NASA Technical Reports Server (NTRS)
Nakayama, S.; Kretsinger, R. H.
1993-01-01
In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.
Dissecting the relationship between protein structure and sequence variation
NASA Astrophysics Data System (ADS)
Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team
2015-03-01
Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.
Sequence Complexity of Amyloidogenic Regions in Intrinsically Disordered Human Proteins
Das, Swagata; Pal, Uttam; Das, Supriya; Bagga, Khyati; Roy, Anupam; Mrigwani, Arpita; Maiti, Nakul C.
2014-01-01
An amyloidogenic region (AR) in a protein sequence plays a significant role in protein aggregation and amyloid formation. We have investigated the sequence complexity of AR that is present in intrinsically disordered human proteins. More than 80% human proteins in the disordered protein databases (DisProt+IDEAL) contained one or more ARs. With decrease of protein disorder, AR content in the protein sequence was decreased. A probability density distribution analysis and discrete analysis of AR sequences showed that ∼8% residue in a protein sequence was in AR and the region was in average 8 residues long. The residues in the AR were high in sequence complexity and it seldom overlapped with low complexity regions (LCR), which was largely abundant in disorder proteins. The sequences in the AR showed mixed conformational adaptability towards α-helix, β-sheet/strand and coil conformations. PMID:24594841
Folding and Stabilization of Native-Sequence-Reversed Proteins
Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong
2016-01-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844
Folding and Stabilization of Native-Sequence-Reversed Proteins
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong
2016-04-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of sequence repeats of proteins in the PDB.
Mary Rajathei, David; Selvaraj, Samuel
2013-12-01
Internal repeats in protein sequences play a significant role in the evolution of protein structure and function. Applications of different bioinformatics tools help in the identification and characterization of these repeats. In the present study, we analyzed sequence repeats in a non-redundant set of proteins available in the Protein Data Bank (PDB). We used RADAR for detecting internal repeats in a protein, PDBeFOLD for assessing structural similarity, PDBsum for finding functional involvement and Pfam for domain assignment of the repeats in a protein. Through the analysis of sequence repeats, we found that identity of the sequence repeats falls in the range of 20-40% and, the superimposed structures of the most of the sequence repeats maintain similar overall folding. Analysis sequence repeats at the functional level reveals that most of the sequence repeats are involved in the function of the protein through functionally involved residues in the repeat regions. We also found that sequence repeats in single and two domain proteins often contained conserved sequence motifs for the function of the domain. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kretsinger, R. H.; Nakayama, S.
1993-01-01
In the previous three reports in this series we demonstrated that the EF-hand family of proteins evolved by a complex pattern of gene duplication, transposition, and splicing. The dendrograms based on exon sequences are nearly identical to those based on protein sequences for troponin C, the essential light chain myosin, the regulatory light chain, and calpain. This validates both the computational methods and the dendrograms for these subfamilies. The proposal of congruence for calmodulin, troponin C, essential light chain, and regulatory light chain was confirmed. There are, however, significant differences in the calmodulin dendrograms computed from DNA and from protein sequences. In this study we find that introns are distributed throughout the EF-hand domain and the interdomain regions. Further, dendrograms based on intron type and distribution bear little resemblance to those based on protein or on DNA sequences. We conclude that introns are inserted, and probably deleted, with relatively high frequency. Further, in the EF-hand family exons do not correspond to structural domains and exon shuffling played little if any role in the evolution of this widely distributed homolog family. Calmodulin has had a turbulent evolution. Its dendrograms based on protein sequence, exon sequence, 3'-tail sequence, intron sequences, and intron positions all show significant differences.
Pang, Erli; Wu, Xiaomei; Lin, Kui
2016-06-01
Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.
Elman RNN based classification of proteins sequences on account of their mutual information.
Mishra, Pooja; Nath Pandey, Paras
2012-10-21
In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bandeira, Nuno; Clauser, Karl R; Pevzner, Pavel A
2007-07-01
Despite significant advances in the identification of known proteins, the analysis of unknown proteins by MS/MS still remains a challenging open problem. Although Klaus Biemann recognized the potential of MS/MS for sequencing of unknown proteins in the 1980s, low throughput Edman degradation followed by cloning still remains the main method to sequence unknown proteins. The automated interpretation of MS/MS spectra has been limited by a focus on individual spectra and has not capitalized on the information contained in spectra of overlapping peptides. Indeed the powerful shotgun DNA sequencing strategies have not been extended to automated protein sequencing. We demonstrate, for the first time, the feasibility of automated shotgun protein sequencing of protein mixtures by utilizing MS/MS spectra of overlapping and possibly modified peptides generated via multiple proteases of different specificities. We validate this approach by generating highly accurate de novo reconstructions of multiple regions of various proteins in western diamondback rattlesnake venom. We further argue that shotgun protein sequencing has the potential to overcome the limitations of current protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics methodologies in studies of unknown proteins.
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2008-12-01
Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.
NASA Astrophysics Data System (ADS)
Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.
2007-12-01
Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.
Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J
2017-10-01
Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant targets. Biotechnol. Bioeng. 2017;114: 2348-2359. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions
Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth
2016-01-01
Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s for NADDA, ADDA, and MKDOM2, respectively, for a data set comprised of approximately 2500 sequences. PMID:27552220
Li, Yang; Yang, Jianyi
2017-04-24
The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pearson correlation coefficient to about 0.8 on the core set of the PDBbind 2007 database, which is significantly higher than the performance of any conventional scoring function on the same benchmark. A few studies have been made to discuss the performance of machine-learning-based methods, but the reason for this improvement remains unclear. In this study, by systemically controlling the structural and sequence similarity between the training and test proteins of the PDBbind benchmark, we demonstrate that protein structural and sequence similarity makes a significant impact on machine-learning-based methods. After removal of training proteins that are highly similar to the test proteins identified by structure alignment and sequence alignment, machine-learning-based methods trained on the new training sets do not outperform the conventional scoring functions any more. On the contrary, the performance of conventional functions like X-Score is relatively stable no matter what training data are used to fit the weights of its energy terms.
Large-Scale Concatenation cDNA Sequencing
Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.
1997-01-01
A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174
Dong, Zheng; Zhou, Hongyu; Tao, Peng
2018-02-01
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
Ma, Jun; Wu, Kaiming; Zhao, Zhenxian; Miao, Rong; Xu, Zhe
2017-03-01
Esophageal squamous cell carcinoma is one of the most aggressive malignancies worldwide. Special AT-rich sequence binding protein 1 is a nuclear matrix attachment region binding protein which participates in higher order chromatin organization and tissue-specific gene expression. However, the role of special AT-rich sequence binding protein 1 in esophageal squamous cell carcinoma remains unknown. In this study, western blot and quantitative real-time polymerase chain reaction analysis were performed to identify differentially expressed special AT-rich sequence binding protein 1 in a series of esophageal squamous cell carcinoma tissue samples. The effects of special AT-rich sequence binding protein 1 silencing by two short-hairpin RNAs on cell proliferation, migration, and invasion were assessed by the CCK-8 assay and transwell assays in esophageal squamous cell carcinoma in vitro. Special AT-rich sequence binding protein 1 was significantly upregulated in esophageal squamous cell carcinoma tissue samples and cell lines. Silencing of special AT-rich sequence binding protein 1 inhibited the proliferation of KYSE450 and EC9706 cells which have a relatively high level of special AT-rich sequence binding protein 1, and the ability of migration and invasion of KYSE450 and EC9706 cells was distinctly suppressed. Special AT-rich sequence binding protein 1 could be a potential target for the treatment of esophageal squamous cell carcinoma and inhibition of special AT-rich sequence binding protein 1 may provide a new strategy for the prevention of esophageal squamous cell carcinoma invasion and metastasis.
NASA Astrophysics Data System (ADS)
Moreland, Blythe; Oman, Kenji; Curfman, John; Yan, Pearlly; Bundschuh, Ralf
Methyl-binding domain (MBD) protein pulldown experiments have been a valuable tool in measuring the levels of methylated CpG dinucleotides. Due to the frequent use of this technique, high-throughput sequencing data sets are available that allow a detailed quantitative characterization of the underlying interaction between methylated DNA and MBD proteins. Analyzing such data sets, we first found that two such proteins cannot bind closer to each other than 2 bp, consistent with structural models of the DNA-protein interaction. Second, the large amount of sequencing data allowed us to find rather weak but nevertheless clearly statistically significant sequence preferences for several bases around the required CpG. These results demonstrate that pulldown sequencing is a high-precision tool in characterizing DNA-protein interactions. This material is based upon work supported by the National Science Foundation under Grant No. DMR-1410172.
NASA Technical Reports Server (NTRS)
Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.
1999-01-01
The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.
Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O
2015-03-01
Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.
Pruitt, Kim D.; Tatusova, Tatiana; Maglott, Donna R.
2005-01-01
The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff. PMID:15608248
Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.
Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar
2011-12-01
Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.
Fast computational methods for predicting protein structure from primary amino acid sequence
Agarwal, Pratul Kumar [Knoxville, TN
2011-07-19
The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.
Lafuente, M J; Gamo, F J; Gancedo, C
1996-09-01
We have determined the sequence of a 10624 bp DNA segment located in the left arm of chromosome XV of Saccharomyces cerevisiae. The sequence contains eight open reading frames (ORFs) longer than 100 amino acids. Two of them do not present significant homology with sequences found in the databases. The product of ORF o0553 is identical to the protein encoded by the gene SMF1. Internal to it there is another ORF, o0555 that is apparently expressed. The proteins encoded by ORFs o0559 and o0565 are identical to ribosomal proteins S19.e and L18 respectively. ORF o0550 encodes a protein with an RNA binding signature including RNP motifs and stretches rich in asparagine, glutamine and arginine.
Buck, Patrick M.; Kumar, Sandeep; Singh, Satish K.
2013-01-01
The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. PMID:24146608
Meta sequence analysis of human blood peptides and their parent proteins.
Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G
2010-04-18
Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins. Copyright 2010. Published by Elsevier B.V.
Gibbs motif sampling: detection of bacterial outer membrane protein repeats.
Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.
1995-01-01
The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488
Structure and Sequence Search on Aptamer-Protein Docking
NASA Astrophysics Data System (ADS)
Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie
2015-03-01
Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.
Efficient use of unlabeled data for protein sequence classification: a comparative study.
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-04-29
Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.
Bolla, J M; Dé, E; Dorez, A; Pagès, J M
2000-01-01
A novel pore-forming protein identified in Campylobacter was purified by ion-exchange chromatography and named Omp50 according to both its molecular mass and its outer membrane localization. We observed a pore-forming ability of Omp50 after re-incorporation into artificial membranes. The protein induced cation-selective channels with major conductance values of 50-60 pS in 1 M NaCl. N-terminal sequencing allowed us to identify the predicted coding sequence Cj1170c from the Campylobacter jejuni genome database as the corresponding gene in the NCTC 11168 genome sequence. The gene, designated omp50, consists of a 1425 bp open reading frame encoding a deduced 453-amino acid protein with a calculated pI of 5.81 and a molecular mass of 51169.2 Da. The protein possessed a 20-amino acid leader sequence. No significant similarity was found between Omp50 and porin protein sequences already determined. Moreover, the protein showed only weak sequence identity with the major outer-membrane protein (MOMP) of Campylobacter, correlating with the absence of antigenic cross-reactivity between these two proteins. Omp50 is expressed in C. jejuni and Campylobacter lari but not in Campylobacter coli. The gene, however, was detected in all three species by PCR. According to its conformation and functional properties, the protein would belong to the family of outer-membrane monomeric porins. PMID:11104668
Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips.
Rotenberg, D; Whitfield, A E
2010-08-01
Thrips are members of the insect order Thysanoptera and Frankliniella occidentalis (the western flower thrips) is the most economically important pest within this order. F. occidentalis is both a direct pest of crops and an efficient vector of plant viruses, including Tomato spotted wilt virus (TSWV). Despite the world-wide importance of thrips in agriculture, there is little knowledge of the F. occidentalis genome or gene functions at this time. A normalized cDNA library was constructed from first instar thrips and 13 839 expressed sequence tags (ESTs) were obtained. Our EST data assembled into 894 contigs and 11 806 singletons (12 700 nonredundant sequences). We found that 31% of these sequences had significant similarity (E< or = 10(-10)) to protein sequences in the National Center for Biotechnology Information nonredundant (nr) protein database, and 25% were functionally annotated using Blast 2GO. We identified 74 sequences with putative homology to proteins associated with insect innate immunity. Sixteen sequences had significant similarity to proteins associated with small RNA-mediated gene silencing pathways (RNA interference; RNAi), including the antiviral pathway (short interfering RNA-mediated pathway). Our EST collection provides new sequence resources for characterizing gene functions in F. occidentalis and other thrips species with regards to vital biological processes, studying the mechanism of interactions with the viruses harboured and transmitted by the vector, and identifying new insect gene-centred targets for plant disease and insect control.
Graphene Nanopores for Protein Sequencing.
Wilson, James; Sloman, Leila; He, Zhiren; Aksimentiev, Aleksei
2016-07-19
An inexpensive, reliable method for protein sequencing is essential to unraveling the biological mechanisms governing cellular behavior and disease. Current protein sequencing methods suffer from limitations associated with the size of proteins that can be sequenced, the time, and the cost of the sequencing procedures. Here, we report the results of all-atom molecular dynamics simulations that investigated the feasibility of using graphene nanopores for protein sequencing. We focus our study on the biologically significant phenylalanine-glycine repeat peptides (FG-nups)-parts of the nuclear pore transport machinery. Surprisingly, we found FG-nups to behave similarly to single stranded DNA: the peptides adhere to graphene and exhibit step-wise translocation when subject to a transmembrane bias or a hydrostatic pressure gradient. Reducing the peptide's charge density or increasing the peptide's hydrophobicity was found to decrease the translocation speed. Yet, unidirectional and stepwise translocation driven by a transmembrane bias was observed even when the ratio of charged to hydrophobic amino acids was as low as 1:8. The nanopore transport of the peptides was found to produce stepwise modulations of the nanopore ionic current correlated with the type of amino acids present in the nanopore, suggesting that protein sequencing by measuring ionic current blockades may be possible.
Hiett, Kelli L; Rothrock, Michael J; Seal, Bruce S
2013-09-01
The complete nucleotide sequence was determined for a cryptic plasmid, pTIW94, recovered from several Campylobacter jejuni isolates from wild birds in the southeastern United States. pTIW94 is a circular molecule of 3860 nucleotides, with a G+C content (31.0%) similar to that of many Campylobacter spp. genomes. A typical origin of replication, with iteron sequences, was identified upstream of DNA sequences that demonstrated similarity to replication initiation proteins. A total of five open reading frames (ORFs) were identified; two of the five ORFs demonstrated significant similarity to plasmid pCC2228-2 found within Campylobacter coli. These two ORFs were similar to essential replication proteins RepA (100%; 26/26 aa identity) and RepB (95%; 327/346 aa identity). A third identified ORF demonstrated significant similarity (99%; 421/424 aa identity) to the MOB protein from C. coli 67-8, originally recovered from swine. The other two identified ORFs were either similar to hypothetical proteins from other Campylobacter spp., or exhibited no significant similarity to any DNA or protein sequence in the GenBank database. Promoter regions (-35 and -10 signal sites), ribosomal binding sites upstream of ORFs, and stem-loop structures were also identified within the plasmid. These results demonstrate that pTIW94 represents a previously un-reported small cryptic plasmid with unique sequences as well as highly similar sequences to other small plasmids found within Campylobacter spp., and that this cryptic plasmid is present among Campylobacter spp. recovered from different genera of wild birds. Copyright © 2013. Published by Elsevier Inc.
Insights into the sequence parameters for halophilic adaptation.
Nath, Abhigyan
2016-03-01
The sequence parameters for halophilic adaptation are still not fully understood. To understand the molecular basis of protein hypersaline adaptation, a detailed analysis is carried out, and investigated the likely association of protein sequence attributes to halophilic adaptation. A two-stage strategy is implemented, where in the first stage a supervised machine learning classifier is build, giving an overall accuracy of 86 % on stratified tenfold cross validation and 90 % on blind testing set, which are better than the previously reported results. The second stage consists of statistical analysis of sequence features and possible extraction of halophilic molecular signatures. The results of this study showed that, halophilic proteins are characterized by lower average charge, lower K content, and lower S content. A statistically significant preference/avoidance list of sequence parameters is also reported giving insights into the molecular basis of halophilic adaptation. D, Q, E, H, P, T, V are significantly preferred while N, C, I, K, M, F, S are significantly avoided. Among amino acid physicochemical groups, small, polar, charged, acidic and hydrophilic groups are preferred over other groups. The halophilic proteins also showed a preference for higher average flexibility, higher average polarity and avoidance for higher average positive charge, average bulkiness and average hydrophobicity. Some interesting trends observed in dipeptide counts are also reported. Further a systematic statistical comparison is undertaken for gaining insights into the sequence feature distribution in different residue structural states. The current analysis may facilitate the understanding of the mechanism of halophilic adaptation clearer, which can be further used for rational design of halophilic proteins.
