host to the freshwater, the genetic structure of the helminth was investigated in anadromous (Zhoushan and Chongming islands, and Anqing), freshwater (Anqing, Ezhou, and Poyang Lake), and landlocked (Tian'ezhou Reserve) populations by sequencing intergenic transcribed spacers (ITS) of the ribosomal RNA coding genes. Low Fst values and high gene flow were found among the 7 populations (Fst = 0.0135, P = 0.2723; Nm = 36.48) and the 3 ecotypes of Acanthosentis cheni (Fst = 0.0178, P = 0.1044; Nm = 27.67). On the other hand, significant genetic differentiation of the C. nasus host populations was detected between the upstream and downstream areas of Xiaogu Mountain (Fst = 0.1961, P = 0.0030; Nm = 2.05), which is the farthest location of spawning migration for C. nasus . However, the migration break of the fish host appeared not to cause significant genetic differentiation of A. cheni populations between the upper and lower reaches of Xiaogu Mountain. Other factors might promote genetic exchange of A. cheni populations such as dispersal of the intermediate host by flooding or other fish species serving as the definitive or paratenic hosts. In Anqing, nucleotide diversity of the acanthocephalan was highest in the freshwater population (0.0038) and lower in the anadromous population (0.0026). This suggested that new mutations may have occurred in the freshwater A. cheni population in Anqing when adapting to a freshwater environment.

  9. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea.

    PubMed

    Chi, Xiang-Qun; Liu, Kun; Zhou, Ning-Yi

    2015-07-01

    Pseudomonas sp. strain WBC-3 mineralizes the priority pollutant para-nitrophenol (PNP) and releases nitrite (NO2 (-)), which is probably involved in the nitrification. In this study, the rate of PNP removal in soil bioaugmented with strain WBC-3 was more accelerated with more NO2 (-) accumulation than in uninoculated soils. Strain WBC-3 survived well and remained stable throughout the entire period. Real-time polymerase chain reaction (real-time PCR) indicated a higher abundance of ammonia-oxidizing bacteria (AOB) than ammonia-oxidizing archaea (AOA), suggesting that AOB played a greater role in nitrification in the original sampled soil. Real-time PCR and multivariate analysis based on the denaturing gradient gel electrophoresis showed that PNP contamination did not significantly alter the abundance and community structure of ammonia oxidizers except for inhibiting the AOB abundance. Bioaugmentation of PNP-contaminated soil showed a significant effect on AOB populations and community structure as well as AOA populations. In addition, ammonium (NH4 (+)) variation was found to be the primary factor affecting the AOB community structure, as determined by the correlation between the community structures of ammonia oxidizers and environmental factors. It is here proposed that the balance between archaeal and bacterial ammonia oxidation could be influenced significantly by the variation in NH4 (+) levels as caused by bioaugmentation of contaminated soil by a pollutant containing nitrogen.

  10. Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf.

    PubMed

    Mège, Pascal; Schizas, Nikolaos V; Reyes, Joselyd García; Hrbek, Tomas

    2015-06-01

    It has been proposed that the elkhorn coral, Acropora palmata , is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (H E = 0.761) and consistent across localities (0.685 to 0.844). F ST ranged from -0.011 to 0.047 supporting low but significant genetic differentiation between localities within the previously reported Eastern and Western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation-by-distance (IBD) within Puerto Rico. Analysis with the software Structure favored a scenario with weak differentiation between two populations, assigning eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean Eastern population and western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean Western population. Vieques and San Juan area harbored admixed profiles. Standardized F ST s per 1,000 km unit further supported higher differentiation between localities belonging to different Structure populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative Eastern and Western provinces in the eastern Puerto Rican region, not around the Mona Passage.

  11. Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf

    PubMed Central

    Mège, Pascal; Schizas, Nikolaos V.; Reyes, Joselyd García; Hrbek, Tomas

    2014-01-01

    It has been proposed that the elkhorn coral, Acropora palmata, is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (HE = 0.761) and consistent across localities (0.685 to 0.844). FST ranged from −0.011 to 0.047 supporting low but significant genetic differentiation between localities within the previously reported Eastern and Western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation-by-distance (IBD) within Puerto Rico. Analysis with the software Structure favored a scenario with weak differentiation between two populations, assigning eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean Eastern population and western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean Western population. Vieques and San Juan area harbored admixed profiles. Standardized FSTs per 1,000 km unit further supported higher differentiation between localities belonging to different Structure populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative Eastern and Western provinces in the eastern Puerto Rican region, not around the Mona Passage. PMID:26085704

  12. Population genetic signatures of a climate change driven marine range extension.

    PubMed

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Semmens, Jayson M; Souza, Carla A; Strugnell, Jan M

    2018-06-22

    Shifts in species distribution, or 'range shifts', are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone.

  13. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden.

    PubMed

    Truong, C; Palmé, A E; Felber, F

    2007-01-01

    Mountain birch, Betula pubescens ssp. tortuosa, forms the treeline in northern Sweden. A recent shift in the range of the species associated with an elevation of the treeline is commonly attributed to climate warming. Using microsatellite markers, we explored the genetic structure of populations along an altitudinal gradient close to the treeline. Low genetic differentiation was found between populations, whereas high genetic diversity was maintained within populations. High level of gene flow compensated for possible losses of genetic diversity at higher elevations and dissipated the founding effect of newly established populations above the treeline. Spatial autocorrelation analysis showed low spatial genetic structure within populations because of extensive gene flow. At the treeline, significant genetic structure within the juvenile age class at small distances did not persist in the adult age class, indicating recent expansion of young recruits due to the warming of the climate. Finally, seedling performance above the treeline was positively correlated with parameters related to temperature. These data confirm the high migration potential of the species in response to fluctuating environmental conditions and indicate that it is now invading higher altitudes due to the recent warming of the climate.

  14. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus).

    PubMed

    Limborg, M T; Hanel, R; Debes, P V; Ring, A K; André, C; Tsigenopoulos, C S; Bekkevold, D

    2012-08-01

    Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left complex genetic imprints on populations of marine species. This study investigated population structure and demographic history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers throughout the species' distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a complex population structure across the species' distribution (overall θ(ST)=0.038, P<0.01). Across transition zones markers indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact of mutation in the species' southern distribution in the Mediterranean region. These results were interpreted to reflect more recent divergence times between northern populations in accordance with previous findings. This study demonstrates the usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population genetic studies in species with weak genetic structure, as is the case in many marine species.

  15. Population density of North American elk: effects on plant diversity.

    PubMed

    Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W

    2009-08-01

    Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.

  16. Fine resolution mapping of population age-structures for health and development applications.

    PubMed

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  17. Genetic signals of past demographic changes and the history of oak populations in California

    NASA Astrophysics Data System (ADS)

    Dodd, R. S.