Prediction of phenotypes of missense mutations in human proteins from biological assemblies.
Wei, Qiong; Xu, Qifang; Dunbrack, Roland L
2013-02-01
Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.
2010-01-01
Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603
Protein Sectors: Statistical Coupling Analysis versus Conservation
Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas
2015-01-01
Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535
Watanabe, K; Yoshioka, K; Ito, H; Ishigami, M; Takagi, K; Utsunomiya, S; Kobayashi, M; Kishimoto, H; Yano, M; Kakumu, S
1999-11-10
Hypervariable region 1 (HVR1) proteins of hepatitis C virus (HCV) have been reported to react broadly with sera of patients with HCV infection. However, the variability of the broad reactivity of individual HVR1 proteins has not been elucidated. We assessed the reactivity of 25 different HVR1 proteins (genotype 1b) with sera of 81 patients with HCV infection (genotype 1b) by Western blot. HVR1 proteins reacted with 2-60 sera. The number of sera reactive with each HVR1 protein significantly correlated with the number of amino acid residues identical to the consensus sequence defined by Puntoriero et al. (G. Puntoriero, A. Lahm, S. Zucchelli, B. B. Ercole, R. Tafi, M. Penzzanera, M. U. Mondelli, R. Cortese, A. Tramontano, G. Galfre', and A. Nicosia. 1998. EMBO J. 17, 3521-3533. ) (r = 0.561, P < 0.005). The most widely reactive HVR1 protein, 12-22, had a sequence similar to the consensus sequence. The peptide with C-terminal 13-amino-acids sequence of HVR1 protein 12-22 (NH2-CSFTSLFTPGPSQK) was injected into rabbits as an immunogen. The rabbit immune sera reacted with 9 of 25 HVR1 proteins of genotype 1b including HVR1 protein 12-22 and with 3 of 12 proteins of genotype 2a. These results indicate that the HVR1 protein broadly reactive with patients' sera has a sequence similar to the consensus sequence, can induce broadly reactive sera, and could be one of the candidate immunogens in a prophylactic vaccine against HCV. Copyright 1999 Academic Press.
Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin
2007-12-01
Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide
Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir
2018-01-01
Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.
Graph pyramids for protein function prediction
2015-01-01
Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522
Graph pyramids for protein function prediction.
Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun
2015-01-01
Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.
Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.
Firman, Taylor; Ghosh, Kingshuk
2018-03-28
We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke
2009-02-15
Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http://dragon.bio.purdue.edu/pfp/. (c) 2008 Wiley-Liss, Inc.
Understanding the mechanisms of protein-DNA interactions
NASA Astrophysics Data System (ADS)
Lavery, Richard
2004-03-01
Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.
Overvoorde, P J; Chao, W S; Grimes, H D
1997-06-20
Photoaffinity labeling of a soybean cotyledon membrane fraction identified a sucrose-binding protein (SBP). Subsequent studies have shown that the SBP is a unique plasma membrane protein that mediates the linear uptake of sucrose in the presence of up to 30 mM external sucrose when ectopically expressed in yeast. Analysis of the SBP-deduced amino acid sequence indicates it lacks sequence similarity with other known transport proteins. Data presented here, however, indicate that the SBP shares significant sequence and structural homology with the vicilin-like seed storage proteins that organize into homotrimers. These similarities include a repeated sequence that forms the basis of the reiterated domain structure characteristic of the vicilin-like protein family. In addition, analytical ultracentrifugation and nonreducing SDS-polyacrylamide gel electrophoresis demonstrate that the SBP appears to be organized into oligomeric complexes with a Mr indicative of the existence of SBP homotrimers and homodimers. The structural similarity shared by the SBP and vicilin-like proteins provides a novel framework to explore the mechanistic basis of SBP-mediated sucrose uptake. Expression of the maize Glb protein (a vicilin-like protein closely related to the SBP) in yeast demonstrates that a closely related vicilin-like protein is unable to mediate sucrose uptake. Thus, despite sequence and structural similarities shared by the SBP and the vicilin-like protein family, the SBP is functionally divergent from other members of this group.
Sequence-similar, structure-dissimilar protein pairs in the PDB.
Kosloff, Mickey; Kolodny, Rachel
2008-05-01
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).
Draft Genome Sequence of Photorhabdus luminescens Strain DSPV002N Isolated from Santa Fe, Argentina
Del Valle, Eleodoro E.; Frizzo, Laureano; Berry, Colin; Caballero, Primitivo
2016-01-01
Here, we report the draft genome sequence of Photorhabdus luminescens strain DSPV002N, which consists of 177 contig sequences accounting for 5,518,143 bp, with a G+C content of 42.3% and 4,701 predicted protein-coding genes (CDSs). From these, 27 CDSs exhibited significant similarity with insecticidal toxin proteins from Photorhabdus luminescens subsp. laumondii TT01. PMID:27469965
Efficient use of unlabeled data for protein sequence classification: a comparative study
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-01-01
Background Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags–the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Results Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. Conclusion The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably. PMID:19426450
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2015-01-01
Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.
You, Ronghui; Huang, Xiaodi; Zhu, Shanfeng
2018-06-06
As of April 2018, UniProtKB has collected more than 115 million protein sequences. Less than 0.15% of these proteins, however, have been associated with experimental GO annotations. As such, the use of automatic protein function prediction (AFP) to reduce this huge gap becomes increasingly important. The previous studies conclude that sequence homology based methods are highly effective in AFP. In addition, mining motif, domain, and functional information from protein sequences has been found very helpful for AFP. Other than sequences, alternative information sources such as text, however, may be useful for AFP as well. Instead of using BOW (bag of words) representation in traditional text-based AFP, we propose a new method called DeepText2GO that relies on deep semantic text representation, together with different kinds of available protein information such as sequence homology, families, domains, and motifs, to improve large-scale AFP. Furthermore, DeepText2GO integrates text-based methods with sequence-based ones by means of a consensus approach. Extensive experiments on the benchmark dataset extracted from UniProt/SwissProt have demonstrated that DeepText2GO significantly outperformed both text-based and sequence-based methods, validating its superiority. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan
2017-02-01
An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.
Dutta, Sanjib; Koide, Akiko; Koide, Shohei
2008-01-01
Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545
The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway
Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos
2009-01-01
Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591
General overview on structure prediction of twilight-zone proteins.
Khor, Bee Yin; Tye, Gee Jun; Lim, Theam Soon; Choong, Yee Siew
2015-09-04
Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
Sarmady, Mahdi; Dampier, William; Tozeren, Aydin
2011-01-01
Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584
Structure-related statistical singularities along protein sequences: a correlation study.
Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro
2005-01-01
A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.
NASA Astrophysics Data System (ADS)
Rauf, Muhammad; Saeed, Nasir A.; Habib, Imran; Ahmed, Moddassir; Shahzad, Khurram; Mansoor, Shahid; Ali, Rashid
2017-02-01
Structure prediction can provide information about function and active sites of protein which helps to design new functional proteins. H+-pyrophosphatase is transmembrane protein involved in establishing proton motive force for active transport of Na+ across membrane by Na+/H+ antiporters. A full length novel H+-pyrophosphatase gene was isolated from halophytic grass Leptochloa fusca using RT-PCR and RACE method. Full length LfVP1 gene sequence of 2292 nucleotides encodes protein of 764 amino acids. DNA and protein sequences were used for characterization using bioinformatics tools. Various important potential sites were predicted by PROSITE webserver. Primary structural analysis showed LfVP1 as stable protein and Grand average hydropathy (GRAVY) indicated that LfVP1 protein has good hydrosolubility. Secondary structure analysis showed that LfVP1 protein sequence contains significant proportion of alpha helix and random coil. Protein membrane topology suggested the presence of 14 transmembrane domains and presence of catalytic domain in TM3. Three dimensional structure from LfVP1 protein sequence also indicated the presence of 14 transmembrane domains and hydrophobicity surface model showed amino acid hydrophobicity. Ramachandran plot showed that 98% amino acid residues were predicted in the favored region.
Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica
2016-02-18
The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through the graphical user interface ( http://compbio.math.hr/ ). Our results show that scanning with a carefully parameterized motif-HMM is an effective approach for annotation of protein families with low sequence similarity and conserved motifs. The results of this study expand current knowledge and provide new insights into the evolution of the large GDSL-lipase family in land plants.
Generation and analysis of expressed sequence tags from the bone marrow of Chinese Sika deer.
Yao, Baojin; Zhao, Yu; Zhang, Mei; Li, Juan
2012-03-01
Sika deer is one of the best-known and highly valued animals of China. Despite its economic, cultural, and biological importance, there has not been a large-scale sequencing project for Sika deer to date. With the ultimate goal of sequencing the complete genome of this organism, we first established a bone marrow cDNA library for Sika deer and generated a total of 2,025 reads. After processing the sequences, 2,017 high-quality expressed sequence tags (ESTs) were obtained. These ESTs were assembled into 1,157 unigenes, including 238 contigs and 919 singletons. Comparative analyses indicated that 888 (76.75%) of the unigenes had significant matches to sequences in the non-redundant protein database, In addition to highly expressed genes, such as stearoyl-CoA desaturase, cytochrome c oxidase, adipocyte-type fatty acid-binding protein, adiponectin and thymosin beta-4, we also obtained vascular endothelial growth factor-A and heparin-binding growth-associated molecule, both of which are of great importance for angiogenesis research. There were 244 (21.09%) unigenes with no significant match to any sequence in current protein or nucleotide databases, and these sequences may represent genes with unknown function in Sika deer. Open reading frame analysis of the sequences was performed using the getorf program. In addition, the sequences were functionally classified using the gene ontology hierarchy, clusters of orthologous groups of proteins and Kyoto encyclopedia of genes and genomes databases. Analysis of ESTs described in this paper provides an important resource for the transcriptome exploration of Sika deer, and will also facilitate further studies on functional genomics, gene discovery and genome annotation of Sika deer.
SIBIS: a Bayesian model for inconsistent protein sequence estimation.
Khenoussi, Walyd; Vanhoutrève, Renaud; Poch, Olivier; Thompson, Julie D
2014-09-01
The prediction of protein coding genes is a major challenge that depends on the quality of genome sequencing, the accuracy of the model used to elucidate the exonic structure of the genes and the complexity of the gene splicing process leading to different protein variants. As a consequence, today's protein databases contain a huge amount of inconsistency, due to both natural variants and sequence prediction errors. We have developed a new method, called SIBIS, to detect such inconsistencies based on the evolutionary information in multiple sequence alignments. A Bayesian framework, combined with Dirichlet mixture models, is used to estimate the probability of observing specific amino acids and to detect inconsistent or erroneous sequence segments. We evaluated the performance of SIBIS on a reference set of protein sequences with experimentally validated errors and showed that the sensitivity is significantly higher than previous methods, with only a small loss of specificity. We also assessed a large set of human sequences from the UniProt database and found evidence of inconsistency in 48% of the previously uncharacterized sequences. We conclude that the integration of quality control methods like SIBIS in automatic analysis pipelines will be critical for the robust inference of structural, functional and phylogenetic information from these sequences. Source code, implemented in C on a linux system, and the datasets of protein sequences are freely available for download at http://www.lbgi.fr/∼julie/SIBIS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen
2009-07-21
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.
Stayton, M M; Black, M; Bedbrook, J; Dunsmuir, P
1986-12-22
The 16 petunia Cab genes which have been characterized are all closely related at the nucleotide sequence level and they encode Cab precursor polypeptides which are similar in sequence and length. Here we describe a novel petunia Cab gene which encodes a unique Cab precursor protein. This protein is a member of the smallest class of Cab precursor proteins for which no gene has previously been assigned in petunia or any other species. The features of this Cab precursor protein are that it is shorter by 2-3 amino acids than the formerly characterized Cab precursors, its transit peptide sequence is unrelated, and the mature polypeptide is significantly diverged at the functionally important N terminus from other petunia Cab proteins. Gene structure also discriminates this gene which is the only intron containing Cab gene in petunia genomic DNA.
Kimura, J; Kimura, M
1987-09-05
The amino acid sequences of two ribosomal proteins, S14 and S16, from the archaebacterium Halobacterium marismortui have been determined. Sequence data were obtained by the manual and solid-phase sequencing of peptides derived from enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease as well as by chemical cleavage with cyanogen bromide. Proteins S14 and S16 contain 109 and 126 amino acid residues and have Mr values of 11,964 and 13,515, respectively. Comparison of the sequences with those of ribosomal proteins from other organisms demonstrates that S14 has a significant homology with the rat liver ribosomal protein S11 (36% identity) as well as with the Escherichia coli ribosomal protein S17 (37%), and that S16 is related to the yeast ribosomal protein YS22 (40%) and proteins S8 from E. coli (28%) and Bacillus stearothermophilus (30%). A comparison of the amino acid residues in the homologous regions of halophilic and nonhalophilic ribosomal proteins reveals that halophilic proteins have more glutamic acids, asparatic acids, prolines, and alanines, and less lysines, arginines, and isoleucines than their nonhalophilic counterparts. These amino acid substitutions probably contribute to the structural stability of halophilic ribosomal proteins.
Protein sequence comparison based on K-string dictionary.
Yu, Chenglong; He, Rong L; Yau, Stephen S-T
2013-10-25
The current K-string-based protein sequence comparisons require large amounts of computer memory because the dimension of the protein vector representation grows exponentially with K. In this paper, we propose a novel concept, the "K-string dictionary", to solve this high-dimensional problem. It allows us to use a much lower dimensional K-string-based frequency or probability vector to represent a protein, and thus significantly reduce the computer memory requirements for their implementation. Furthermore, based on this new concept, we use Singular Value Decomposition to analyze real protein datasets, and the improved protein vector representation allows us to obtain accurate gene trees. © 2013.
Jia, Yi; Huan, Jun; Buhr, Vincent; Zhang, Jintao; Carayannopoulos, Leonidas N
2009-01-01
Background Automatic identification of structure fingerprints from a group of diverse protein structures is challenging, especially for proteins whose divergent amino acid sequences may fall into the "twilight-" or "midnight-" zones where pair-wise sequence identities to known sequences fall below 25% and sequence-based functional annotations often fail. Results Here we report a novel graph database mining method and demonstrate its application to protein structure pattern identification and structure classification. The biologic motivation of our study is to recognize common structure patterns in "immunoevasins", proteins mediating virus evasion of host immune defense. Our experimental study, using both viral and non-viral proteins, demonstrates the efficiency and efficacy of the proposed method. Conclusion We present a theoretic framework, offer a practical software implementation for incorporating prior domain knowledge, such as substitution matrices as studied here, and devise an efficient algorithm to identify approximate matched frequent subgraphs. By doing so, we significantly expanded the analytical power of sophisticated data mining algorithms in dealing with large volume of complicated and noisy protein structure data. And without loss of generality, choice of appropriate compatibility matrices allows our method to be easily employed in domains where subgraph labels have some uncertainty. PMID:19208148
Wu, Fang; Li, Yikun; Chang, Shaojie; Zhou, Zhaocai; Wang, Fang; Song, Xiaomin; Lin, Yujuan; Gong, Weimin
2002-12-01
A 16 kDa protein SPE16 was purified from the seeds of Pachyrrhizus erosus. Its N-terminal amino-acid sequence showed significant sequence homology to pathogenesis-related proteins from the PR-10 family. An activity assay indicated that SPE16 possesses ribonuclease activity as do some other PR-10 proteins. SPE16 crystals were obtained by the hanging-drop vapour-diffusion method. The space group is P2(1)2(1)2(1), with unit-cell parameters a = 53.36, b = 63.70, c = 72.96 A.
Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan
2018-02-15
A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Evaluating, Comparing, and Interpreting Protein Domain Hierarchies
2014-01-01
Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Stratification of co-evolving genomic groups using ranked phylogenetic profiles
Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A
2009-01-01
Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884
Using SQL Databases for Sequence Similarity Searching and Analysis.
Pearson, William R; Mackey, Aaron J
2017-09-13
Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Structural genomics: keeping up with expanding knowledge of the protein universe.
Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek
2007-06-01
Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space--a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a re-assessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006.
Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.
Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M
2010-06-01
Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.
Jia, Ying; Cantu, Bruno A; Sánchez, Elda E; Pérez, John C
2008-06-15
To advance our knowledge on the snake venom composition and transcripts expressed in venom gland at the molecular level, we constructed a cDNA library from the venom gland of Agkistrodon piscivorus leucostoma for the generation of expressed sequence tags (ESTs) database. From the randomly sequenced 2112 independent clones, we have obtained ESTs for 1309 (62%) cDNAs, which showed significant deduced amino acid sequence similarity (scores >80) to previously characterized proteins in National Center for Biotechnology Information (NCBI) database. Ribosomal proteins make up 47 clones (2%) and the remaining 756 (36%) cDNAs represent either unknown identity or show BLASTX sequence identity scores of <80 with known GenBank accessions. The most highly expressed gene encoding phospholipase A(2) (PLA(2)) accounting for 35% of A. p. leucostoma venom gland cDNAs was identified and further confirmed by crude venom applied to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis and protein sequencing. A total of 180 representative genes were obtained from the sequence assemblies and deposited to EST database. Clones showing sequence identity to disintegrins, thrombin-like enzymes, hemorrhagic toxins, fibrinogen clotting inhibitors and plasminogen activators were also identified in our EST database. These data can be used to develop a research program that will help us identify genes encoding proteins that are of medical importance or proteins involved in the mechanisms of the toxin venom.