    2009-04-01

    A retrospective view of species' demographic changes can inform on population stability through times of climatic change and the origins and spatial structure of genetic diversity in contemporary populations. The former provides the means to predict responses to future climatic change, while the latter allows us to infer the ability of populations to buffer the effects of reductions in population size and fragmentation. The approximately 1.8 my of the Pleistocene is believed to have had a significant impact on diversity through high rates of extinction during early glacial cycles and population expansions and contractions during the later cycles. In the Mediterranean basin, early emphasis on taxa with wide latitudinal ranges led to models of refugial sites and subsequent recolonization routes that could explain geographic patterns in genetic diversity, with a trend towards reduced genetic diversity in the north. More recently, the study of strictly Mediterranean taxa has revealed relictual sites that have persisted over very long periods of time, commonly relatively poor in diversity, but populations well differentiated from one site to another. In California, relatively little is known of the population dynamics of plant taxa during the Pleistocene glacial cycles, or to what extent differentiation today is a result of pre-Pleistocene events. For several animal taxa, differentiation between Coastal and Sierran taxa are believed to date to the Pliocene. Major demographic changes resulting in population isolation, bottlenecks, founder events and population expansions leave a genetic signal that can be detected through appropriate genetic markers and analyses. Such signals help to infer whether past climate fluctuations have had important effects on population demographics. Here, I will focus on key oak species of the California mediterranean climate zone. I will explore the likely effects of the last glacial maximum on oak populations using palaeoclimate and niche modeling together with analyses of population genetic structure. One of the major questions that will be addressed is whether populations have persisted over long periods of time and if the contemporary population structure has derived from events earlier than the Pleistocene. Population genetic structure will then be used to propose strategies that will optimize conservation of genetic resources.

  18. The roles of calving migration and climate change in the formation of the weak genetic structure in the Tibetan antelope (Pantholops hodgsonii).

    PubMed

    Chen, Jiarui; Lin, Gonghua; Qin, Wen; Yan, Jingyan; Zhang, Tongzuo; Su, Jianping

    2018-05-31

    Geographical barriers and distance can reduce gene exchange among animals, resulting in genetic divergence of geographically isolated populations. The habitats of Tibetan antelope (Pantholops hodgsonii) has a geographical range of approximately 1,600 km across the Qinghai-Tibet Plateau (QTP) with a series tall mountains and big rivers. However, previously studies indicated that there was little genetic differentiation among their geographically delineated populations. To better understand the genetic structure of P. hodgsonii populations, we collected 145 samples from the three major calving regions considering their various calving grounds and migration routes. We used a combination of mitochondrial sequences (Cyt b, ATPase, D-loop and COX I) to investigate the genetic structure and the evolutionary divergence of the populations. Significant, albeit weak, genetic differentiation was detected among the three geographical populations. Analysis of the genetic divergence process revealed that the animals gradually entered into a period of rapid genetic differentiation since approximately 60,000 years ago. The calving migration of P. hodgsonii cannot be the main cause of their weak genetic structure since such cannot fully homogenize the genetic pool. Instead, the geological and climatic events as well as the coupling vegetation succession process during this period have been suggested to greatly contribute to the genetic structure and the expansion of genetic diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. The gastropod Phorcus sauciatus (Koch, 1845) along the north-west Iberian Peninsula: filling historical gaps

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Moreira, Juan; Sousa-Pinto, Isabel

    2014-03-01

    The intertidal gastropod Phorcus sauciatus is a subtropical grazer that reaches its northern boundary in the Iberian Peninsula. Distribution of P. sauciatus along the Iberian Peninsula shows, however, gaps in its distribution. The present study was aimed at detecting possible recent changes on the population structure and distribution of P. sauciatus along the north-west Atlantic coast of the Iberian Peninsula. To achieve this aim, we adopted a qualitative sampling design to explore the presence of P. sauciatus along a region within its historical gap of distribution (north Portuguese coast). In addition, a quantitative sampling design was adopted to test hypotheses about the abundance and size structure of P. sauciatus populations among regions with different historical records of its abundance and among shores with different exposure. Results showed that P. sauciatus was present along the north Portuguese coast. However, the abundance and size structure of the newly settled populations were significantly different to those of the historically recorded populations. Moreover, P. sauciatus was able to establish populations at sheltered shores. Considering these results, we propose models for the distribution of P. sauciatus along the Iberian Peninsula, based on effects of sea surface temperature, and to explain the size-frequency of their populations based on their density.

  20. Phylogeographic analyses of submesophotic snappers Etelis coruscans and Etelis "marshi" (family Lutjanidae) reveal concordant genetic structure across the Hawaiian Archipelago.

    PubMed

    Andrews, Kimberly R; Moriwake, Virginia N; Wilcox, Christie; Grau, E Gordon; Kelley, Christopher; Pyle, Richard L; Bowen, Brian W

    2014-01-01

    The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200-360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. "marshi" (formerly E. carbunculus; N = 770) with 436-490 bp of mtDNA cytochrome b and 10-11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans.

  1. Phylogeographic Analyses of Submesophotic Snappers Etelis coruscans and Etelis “marshi” (Family Lutjanidae) Reveal Concordant Genetic Structure across the Hawaiian Archipelago

    PubMed Central

    Andrews, Kimberly R.; Moriwake, Virginia N.; Wilcox, Christie; Grau, E. Gordon; Kelley, Christopher; Pyle, Richard L.; Bowen, Brian W.

    2014-01-01

    The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200–360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. “marshi” (formerly E. carbunculus; N = 770) with 436–490 bp of mtDNA cytochrome b and 10–11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans. PMID:24722193

  2. Plasmodium falciparum population structure in Sudan post artemisinin-based combination therapy.

    PubMed

    Bakhiet, Amani M A; Abdel-Muhsin, Abdel-Muhsin A; Elzaki, Salah-Eldin G; Al-Hashami, Zainab; Albarwani, Hamida S; AlQamashoui, Badar A; Al-Hamidhi, Salama; Idris, Mohamed A; Elagib, Atif A; Beja-Pereira, Albano; Babiker, Hamza A

    2015-08-01

    Over the past decade, Sudan has stepped up malaria control backed by WHO, and this has resulted in significant reduction in parasite rate, malaria morbidity and mortality. The present study analyzed Plasmodium falciparum parasites in four geographical separated areas, to examine whether the success in malaria control following the use of artemisinin-based combination therapy (ACT) has disrupted the population structure and evolution of the parasite. We examined 319 P. falciparum isolates collected between October 2009 and October 2012 in four different areas in Sudan (Jazira [central Sudan], Southern Darfur [western Sudan], Upper Nile [southern Sudan] and Kasala [eastern Sudan]). Twelve microsatellites were analyzed for allelic diversity, multi-locus haplotype and inter-population differentiation. Level of diversity was compared to that detected for three of the above microsatellites among P. falciparum parasites in central and eastern Sudan in 1999, prior to introduction of ACT. Diversity at each locus (unbiased heterozygosity [H]) was high in all areas (Jazira, H=0.67), (Southern Darfur, H=0.71), (Upper Nile, H=0.71), and (Kasala, H=0.63). Microsatellites were distributed widely and private alleles, detected in a single population, were rare. The extent of diversity in the above sites was similar to that seen, in 1999, in central (Khartoum, H=0.73) and eastern Sudan (Gedaref, H=0.75). Significant Linkage disequilibrium (LD) was observed between the microsatellites in all populations. Pairwise FST analysis revealed that parasites in the four areas could be considered as one population. However, the parasites in Sudan clustered away from parasites in West Africa and the Arabian Peninsula. Despite marked reduction in malaria risk in Sudan, the extent of diversity and parasite genetic structure are indicative of a large population size. Further considerable reduction in transmission would be needed before fragmented sub-population can be seen. In addition, the large divergence of P. falciparum in Sudan from West Africa and Arabian Peninsula populations may result from differential evolutionary pressures acting at the population level, which shall be considered in eradication plans. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Attitudes to mental illness among mental health professionals in Singapore and comparisons with the general population.

    PubMed

    Yuan, Qi; Picco, Louisa; Chang, Sherilyn; Abdin, Edimansyah; Chua, Boon Yiang; Ong, Samantha; Yow, Kah Lai; Chong, Siow Ann; Subramaniam, Mythily

    2017-01-01

    Similar to the general public, mental health professionals sometimes also have negative attitudes towards individuals with mental illness; which could ultimately affect the quality of care received by the patients. This study aims to explore attitudes to mental illness among mental health professionals in Singapore; make comparisons with the general population; and investigate the significant correlates. A cross-sectional design was used. Eligible participants were recruited from the Institute of Mental Health, Singapore. Attitudes to mental illness among the mental health professionals were measured using an adapted 26-item Attitudes to Mental Illness questionnaire (AMI). An earlier study amongst the general population in Singapore had used the same tool; however, factor analysis suggested a 20-item, 4-factor structure (AMI-SG) was the best fit. This 4-factor structure was applied among the current sample of mental health professionals to allow comparisons between the professionals and the general population. Data were collected through an online survey tool 'Questionpro' from February to April 2016, and 379 participants were included in the current analysis. Attitudes to mental illness among these professionals were compared to those of the general population, which were captured as part of a national study conducted from March 2014 to April 2015. The 20-item, 4-factor structure AMI-SG derived from the general population was applicable among the mental health professionals in Singapore. Compared to the general population, mental health professionals had significantly more positive attitudes to mental illness; however their scores on 'social distancing' did not differ from the general population. Indian ethnicity was negatively associated with 'social distancing' and 'social restrictiveness' among the professionals; while higher education was negatively related to 'prejudice and misconception'. Compared to nurses, doctors showed significantly more positive attitudes on 'social restrictiveness' and 'prejudice and misconception'. Having family or close friends diagnosed with mental illness was negatively associated with 'social distancing' among the professionals. The AMI-SG is an effective tool to measure attitudes to mental illness among mental health professionals in Singapore. Although the professionals had significantly more positive attitudes to mental illness than the general public in Singapore, their attitudes on 'social distancing' resembled closely that of the general public. Professionals tended to have more negative attitudes if they were nurses, less educated, and of Chinese ethnicity. More studies are needed to explore the underlying reasons for the differences and to generalize these findings among mental health professionals elsewhere.

  4. Attitudes to mental illness among mental health professionals in Singapore and comparisons with the general population

    PubMed Central

    Picco, Louisa; Chang, Sherilyn; Abdin, Edimansyah; Chua, Boon Yiang; Ong, Samantha; Yow, Kah Lai; Chong, Siow Ann; Subramaniam, Mythily

    2017-01-01

    Background Similar to the general public, mental health professionals sometimes also have negative attitudes towards individuals with mental illness; which could ultimately affect the quality of care received by the patients. This study aims to explore attitudes to mental illness among mental health professionals in Singapore; make comparisons with the general population; and investigate the significant correlates. Methods A cross-sectional design was used. Eligible participants were recruited from the Institute of Mental Health, Singapore. Attitudes to mental illness among the mental health professionals were measured using an adapted 26-item Attitudes to Mental Illness questionnaire (AMI). An earlier study amongst the general population in Singapore had used the same tool; however, factor analysis suggested a 20-item, 4-factor structure (AMI-SG) was the best fit. This 4-factor structure was applied among the current sample of mental health professionals to allow comparisons between the professionals and the general population. Data were collected through an online survey tool ‘Questionpro’ from February to April 2016, and 379 participants were included in the current analysis. Attitudes to mental illness among these professionals were compared to those of the general population, which were captured as part of a national study conducted from March 2014 to April 2015. Results The 20-item, 4-factor structure AMI-SG derived from the general population was applicable among the mental health professionals in Singapore. Compared to the general population, mental health professionals had significantly more positive attitudes to mental illness; however their scores on ‘social distancing’ did not differ from the general population. Indian ethnicity was negatively associated with ‘social distancing’ and ‘social restrictiveness’ among the professionals; while higher education was negatively related to ‘prejudice and misconception’. Compared to nurses, doctors showed significantly more positive attitudes on ‘social restrictiveness’ and ‘prejudice and misconception’. Having family or close friends diagnosed with mental illness was negatively associated with ‘social distancing’ among the professionals. Conclusion The AMI-SG is an effective tool to measure attitudes to mental illness among mental health professionals in Singapore. Although the professionals had significantly more positive attitudes to mental illness than the general public in Singapore, their attitudes on ‘social distancing’ resembled closely that of the general public. Professionals tended to have more negative attitudes if they were nurses, less educated, and of Chinese ethnicity. More studies are needed to explore the underlying reasons for the differences and to generalize these findings among mental health professionals elsewhere. PMID:29145419

  5. Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).

    PubMed

    Hazlitt, S L; Sigg, D P; Eldridge, M D B; Goldizen, A W

    2006-09-01

    Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

  6. Genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay

    USGS Publications Warehouse

    Duda, T. F.

    1994-01-01

    The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the “general purpose” phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.

  7. High genetic diversity and connectivity in Colossoma macropomum in the Amazon basin revealed by microsatellite markers.

    PubMed

    Fazzi-Gomes, Paola; Guerreiro, Sávio; Palheta, Glauber David Almeida; Melo, Nuno Filipe Alves Correa de; Santos, Sidney; Hamoy, Igor

    2017-01-01

    Colossoma macropomum is the second largest scaled fish of the Amazon. It is economically important for commercial fisheries and for aquaculture, but few studies have examined the diversity and genetic structure of natural populations of this species. The aim of this study was to investigate the levels of genetic variability and connectivity that exist between three natural populations of C. macropomum from the Amazon basin. In total, 247 samples were collected from the municipalities of Tefé, Manaus, and Santarém. The populations were genotyped using a panel of 12 multiplex microsatellite markers. The genetic diversity found in these populations was high and similar to other populations described in the literature. These populations showed a pattern of high gene flow associated with the lack of a genetic structure pattern, indicating that the number of migrants per generation and recent migration rates are high. The values of the FST, RST, and exact test of differentiation were not significant for pairwise comparisons between populations. The Bayesian population clustering analysis indicated a single population. Thus, the data provide evidence for high genetic diversity and high gene flow among C. macropomum populations in the investigated region of the Amazon basin. This information is important for programs aiming at the conservation of natural populations.