Predicting residue-wise contact orders in proteins by support vector regression.
Song, Jiangning; Burrage, Kevin
2006-10-03
The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
McCarthy, Jason R.; Weissleder, Ralph
2007-01-01
Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285
Fearnley, I M; Finel, M; Skehel, J M; Walker, J E
1991-01-01
The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859
GOLabeler: Improving Sequence-based Large-scale Protein Function Prediction by Learning to Rank.
You, Ronghui; Zhang, Zihan; Xiong, Yi; Sun, Fengzhu; Mamitsuka, Hiroshi; Zhu, Shanfeng
2018-03-07
Gene Ontology (GO) has been widely used to annotate functions of proteins and understand their biological roles. Currently only <1% of more than 70 million proteins in UniProtKB have experimental GO annotations, implying the strong necessity of automated function prediction (AFP) of proteins, where AFP is a hard multilabel classification problem due to one protein with a diverse number of GO terms. Most of these proteins have only sequences as input information, indicating the importance of sequence-based AFP (SAFP: sequences are the only input). Furthermore homology-based SAFP tools are competitive in AFP competitions, while they do not necessarily work well for so-called difficult proteins, which have <60% sequence identity to proteins with annotations already. Thus the vital and challenging problem now is how to develop a method for SAFP, particularly for difficult proteins. The key of this method is to extract not only homology information but also diverse, deep- rooted information/evidence from sequence inputs and integrate them into a predictor in a both effective and efficient manner. We propose GOLabeler, which integrates five component classifiers, trained from different features, including GO term frequency, sequence alignment, amino acid trigram, domains and motifs, and biophysical properties, etc., in the framework of learning to rank (LTR), a paradigm of machine learning, especially powerful for multilabel classification. The empirical results obtained by examining GOLabeler extensively and thoroughly by using large-scale datasets revealed numerous favorable aspects of GOLabeler, including significant performance advantage over state-of-the-art AFP methods. http://datamining-iip.fudan.edu.cn/golabeler. zhusf@fudan.edu.cn. Supplementary data are available at Bioinformatics online.
Sugihara, K; Hanagata, N; Dubinsky, Z; Baba, S; Karube, I
2000-11-01
Young plants of the common Okinawa mangrove species Bruguiera gymnorrhiza were transferred from freshwater to a medium with seawater salt level (500 mM NaCl). Two-dimensional gel electrophoresis revealed in the leaf extract of the plant a 33 kDa protein with pI 5.2, whose quantity increased as a result of NaCl treatment. The N-terminal amino acids sequence of this protein had a significant homology with mature region of oxygen evolving enhancer protein 1 (OEE1) precursor. The cloning of OEE1 precursor cDNA fragment was carried out by means of reverse transcription-PCR (RT-PCR) using degenerated primers. Both 3'- and 5'-regions were isolated by rapid amplification of cDNA ends (RACE) method. The deduced amino acid sequence consisted of 322 amino acids and was 87% identical to that of Nicotiana tabacum. In B. gymnorrhiza, the predicted amino acid sequence of the mature protein starts at the residue number 85 of the open reading frame. The first 84-amino acid residues correspond to a typical transit sequence for the signal directing OEE1 to its appropriate compartment of chloroplast. The expression of OEE1 was analyzed together with other OEE subunits and D1 protein of photosystem II. The transcript levels of all the three OEEs were enhanced by NaCl treatment, but the significant increase of D1 protein was not observed.
Kwasigroch, Jean Marc; Rooman, Marianne
2006-07-15
Prelude&Fugue are bioinformatics tools aiming at predicting the local 3D structure of a protein from its amino acid sequence in terms of seven backbone torsion angle domains, using database-derived potentials. Prelude(&Fugue) computes all lowest free energy conformations of a protein or protein region, ranked by increasing energy, and possibly satisfying some interresidue distance constraints specified by the user. (Prelude&)Fugue detects sequence regions whose predicted structure is significantly preferred relative to other conformations in the absence of tertiary interactions. These programs can be used for predicting secondary structure, tertiary structure of short peptides, flickering early folding sequences and peptides that adopt a preferred conformation in solution. They can also be used for detecting structural weaknesses, i.e. sequence regions that are not optimal with respect to the tertiary fold. http://babylone.ulb.ac.be/Prelude_and_Fugue.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-07-01
UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
2011-01-01
Background Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. Results We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. Conclusion For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Reviewers This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian. PMID:22024092
Whole-Genome Sequencing of the World’s Oldest People
Gierman, Hinco J.; Fortney, Kristen; Roach, Jared C.; Coles, Natalie S.; Li, Hong; Glusman, Gustavo; Markov, Glenn J.; Smith, Justin D.; Hood, Leroy; Coles, L. Stephen; Kim, Stuart K.
2014-01-01
Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies. PMID:25390934
Whole-genome sequencing of the world's oldest people.
Gierman, Hinco J; Fortney, Kristen; Roach, Jared C; Coles, Natalie S; Li, Hong; Glusman, Gustavo; Markov, Glenn J; Smith, Justin D; Hood, Leroy; Coles, L Stephen; Kim, Stuart K
2014-01-01
Supercentenarians (110 years or older) are the world's oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.
Shayan, P; Jafari, S; Fattahi, R; Ebrahimzade, E; Amininia, N; Changizi, E
2016-05-01
Ovine theileriosis is an important hemoprotozoal disease of sheep and goats in tropical and subtropical regions which caused high economic loses in the livestock industry. Theileria annulata surface protein (TaSp) was used previously as a tool for serological analysis in livestock. Since the amino acid sequences of TaSp is, at least, in part very conserved in T. annulata, Theileria lestoquardi and Theileria china I and II, it is very important to determine the amino acid sequence of this protein in Theileria ovis as well, to avoid false interpretation of serological data based on this protein in small animal. In the present study, the nucleotide sequence and amino acid sequence of T. ovis surface protein (ToSp) were determined. The comparison of the nucleotide sequence of ToSp showed 96, 96, 99, and 86 % homology to the corresponding nucleotide sequence of TaSp genes by T. annulata, T. China I, T. China II and T. lestoquardi, previously registered in GenBank under accession nos. AJ316260.1, AY274329.1, DQ120058.1, and EF092924.1 respectively. The amino acid sequence analysis showed 95, 81, 98 and 70 % homology to the corresponding amino acid sequence of T. annulata, T chinaI, T china II and T. lestoquardi, registered in GenBank under accession nos. CAC87478.1, AAP36993.1, AAZ30365.1 and AAP36999.11, respectively. Interestingly, in contrast to the C terminus, a significant difference in amino acid sequence in the N teminus of the ToSp protein could be determined compared to the other known corresponding TaSp sequences, which make this region attractive for designing of a suitable tool for serological diagnosis.
Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.
Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene
2011-01-01
To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.
An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis
Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang
2013-01-01
Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234
Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics
Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas
2014-01-01
Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727
Protein-protein interaction network-based detection of functionally similar proteins within species.
Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli
2012-07-01
Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.
Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins
NASA Astrophysics Data System (ADS)
Firman, Taylor; Ghosh, Kingshuk
2018-03-01
We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
Evidence for a vast peptide overlap between West Nile virus and human proteomes.
Capone, Giovanni; Pagoni, Maria; Delfino, Antonella Pesce; Kanduc, Darja
2013-10-01
The primary amino acid sequence of West Nile virus (WNV) polyprotein, GenBank accession number M12294, was analyzed by computional biology. WNV is a mosquito-borne neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Using pentapeptides as scanning units and the perfect peptide match program from PIR International Protein Sequence Database, we compared the WNV polyprotein and the human proteome. WNV polyprotein showed significant sequence similarities to a number of human proteins. Several of these proteins are involved in embryogenesis, neurite outgrowth, cortical neuron branching, formation of mature synapses, semaphorin interactions, and voltage dependent L-type calcium channel subunits. The biocomputional study suggest that common amino acid segments might represent a potential platform for further studies on the neurological pathophysiology of WNV infections. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng
2017-10-01
The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.
Turning gold into ‘junk’: transposable elements utilize central proteins of cellular networks
Abrusán, György; Szilágyi, András; Zhang, Yang; Papp, Balázs
2013-01-01
The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts. PMID:23341038
MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
Fang, Chao; Shang, Yi; Xu, Dong
2018-05-01
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.
From Mosquitos to Humans: Genetic Evolution of Zika Virus
Wang, Lulan; Valderramos, Stephanie G.; Wu, Aiping; Ouyang, Songying; Li, Chunfeng; Brasil, Patricia; Bonaldo, Myrna; Coates, Thomas; Nielsen-Saines, Karin; Jiang, Taijiao; Aliyari, Roghiyh; Cheng, Genhong
2017-01-01
Initially isolated in 1947, Zika virus (ZIKV) has recently emerged as significant public health concern. Sequence analysis of all 41 known ZIKV RNA open reading frames to date indicates that ZIKV has undergone significant changes in both protein and nucleotide sequences during the past half century. PMID:27091703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geraghty, M.T.; Stetten, G.; Kearns, W.
1994-09-01
X-linked adrenoleukodystrophy (ALD) is a disorder of peroxisomal {beta}-oxidation of very long chain fatty acids. It presents either as progressive dementia in childhood or as progressive paraparesis in later years. Adrenal insufficiency occurs in both phenotypes. The gene of the ALD protein has been mapped to Xq28 and has recently been cloned and characterized. The ALD protein has significant homology to the peroxisomal membrane protein, PMP70 and belongs to the ATP binding cassette superfamily of transporters. We screened a human genomic library with an ALDP cDNA and isolated 5 different but highly similar clones containing sequences corresponding to the 3{prime}more » end of the ALDP gene. Comparison of the sequences over the region corresponding to exon 9 through the 3{prime} end of the ALDP gene reveals {approximately}96% nucleotide identity in both exonic and intronic regions. Splice sites and open reading frames are maintained. Using both FISH and human-rodent DNA mapping panels, we positively assign these ALDP-related sequences to chromosomes 2, 16 and 22, and provisionally to 1 and 20. Southern blot of primate DNA probed with a partial ALDP cDNA (exon 2-10) shows that expansion of ALDP-related sequences occurred in higher primates (chimp, gorilla and human). Although Northern blots show multiple ALDP-hybridizing transcripts in certain tissues, we have no evidence to date for expression of these ALDP-related sequences. In conclusion, our data show there has been an unusual and recent dispersal to multiple chromosomes of structural gene sequences related to the ALDP gene. The functional significance of these sequences remains to be determined but their existence complicates PCR and mutation analysis of the ALDP gene.« less
Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.
2005-01-01
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201
Identifying and reducing error in cluster-expansion approximations of protein energies.
Hahn, Seungsoo; Ashenberg, Orr; Grigoryan, Gevorg; Keating, Amy E
2010-12-01
Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy. The method consists of several steps. First, for a given protein structure, a training set of sequences with known energies is generated. Next, this training set is used to expand energy as a function of clusters consisting of single residues, residue pairs, and higher order terms, if required. The accuracy of the sequence-based expansion is monitored and improved using cross-validation testing and iterative inclusion of additional clusters. As a trade-off for evaluation speed, the cluster-expansion approximation causes prediction errors, which can be reduced by including more training sequences, including higher order terms in the expansion, and/or reducing the sequence space described by the cluster expansion. This article analyzes the sources of error and introduces a method whereby accuracy can be improved by judiciously reducing the described sequence space. The method is applied to describe the sequence-stability relationship for several protein structures: coiled-coil dimers and trimers, a PDZ domain, and T4 lysozyme as examples with computationally derived energies, and SH3 domains in amphiphysin-1 and endophilin-1 as examples where the expanded pseudo-energies are obtained from experiments. Our open-source software package Cluster Expansion Version 1.0 allows users to expand their own energy function of interest and thereby apply cluster expansion to custom problems in protein design. © 2010 Wiley Periodicals, Inc.
DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1.
Choudhary, M; Kaplan, S
2000-02-15
This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 (T). The photosynthesis gene cluster is located within a approximately 73 kb Ase I genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R. sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC = cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R
2016-07-08
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias
2014-08-01
Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.
Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites.
Zhang, Deqing; Howe, Daniel K
2008-04-15
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.
Structural genomics: keeping up with expanding knowledge of the protein universe
Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek
2010-01-01
Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space — a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a reassessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006. PMID:17587562
Sawle, Lucas; Ghosh, Kingshuk
2015-08-28
A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R(2) = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found-with high statistical significance-to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.
Shi, Xiaohe; Lu, Wen-Cong; Cai, Yu-Dong; Chou, Kuo-Chen
2011-01-01
Background With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly desirable to develop effective computational methods for quickly and accurately predicting their functions. The information thus obtained would be very useful for both basic research and drug development in a timely manner. Methodology/Principal Findings Although many efforts have been made in this regard, most of them were based on either sequence similarity or protein-protein interaction (PPI) information. However, the former often fails to work if a query protein has no or very little sequence similarity to any function-known proteins, while the latter had similar problem if the relevant PPI information is not available. In view of this, a new approach is proposed by hybridizing the PPI information and the biochemical/physicochemical features of protein sequences. The overall first-order success rates by the new predictor for the functions of mouse proteins on training set and test set were 69.1% and 70.2%, respectively, and the success rate covered by the results of the top-4 order from a total of 24 orders was 65.2%. Conclusions/Significance The results indicate that the new approach is quite promising that may open a new avenue or direction for addressing the difficult and complicated problem. PMID:21283518
Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus
USDA-ARS?s Scientific Manuscript database
The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...
A proteomics study of barley powdery mildew haustoria.
Godfrey, Dale; Zhang, Ziguo; Saalbach, Gerhard; Thordal-Christensen, Hans
2009-06-01
A number of fungal and oomycete plant pathogens of major economic importance feed on their hosts by means of haustoria, which they place inside living plant cells. The underlying mechanisms are poorly understood, partly due to difficulty in preparing haustoria. We have therefore developed a procedure for isolating haustoria from the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh). We subsequently aimed to understand the molecular mechanisms of haustoria through a study of their proteome. Extracted proteins were digested using trypsin, separated by LC, and analysed by MS/MS. Searches of a custom Bgh EST sequence database and the NCBI-NR fungal protein database, using the MS/MS data, identified 204 haustoria proteins. The majority of the proteins appear to have roles in protein metabolic pathways and biological energy production. Surprisingly, pyruvate decarboxylase (PDC), involved in alcoholic fermentation and commonly abundant in fungi and plants, was absent in our Bgh proteome data set. A sequence encoding this enzyme was also absent in our EST sequence database. Significantly, BLAST searches of the recently available Bgh genome sequence data also failed to identify a sequence encoding this enzyme, strongly indicating that Bgh does not have a gene for PDC.
Prediction of the translocon-mediated membrane insertion free energies of protein sequences.
Park, Yungki; Helms, Volkhard
2008-05-15
Helical membrane proteins (HMPs) play crucial roles in a variety of cellular processes. Unlike water-soluble proteins, HMPs need not only to fold but also get inserted into the membrane to be fully functional. This process of membrane insertion is mediated by the translocon complex. Thus, it is of great interest to develop computational methods for predicting the translocon-mediated membrane insertion free energies of protein sequences. We have developed Membrane Insertion (MINS), a novel sequence-based computational method for predicting the membrane insertion free energies of protein sequences. A benchmark test gives a correlation coefficient of 0.74 between predicted and observed free energies for 357 known cases, which corresponds to a mean unsigned error of 0.41 kcal/mol. These results are significantly better than those obtained by traditional hydropathy analysis. Moreover, the ability of MINS to reasonably predict membrane insertion free energies of protein sequences allows for effective identification of transmembrane (TM) segments. Subsequently, MINS was applied to predict the membrane insertion free energies of 316 TM segments found in known structures. An in-depth analysis of the predicted free energies reveals a number of interesting findings about the biogenesis and structural stability of HMPs. A web server for MINS is available at http://service.bioinformatik.uni-saarland.de/mins
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Johnson, K S; Wells, K; Bock, J V; Nene, V; Taylor, D W; Cordingley, J S
1989-08-01
We report the sequence of a cDNA clone encoding an 86-kDa polypeptide antigen (p86) from Schistosoma mansoni. Fusion proteins made in Escherichia coli are recognized by human infection sera. The reading frame of this antigen is highly homologous to those of the large heat-shock proteins of Saccharomyces cerevisiae (HSP90) and Drosophila melanogaster (HSP83). mRNA encoding p86 increases in response to heat shock of adult worms, as does HSP70. Comparisons of the sequences of HSP70 and HSP83 homologues show that these two families of heat-shock proteins are not significantly related except for the last four amino acid residues, which are Glu-Glu-Val-Asp in every case. This sequence is not found at the carboxy terminus of any other protein in the current databases.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-01-01
Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. Results: We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. Availability: A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request. Contact: lonshy@cs.huji.ac.il PMID:18586742
Bowen, David M; Lewis, Jessica A; Lu, Wenzhe; Schein, Catherine H
2012-09-14
Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo
2017-08-01
Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.