  8. High genetic diversity and connectivity in Colossoma macropomum in the Amazon basin revealed by microsatellite markers

    PubMed Central

    Fazzi-Gomes, Paola; Guerreiro, Sávio; Palheta, Glauber David Almeida; de Melo, Nuno Filipe Alves Correa; Santos, Sidney; Hamoy, Igor

    2017-01-01

    Abstract Colossoma macropomum is the second largest scaled fish of the Amazon. It is economically important for commercial fisheries and for aquaculture, but few studies have examined the diversity and genetic structure of natural populations of this species. The aim of this study was to investigate the levels of genetic variability and connectivity that exist between three natural populations of C. macropomum from the Amazon basin. In total, 247 samples were collected from the municipalities of Tefé, Manaus, and Santarém. The populations were genotyped using a panel of 12 multiplex microsatellite markers. The genetic diversity found in these populations was high and similar to other populations described in the literature. These populations showed a pattern of high gene flow associated with the lack of a genetic structure pattern, indicating that the number of migrants per generation and recent migration rates are high. The values of the FST, RST, and exact test of differentiation were not significant for pairwise comparisons between populations. The Bayesian population clustering analysis indicated a single population. Thus, the data provide evidence for high genetic diversity and high gene flow among C. macropomum populations in the investigated region of the Amazon basin. This information is important for programs aiming at the conservation of natural populations. PMID:28170026

  9. Population genetics of Enterocytozoon bieneusi in captive giant pandas of China.

    PubMed

    Li, Wei; Song, Yuan; Zhong, Zhijun; Huang, Xiangming; Wang, Chengdong; Li, Caiwu; Yang, Haidi; Liu, Haifeng; Ren, Zhihua; Lan, Jingchao; Wu, Kongju; Peng, Guangneng

    2017-10-18

    Most studies on Enterocytozoon bieneusi are conducted based on the internal transcribed spacer (ITS) region of the rRNA gene, whereas some have examined E. bieneusi population structures. Currently, the population genetics of this pathogen in giant panda remains unknown. The objective of this study was to determine the E. bieneusi population in captive giant pandas in China. We examined 69 E. bieneusi-positive specimens from captive giant pandas in China using five loci (ITS, MS1, MS3, MS4 and MS7) to infer E. bieneusi population genetics. For multilocus genotype (MLG) analysis of E. bieneusi-positive isolates, the MS1, MS3, MS4, and MS7 microsatellite and minisatellite loci were amplified and sequenced in 48, 45, 50 and 47 specimens, respectively, generating ten, eight, nine and five types. We successfully amplified 36 specimens and sequenced all five loci, forming 24 MLGs. Multilocus sequence analysis revealed a strong and significant linkage disequilibrium (LD), indicating a clonal population. This result was further supported by measurements of pairwise intergenic LD and a standardized index of association (I S A ) from allelic profile data. The analysis in STRUCTURE suggested three subpopulations in E. bieneusi, further confirmed using right's fixation index (F ST ). Subpopulations 1 and 2 exhibited an epidemic structure, whereas subpopulation 3 had a clonal structure. Our results describe E. bieneusi population genetics in giant pandas for the first time, improving the current understanding E. bieneusi epidemiology in the studied region. These data also benefit future studies exploring potential transmission risks from pandas to other animals, including humans.

  10. Phylogeography on the rocks: The contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia).

    PubMed

    Pannacciulli, Federica G; Maltagliati, Ferruccio; de Guttry, Christian; Achituv, Yair

    2017-01-01

    The model marine broadcast-spawner barnacle Chthamalus montagui was investigated to understand its genetic structure and quantify levels of population divergence, and to make inference on historical demography in terms of time of divergence and changes in population size. We collected specimens from rocky shores of the north-east Atlantic Ocean (4 locations), Mediterranean Sea (8) and Black Sea (1). The 312 sequences 537 bp) of the mitochondrial cytochrome c oxidase I allowed to detect 130 haplotypes. High within-location genetic variability was recorded, with haplotype diversity ranging between h = 0.750 and 0.967. Parameters of genetic divergence, haplotype network and Bayesian assignment analysis were consistent in rejecting the hypothesis of panmixia. C. montagui is genetically structured in three geographically discrete populations, which corresponded to north-eastern Atlantic Ocean, western-central Mediterranean Sea, and Aegean Sea-Black Sea. These populations are separated by two main effective barriers to gene flow located at the Almeria-Oran Front and in correspondence of the Cyclades Islands. According to the 'isolation with migration' model, adjacent population pairs diverged during the early to middle Pleistocene transition, a period in which geological events provoked significant changes in the structure and composition of palaeocommunities. Mismatch distributions, neutrality tests and Bayesian skyline plots showed past population expansions, which started approximately in the Mindel-Riss interglacial, in which ecological conditions were favourable for temperate species and calcium-uptaking marine organisms.

  11. Phylogeography on the rocks: The contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia)

    PubMed Central

    Pannacciulli, Federica G.; de Guttry, Christian; Achituv, Yair

    2017-01-01

    The model marine broadcast-spawner barnacle Chthamalus montagui was investigated to understand its genetic structure and quantify levels of population divergence, and to make inference on historical demography in terms of time of divergence and changes in population size. We collected specimens from rocky shores of the north-east Atlantic Ocean (4 locations), Mediterranean Sea (8) and Black Sea (1). The 312 sequences 537 bp) of the mitochondrial cytochrome c oxidase I allowed to detect 130 haplotypes. High within-location genetic variability was recorded, with haplotype diversity ranging between h = 0.750 and 0.967. Parameters of genetic divergence, haplotype network and Bayesian assignment analysis were consistent in rejecting the hypothesis of panmixia. C. montagui is genetically structured in three geographically discrete populations, which corresponded to north-eastern Atlantic Ocean, western-central Mediterranean Sea, and Aegean Sea-Black Sea. These populations are separated by two main effective barriers to gene flow located at the Almeria-Oran Front and in correspondence of the Cyclades Islands. According to the ‘isolation with migration’ model, adjacent population pairs diverged during the early to middle Pleistocene transition, a period in which geological events provoked significant changes in the structure and composition of palaeocommunities. Mismatch distributions, neutrality tests and Bayesian skyline plots showed past population expansions, which started approximately in the Mindel-Riss interglacial, in which ecological conditions were favourable for temperate species and calcium-uptaking marine organisms. PMID:28594840

  12. Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation.