A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
Michnick, S W; Shakhnovich, E
1998-01-01
Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.
Molecular cloning and characterization of Aspergillus nidulans cyclophilin B.
Joseph, J D; Heitman, J; Means, A R
1999-06-01
Cyclophilins are an evolutionarily conserved family of proteins which serve as the intracellular receptors for the immunosuppressive drug cyclosporin A. Here we report the characterization of the first cyclophilin cloned from the filamentous fungus Aspergillus nidulans (CYPB). Sequence analysis of the cypB gene predicts an encoded protein with highest homology to the murine cyclophilin B protein. The sequence similarity includes an N-terminal sequence predicted to target the protein to the endoplasmic reticulum (ER) as well as a C-terminal sequence predicted to retain the mature protein in the ER. The bacterially expressed hexa-histidine tagged protein displays peptidyl-prolyl isomerase activity which is inhibited by cyclosporin A. In the presence of cyclosporin A, the expressed protein also inhibits purified calcineurin. When the endogenous cypB gene was disrupted and placed under the control of the regulatable alcohol dehydrogenase promoter, the strain demonstrated no detectable growth phenotype under conditions which induce or repress cypB transcription. Induction or repression of the cypB gene also did not effect sensitivity of A. nidulans to cyclosporin A. cypB mRNA levels were significantly elevated under severe heat shock conditions, indicating a possible role for the A. nidulans cyclophilin B protein during growth in high stress environments. Copyright 1999 Academic Press.
Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.
Dasenko, Mark A.
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693
Sequence Determinants of Compaction in Intrinsically Disordered Proteins
Marsh, Joseph A.; Forman-Kay, Julie D.
2010-01-01
Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348
Quality Control Test for Sequence-Phenotype Assignments
Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel
2015-01-01
Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273
Innate Immune Complexity in the Purple Sea Urchin: Diversity of the Sp185/333 System
Smith, L. Courtney
2012-01-01
The California purple sea urchin, Strongylocentrotus purpuratus, is a long-lived echinoderm with a complex and sophisticated innate immune system. There are several large gene families that function in immunity in this species including the Sp185/333 gene family that has ∼50 (±10) members. The family shows intriguing sequence diversity and encodes a broad array of diverse yet similar proteins. The genes have two exons of which the second encodes the mature protein and has repeats and blocks of sequence called elements. Mosaics of element patterns plus single nucleotide polymorphisms-based variants of the elements result in significant sequence diversity among the genes yet maintains similar structure among the members of the family. Sequence of a bacterial artificial chromosome insert shows a cluster of six, tightly linked Sp185/333 genes that are flanked by GA microsatellites. The sequences between the GA microsatellites in which the Sp185/333 genes and flanking regions are located, are much more similar to each other than are the sequences outside the microsatellites suggesting processes such as gene conversion, recombination, or duplication. However, close linkage does not correspond with greater sequence similarity compared to randomly cloned and sequenced genes that are unlikely to be linked. There are three segmental duplications that are bounded by GAT microsatellites and include three almost identical genes plus flanking regions. RNA editing is detectible throughout the mRNAs based on comparisons to the genes, which, in combination with putative post-translational modifications to the proteins, results in broad arrays of Sp185/333 proteins that differ among individuals. The mature proteins have an N-terminal glycine-rich region, a central RGD motif, and a C-terminal histidine-rich region. The Sp185/333 proteins are localized to the cell surface and are found within vesicles in subsets of polygonal and small phagocytes. The coelomocyte proteome shows full-length and truncated proteins, including some with missense sequence. Current results suggest that both native Sp185/333 proteins and a recombinant protein bind bacteria and are likely important in sea urchin innate immunity. PMID:22566951
Confronting the catalytic dark matter encoded by sequenced genomes
Ellens, Kenneth W.; Christian, Nils; Singh, Charandeep; Satagopam, Venkata P.
2017-01-01
Abstract The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research. PMID:29059321
Physics and evolution of thermophilic adaptation.
Berezovsky, Igor N; Shakhnovich, Eugene I
2005-09-06
Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.
Derakhshandeh, A; Zahraei Salehi, T; Tadjbakhsh, H; Karimi, V
2009-09-01
To identify, clone and sequence the iss (increased serum survival) gene from E. coli strain chi1378 isolated from Iranian poultry and to predict its protein product, Iss. The iss gene from E. coli strain chi1378 was amplified and cloned into the pTZ57R/T vector and sequenced. From the DNA sequence, the Iss predictive protein was evaluated using bioinformatics. Iss from strain chi1378 had 100% identity with other E. coli serotypes and isolates from different origins and also 98% identity with E. coli O157:H7 Iss protein. Phylogenetic analysis showed no significant different phylogenic groups among E. coli strains. The strong association of predicted Iss protein among different E. coli strains suggests that it could be a good antigen to control and detect avian pathogenic E. coli (APEC). Because the exact pathogenesis and the role of virulence factors are unknown, the Iss protein could be used as a target for vaccination in the future, but further research is required.
Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T
2017-10-01
Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.
Gold, Nicola D; Jackson, Richard M
2006-02-03
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.
Deusch, Oliver; O’Flynn, Ciaran; Colyer, Alison; Morris, Penelope; Allaway, David; Jones, Paul G.; Swanson, Kelly S.
2014-01-01
Background Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome. Methodology & Principal Findings Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome. Conclusions These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life. PMID:25010839
Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.
1993-01-01
We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067
Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan
2016-01-01
Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms.
Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan
2016-01-01
Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms. PMID:27517583
Patnaik, Bharat Bhusan; Kim, Dong Hyun; Oh, Seung Han; Song, Yong-Su; Chanh, Nguyen Dang Minh; Kim, Jong Sun; Jung, Woo-jin; Saha, Atul Kumar; Bindroo, Bharat Bhushan; Han, Yeon Soo
2012-01-01
Background Silkworm fecal matter is considered one of the richest sources of antimicrobial and antiviral protein (substances) and such economically feasible and eco-friendly proteins acting as secondary metabolites from the insect system can be explored for their practical utility in conferring broad spectrum disease resistance against pathogenic microbial specimens. Methodology/Principal Findings Silkworm fecal matter extracts prepared in 0.02 M phosphate buffer saline (pH 7.4), at a temperature of 60°C was subjected to 40% saturated ammonium sulphate precipitation and purified by gel-filtration chromatography (GFC). SDS-PAGE under denaturing conditions showed a single band at about 21.5 kDa. The peak fraction, thus obtained by GFC wastested for homogeneityusing C18reverse-phase high performance liquid chromatography (HPLC). The activity of the purified protein was tested against selected Gram +/− bacteria and phytopathogenic Fusarium species with concentration-dependent inhibitionrelationship. The purified bioactive protein was subjected to matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS) and N-terminal sequencing by Edman degradation towards its identification. The N-terminal first 18 amino acid sequence following the predicted signal peptide showed homology to plant germin-like proteins (Glp). In order to characterize the full-length gene sequence in detail, the partial cDNA was cloned and sequenced using degenerate primers, followed by 5′- and 3′-rapid amplification of cDNA ends (RACE-PCR). The full-length cDNA sequence composed of 630 bp encoding 209 amino acids and corresponded to germin-like proteins (Glps) involved in plant development and defense. Conclusions/Significance The study reports, characterization of novel Glpbelonging to subfamily 3 from M. alba by the purification of mature active protein from silkworm fecal matter. The N-terminal amino acid sequence of the purified protein was found similar to the deduced amino acid sequence (without the transit peptide sequence) of the full length cDNA from M. alba. PMID:23284650
Protein contact prediction using patterns of correlation.
Hamilton, Nicholas; Burrage, Kevin; Ragan, Mark A; Huber, Thomas
2004-09-01
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. Copyright 2004 Wiley-Liss, Inc.
Predicting DNA binding proteins using support vector machine with hybrid fractal features.
Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo
2014-02-21
DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Evolution of the arginase fold and functional diversity
Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.
2009-01-01
The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740
Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.
Graham, L A; Bendena, W G; Walker, V K
1996-02-01
The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.
Predictive and comparative analysis of Ebolavirus proteins
Cong, Qian; Pei, Jimin; Grishin, Nick V
2015-01-01
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus. PMID:26158395
Predictive and comparative analysis of Ebolavirus proteins.
Cong, Qian; Pei, Jimin; Grishin, Nick V
2015-01-01
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.
Prediction of protein secondary structure content for the twilight zone sequences.
Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke
2007-11-15
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.
Suckau, Detlev; Resemann, Anja
2009-12-01
The ability to match Top-Down protein sequencing (TDS) results by MALDI-TOF to protein sequences by classical protein database searching was evaluated in this work. Resulting from these analyses were the protein identity, the simultaneous assignment of the N- and C-termini and protein sequences of up to 70 residues from either terminus. In combination with de novo sequencing using the MALDI-TDS data, even fusion proteins were assigned and the detailed sequence around the fusion site was elucidated. MALDI-TDS allowed to efficiently match protein sequences quickly and to validate recombinant protein structures-in particular, protein termini-on the level of undigested proteins.
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
Regulation of the Human Endogenous Retrovirus K (HML-2) Transcriptome by the HIV-1 Tat Protein
Gonzalez-Hernandez, Marta J.; Cavalcoli, James D.; Sartor, Maureen A.; Contreras-Galindo, Rafael; Meng, Fan; Dai, Manhong; Dube, Derek; Saha, Anjan K.; Gitlin, Scott D.; Omenn, Gilbert S.; Kaplan, Mark H.
2014-01-01
ABSTRACT Approximately 8% of the human genome is made up of endogenous retroviral sequences. As the HIV-1 Tat protein activates the overall expression of the human endogenous retrovirus type K (HERV-K) (HML-2), we used next-generation sequencing to determine which of the 91 currently annotated HERV-K (HML-2) proviruses are regulated by Tat. Transcriptome sequencing of total RNA isolated from Tat- and vehicle-treated peripheral blood lymphocytes from a healthy donor showed that Tat significantly activates expression of 26 unique HERV-K (HML-2) proviruses, silences 12, and does not significantly alter the expression of the remaining proviruses. Quantitative reverse transcription-PCR validation of the sequencing data was performed on Tat-treated PBLs of seven donors using provirus-specific primers and corroborated the results with a substantial degree of quantitative similarity. IMPORTANCE The expression of HERV-K (HML-2) is tightly regulated but becomes markedly increased following infection with HIV-1, in part due to the HIV-1 Tat protein. The findings reported here demonstrate the complexity of the genome-wide regulation of HERV-K (HML-2) expression by Tat. This work also demonstrates that although HERV-K (HML-2) proviruses in the human genome are highly similar in terms of DNA sequence, modulation of the expression of specific proviruses in a given biological situation can be ascertained using next-generation sequencing and bioinformatics analysis. PMID:24872592
Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang
2018-03-10
Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.
Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X
1993-05-01
The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.
The Classification of Protein Domains.
Dawson, Natalie; Sillitoe, Ian; Marsden, Russell L; Orengo, Christine A
2017-01-01
The significant expansion in protein sequence and structure data that we are now witnessing brings with it a pressing need to bring order to the protein world. Such order enables us to gain insights into the evolution of proteins, their function and the extent to which the functional repertoire can vary across the three kingdoms of life. This has lead to the creation of a wide range of protein family classifications that aim to group proteins based upon their evolutionary relationships.In this chapter we discuss the approaches and methods that are frequently used in the classification of proteins, with a specific emphasis on the classification of protein domains. The construction of both domain sequence and domain structure databases is considered and we show how the use of domain family annotations to assign structural and functional information is enhancing our understanding of genomes.
Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.
Borodovsky, M; Rudd, K E; Koonin, E V
1994-01-01
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428
Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.
2013-01-01
The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933
NASA Astrophysics Data System (ADS)
El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas
2017-01-01
The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.
Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.
2012-01-01
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496
Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N
2012-01-01
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.
Webb, R; Troyan, T; Sherman, D; Sherman, L A
1994-08-01
Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.
Estimating the potential refolding yield of recombinant proteins expressed as inclusion bodies.
Ho, Jason G S; Middelberg, Anton P J
2004-09-05
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between "yield" and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially "screen," in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts.
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Heyduk, E; Baichoo, N; Heyduk, T
2001-11-30
The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.
Gupta, Radhey S; Khadka, Bijendra
2016-02-01
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L
1988-01-01
Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437
Wolf, Maxim Y; Wolf, Yuri I; Koonin, Eugene V
2008-01-01
Background Proteins show a broad range of evolutionary rates. Understanding the factors that are responsible for the characteristic rate of evolution of a given protein arguably is one of the major goals of evolutionary biology. A long-standing general assumption used to be that the evolution rate is, primarily, determined by the specific functional constraints that affect the given protein. These constrains were traditionally thought to depend both on the specific features of the protein's structure and its biological role. The advent of systems biology brought about new types of data, such as expression level and protein-protein interactions, and unexpectedly, a variety of correlations between protein evolution rate and these variables have been observed. The strongest connections by far were repeatedly seen between protein sequence evolution rate and the expression level of the respective gene. It has been hypothesized that this link is due to the selection for the robustness of the protein structure to mistranslation-induced misfolding that is particularly important for highly expressed proteins and is the dominant determinant of the sequence evolution rate. Results This work is an attempt to assess the relative contributions of protein domain structure and function, on the one hand, and expression level on the other hand, to the rate of sequence evolution. To this end, we performed a genome-wide analysis of the effect of the fusion of a pair of domains in multidomain proteins on the difference in the domain-specific evolutionary rates. The mistranslation-induced misfolding hypothesis would predict that, within multidomain proteins, fused domains, on average, should evolve at substantially closer rates than the same domains in different proteins because, within a mutlidomain protein, all domains are translated at the same rate. We performed a comprehensive comparison of the evolutionary rates of mammalian and plant protein domains that are either joined in multidomain proteins or contained in distinct proteins. Substantial homogenization of evolutionary rates in multidomain proteins was, indeed, observed in both animals and plants, although highly significant differences between domain-specific rates remained. The contributions of the translation rate, as determined by the effect of the fusion of a pair of domains within a multidomain protein, and intrinsic, domain-specific structural-functional constraints appear to be comparable in magnitude. Conclusion Fusion of domains in a multidomain protein results in substantial homogenization of the domain-specific evolutionary rates but significant differences between domain-specific evolution rates remain. Thus, the rate of translation and intrinsic structural-functional constraints both exert sizable and comparable effects on sequence evolution. Reviewers This article was reviewed by Sergei Maslov, Dennis Vitkup, Claus Wilke (nominated by Orly Alter), and Allan Drummond (nominated by Joel Bader). For the full reviews, please go to the Reviewers' Reports section. PMID:18840284
Visual management of large scale data mining projects.
Shah, I; Hunter, L
2000-01-01
This paper describes a unified framework for visualizing the preparations for, and results of, hundreds of machine learning experiments. These experiments were designed to improve the accuracy of enzyme functional predictions from sequence, and in many cases were successful. Our system provides graphical user interfaces for defining and exploring training datasets and various representational alternatives, for inspecting the hypotheses induced by various types of learning algorithms, for visualizing the global results, and for inspecting in detail results for specific training sets (functions) and examples (proteins). The visualization tools serve as a navigational aid through a large amount of sequence data and induced knowledge. They provided significant help in understanding both the significance and the underlying biological explanations of our successes and failures. Using these visualizations it was possible to efficiently identify weaknesses of the modular sequence representations and induction algorithms which suggest better learning strategies. The context in which our data mining visualization toolkit was developed was the problem of accurately predicting enzyme function from protein sequence data. Previous work demonstrated that approximately 6% of enzyme protein sequences are likely to be assigned incorrect functions on the basis of sequence similarity alone. In order to test the hypothesis that more detailed sequence analysis using machine learning techniques and modular domain representations could address many of these failures, we designed a series of more than 250 experiments using information-theoretic decision tree induction and naive Bayesian learning on local sequence domain representations of problematic enzyme function classes. In more than half of these cases, our methods were able to perfectly discriminate among various possible functions of similar sequences. We developed and tested our visualization techniques on this application.
DLocalMotif: a discriminative approach for discovering local motifs in protein sequences.
Mehdi, Ahmed M; Sehgal, Muhammad Shoaib B; Kobe, Bostjan; Bailey, Timothy L; Bodén, Mikael
2013-01-01
Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. http://bioinf.scmb.uq.edu.au/dlocalmotif/
Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor
2016-01-01
The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006
Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K
1987-09-01
Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.
Nagaraj, Shivashankar H.; Gasser, Robin B.; Ranganathan, Shoba
2008-01-01
Background Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets. Methods and Findings In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans. Conclusions We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of novel drugs or vaccines for parasite intervention and control. PMID:18820748
Pomel, Sébastien; Diogon, Marie; Bouchard, Philippe; Pradel, Lydie; Ravet, Viviane; Coffe, Gérard; Viguès, Bernard
2006-02-01
Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach
NASA Astrophysics Data System (ADS)
Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.
2012-10-01
In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.
Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya
2012-01-01
Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565
Song, B; Hou, Y L; Ding, X; Wang, T; Wang, F; Zhong, J C; Xu, T; Zhong, J; Hou, W R; Shuai, S R
2014-02-20
Fatty acid binding proteins (FABPs) are a family of small, highly conserved cytoplasmic proteins that bind long-chain fatty acids and other hydrophobic ligands. In this study, cDNA and genomic sequences of FABP4 and FABP5 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-PCR. The cDNAs of FABP4 and FABP5 cloned from the giant panda were 400 and 413 bp in length, containing an open reading frame of 399 and 408 bp, encoding 132 and 135 amino acids, respectively. The genomic sequences of FABP4 and FABP5 were 3976 and 3962 bp, respectively, which each contained four exons and three introns. Sequence alignment indicated a high degree of homology with reported FABP sequences of other mammals at both the amino acid and DNA levels. Topology prediction revealed seven protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, two N-myristoylation sites, and one cytosolic fatty acid-binding protein signature in the FABP4 protein, and three N-glycosylation sites, three protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, one N-myristoylation site, one amidation site, and one cytosolic fatty acid-binding protein signature in the FABP5 protein. The FABP4 and FABP5 genes were overexpressed in Escherichia coli BL21 and they produced the expected 16.8- and 17.0-kDa polypeptides. The results obtained in this study provide information for further in-depth research of this system, which has great value of both theoretical and practical significance.
Stable isotope, site-specific mass tagging for protein identification
Chen, Xian
2006-10-24
Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.
Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C; Fiser, Andras
2014-03-11
The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.
REPPER—repeats and their periodicities in fibrous proteins
Gruber, Markus; Söding, Johannes; Lupas, Andrei N.
2005-01-01
REPPER (REPeats and their PERiodicities) is an integrated server that detects and analyzes regions with short gapless repeats in protein sequences or alignments. It finds periodicities by Fourier Transform (FTwin) and internal similarity analysis (REPwin). FTwin assigns numerical values to amino acids that reflect certain properties, for instance hydrophobicity, and gives information on corresponding periodicities. REPwin uses self-alignments and displays repeats that reveal significant internal similarities. Both programs use a sliding window to ensure that different periodic regions within the same protein are detected independently. FTwin and REPwin are complemented by secondary structure prediction (PSIPRED) and coiled coil prediction (COILS), making the server a versatile analysis tool for sequences of fibrous proteins. REPPER is available at . PMID:15980460
MODBASE, a database of annotated comparative protein structure models
Pieper, Ursula; Eswar, Narayanan; Stuart, Ashley C.; Ilyin, Valentin A.; Sali, Andrej
2002-01-01
MODBASE (http://guitar.rockefeller.edu/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on PSI-BLAST, IMPALA and MODELLER. MODBASE uses the MySQL relational database management system for flexible and efficient querying, and the MODVIEW Netscape plugin for viewing and manipulating multiple sequences and structures. It is updated regularly to reflect the growth of the protein sequence and structure databases, as well as improvements in the software for calculating the models. For ease of access, MODBASE is organized into different datasets. The largest dataset contains models for domains in 304 517 out of 539 171 unique protein sequences in the complete TrEMBL database (23 March 2001); only models based on significant alignments (PSI-BLAST E-value < 10–4) and models assessed to have the correct fold are included. Other datasets include models for target selection and structure-based annotation by the New York Structural Genomics Research Consortium, models for prediction of genes in the Drosophila melanogaster genome, models for structure determination of several ribosomal particles and models calculated by the MODWEB comparative modeling web server. PMID:11752309
Xu, Qifang; Dunbrack, Roland L
2012-11-01
Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.
A 3D sequence-independent representation of the protein data bank.
Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H
1995-10-01
Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The resulting set can serve as a basis for extensive structural classification and studies of 3D recurring motifs and of sequence-structure relationships. The clustering algorithm succeeds in classifying into the same structural family chains with no significant sequence homology, e.g. all the globins in one single group, all the trypsin-like serine proteases in another or all the immunoglobulin-like folds into a third. In addition, unexpected structural similarities of interest have been automatically detected between pairs of chains. A cluster analysis of the representative structures demonstrates the way the "structural universe' is populated.
Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi
2003-01-01
Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.
NASA Astrophysics Data System (ADS)
Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin
2016-03-01
Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.
2011-01-01
The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899
A Survey of Protein Structures from Archaeal Viruses
Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.
2013-01-01
Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334
Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2014-09-07
Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fourment, Mathieu; Gibbs, Mark J
2008-02-05
Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically.
Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai
2017-06-01
Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly
Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng
2012-01-01
Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission. PMID:22745728
Garcia, J A; Harrich, D; Soultanakis, E; Wu, F; Mitsuyasu, R; Gaynor, R B
1989-01-01
The human immunodeficiency virus (HIV) type 1 LTR is regulated at the transcriptional level by both cellular and viral proteins. Using HeLa cell extracts, multiple regions of the HIV LTR were found to serve as binding sites for cellular proteins. An untranslated region binding protein UBP-1 has been purified and fractions containing this protein bind to both the TAR and TATA regions. To investigate the role of cellular proteins binding to both the TATA and TAR regions and their potential interaction with other HIV DNA binding proteins, oligonucleotide-directed mutagenesis of both these regions was performed followed by DNase I footprinting and transient expression assays. In the TATA region, two direct repeats TC/AAGC/AT/AGCTGC surround the TATA sequence. Mutagenesis of both of these direct repeats or of the TATA sequence interrupted binding over the TATA region on the coding strand, but only a mutation of the TATA sequence affected in vivo assays for tat-activation. In addition to TAR serving as the site of binding of cellular proteins, RNA transcribed from TAR is capable of forming a stable stem-loop structure. To determine the relative importance of DNA binding proteins as compared to secondary structure, oligonucleotide-directed mutations in the TAR region were studied. Local mutations that disrupted either the stem or loop structure were defective in gene expression. However, compensatory mutations which restored base pairing in the stem resulted in complete tat-activation. This indicated a significant role for the stem-loop structure in HIV gene expression. To determine the role of TAR binding proteins, mutations were constructed which extensively changed the primary structure of the TAR region, yet left stem base pairing, stem energy and the loop sequence intact. These mutations resulted in decreased protein binding to TAR DNA and defects in tat-activation, and revealed factor binding specifically to the loop DNA sequence. Further mutagenesis which inverted this stem and loop mutation relative to the HIV LTR mRNA start site resulted in even larger decreases in tat-activation. This suggests that multiple determinants, including protein binding, the loop sequence, and RNA or DNA secondary structure, are important in tat-activation and suggests that tat may interact with cellular proteins binding to DNA to increase HIV gene expression. Images PMID:2721501
Majumder, P; Choudhury, A; Banerjee, M; Lahiri, A; Bhattacharyya, N P
2007-08-01
To investigate the mechanism of increased expression of caspase-1 caused by exogenous Hippi, observed earlier in HeLa and Neuro2A cells, in this work we identified a specific motif AAAGACATG (- 101 to - 93) at the caspase-1 gene upstream sequence where HIPPI could bind. Various mutations in this specific sequence compromised the interaction, showing the specificity of the interactions. In the luciferase reporter assay, when the reporter gene was driven by caspase-1 gene upstream sequences (- 151 to - 92) with the mutation G to T at position - 98, luciferase activity was decreased significantly in green fluorescent protein-Hippi-expressing HeLa cells in comparison to that obtained with the wild-type caspase-1 gene 60 bp upstream sequence, indicating the biological significance of such binding. It was observed that the C-terminal 'pseudo' death effector domain of HIPPI interacted with the 60 bp (- 151 to - 92) upstream sequence of the caspase-1 gene containing the motif. We further observed that expression of caspase-8 and caspase-10 was increased in green fluorescent protein-Hippi-expressing HeLa cells. In addition, HIPPI interacted in vitro with putative promoter sequences of these genes, containing a similar motif. In summary, we identified a novel function of HIPPI; it binds to specific upstream sequences of the caspase-1, caspase-8 and caspase-10 genes and alters the expression of the genes. This result showed the motif-specific interaction of HIPPI with DNA, and indicates that it could act as transcription regulator.
2014-01-01
Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328
Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages
Cambridge, Joshua M.; Blinkova, Alexandra L.; Salvador Rocha, Erick I.; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M.; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O.
2018-01-01
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism. PMID:29293521
Cambridge, Joshua M; Blinkova, Alexandra L; Salvador Rocha, Erick I; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O; Walker, James R
2018-01-01
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12-14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.
Improving pairwise comparison of protein sequences with domain co-occurrence
Gascuel, Olivier
2018-01-01
Comparing and aligning protein sequences is an essential task in bioinformatics. More specifically, local alignment tools like BLAST are widely used for identifying conserved protein sub-sequences, which likely correspond to protein domains or functional motifs. However, to limit the number of false positives, these tools are used with stringent sequence-similarity thresholds and hence can miss several hits, especially for species that are phylogenetically distant from reference organisms. A solution to this problem is then to integrate additional contextual information to the procedure. Here, we propose to use domain co-occurrence to increase the sensitivity of pairwise sequence comparisons. Domain co-occurrence is a strong feature of proteins, since most protein domains tend to appear with a limited number of other domains on the same protein. We propose a method to take this information into account in a typical BLAST analysis and to construct new domain families on the basis of these results. We used Plasmodium falciparum as a case study to evaluate our method. The experimental findings showed an increase of 14% of the number of significant BLAST hits and an increase of 25% of the proteome area that can be covered with a domain. Our method identified 2240 new domains for which, in most cases, no model of the Pfam database could be linked. Moreover, our study of the quality of the new domains in terms of alignment and physicochemical properties show that they are close to that of standard Pfam domains. Source code of the proposed approach and supplementary data are available at: https://gite.lirmm.fr/menichelli/pairwise-comparison-with-cooccurrence PMID:29293498
Nagao, K; Taguchi, Y; Arioka, M; Kadokura, H; Takatsuki, A; Yoda, K; Yamasaki, M
1995-01-01
We have isolated a Schizosaccharomyces pombe gene, bfr1+, which on a multicopy plasmid vector, pDB248', confers resistance to brefeldin A (BFA), an inhibitor of intracellular protein transport. This gene encodes a novel protein of 1,531 amino acids with an intramolecular duplicated structure, each half containing a single ATP-binding consensus sequence and a set of six transmembrane sequences. This structural characteristic of bfr1+ protein resembles that of mammalian P-glycoprotein, which, by exporting a variety of anticancer drugs, has been shown to be responsible for multidrug resistance in tumor cells. Consistent with this is that S. pombe cells harboring bfr1+ on pDB248' are resistant to actinomycin D, cerulenin, and cytochalasin B, as well as to BFA. The relative positions of the ATP-binding sequences and the clusters of transmembrane sequences within the bfr1+ protein are, however, transposed in comparison with those in P-glycoprotein; the bfr1+ protein has N-terminal ATP-binding sequence followed by transmembrane segments in each half of the molecule. The bfr1+ protein exhibited significant homology in primary and secondary structures with two recently identified multidrug resistance gene products of Saccharomyces cerevisiae, Snq2 and Sts1/Pdr5/Ydr1. The bfr1+ gene is not essential for cell growth or mating, but a delta bfr1 mutant exhibited hypersensitivity to BFA. We propose that the bfr1+ protein is another member of the ATP-binding cassette superfamily and serves as an efflux pump of various antibiotics. PMID:7883711
How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis.
Tian, Pengfei; Best, Robert B
2017-10-17
Quantifying the relationship between protein sequence and structure is key to understanding the protein universe. A fundamental measure of this relationship is the total number of amino acid sequences that can fold to a target protein structure, known as the "sequence capacity," which has been suggested as a proxy for how designable a given protein fold is. Although sequence capacity has been extensively studied using lattice models and theory, numerical estimates for real protein structures are currently lacking. In this work, we have quantitatively estimated the sequence capacity of 10 proteins with a variety of different structures using a statistical model based on residue-residue co-evolution to capture the variation of sequences from the same protein family. Remarkably, we find that even for the smallest protein folds, such as the WW domain, the number of foldable sequences is extremely large, exceeding the Avogadro constant. In agreement with earlier theoretical work, the calculated sequence capacity is positively correlated with the size of the protein, or better, the density of contacts. This allows the absolute sequence capacity of a given protein to be approximately predicted from its structure. On the other hand, the relative sequence capacity, i.e., normalized by the total number of possible sequences, is an extremely tiny number and is strongly anti-correlated with the protein length. Thus, although there may be more foldable sequences for larger proteins, it will be much harder to find them. Lastly, we have correlated the evolutionary age of proteins in the CATH database with their sequence capacity as predicted by our model. The results suggest a trade-off between the opposing requirements of high designability and the likelihood of a novel fold emerging by chance. Published by Elsevier Inc.
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys. PMID:25148528
Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.
Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M
2010-12-15
Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.
Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.
2014-01-01
ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365
Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine
2014-04-01
We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.
Structure and function of homodomain-leucine zipper (HD-Zip) proteins.
Elhiti, Mohamed; Stasolla, Claudio
2009-02-01
Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.
Pal Choudhury, Pabitra
2017-01-01
Periplasmic c7 type cytochrome A (PpcA) protein is determined in Geobacter sulfurreducens along with its other four homologs (PpcB-E). From the crystal structure viewpoint the observation emerges that PpcA protein can bind with Deoxycholate (DXCA), while its other homologs do not. But it is yet to be established with certainty the reason behind this from primary protein sequence information. This study is primarily based on primary protein sequence analysis through the chemical basis of embedded amino acids. Firstly, we look for the chemical group specific score of amino acids. Along with this, we have developed a new methodology for the phylogenetic analysis based on chemical group dissimilarities of amino acids. This new methodology is applied to the cytochrome c7 family members and pinpoint how a particular sequence is differing with others. Secondly, we build a graph theoretic model on using amino acid sequences which is also applied to the cytochrome c7 family members and some unique characteristics and their domains are highlighted. Thirdly, we search for unique patterns as subsequences which are common among the group or specific individual member. In all the cases, we are able to show some distinct features of PpcA that emerges PpcA as an outstanding protein compared to its other homologs, resulting towards its binding with deoxycholate. Similarly, some notable features for the structurally dissimilar protein PpcD compared to the other homologs are also brought out. Further, the five members of cytochrome family being homolog proteins, they must have some common significant features which are also enumerated in this study. PMID:28362850
Systematic and fully automated identification of protein sequence patterns.
Hart, R K; Royyuru, A K; Stolovitzky, G; Califano, A
2000-01-01
We present an efficient algorithm to systematically and automatically identify patterns in protein sequence families. The procedure is based on the Splash deterministic pattern discovery algorithm and on a framework to assess the statistical significance of patterns. We demonstrate its application to the fully automated discovery of patterns in 974 PROSITE families (the complete subset of PROSITE families which are defined by patterns and contain DR records). Splash generates patterns with better specificity and undiminished sensitivity, or vice versa, in 28% of the families; identical statistics were obtained in 48% of the families, worse statistics in 15%, and mixed behavior in the remaining 9%. In about 75% of the cases, Splash patterns identify sequence sites that overlap more than 50% with the corresponding PROSITE pattern. The procedure is sufficiently rapid to enable its use for daily curation of existing motif and profile databases. Third, our results show that the statistical significance of discovered patterns correlates well with their biological significance. The trypsin subfamily of serine proteases is used to illustrate this method's ability to exhaustively discover all motifs in a family that are statistically and biologically significant. Finally, we discuss applications of sequence patterns to multiple sequence alignment and the training of more sensitive score-based motif models, akin to the procedure used by PSI-BLAST. All results are available at httpl//www.research.ibm.com/spat/.
Webb, R; Troyan, T; Sherman, D; Sherman, L A
1994-01-01
Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes. Images PMID:8051004
Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C.; Fiser, Andras
2014-01-01
The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins—including proteins for which reliable homology models can be generated—on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long. PMID:24567391
Sun, Miao-Miao; Han, Liang; Zhang, Fu-Kai; Zhou, Dong-Hui; Wang, Shu-Qing; Ma, Jun; Zhu, Xing-Quan; Liu, Guo-Hua
2018-01-01
Marshallagia marshalli (Nematoda: Trichostrongylidae) infection can lead to serious parasitic gastroenteritis in sheep, goat, and wild ruminant, causing significant socioeconomic losses worldwide. Up to now, the study concerning the molecular biology of M. marshalli is limited. Herein, we sequenced the complete mitochondrial (mt) genome of M. marshalli and examined its phylogenetic relationship with selected members of the superfamily Trichostrongyloidea using Bayesian inference (BI) based on concatenated mt amino acid sequence datasets. The complete mt genome sequence of M. marshalli is 13,891 bp, including 12 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. All protein-coding genes are transcribed in the same direction. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes supported the monophylies of the families Haemonchidae, Molineidae, and Dictyocaulidae with strong statistical support, but rejected the monophyly of the family Trichostrongylidae. The determination of the complete mt genome sequence of M. marshalli provides novel genetic markers for studying the systematics, population genetics, and molecular epidemiology of M. marshalli and its congeners.