    PubMed

    Gutiérrez-Gutiérrez, Carlos; Castillo, Pablo; Cantalapiedra-Navarrete, Carolina; Landa, Blanca B; Derycke, Sofie; Palomares-Rius, Juan E

    2011-10-01

    The dagger nematodes Xiphinema pachtaicum and X. index are two of the most widespread and frequently occurring Xiphinema spp. co-infesting vineyards and other crops and natural habitats worldwide. Sexual reproduction is rare in these species. The primary objective of this study was to determine the genetic structure of X. pachtaicum and X. index populations using eight and seven populations, respectively, from different "wine of denomination of origin (D.O.) zones" in Spain and Sardinia (Italy), by studying mitochondrial (cytochrome oxidase c subunit 1 or COI) and nuclear (D2-D3 expansion segments of 28S rDNA) markers. Both Xiphinema spp. showed low intraspecific divergence among COI sequences, ranging from 0.2% (1 base substitution) to 2.3% (10 substitutions) in X. pachtaicum and from 0.2% (1 base substitution) to 0.4% (2 substitutions) in X. index. Population genetic structure was strong for both species. Nevertheless, molecular differences among grapevine-growing areas were not significant, and intrapopulation diversity was very low. It is hypothesized that this genetic homogeneity in the nematode populations reflects their predominant parthenogenetic reproduction mode and low dispersal abilities. Our results also show that X. pachtaicum populations in Spain have possibly been established from two different populations of origin. Results also demonstrated that the two DNA regions studied are suitable diagnostic markers for X. index and X. pachtaicum.

  13. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species.

    PubMed

    Schunter, C; Carreras-Carbonell, J; Macpherson, E; Tintoré, J; Vidal-Vijande, E; Pascual, A; Guidetti, P; Pascual, M

    2011-12-01

    Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts. © 2011 Blackwell Publishing Ltd.

  14. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    PubMed Central

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-01-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283

  15. Fine-scale population structure in Atlantic salmon from Maine's Penobscot River drainage

    USGS Publications Warehouse

    Spidle, A.P.; Bane, Schill W.; Lubinski, B.A.; King, T.L.

    2001-01-01

    We report a survey of micro satellite DNA variation in Atlantic salmon from the unimpounded lower reaches of Maine's Penobscot River. Our analysis indicates that Atlantic salmon in the Penobscot River are distinct from other populations that have little or no history of human-mediated repopulation, including two of its tributaries, Cove Brook and Kenduskeag Stream, another Maine river, the Ducktrap, and Canada's Miramichi and Gander rivers. Significant heterogeneity was detected in allele frequency among all three subpopulations sampled in the Penobscot drainage. The high resolution of the 12-locus suite was quantified using maximum likelihood assignment tests, which correctly identified the source of 90.4-96.1% of individuals from within the Penobscot drainage. Current populations are clearly isolated from each other, however we are unable to determine from the present data whether the populations in Cove Brook and Kenduskeag Stream are recently diverged from populations stocked into the Penobscot River over the last century, or are aboriginal in origin. The degree of population structure identified in the Penobscot drainage is noteworthy in light of its lengthy history of systematic restocking, the geographic proximity of the subpopulations, and the extent of the differentiation. Similar population structure on this extremely limited geographic scale could exist among Atlantic salmon runs elsewhere in Maine and throughout the species' range and should be taken into account for future management decisions.

  16. Population and Individual Elephant Response to a Catastrophic Fire in Pilanesberg National Park

    PubMed Central

    Woolley, Leigh-Ann; Millspaugh, Joshua J.; Woods, Rami J.; Janse van Rensburg, Samantha; Mackey, Robin L.; Page, Bruce; Slotow, Rob

    2008-01-01

    In predator-free large herbivore populations, where density-dependent feedbacks occur at the limit where forage resources can no longer support the population, environmental catastrophes may play a significant role in population regulation. The potential role of fire as a stochastic mass-mortality event limiting these populations is poorly understood, so too the behavioural and physiological responses of the affected animals to this type of large disturbance event. During September 2005, a wildfire resulted in mortality of 29 (18% population mortality) and injury to 18, African elephants in Pilanesberg National Park, South Africa. We examined movement and herd association patterns of six GPS-collared breeding herds, and evaluated population physiological response through faecal glucocorticoid metabolite (stress) levels. We investigated population size, structure and projected growth rates using a simulation model. After an initial flight response post-fire, severely injured breeding herds reduced daily displacement with increased daily variability, reduced home range size, spent more time in non-tourist areas and associated less with other herds. Uninjured, or less severely injured, breeding herds also shifted into non-tourist areas post-fire, but in contrast, increased displacement rate (both mean and variability), did not adjust home range size and formed larger herds post-fire. Adult cow stress hormone levels increased significantly post-fire, whereas juvenile and adult bull stress levels did not change significantly. Most mortality occurred to the juvenile age class causing a change in post-fire population age structure. Projected population growth rate remained unchanged at 6.5% p.a., and at current fecundity levels, the population would reach its previous level three to four years post-fire. The natural mortality patterns seen in elephant populations during stochastic events, such as droughts, follows that of the classic mortality pattern seen in predator-free large ungulate populations, i.e. mainly involving juveniles. Fire therefore functions in a similar manner to other environmental catastrophes and may be a natural mechanism contributing to population limitation. Welfare concerns of arson fires, burning during “hot-fire” conditions and the conservation implications of fire suppression (i.e. removal of a potential contributing factor to natural population regulation) should be integrated into fire management strategies for conservation areas. PMID:18797503

  17. Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes)

    PubMed Central

    Johnson, Jennifer L.; Wittgenstein, Helena; Mitchell, Sharon E.; Hyma, Katie E.; Temnykh, Svetlana V.; Kharlamova, Anastasiya V.; Gulevich, Rimma G.; Vladimirova, Anastasiya V.; Fong, Hiu Wa Flora; Acland, Gregory M.; Trut, Lyudmila N.; Kukekova, Anna V.

    2015-01-01

    The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species. PMID:26061395

  18. Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes).

    PubMed

    Johnson, Jennifer L; Wittgenstein, Helena; Mitchell, Sharon E; Hyma, Katie E; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Gulevich, Rimma G; Vladimirova, Anastasiya V; Fong, Hiu Wa Flora; Acland, Gregory M; Trut, Lyudmila N; Kukekova, Anna V

    2015-01-01

    The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.

  19. Paternal Genetic Structure of Hainan Aborigines Isolated at the Entrance to East Asia

    PubMed Central

    Li, Dongna; Li, Hui; Ou, Caiying; Lu, Yan; Sun, Yuantian; Yang, Bo; Qin, Zhendong; Zhou, Zhenjian; Li, Shilin; Jin, Li

    2008-01-01

    Background At the southern entrance to East Asia, early population migration has affected most of the Y-chromosome variations of East Asians. Methodology/Principal Findings To assess the isolated genetic structure of Hainan Island and the original genetic structure at the southern entrance, we studied the Y chromosome diversity of 405 Hainan Island aborigines from all the six populations, who have little influence of the recent mainland population relocations and admixtures. Here we report that haplogroups O1a* and O2a* are dominant among Hainan aborigines. In addition, the frequency of the mainland dominant haplogroup O3 is quite low among these aborigines, indicating that they have lived rather isolated. Clustering analyses suggests that the Hainan aborigines have been segregated since about 20 thousand years ago, after two dominant haplogroups entered East Asia (31 to 36 thousand years ago). Conclusions/Significance Our results suggest that Hainan aborigines have been isolated at the entrance to East Asia for about 20 thousand years, whose distinctive genetic characteristics could be used as important controls in many population genetic studies. PMID:18478090

  20. Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan troglodytes ellioti Is a Genetically Distinct Population

    PubMed Central

    Myers, Simon; Hellenthal, Garrett; Nerrienet, Eric; Bontrop, Ronald E.; Freeman, Colin; Donnelly, Peter; Mundy, Nicholas I.