The complete DNA sequence of lymphocystis disease virus.
Tidona, C A; Darai, G
1997-04-14
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease, which has been reported to occur in over 100 different fish species worldwide. LCDV is a member of the family Iridoviridae and the type species of the genus Lymphocystivirus. The virions contain a single linear double-stranded DNA molecule, which is circularly permuted, terminally redundant, and heavily methylated at cytosines in CpG sequences. The complete nucleotide sequence of LCDV-1 (flounder isolate) was determined by automated cycle sequencing and primer walking. The genome of LCDV-1 is 102.653 bp in length and contains 195 open reading frames with coding capacities ranging from 40 to 1199 amino acids. Computer-assisted analyses of the deduced amino acid sequences led to the identification of several putative gene products with significant homologies to entries in protein data banks, such as the two major subunits of the viral DNA-dependent RNA polymerase, DNA polymerase, several protein kinases, two subunits of the ribonucleoside diphosphate reductase, DNA methyltransferase, the viral major capsid protein, insulin-like growth factor, and tumor necrosis factor receptor homolog.
Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo
2014-01-01
In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins. PMID:24784323
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
2014-01-01
Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245
Welker, F
2018-02-20
The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.
regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.
Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong
2017-09-01
While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.
Mining for class-specific motifs in protein sequence classification
2013-01-01
Background In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms. PMID:23496846
Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D
1992-01-01
Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535
Variability Studies of Two Prunus-Infecting Fabaviruses with the Aid of High-Throughput Sequencing
Sarkisova, Tatiana; Lenz, Ondřej; Přibylová, Jaroslava; Špak, Josef; Lotos, Leonidas; Beta, Christina; Katsiani, Asimina; Candresse, Thierry
2018-01-01
During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species. PMID:29670059
Jin, Yuan; He, Xiaoyun; Andoh‐Kumi, Kwame; Fraser, Rachel Z.; Lu, Mei
2017-01-01
Scope The Soybean (Glycine max) leghemoglobin c2 (LegHb) gene was introduced into Pichia pastoris yeast for sustainable production of a heme‐carrying protein, for organoleptic use in plant‐based meat. The potential allergenicity and toxicity of LegHb and 17 Pichia host‐proteins each representing ≥1% of total protein in production batches are evaluated by literature review, bioinformatics sequence comparisons to known allergens or toxins, and in vitro pepsin digestion. Methods and results Literature searches found no evidence of allergenicity or toxicity for these proteins. There are no significant sequence matches of LegHb to known allergens or toxins. Eleven Pichia proteins have modest identity matches to minor environmental allergens and 13 Pichia proteins have significant matches to proteins from toxic sources. Yet the matched allergens and toxins have similar matches to proteins from the commonly consumed yeast Saccharomyces cerevisiae, without evidence of food allergy or toxicity. The demonstrated history of safe use indicates additional tests for allergenicity and toxicity are not needed. The LegHb and Pichia sp. proteins were rapidly digested by pepsin at pH 2. Conclusion These results demonstrate that foods containing recombinant soy LegHb produced in Pichia sp. are unlikely to present an unacceptable risk of allergenicity or toxicity to consumers. PMID:28921896
Eliciting an antibody response against a recombinant TSH containing fusion protein.
Mard-Soltani, Maysam; Rasaee, Mohamad Javad; Sheikhi, AbdolKarim; Hedayati, Mehdi
2017-01-01
Designing novel antigens to rise specific antibodies for Thyroid Stimulating Hormone (TSH) detection is of great significance. A novel fusion protein consisting of the C termini sequence of TSH beta subunit and a fusion sequence was designed and produced for rabbit immunization. Thereafter, the produced antibodies were purified and characterized for TSH detection. Our results indicate that the produced antibody is capable of sensitive and specific detection of TSH with low cross reactivity. This study underscores the applicability of designed fusion protein for specific and sensitive polyclonal antibody production and the importance of selecting an amenable region of the TSH for immunization.
Ollikainen, Noah; de Jong, René M; Kortemme, Tanja
2015-01-01
Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.
Identification and correction of abnormal, incomplete and mispredicted proteins in public databases.
Nagy, Alinda; Hegyi, Hédi; Farkas, Krisztina; Tordai, Hedvig; Kozma, Evelin; Bányai, László; Patthy, László
2008-08-27
Despite significant improvements in computational annotation of genomes, sequences of abnormal, incomplete or incorrectly predicted genes and proteins remain abundant in public databases. Since the majority of incomplete, abnormal or mispredicted entries are not annotated as such, these errors seriously affect the reliability of these databases. Here we describe the MisPred approach that may provide an efficient means for the quality control of databases. The current version of the MisPred approach uses five distinct routines for identifying abnormal, incomplete or mispredicted entries based on the principle that a sequence is likely to be incorrect if some of its features conflict with our current knowledge about protein-coding genes and proteins: (i) conflict between the predicted subcellular localization of proteins and the absence of the corresponding sequence signals; (ii) presence of extracellular and cytoplasmic domains and the absence of transmembrane segments; (iii) co-occurrence of extracellular and nuclear domains; (iv) violation of domain integrity; (v) chimeras encoded by two or more genes located on different chromosomes. Analyses of predicted EnsEMBL protein sequences of nine deuterostome (Homo sapiens, Mus musculus, Rattus norvegicus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Fugu rubripes, Danio rerio and Ciona intestinalis) and two protostome species (Caenorhabditis elegans and Drosophila melanogaster) have revealed that the absence of expected signal peptides and violation of domain integrity account for the majority of mispredictions. Analyses of sequences predicted by NCBI's GNOMON annotation pipeline show that the rates of mispredictions are comparable to those of EnsEMBL. Interestingly, even the manually curated UniProtKB/Swiss-Prot dataset is contaminated with mispredicted or abnormal proteins, although to a much lesser extent than UniProtKB/TrEMBL or the EnsEMBL or GNOMON-predicted entries. MisPred works efficiently in identifying errors in predictions generated by the most reliable gene prediction tools such as the EnsEMBL and NCBI's GNOMON pipelines and also guides the correction of errors. We suggest that application of the MisPred approach will significantly improve the quality of gene predictions and the associated databases.
Dunbrack, Roland L.
2012-01-01
Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020
Modular protein domains: an engineering approach toward functional biomaterials.
Lin, Charng-Yu; Liu, Julie C
2016-08-01
Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predicting Flavonoid UGT Regioselectivity
Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip
2011-01-01
Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849
Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates.
Cascardo, Renan S; Arantes, Ighor L G; Silva, Tatiane F; Sachetto-Martins, Gilberto; Vaslin, Maité F S; Corrêa, Régis L
2015-08-12
The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0's silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.
A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.
DeMartini, Daniel G; Errico, John M; Sjoestroem, Sebastian; Fenster, April; Waite, J Herbert
2017-06-01
The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion. © 2017 The Author(s).
Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M.; Breitwieser, Andreas; Sleytr, Uwe B.; Sára, Margit
2002-01-01
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001
Uhrig, R Glen; Kerk, David; Moorhead, Greg B
2013-12-01
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Singh, Manish K; Tiwari, Pramod K
2016-08-01
Hsp27, a highly conserved small molecular weight heat shock protein, is widely known to be developmentally regulated and heat inducible. Its role in thermotolerance is also implicated. This study is a sequel of our earlier studies to understand the molecular organization of heat shock genes/proteins and their role in development and thermal adaptation in a sheep pest, Lucilia cuprina (blowfly), which exhibits unusually high adaptability to a variety of environmental stresses, including heat and chemicals. In this report our aim was to understand the evolutionary relationship of Lucilia hsp27 gene/protein with those of other species and its role in thermal adaptation. We sequence characterized the Lchsp27 gene (coding region) and analyzed its expression in various larval and adult tissues under normal as well as heat shock conditions. The nucleotide sequence analysis of 678 bps long-coding region of Lchsp27 exhibited closest evolutionary proximity with Drosophila (90.09%), which belongs to the same order, Diptera. Heat shock caused significant enhancement in the expression of Lchsp27 gene in all the larval and adult tissues examined, however, in a tissue specific manner. Significantly, in Malpighian tubules, while the heat-induced level of hsp27 transcript (mRNA) appeared increased as compared to control, the protein level remained unaltered and nuclear localized. We infer that Lchsp27 may have significant role in the maintenance of cellular homeostasis, particularly, during summer months, when the fly remains exposed to high heat in its natural habitat. © 2015 Institute of Zoology, Chinese Academy of Sciences.
qPMS9: An Efficient Algorithm for Quorum Planted Motif Search
NASA Astrophysics Data System (ADS)
Nicolae, Marius; Rajasekaran, Sanguthevar
2015-01-01
Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.
2011-01-01
Background Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). Results We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. Conclusions The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions. PMID:21429187
Bernardes, Juliana S; Carbone, Alessandra; Zaverucha, Gerson
2011-03-23
Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.
NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.
Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua
2013-01-01
Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp.
An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming
2016-01-01
We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.
Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
NASA Astrophysics Data System (ADS)
So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.
2016-11-01
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
On the conservative nature of intragenic recombination
Drummond, D. Allan; Silberg, Jonathan J.; Meyer, Michelle M.; Wilke, Claus O.; Arnold, Frances H.
2005-01-01
Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related β-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among β-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function. PMID:15809422
On the conservative nature of intragenic recombination.
Drummond, D Allan; Silberg, Jonathan J; Meyer, Michelle M; Wilke, Claus O; Arnold, Frances H
2005-04-12
Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related beta-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among beta-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function.
Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin
2003-12-19
SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16.
Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant
2011-03-01
Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.
Habe, Hiroshi; Kobuna, Akinori; Hosoda, Akifumi; Kosaka, Tomoyuki; Endoh, Takayuki; Tamura, Hiroto; Yamane, Hisakazu; Nojiri, Hideaki; Omori, Toshio; Watanabe, Kazuya
2009-07-01
Desulfotignum balticum utilizes benzoate coupled to sulfate reduction. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis was conducted to detect proteins that increased more after growth on benzoate than on butyrate. A comparison of proteins on 2D gels showed that at least six proteins were expressed. The N-terminal sequences of three proteins exhibited significant identities with the alpha and beta subunits of electron transfer flavoprotein (ETF) from anaerobic aromatic-degraders. By sequence analysis of the fosmid clone insert (37,590 bp) containing the genes encoding the ETF subunits, we identified three genes, whose deduced amino acid sequences showed 58%, 74%, and 62% identity with those of Gmet_2267 (Fe-S oxidoreductase), Gmet_2266 (ETF beta subunit), and Gmet_2265 (ETF alpha subunit) respectively, which exist within the 300-kb genomic island of aromatic-degradation genes from Geobacter metallireducens GS-15. The genes encoding ETF subunits found in this study were upregulated in benzoate utilization.
Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O
2008-10-28
RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.
Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.
2010-01-01
Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180
Camproux, A C; Tufféry, P
2005-08-05
Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2016-12-02
In the postgenomic era, the number of unreviewed protein sequences is remarkably larger and grows tremendously faster than that of reviewed ones. However, existing methods for protein subchloroplast localization often ignore the information from these unlabeled proteins. This paper proposes a multi-label predictor based on ensemble linear neighborhood propagation (LNP), namely, LNP-Chlo, which leverages hybrid sequence-based feature information from both labeled and unlabeled proteins for predicting localization of both single- and multi-label chloroplast proteins. Experimental results on a stringent benchmark dataset and a novel independent dataset suggest that LNP-Chlo performs at least 6% (absolute) better than state-of-the-art predictors. This paper also demonstrates that ensemble LNP significantly outperforms LNP based on individual features. For readers' convenience, the online Web server LNP-Chlo is freely available at http://bioinfo.eie.polyu.edu.hk/LNPChloServer/ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipiuk, J.; Gornicki, P.; Maj, L.
The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 Angstroms. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 Angstroms from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer {alpha}/{beta} sandwich with the overall shape of a cylinder and shows no structural homology to proteins of knownmore » structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the {alpha}-{beta} plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.« less
Streptococcus pneumonia YlxR at 1.35 A shows a putative new fold.
Osipiuk, J; Górnicki, P; Maj, L; Dementieva, I; Laskowski, R; Joachimiak, A
2001-11-01
The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 A. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 A from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer alpha/beta sandwich with the overall shape of a cylinder and shows no structural homology to proteins of known structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the alpha-beta plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.
Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M
1992-02-01
The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.
Gene Unprediction with Spurio: A tool to identify spurious protein sequences.
Höps, Wolfram; Jeffryes, Matt; Bateman, Alex
2018-01-01
We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation. Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases. We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes. Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.
Mojica, Luis; Chen, Karen; de Mejía, Elvira González
2015-01-01
The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health. © 2014 Institute of Food Technologists®
Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang
2018-02-01
Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .
Protein structure determination by exhaustive search of Protein Data Bank derived databases.
Stokes-Rees, Ian; Sliz, Piotr
2010-12-14
Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.
A proteomic analysis of leaf sheaths from rice.
Shen, Shihua; Matsubae, Masami; Takao, Toshifumi; Tanaka, Naoki; Komatsu, Setsuko
2002-10-01
The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.
Sequence space and the ongoing expansion of the protein universe.
Povolotskaya, Inna S; Kondrashov, Fyodor A
2010-06-17
The need to maintain the structural and functional integrity of an evolving protein severely restricts the repertoire of acceptable amino-acid substitutions. However, it is not known whether these restrictions impose a global limit on how far homologous protein sequences can diverge from each other. Here we explore the limits of protein evolution using sequence divergence data. We formulate a computational approach to study the rate of divergence of distant protein sequences and measure this rate for ancient proteins, those that were present in the last universal common ancestor. We show that ancient proteins are still diverging from each other, indicating an ongoing expansion of the protein sequence universe. The slow rate of this divergence is imposed by the sparseness of functional protein sequences in sequence space and the ruggedness of the protein fitness landscape: approximately 98 per cent of sites cannot accept an amino-acid substitution at any given moment but a vast majority of all sites may eventually be permitted to evolve when other, compensatory, changes occur. Thus, approximately 3.5 x 10(9) yr has not been enough to reach the limit of divergent evolution of proteins, and for most proteins the limit of sequence similarity imposed by common function may not exceed that of random sequences.
Characterization and biological properties of a new staphylococcal exotoxin
1994-01-01
Staphylococcus aureus strain D4508 is a toxic shock syndrome toxin 1- negative clinical isolate from a nonmenstrual case of toxic shock syndrome (TSS). In the present study, we have purified and characterized a new exotoxin from the extracellular products of this strain. This toxin was found to have a molecular mass of 25.14 kD by mass spectrometry and an isoelectric point of 5.65 by isoelectric focusing. We have also cloned and sequenced its corresponding genomic determinant. The DNA sequence encoding the mature protein was found to be 654 base pairs and is predicted to encode a polypeptide of 218 amino acids. The deduced protein contains an NH2-terminal sequence identical to that of the native protein. The calculated molecular weight (25.21 kD) of the recombinant mature protein is also consistent with that of the native molecules. When injected intravenously into rabbits, both the native and recombinant toxins induce an acute TSS-like illness characterized by high fever, hypotension, diarrhea, shock, and in some cases death, with classical histological findings of TSS. Furthermore, the activity of the toxin is specifically enhanced by low quantities of endotoxins. The toxicity can be blocked by rabbit immunoglobulin G antibody specific for the toxin. Western blotting and DNA sequencing data confirm that the protein is a unique staphylococcal exotoxin, yet shares significant sequence homology with known staphylococcal enterotoxins, especially the SEA, SED, and SEE toxins. We conclude therefore that this 25-kD protein belongs to the staphylococcal enterotoxin gene family that is capable of inducing a TSS-like illness in rabbits. PMID:7964453
Predicting permanent and transient protein-protein interfaces.
La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke
2013-05-01
Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.
Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R
1992-01-01
Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197. Images PMID:1447140
SPLASH: structural pattern localization analysis by sequential histograms.
Califano, A
2000-04-01
The discovery of sparse amino acid patterns that match repeatedly in a set of protein sequences is an important problem in computational biology. Statistically significant patterns, that is patterns that occur more frequently than expected, may identify regions that have been preserved by evolution and which may therefore play a key functional or structural role. Sparseness can be important because a handful of non-contiguous residues may play a key role, while others, in between, may be changed without significant loss of function or structure. Similar arguments may be applied to conserved DNA patterns. Available sparse pattern discovery algorithms are either inefficient or impose limitations on the type of patterns that can be discovered. This paper introduces a deterministic pattern discovery algorithm, called Splash, which can find sparse amino or nucleic acid patterns matching identically or similarly in a set of protein or DNA sequences. Sparse patterns of any length, up to the size of the input sequence, can be discovered without significant loss in performances. Splash is extremely efficient and embarrassingly parallel by nature. Large databases, such as a complete genome or the non-redundant SWISS-PROT database can be processed in a few hours on a typical workstation. Alternatively, a protein family or superfamily, with low overall homology, can be analyzed to discover common functional or structural signatures. Some examples of biologically interesting motifs discovered by Splash are reported for the histone I and for the G-Protein Coupled Receptor families. Due to its efficiency, Splash can be used to systematically and exhaustively identify conserved regions in protein family sets. These can then be used to build accurate and sensitive PSSM or HMM models for sequence analysis. Splash is available to non-commercial research centers upon request, conditional on the signing of a test field agreement. acal@us.ibm.com, Splash main page http://www.research.ibm.com/splash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qureshi, Insaf A.; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in
2006-09-01
A 24 kDa protein was purified from the seeds of L. sativus by ammonium sulfate fractionation and ion-exchange chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method. A 24 kDa protein was purified from the seeds of Lathyrus sativus by ammonium sulfate fractionation and ion-exchange chromatography. The N-terminal amino-acid sequence showed significant homology with the 2S albumin class of seed storage proteins. The protein showed 85% sequence homology with the seed albumin of Pisum sativum within the 40 N-terminal residues. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cellmore » parameters a = 43.5, b = 82.7, c = 153.4 Å.« less
ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins
Puntervoll, Pål; Linding, Rune; Gemünd, Christine; Chabanis-Davidson, Sophie; Mattingsdal, Morten; Cameron, Scott; Martin, David M. A.; Ausiello, Gabriele; Brannetti, Barbara; Costantini, Anna; Ferrè, Fabrizio; Maselli, Vincenza; Via, Allegra; Cesareni, Gianni; Diella, Francesca; Superti-Furga, Giulio; Wyrwicz, Lucjan; Ramu, Chenna; McGuigan, Caroline; Gudavalli, Rambabu; Letunic, Ivica; Bork, Peer; Rychlewski, Leszek; Küster, Bernhard; Helmer-Citterich, Manuela; Hunter, William N.; Aasland, Rein; Gibson, Toby J.
2003-01-01
Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein–protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more. PMID:12824381
Hidden markov model for the prediction of transmembrane proteins using MATLAB.
Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath
2011-01-01
Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.
Cloning and expression of a small heat and salt tolerant protein (Hsp22) from Chaetomium globosum.
Aggarwal, Rashmi; Gupta, Sangeeta; Sharma, Sapna; Banerjee, Sagar; Singh, Priyanka
2012-11-01
The present study reports molecular characterization of small heat shock protein gene in Indian isolates of Chaetomium globosum, C. perlucidum, C. reflexum, C. cochlioides and C. cupreum. Six isolates of C. globosum and other species showed a band of 630bp using specific primers. Amplified cDNA product of C. globosum (Cg 1) cloned and sequenced showed 603bp open reading frame encoding 200 amino-acids. The protein sequence had a molecular mass of 22 kDa and was therefore, named Hsp22. BlastX analysis revealed that the gene codes for a protein homologous to previously characterized Hsp22.4 gene from C. globosum (AAR36902.1, XP 001229241.1) and shared 95% identity in amino acid sequence. It also showed varying degree of similarities with small Hsp protein from Neurospora spp. (60%), Myceliophthora sp. (59%), Glomerella sp. (50%), Hypocrea sp. (52%), and Fusarium spp. (51%). This gene was further cloned into pET28a (+) and transformed E. coli BL21 cells were induced by IPTG, and the expressed protein of 30 kDa was analyzed by SDS-PAGE. The IPTG induced transformants displayed significantly greater resistance to NaCl and Na2CO3 stresses.
Fourment, Mathieu; Gibbs, Mark J
2008-01-01
Background Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. Results The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. Conclusion VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically. PMID:18251994
Mutations that Cause Human Disease: A Computational/Experimental Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beernink, P; Barsky, D; Pesavento, B
International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximatelymore » half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which can be used to understand how an amino acid change affects the protein. The experimental methods that provide the most detailed structural information on proteins are X-ray crystallography and NMR spectroscopy. However, these methods are labor intensive and currently cannot be carried out on a genomic scale. Nonetheless, Structural Genomics projects are being pursued by more than a dozen groups and consortia worldwide and as a result the number of experimentally determined structures is rising exponentially. Based on the expectation that protein structures will continue to be determined at an ever-increasing rate, reliable structure prediction schemes will become increasingly valuable, leading to information on protein function and disease for many different proteins. Given known genetic variability and experimentally determined protein structures, can we accurately predict the effects of single amino acid substitutions? An objective assessment of this question would involve comparing predicted and experimentally determined structures, which thus far has not been rigorously performed. The completed research leveraged existing expertise at LLNL in computational and structural biology, as well as significant computing resources, to address this question.« less
Kikhno, Irina
2014-01-01
Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153
In vitro fluorescence studies of transcription factor IIB-DNA interaction.
Górecki, Andrzej; Figiel, Małgorzata; Dziedzicka-Wasylewska, Marta
2015-01-01
General transcription factor TFIIB is one of the basal constituents of the preinitiation complex of eukaryotic RNA polymerase II, acting as a bridge between the preinitiation complex and the polymerase, and binding promoter DNA in an asymmetric manner, thereby defining the direction of the transcription. Methods of fluorescence spectroscopy together with circular dichroism spectroscopy were used to observe conformational changes in the structure of recombinant human TFIIB after binding to specific DNA sequence. To facilitate the exploration of the structural changes, several site-directed mutations have been introduced altering the fluorescence properties of the protein. Our observations showed that binding of specific DNA sequences changed the protein structure and dynamics, and TFIIB may exist in two conformational states, which can be described by a different microenvironment of W52. Fluorescence studies using both intrinsic and exogenous fluorophores showed that these changes significantly depended on the recognition sequence and concerned various regions of the protein, including those interacting with other transcription factors and RNA polymerase II. DNA binding can cause rearrangements in regions of proteins interacting with the polymerase in a manner dependent on the recognized sequences, and therefore, influence the gene expression.
Vaughan, Sue; Wickstead, Bill; Gull, Keith; Addinall, Stephen G
2004-01-01
The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify "FtsZ-like" sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.
Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas
2014-01-01
The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881
Comprehensive analysis of orthologous protein domains using the HOPS database.
Storm, Christian E V; Sonnhammer, Erik L L
2003-10-01
One of the most reliable methods for protein function annotation is to transfer experimentally known functions from orthologous proteins in other organisms. Most methods for identifying orthologs operate on a subset of organisms with a completely sequenced genome, and treat proteins as single-domain units. However, it is well known that proteins are often made up of several independent domains, and there is a wealth of protein sequences from genomes that are not completely sequenced. A comprehensive set of protein domain families is found in the Pfam database. We wanted to apply orthology detection to Pfam families, but first some issues needed to be addressed. First, orthology detection becomes impractical and unreliable when too many species are included. Second, shorter domains contain less information. It is therefore important to assess the quality of the orthology assignment and avoid very short domains altogether. We present a database of orthologous protein domains in Pfam called HOPS: Hierarchical grouping of Orthologous and Paralogous Sequences. Orthology is inferred in a hierarchic system of phylogenetic subgroups using ortholog bootstrapping. To avoid the frequent errors stemming from horizontally transferred genes in bacteria, the analysis is presently limited to eukaryotic genes. The results are accessible in the graphical browser NIFAS, a Java tool originally developed for analyzing phylogenetic relations within Pfam families. The method was tested on a set of curated orthologs with experimentally verified function. In comparison to tree reconciliation with a complete species tree, our approach finds significantly more orthologs in the test set. Examples for investigating gene fusions and domain recombination using HOPS are given.
Morgan, Alexander A.; Rubenstein, Edward
2013-01-01
Proline is an anomalous amino acid. Its nitrogen atom is covalently locked within a ring, thus it is the only proteinogenic amino acid with a constrained phi angle. Sequences of three consecutive prolines can fold into polyproline helices, structures that join alpha helices and beta pleats as architectural motifs in protein configuration. Triproline helices are participants in protein-protein signaling interactions. Longer spans of repeat prolines also occur, containing as many as 27 consecutive proline residues. Little is known about the frequency, positioning, and functional significance of these proline sequences. Therefore we have undertaken a systematic bioinformatics study of proline residues in proteins. We analyzed the distribution and frequency of 687,434 proline residues among 18,666 human proteins, identifying single residues, dimers, trimers, and longer repeats. Proline accounts for 6.3% of the 10,882,808 protein amino acids. Of all proline residues, 4.4% are in trimers or longer spans. We detected patterns that influence function based on proline location, spacing, and concentration. We propose a classification based on proline-rich, polyproline-rich, and proline-poor status. Whereas singlet proline residues are often found in proteins that display recurring architectural patterns, trimers or longer proline sequences tend be associated with the absence of repetitive structural motifs. Spans of 6 or more are associated with DNA/RNA processing, actin, and developmental processes. We also suggest a role for proline in Kruppel-type zinc finger protein control of DNA expression, and in the nucleation and translocation of actin by the formin complex. PMID:23372670
Leav, Brett A.; Mackay, Malanie R.; Anyanwu, Akudo; O' Connor, Roberta M.; Cevallos, Ana Maria; Kindra, Gurpreet; Rollins, Nigel C.; Bennish, Michael L.; Nelson, Richard G.; Ward, Honorine D.
2002-01-01
Cryptosporidium sp. is a significant cause of diarrheal disease, particularly in human immunodeficiency virus (HIV)-infected patients in developing countries. We recently cloned and sequenced several alleles of the highly polymorphic single-copy Cryptosporidium parvum gene Cpgp40/15. This gene encodes a precursor protein that is proteolytically cleaved to yield mature cell surface glycoproteins gp40 and gp15, which are implicated in zoite attachment to and invasion of enterocytes. The most-striking feature of the Cpgp40/15 alleles and proteins is their unprecedented degree of sequence polymorphism, which is far greater than that observed for any other gene or protein studied in C. parvum to date. In this study we analyzed nucleic acid and amino acid sequence polymorphism at the Cpgp40/15 locus of 20 C. parvum isolates from HIV-infected South African children. Fifteen isolates exhibited one of four previously identified genotype I alleles at the Cpgp40/15 locus (Ia, Ib, Ic, and Id), while five displayed a novel set of polymorphisms that defined a new Cpgp40/15 genotype I allele, designated genotype Ie. Surprisingly, only 15 of these isolates exhibited concordant type I alleles at the thrombospondin-related adhesive protein of Cryptosporidium and Cryptosporidium oocyst wall protein loci, while five isolates (all of which displayed Cpgp40/15 genotype Ic alleles) displayed genotype II alleles at these loci. Furthermore, the last five isolates also manifested chimeric genotype Ic/Ib or Ic/II alleles at the Cpgp40/15 locus, raising the possibility of sexual recombination within and between prototypal parasite genotypes. Lastly, children infected with isolates having genotype Ic alleles were significantly older than those infected with isolates displaying other genotype I alleles. PMID:12065532
Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz
2016-11-28
Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .
An improved stochastic fractal search algorithm for 3D protein structure prediction.
Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun
2018-05-03
Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.
Lee, K K; Paranchych, W; Hodges, R S
1990-01-01
Antipeptide antibodies were raised against synthetic peptides corresponding to the amino acid sequences of eight surface predicted regions of the pilin proteins from Pseudomonas aeruginosa PAK and PAO. Four of the anti-PAK peptide antisera cross-reacted with strain PAO pili, while five anti-PAO peptide antisera cross-reacted with strain PAK pili. Only one region of the two pilin proteins (region 88-97) provided strain-specific antibodies when either strain PAK or strain PAO region 88-97 peptides were used to generate antipeptide antibodies. Our results clearly showed that cross-reactive and strain-specific antibodies cannot be based solely on the degree of homology in the aligned protein sequences. The majority of synthetic peptides bound to their homologous antipilus antiserum, suggesting that linear sequences play a significant role in the immunogenic response of native pili. PMID:1974884
Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.
2013-01-01
Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial classes and its specialization may be driven by the substrates it transports and the environment of its host. PMID:24236045
Dinant, S; Lot, H; Albouy, J; Kuziak, C; Meyer, M; Astier-Manifacier, S
1991-01-01
DNA complementary to the 3' terminal 1651 nucleotides of the genome of the common strain of lettuce mosaic virus (LMV-O) has been cloned and sequenced. Microsequencing of the N-terminus enabled localization of the coat protein gene in this sequence. It showed also that the LMV coat protein coding region is at the 3' end of the genome, and that the coat protein is processed from a larger protein by cleavage at an unusual Q/V dipeptide between the polymerase and the coat protein. This is the first report of such a site for cleavage of a potyvirus polyprotein, where only Q/A, Q/S, and Q/G cleavage sites have been reported. The LMV coat protein gene encodes a 278 amino acid polypeptide with a calculated Mr of 31,171 and is flanked by a region which has a high degree of homology with the putative polymerase and a 3' untranslated region of 211 nucleotides in length. Percentage of homology with the coat protein of other potyviruses confirms that LMV is a distinct member of this group. Moreover, amino acid homologies noticed with the coat protein of potexvirus, bymovirus, and carlavirus elongated plant viruses suggest a functional significance for the conserved domains.
2012-01-01
Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We suggest that small differences in our discovered motif could confer specificity for one or more homologous GTF proteins. We offer a free implementation of the MotifCatcher software package at http://www.bme.ucdavis.edu/facciotti/resources_data/software/. PMID:23181585
Itzhaki, H; Maxson, J M; Woodson, W R
1994-09-13
The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.
Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis
Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.
2014-01-01
Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462
Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.
Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook
2014-11-01
As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of our knowledge, this is the first attempt to predict protein-binding nucleotides in a given DNA sequence from the sequence data alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shotgun Protein Sequencing with Meta-contig Assembly*
Guthals, Adrian; Clauser, Karl R.; Bandeira, Nuno
2012-01-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings. PMID:22798278
Shotgun protein sequencing with meta-contig assembly.
Guthals, Adrian; Clauser, Karl R; Bandeira, Nuno
2012-10-01
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings.
Sugita, Chieko; Ogata, Koretsugu; Shikata, Masamitsu; Jikuya, Hiroyuki; Takano, Jun; Furumichi, Miho; Kanehisa, Minoru; Omata, Tatsuo; Sugiura, Masahiro; Sugita, Mamoru
2007-01-01
The entire genome of the unicellular cyanobacterium Synechococcus elongatus PCC 6301 (formerly Anacystis nidulans Berkeley strain 6301) was sequenced. The genome consisted of a circular chromosome 2,696,255 bp long. A total of 2,525 potential protein-coding genes, two sets of rRNA genes, 45 tRNA genes representing 42 tRNA species, and several genes for small stable RNAs were assigned to the chromosome by similarity searches and computer predictions. The translated products of 56% of the potential protein-coding genes showed sequence similarities to experimentally identified and predicted proteins of known function, and the products of 35% of the genes showed sequence similarities to the translated products of hypothetical genes. The remaining 9% of genes lacked significant similarities to genes for predicted proteins in the public DNA databases. Some 139 genes coding for photosynthesis-related components were identified. Thirty-seven genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly identical to those of a closely related strain Synechococcus elongatus PCC 7942, except for the presence of a 188.6 kb inversion. The sequences as well as the gene information shown in this paper are available in the Web database, CYORF (http://www.cyano.genome.jp/).
Kurotani, Atsushi; Sakurai, Tetsuya
2015-01-01
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups. PMID:26307970
Kurotani, Atsushi; Sakurai, Tetsuya
2015-08-20
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.
Wu, Jiaxin; Li, Yanda; Jiang, Rui
2014-03-01
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement
USDA-ARS?s Scientific Manuscript database
Chickpea (Cicer arietinum) is the world’s second most important grain legume crop, accounting for a significant proportion of human dietary protein and playing a critical role in food security in developing countries. We report the sequence of the ~738 Mb kabuli (CDC Frontier) chickpea genome, which...
Effect of single-site mutations on hydrophobic-polar lattice proteins
NASA Astrophysics Data System (ADS)
Shi, Guangjie; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai; Landau, David P.
2014-09-01
We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground-state energies and degeneracies, as well as other thermodynamic and structural quantities, may be either largely unaffected or may change significantly due to mutation.
Alam, Syed Benazir; Reade, Ron; Theilmann, Jane; Rochon, D'Ann
2017-12-01
Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total. Virion accumulation and vRNA encapsidation were significantly reduced in mutants containing two or four substitutions and virion morphology was also affected, where both T = 1 and intermediate-sized particles were produced. Mutants with two or four substitutions encapsidated significantly greater levels of truncated RNA than that of WT, suggesting that basic residues in the "KGRKPR" sequence are important for encapsidation of full-length CNV RNA. Interestingly, "KGRKPR" mutants also encapsidated relatively higher levels of host RNA, suggesting that the "KGRKPR" sequence also contributes to selective encapsidation of CNV RNA. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense.
Horiuchi, Yuki; Laskaratou, Danai; Sliwa, Michel; Ruckebusch, Cyril; Hatori, Kuniyuki; Mizuno, Hideaki; Hotta, Jun-Ichi
2018-01-26
Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT) 14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense . We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M -1 ·cm -1 . The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.