    2012-01-01

    In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10–20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions. PMID:22396655

  1. Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population.

    PubMed

    Bowden, Rory; MacFie, Tammie S; Myers, Simon; Hellenthal, Garrett; Nerrienet, Eric; Bontrop, Ronald E; Freeman, Colin; Donnelly, Peter; Mundy, Nicholas I

    2012-01-01

    In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10-20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions.

  2. Paternal phylogeographic structure of the brown bear (Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations.

    PubMed

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Murata, Koichi; Masuda, Ryuichi

    2017-01-01

    Sex-biased dispersal is widespread among mammals, including the brown bear ( Ursus arctos ). Previous phylogeographic studies of the brown bear based on maternally inherited mitochondrial DNA have shown intraspecific genetic structuring around the northern hemisphere. The brown bears on Hokkaido Island, northern Japan, comprise three distinct maternal lineages that presumably immigrated to the island from the continent in three different periods. Here, we investigate the paternal genetic structure across northeastern Asia and assess the connectivity among and within intraspecific populations in terms of male-mediated gene flow. We analyzed paternally inherited Y-chromosomal DNA sequence data and Y-linked microsatellite data of 124 brown bears from Hokkaido, the southern Kuril Islands (Kunashiri and Etorofu), Sakhalin, and continental Eurasia (Kamchatka Peninsula, Ural Mountains, European Russia, and Tibet). The Hokkaido brown bear population is paternally differentiated from, and lacked recent genetic connectivity with, the continental Eurasian and North American populations. We detected weak spatial genetic structuring of the paternal lineages on Hokkaido, which may have arisen through male-mediated gene flow among natal populations. In addition, our results suggest that the different dispersal patterns between male and female brown bears, combined with the founder effect and subsequent genetic drift, contributed to the makeup of the Etorofu Island population, in which the maternal and paternal lineages show different origins. Brown bears on Hokkaido and the adjacent southern Kuril Islands experienced different maternal and paternal evolutionary histories. Our results indicate that sex-biased dispersal has played a significant role in the evolutionary history of the brown bear in continental populations and in peripheral insular populations, such as on Hokkaido, the southern Kuril Islands, and Sakhalin.

  3. The population structure and recent colonization history of Oregon threespine stickleback determined using RAD-seq

    PubMed Central

    Catchen, Julian; Bassham, Susan; Wilson, Taylor; Currey, Mark; O’Brien, Conor; Yeates, Quick; Cresko, William A.

    2013-01-01

    Understanding how genetic variation is partitioned across genomes within and among populations is a fundamental problem in ecological and evolutionary genetics. To address this problem we are studied the threespine stickleback fish, which has repeatedly undergone parallel phenotypic and genetic differentiation when oceanic fish have invaded freshwater habitats. While significant evolutionary genetic research has been performed using stickleback from geographic regions that have been de-glaciated in the last 20,000 years, less research has focused on freshwater populations that predate the last glacial maximum. We performed RAD-seq based population genomic analyses on stickleback from across Oregon, which was not glaciated during the last maximum. We sampled stickleback from coastal, Willamette Basin, and central Oregon sites, analyzed their genetic diversity using RAD-seq, performed STRUCTURE analyses, reconstructed their phylogeographic history, and tested the hypothesis of recent stickleback introduction into central Oregon, where incidence of this species was only recently documented. Our results showed a clear phylogeographic break between coastal and inland populations, with oceanic populations exhibiting the lowest levels of divergence from one another. Willamette Basin and central Oregon populations formed a clade of closely related populations, a finding consistent with a recent introduction of stickleback into central Oregon. Finally, genome wide analysis of genetic diversity (π) and correlations of alleles within individuals in subpopulations (FIS) supported a role for introgressive hybridization in coastal populations and a recent expansion in central Oregon. Our results exhibit the power of next generation sequencing genomic approaches such as RAD-seq to identify both historical population structure and recent colonization history. PMID:23718143

  4. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    PubMed Central

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  5. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall).

    PubMed

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2018-03-01

    Due to climate change, the ranges of many North American tree species are expected to shift northward. Sugar maple ( Acer saccharum Marshall) reaches its northern continuous distributional limit in northeastern North America at the transition between boreal mixed-wood and temperate deciduous forests. We hypothesized that marginal fragmented northern populations from the boreal mixed wood would have a distinct pattern of genetic structure and diversity. We analyzed variation at 18 microsatellite loci from 23 populations distributed along three latitudinal transects (west, central, and east) that encompass the continuous-discontinuous species range. Each transect was divided into two zones, continuous (temperate deciduous) and discontinuous (boreal mixed wood), based on sugar maple stand abundance. Respective positive and negative relationships were found between the distance of each population to the northern limit (D_north), and allelic richness ( A R ) and population differentiation ( F ST ). These relations were tested for each transect separately; the pattern (discontinuous-continuous) remained significant only for the western transect. structure analysis revealed the presence of four clusters. The most northern populations of each transect were assigned to a distinct group. Asymmetrical gene flow occurred from the southern into the four northernmost populations. Southern populations in Québec may have originated from two different postglacial migration routes. No evidence was found to validate the hypothesis that northern populations were remnants of a larger population that had migrated further north of the species range after the retreat of the ice sheet. The northernmost sugar maple populations possibly originated from long-distance dispersal.

  6. Rise of CC398 Lineage of Staphylococcus aureus among Infective Endocarditis Isolates Revealed by Two Consecutive Population-Based Studies in France

    PubMed Central

    Tristan, Anne; Rasigade, Jean-Philippe; Ruizendaal, Esmée; Laurent, Frédéric; Bes, Michèle; Meugnier, Hélène; Lina, Gérard; Etienne, Jerome; Celard, Marie; Tattevin, Pierre; Monecke, Stefan; Le Moing, Vincent; Vandenesch, François

    2012-01-01

    Staphylococcus aureus isolates from two prospective studies on infective endocarditis (IE) conducted in 1999 and 2008 and isolated from non-IE bacteremia collected in 2006 were spa-typed and their virulence factors were analyzed with a microarray. Both populations were genetically diverse, with no virulence factors or genotypes significantly more associated with the IE isolates compared with the non-IE isolates. The population structure of the IE isolates did not change much between 1999 and 2008, with the exception of the appearance of CC398 methicillin-susceptible Staphylococcus aureus (MSSA) isolates responsible for 5.6% of all cases in 2008. In 1999, this lineage was responsible for no cases. The increasing prevalence of S. aureus in IE is apparently not the result of a major change in staphylococcal population structure over time, with the exception of the emerging CC398 MSSA lineage. PMID:23272091

  7. Cross-amplified microsatellites in the European cherry fly, Rhagoletis cerasi: medium polymorphic-highly informative markers.

    PubMed

    Augustinos, A A; Asimakopoulou, A K; Papadopoulos, N T; Bourtzis, K

    2011-02-01

    The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a major pest of cherries in Europe and parts of Asia. Despite its big economic significance, there is a lack of studies on the genetic structure of its natural populations. Knowledge about an insect pest on molecular, genetic and population levels facilitates the development of environmentally friendly control methods. In this study, we present the development of 13 microsatellite markers for R. cerasi, through cross-species amplification. These markers have been used for the genotyping of 130 individuals from five different sampling sites in Greece. Our results indicate that (i) cross-species amplification is a versatile and rapid tool for developing microsatellite markers in Rhagoletis spp., (ii) the microsatellite markers presented here constitute an important tool for population studies on this pest, and (iii) there is clear structuring of natural European cherry fly populations.

  8. Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), from China and Southeast Asia.

    PubMed

    Hu, Jian; Zhang, Jun L; Nardi, Francesco; Zhang, Run J

    2008-11-01

    The melon fly, Bactrocera cucurbitae Coquillett, is a species of fruit flies of significant agricultural interest. Of supposed Indian origin, the melon fly is now widely distributed throughout South East Asia up to China, while it has been recently eradicated from Japan. The population structure of seven geographic populations from coastal China, as well as samples from other regions of South East Asia and Japan, including lab colonies, have been studied using a 782 bp fragment of mitochondrial cytochrome oxidase I (COI) gene sequence. The observed genetic diversity was exceedingly low, considering the geographic scale of the sampling, and one single haplotype was found to be predominant from Sri Lanka to China. We confirm that Bactrocera cucurbitae exists in South East Asia as a single phyletic lineage, that Chinese populations are genetically uniform, and that no apparent genetic differentiation exists between these and three available Japanese melon fly sequences.

  9. Inferring Multiple Refugia and Phylogeographical Patterns in Pinus massoniana Based on Nucleotide Sequence Variation and DNA Fingerprinting

    PubMed Central

    Lin, Chung-Jian; Huang, Chi-Chung; Huang, Chao-Ching; Chiang, Yu-Chung; Chiang, Tzen-Yuh

    2012-01-01

    Background Pinus massoniana, an ecologically and economically important conifer, is widespread across central and southern mainland China and Taiwan. In this study, we tested the central–marginal paradigm that predicts that the marginal populations tend to be less polymorphic than the central ones in their genetic composition, and examined a founders' effect in the island population. Methodology/Principal Findings We examined the phylogeography and population structuring of the P. massoniana based on nucleotide sequences of cpDNA atpB-rbcL intergenic spacer, intron regions of the AdhC2 locus, and microsatellite fingerprints. SAMOVA analysis of nucleotide sequences indicated that most genetic variants resided among geographical regions. High levels of genetic diversity in the marginal populations in the south region, a pattern seemingly contradicting the central–marginal paradigm, and the fixation of private haplotypes in most populations indicate that multiple refugia may have existed over the glacial maxima. STRUCTURE analyses on microsatellites revealed that genetic structure of mainland populations was mediated with recent genetic exchanges mostly via pollen flow, and that the genetic composition in east region was intermixed between south and west regions, a pattern likely shaped by gene introgression and maintenance of ancestral polymorphisms. As expected, the small island population in Taiwan was genetically differentiated from mainland populations. Conclusions/Significance The marginal populations in south region possessed divergent gene pools, suggesting that the past glaciations might have low impacts on these populations at low latitudes. Estimates of ancestral population sizes interestingly reflect a recent expansion in mainland from a rather smaller population, a pattern that seemingly agrees with the pollen record. PMID:22952747

  10. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa).

    PubMed

    Assogbadjo, A E; Kyndt, T; Sinsin, B; Gheysen, G; van Damme, P

    2006-05-01

    Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. Five primer pairs resulted in a total of 217 scored bands with 78.34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82.37 % of the total variation within populations and 17.63 % among populations (P < 0.001). Analysis of population structure with allele-frequency based F-statistics revealed a global F(ST) of 0.127 +/- 0.072 (P < 0.001). The mean gene diversity within populations (H(S)) and the average gene diversity between populations (D(ST)) were estimated at 0.309 +/- 0.000 and 0.045 +/- 0.072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation.

  11. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 Km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera.

    PubMed

    Lal, Monal M; Southgate, Paul C; Jerry, Dean R; Bosserelle, Cyprien; Zenger, Kyall R

    2017-01-10

    Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species' distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The unique life history characteristics of many marine invertebrates such as high dispersal rates, stochastic survival and variable recruitment are also likely to influence how populations are organised. To examine the microevolutionary forces influencing population structure, connectivity and adaptive variation in a highly-dispersive bivalve, populations of the black-lip pearl oyster Pinctada margaritifera were examined across its ~18,000 km Indo-Pacific distribution. Analyses utilising 9,624 genome-wide SNPs and 580 oysters, discovered differing patterns of significant and substantial broad-scale genetic structure between the Indian and Pacific Ocean basins. Indian Ocean populations were markedly divergent (F st  = 0.2534-0.4177, p < 0.001), compared to Pacific Ocean oysters, where basin-wide gene flow was much higher (F st  = 0.0007-0.1090, p < 0.001). Partitioning of genetic diversity (hierarchical AMOVA) attributed 18.1% of variance between ocean basins, whereas greater proportions were resolved within samples and populations (45.8% and 35.7% respectively). Visualisation of population structure at selectively neutral loci resolved three and five discrete genetic clusters for the Indian and Pacific Oceans respectively. Evaluation of genetic structure at adaptive loci for Pacific populations (89 SNPs under directional selection; F st  = 0.1012-0.4371, FDR = 0.05), revealed five clusters identical to those detected at neutral SNPs, suggesting environmental heterogeneity within the Pacific. Patterns of structure and connectivity were supported by Mantel tests of isolation by distance (IBD) and independent hydrodynamic particle dispersal simulations. It is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, IBD and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels. Overall population organisation is far more elaborate than generalised CPH predictions, however valuable insights for regional fishery management, and a greater understanding of range-wide genetic structure in a highly-dispersive marine invertebrate have been gained.

  12. Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent, tuco-tuco (Ctenomys lami).

    PubMed

    Lopes, Carla M; de Freitas, Thales R O

    2012-01-01

    Isolated or semi-isolated small populations are commonly found among species, due to a naturally patchy occupancy of suitable habitats or also as a result of habitat alterations. These populations are subject to an increased risk of local extinction because they are more vulnerable to demographic, genetic, and environmental stochasticity. Considering that natural areas have been becoming progressively more fragmented and smaller, understanding the genetic structure and evolutionary dynamics of small populations is critical. Ctenomys lami has 26 karyotypes distributed in a small area (936 km(2)) continually modified by human actions. We assessed the genetic geographical structure of this species, examining 178 specimens sampled on a fine scale, using information from chromosomal variability, mitochondrial DNA control region and cytochrome c oxidase subunit I sequences, and 14 microsatellite loci. The observed isolation-by-distance pattern and a clinal genetic variation suggest a stepping-stone population model. The results did not indicate genetic structuring associated with distinct karyotypes. However, mitochondrial and nuclear molecular markers demonstrated the existence of 2 demes, which are not completely isolated but are probably reinforced by a geographical barrier. The vulnerability of C. lami is greater than previously supposed, and our data support the designation of one Evolutionary Significant Unit and one Management Unit, and also the inclusion of this species' conservation status as vulnerable.

  13. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE PAGES

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...

    2016-01-25

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  14. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  15. Psychometric analysis of an eating behaviour questionnaire for an overweight and obese Chinese population in Singapore.

    PubMed

    Chong, Mary Foong-Fong; Ayob, M Na'im M; Chong, Kok Joon; Tai, E-Shyong; Khoo, Chin Meng; Leow, Melvin Khee-Shing; Lee, Yung Seng; Tham, Kwang Wei; Venkataraman, Kavita; Meaney, Michael J; Wee, Hwee Lin; Khoo, Eric Yin-Hao

    2016-06-01

    Previous studies reveal that the Three-Factor Eating Questionnaire (TFEQ), which assesses eating behaviour, performs differently across population groups and cultures. We aimed to identify the factor structure that is most appropriate to capture eating behaviour in an overweight and obese Chinese population in Singapore. TFEQ-51 was administered to 444 Chinese subjects pooled from four separate studies and scored according to various alternative versions of the TFEQ. Confirmatory factor analyses and goodness of fit indices were used to determine the most appropriate factor structure. Known-group validity analyses were conducted. Niemeier's Disinhibition Factors and the TFEQ-R18 factor structures were found to be the most applicable in our population based on goodness of fit indices, with a x(2)/df ratio of <3, RMSEA of ≤ 0.6 and a CFI value of >0.9 for both. Only two of three factors (Emotional Eating and Uncontrolled Eating) of the TFEQ-R18 showed good internal consistency, while none of Niemeier's Disinhibition Factors showed good internal consistency. Known-group validity showed that Emotional Eating and Internal Disinhibition were significantly associated with higher BMI. We found that the TFEQ-R18 factor structure is the most appropriate and practical for use in measuring eating behaviour in an overweight and obese Chinese population in Singapore. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic diversity and population structure of the New World screwworm fly from the Amazon region of Brazil.

    PubMed

    Mastrangelo, Thiago; Fresia, Pablo; Lyra, Mariana L; Rodrigues, Rosangela A; Azeredo-Espin, Ana Maria L

    2014-10-01

    Cochliomyia hominivorax (Coquerel) is a myiasis fly that causes economic losses to livestock farmers in warmer American regions. Previous studies of this pest had found population structure at north and south of the Amazon Basin, which was considered to be a barrier to dispersal. The present study analyzed three mitochondrial DNA (mtDNA) markers and eight nuclear microsatellite loci to investigate for the first time the genetic diversity and population structure across the Brazilian Amazon region (Amazonia). Both mtDNA and microsatellite data supported the existence of much diversity and significant population structure among nine regional populations of C. hominivorax, which was found to be surprisingly common in Amazonia. Forty-six mtDNA haplotypes were identified, of which 39 were novel and seven had previously been found only at south of Amazonia. Seventy microsatellite alleles were identified by size, moderate to high values of heterozygosity were discovered in all regions, and a Bayesian clustering analysis identified four genetic groups that were not geographically distributed. Reproductive compatibility was also investigated by laboratory crossing, but no evidence of hybrid dysgenesis was found between an Amazonian colony and one each of from Northeast and Southeast Brazil. The results have important implications for area-wide control by the Sterile Insect Technique. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  17. Threshold Dynamics of a Temperature-Dependent Stage-Structured Mosquito Population Model with Nested Delays.

    PubMed

    Wang, Xiunan; Zou, Xingfu

    2018-05-21

    Mosquito-borne diseases remain a significant threat to public health and economics. Since mosquitoes are quite sensitive to temperature, global warming may not only worsen the disease transmission case in current endemic areas but also facilitate mosquito population together with pathogens to establish in new regions. Therefore, understanding mosquito population dynamics under the impact of temperature is considerably important for making disease control policies. In this paper, we develop a stage-structured mosquito population model in the environment of a temperature-controlled experiment. The model turns out to be a system of periodic delay differential equations with periodic delays. We show that the basic reproduction number is a threshold parameter which determines whether the mosquito population goes to extinction or remains persistent. We then estimate the parameter values for Aedes aegypti, the mosquito that transmits dengue virus. We verify the analytic result by numerical simulations with the temperature data of Colombo, Sri Lanka where a dengue outbreak occurred in 2017.

  18. Dissecting the genetic structure and admixture of four geographical Malay populations.

    PubMed

    Deng, Lian; Hoh, Boon-Peng; Lu, Dongsheng; Saw, Woei-Yuh; Twee-Hee Ong, Rick; Kasturiratne, Anuradhani; de Silva, H Janaka; Zilfalil, Bin Alwi; Kato, Norihiro; Wickremasinghe, Ananda R; Teo, Yik-Ying; Xu, Shuhua

    2015-09-23

    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%-62%), Proto-Malay (15%-31%), East Asian (4%-16%) and South Asian (3%-34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations.

  19. Population structure and cultural geography of a folktale in Europe

    PubMed Central

    Ross, Robert M.; Greenhill, Simon J.; Atkinson, Quentin D.

    2013-01-01

    Despite a burgeoning science of cultural evolution, relatively little work has focused on the population structure of human cultural variation. By contrast, studies in human population genetics use a suite of tools to quantify and analyse spatial and temporal patterns of genetic variation within and between populations. Human genetic diversity can be explained largely as a result of migration and drift giving rise to gradual genetic clines, together with some discontinuities arising from geographical and cultural barriers to gene flow. Here, we adapt theory and methods from population genetics to quantify the influence of geography and ethnolinguistic boundaries on the distribution of 700 variants of a folktale in 31 European ethnolinguistic populations. We find that geographical distance and ethnolinguistic affiliation exert significant independent effects on folktale diversity and that variation between populations supports a clustering concordant with European geography. This pattern of geographical clines and clusters parallels the pattern of human genetic diversity in Europe, although the effects of geographical distance and ethnolinguistic boundaries are stronger for folktales than genes. Our findings highlight the importance of geography and population boundaries in models of human cultural variation and point to key similarities and differences between evolutionary processes operating on human genes and culture. PMID:23390109

  20. High gene flow in epiphytic ferns despite habitat loss and fragmentation.

    PubMed

    Winkler, Manuela; Koch, Marcus; Hietz, Peter

    2011-01-01

    Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.

Top