Shcherbakova, Larisa A.; Odintsova, Tatyana I.; Stakheev, Alexander A.; Fravel, Deborah R.; Zavriev, Sergey K.
2016-01-01
The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed. PMID:26779237
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil
2013-01-01
Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures.
Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling
Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil
2013-01-01
Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. PMID:23516343
Jin, Yuan; He, Xiaoyun; Andoh-Kumi, Kwame; Fraser, Rachel Z; Lu, Mei; Goodman, Richard E
2018-01-01
The Soybean (Glycine max) leghemoglobin c2 (LegHb) gene was introduced into Pichia pastoris yeast for sustainable production of a heme-carrying protein, for organoleptic use in plant-based meat. The potential allergenicity and toxicity of LegHb and 17 Pichia host-proteins each representing ≥1% of total protein in production batches are evaluated by literature review, bioinformatics sequence comparisons to known allergens or toxins, and in vitro pepsin digestion. Literature searches found no evidence of allergenicity or toxicity for these proteins. There are no significant sequence matches of LegHb to known allergens or toxins. Eleven Pichia proteins have modest identity matches to minor environmental allergens and 13 Pichia proteins have significant matches to proteins from toxic sources. Yet the matched allergens and toxins have similar matches to proteins from the commonly consumed yeast Saccharomyces cerevisiae, without evidence of food allergy or toxicity. The demonstrated history of safe use indicates additional tests for allergenicity and toxicity are not needed. The LegHb and Pichia sp. proteins were rapidly digested by pepsin at pH 2. These results demonstrate that foods containing recombinant soy LegHb produced in Pichia sp. are unlikely to present an unacceptable risk of allergenicity or toxicity to consumers. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.
Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming
2016-07-01
Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.
MIPS: a database for protein sequences, homology data and yeast genome information.
Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F
1997-01-01
The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina
2016-01-01
Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805
Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.
Raghav, Sunil Kumar; Deplancke, Bart
2012-01-01
Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.
Isolation and characterization of target sequences of the chicken CdxA homeobox gene.
Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A
1993-01-01
The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943
NASA Technical Reports Server (NTRS)
Trost, J. T.; Brune, D. C.; Blankenship, R. E.
1992-01-01
Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.
Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J
2016-03-22
The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
Rennick, Linda J; Duprex, W Paul; Rima, Bert K
2007-10-01
Transcription from morbillivirus genomes commences at a single promoter in the 3' non-coding terminus, with the six genes being transcribed sequentially. The 3' and 5' untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5' UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5' UTRs. Insertions into the 5' UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5' UTR, govern this decreased expression from TU2.
Okura, Hiromichi; Takahashi, Tsuyoshi; Mihara, Hisakazu
2012-06-01
Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences.
Ambroggio, Xavier I; Dommer, Jennifer; Gopalan, Vivek; Dunham, Eleca J; Taubenberger, Jeffery K; Hurt, Darrell E
2013-06-18
Influenza A viruses possess RNA genomes that mutate frequently in response to immune pressures. The mutations in the hemagglutinin genes are particularly significant, as the hemagglutinin proteins mediate attachment and fusion to host cells, thereby influencing viral pathogenicity and species specificity. Large-scale influenza A genome sequencing efforts have been ongoing to understand past epidemics and pandemics and anticipate future outbreaks. Sequencing efforts thus far have generated nearly 9,000 distinct hemagglutinin amino acid sequences. Comparative models for all publicly available influenza A hemagglutinin protein sequences (8,769 to date) were generated using the Rosetta modeling suite. The C-alpha root mean square deviations between a randomly chosen test set of models and their crystallographic templates were less than 2 Å, suggesting that the modeling protocols yielded high-quality results. The models were compiled into an online resource, the Hemagglutinin Structure Prediction (HASP) server. The HASP server was designed as a scientific tool for researchers to visualize hemagglutinin protein sequences of interest in a three-dimensional context. With a built-in molecular viewer, hemagglutinin models can be compared side-by-side and navigated by a corresponding sequence alignment. The models and alignments can be downloaded for offline use and further analysis. The modeling protocols used in the HASP server scale well for large amounts of sequences and will keep pace with expanded sequencing efforts. The conservative approach to modeling and the intuitive search and visualization interfaces allow researchers to quickly analyze hemagglutinin sequences of interest in the context of the most highly related experimental structures, and allow them to directly compare hemagglutinin sequences to each other simultaneously in their two- and three-dimensional contexts. The models and methodology have shown utility in current research efforts and the ongoing aim of the HASP server is to continue to accelerate influenza A research and have a positive impact on global public health.
Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E
2012-07-01
Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.
Atomic interaction networks in the core of protein domains and their native folds.
Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S; Sasisekharan, V; Sasisekharan, Ram
2010-02-23
Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be "signature" of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1-2 angstroms (mean 1.61A) C(alpha) RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the 'twilight' and 'midnight' zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools.
Atomic Interaction Networks in the Core of Protein Domains and Their Native Folds
Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S.; Sasisekharan, V.; Sasisekharan, Ram
2010-01-01
Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools. PMID:20186337
On the Origin of Protein Superfamilies and Superfolds
NASA Astrophysics Data System (ADS)
Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke
2015-02-01
Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.
Optimizing high performance computing workflow for protein functional annotation.
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-09-10
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.
Optimizing high performance computing workflow for protein functional annotation
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-01-01
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296
Kobayashi, Michie; Hiraka, Yukie; Abe, Akira; Yaegashi, Hiroki; Natsume, Satoshi; Kikuchi, Hideko; Takagi, Hiroki; Saitoh, Hiromasa; Win, Joe; Kamoun, Sophien; Terauchi, Ryohei
2017-11-22
Downy mildew, caused by the oomycete pathogen Sclerospora graminicola, is an economically important disease of Gramineae crops including foxtail millet (Setaria italica). Plants infected with S. graminicola are generally stunted and often undergo a transformation of flower organs into leaves (phyllody or witches' broom), resulting in serious yield loss. To establish the molecular basis of downy mildew disease in foxtail millet, we carried out whole-genome sequencing and an RNA-seq analysis of S. graminicola. Sequence reads were generated from S. graminicola using an Illumina sequencing platform and assembled de novo into a draft genome sequence comprising approximately 360 Mbp. Of this sequence, 73% comprised repetitive elements, and a total of 16,736 genes were predicted from the RNA-seq data. The predicted genes included those encoding effector-like proteins with high sequence similarity to those previously identified in other oomycete pathogens. Genes encoding jacalin-like lectin-domain-containing secreted proteins were enriched in S. graminicola compared to other oomycetes. Of a total of 1220 genes encoding putative secreted proteins, 91 significantly changed their expression levels during the infection of plant tissues compared to the sporangia and zoospore stages of the S. graminicola lifecycle. We established the draft genome sequence of a downy mildew pathogen that infects Gramineae plants. Based on this sequence and our transcriptome analysis, we generated a catalog of in planta-induced candidate effector genes, providing a solid foundation from which to identify the effectors causing phyllody.
Prediction of β-turns in proteins from multiple alignment using neural network
Kaur, Harpreet; Raghava, Gajendra Pal Singh
2003-01-01
A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033
Automatic prediction of protein domains from sequence information using a hybrid learning system.
Nagarajan, Niranjan; Yona, Golan
2004-06-12
We describe a novel method for detecting the domain structure of a protein from sequence information alone. The method is based on analyzing multiple sequence alignments that are derived from a database search. Multiple measures are defined to quantify the domain information content of each position along the sequence and are combined into a single predictor using a neural network. The output is further smoothed and post-processed using a probabilistic model to predict the most likely transition positions between domains. The method was assessed using the domain definitions in SCOP and CATH for proteins of known structure and was compared with several other existing methods. Our method performs well both in terms of accuracy and sensitivity. It improves significantly over the best methods available, even some of the semi-manual ones, while being fully automatic. Our method can also be used to suggest and verify domain partitions based on structural data. A few examples of predicted domain definitions and alternative partitions, as suggested by our method, are also discussed. An online domain-prediction server is available at http://biozon.org/tools/domains/
NASA Astrophysics Data System (ADS)
Arteca, Gustavo A.; Tapia, O.
Using computer-simulated molecular dynamics, we study the effect of sequence mutation on the unfolding mechanism of a native fold. The system considered is the native fold of hen egg-white lysozyme, exposed to centrifugal unfolding in vacuo. This unfolding bias elicits configurational transitions that imitate the behaviour of anhydrous proteins diffusing after electrospraying from neutral-pH solutions. By changing the sequences threaded onto the native fold of lysozyme, we probe the role of disulfide bridges and the effect of a global mutation. We find that the initial denaturing steps share common characteristics for the tested sequences. Recurrent features are: (i) the presence of dumbbell conformers with significant residual secondary structure, (ii) the ubiquitous formation of hairpins and two-stranded β-sheets regardless of disulfide bridges, and (iii) an unfolding pattern where the reduction in folding complexity is highly correlated with the decrease in chain compactness. These findings appear to be intrinsic to the shape of the native fold, suggesting that similar unfolding pathways may be accessible to many protein sequences.
Kinact: a computational approach for predicting activating missense mutations in protein kinases.
Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V
2018-05-21
Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.
Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.
Lella, Muralikrishna; Mahalakshmi, Radhakrishnan
2017-06-20
Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.
Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto
2016-01-01
A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators.
Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin
2016-06-15
Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Hanson-Smith, Victor; Johnson, Alexander
2016-07-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and "resurrect" (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.
Hanson-Smith, Victor; Johnson, Alexander
2016-01-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and “resurrect” (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server. PMID:27472806
Knowledge-based model building of proteins: concepts and examples.
Bajorath, J.; Stenkamp, R.; Aruffo, A.
1993-01-01
We describe how to build protein models from structural templates. Methods to identify structural similarities between proteins in cases of significant, moderate to low, or virtually absent sequence similarity are discussed. The detection and evaluation of structural relationships is emphasized as a central aspect of protein modeling, distinct from the more technical aspects of model building. Computational techniques to generate and complement comparative protein models are also reviewed. Two examples, P-selectin and gp39, are presented to illustrate the derivation of protein model structures and their use in experimental studies. PMID:7505680
Computationally mapping sequence space to understand evolutionary protein engineering.
Armstrong, Kathryn A; Tidor, Bruce
2008-01-01
Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.
Identification of distant drug off-targets by direct superposition of binding pocket surfaces.
Schumann, Marcel; Armen, Roger S
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").
Identification of Distant Drug Off-Targets by Direct Superposition of Binding Pocket Surfaces
Schumann, Marcel; Armen, Roger S.
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target (“distant off-targets”). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target (“distant off-target”). PMID:24391782
Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.
2002-10-15
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Protein Information Resource: a community resource for expert annotation of protein data
Barker, Winona C.; Garavelli, John S.; Hou, Zhenglin; Huang, Hongzhan; Ledley, Robert S.; McGarvey, Peter B.; Mewes, Hans-Werner; Orcutt, Bruce C.; Pfeiffer, Friedhelm; Tsugita, Akira; Vinayaka, C. R.; Xiao, Chunlin; Yeh, Lai-Su L.; Wu, Cathy
2001-01-01
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-International databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP. PMID:11125041
NASA Astrophysics Data System (ADS)
Sethaphong, Latsavongsakda
This work examines smart material properties of rational self-assembly and molecular recognition found in nano-biosystems. Exploiting the sequence and structural information encoded within nucleic acids and proteins will permit programmed synthesis of nanomaterials and help create molecular machines that may carry out new roles involving chemical catalysis and bioenergy. Responsive to different ionic environments thru self-reorgnization, nucleic acids (NA) are nature's signature smart material; organisms such as viruses and bacteria use features of NAs to react to their environment and orchestrate their lifecycle. Furthermore, nucleic acid systems (both RNA and DNA) are currently exploited as scaffolds; recent applications have been showcased to build bioelectronics and biotemplated nanostructures via directed assembly of multidimensional nanoelectronic devices 1. Since the most stable and rudimentary structure of nucleic acids is the helical duplex, these were modeled in order to examine the influence of the microenvironment, sequence, and cation-dependent perturbations of their canonical forms. Due to their negatively charged phosphate backbone, NA's rely on counterions to overcome the inherent repulsive forces that arise from the assembly of two complementary strands. As a realistic model system, we chose the HIV-TAR helix (PDB ID: 397D) to study specific sequence motifs on cation sequestration. At physiologically relevant concentrations of sodium and potassium ions, we observed sequence based effects where purine stretches were adept in retaining high residency cations. The transitional space between adenine and guanosine nucleotides (ApG step) in a sequence proved the most favorable. This work was the first to directly show these subtle interactions of sequence based cationic sequestration and may be useful for controlling metallization of nucleic acids in conductive nanowires. Extending the study further, we explored the degree to which the structure of NA duplexes alone interacted with cations distinct from a specific sequence. Under physiologically relevant conditions, a duplex of RNA polyguanine-polycitidine was highly responsive and able to sequester cations to the middle of the purine stretches. The least responsive structure was a DNA polyadenine-polythymine duplex. A random sequence DNA duplex contorted into an RNA-like helix resulted in cationic dynamics similar to RNA systems. These studies showed that cation diffusive binding events in nucleic acid duplex structures are sequence specific and heavily influenced by structural aspects helical forms to account for much of the differences observed. Although structural information in nucleic acids is encoded within their sequence, linking amino acid sequence to protein structure is murkier; the structural information within proteins is encoded by the folding process itself: a complex phenomenon driven toward the equilibrium state of the active conformation. Upwards of two thirds of a protein's sequence can be substituted with similar amino acids without significantly perturbing its function; conserved residues of about 10% seem to be vital; since evolutionary selection pressure in proteins operates 3-dimenionally, a linear sequence is partially informative. We explored this problem by folding de-novo the cytosolic portion of the membrane protein, cellulose synthase, CESA1 from upland cotton, Gossypium hirsutum (Ghcesa1). The cytoplasmic region was generated by homology modeling and refined with molecular dynamics. These mutations impair local structural flexibility which likely results in cellulose that is produced at a lower rate and is less crystalline. Additional modeling of fragments of cellulose synthases from the model plant, Arabidopsis thaliana, offered novel insights into the function of conserved cytosolic domains within plant cellulose synthases. Transport mechanisms related to the transmembrane region revealed significant differences between plants and a bacterial complex. These studies generated possible mutations that may allow for the creation of new synthases and identified other avenues of research in order to develop technologies that may alter the crystallinity and other useful properties of cellulose. 1. Karplus, K., SAM-T08, HMM-based protein structure prediction. Nucleic Acids Research, 2009. 37: p. W492-W497.
Sequence tagging reveals unexpected modifications in toxicoproteomics
Dasari, Surendra; Chambers, Matthew C.; Codreanu, Simona G.; Liebler, Daniel C.; Collins, Ben C.; Pennington, Stephen R.; Gallagher, William M.; Tabb, David L.
2010-01-01
Toxicoproteomic samples are rich in posttranslational modifications (PTMs) of proteins. Identifying these modifications via standard database searching can incur significant performance penalties. Here we describe the latest developments in TagRecon, an algorithm that leverages inferred sequence tags to identify modified peptides in toxicoproteomic data sets. TagRecon identifies known modifications more effectively than the MyriMatch database search engine. TagRecon outperformed state of the art software in recognizing unanticipated modifications from LTQ, Orbitrap, and QTOF data sets. We developed user-friendly software for detecting persistent mass shifts from samples. We follow a three-step strategy for detecting unanticipated PTMs in samples. First, we identify the proteins present in the sample with a standard database search. Next, identified proteins are interrogated for unexpected PTMs with a sequence tag-based search. Finally, additional evidence is gathered for the detected mass shifts with a refinement search. Application of this technology on toxicoproteomic data sets revealed unintended cross-reactions between proteins and sample processing reagents. Twenty five proteins in rat liver showed signs of oxidative stress when exposed to potentially toxic drugs. These results demonstrate the value of mining toxicoproteomic data sets for modifications. PMID:21214251
Büssow, Konrad; Hoffmann, Steve; Sievert, Volker
2002-12-19
Functional genomics involves the parallel experimentation with large sets of proteins. This requires management of large sets of open reading frames as a prerequisite of the cloning and recombinant expression of these proteins. A Java program was developed for retrieval of protein and nucleic acid sequences and annotations from NCBI GenBank, using the XML sequence format. Annotations retrieved by ORFer include sequence name, organism and also the completeness of the sequence. The program has a graphical user interface, although it can be used in a non-interactive mode. For protein sequences, the program also extracts the open reading frame sequence, if available, and checks its correct translation. ORFer accepts user input in the form of single or lists of GenBank GI identifiers or accession numbers. It can be used to extract complete sets of open reading frames and protein sequences from any kind of GenBank sequence entry, including complete genomes or chromosomes. Sequences are either stored with their features in a relational database or can be exported as text files in Fasta or tabulator delimited format. The ORFer program is freely available at http://www.proteinstrukturfabrik.de/orfer. The ORFer program allows for fast retrieval of DNA sequences, protein sequences and their open reading frames and sequence annotations from GenBank. Furthermore, storage of sequences and features in a relational database is supported. Such a database can supplement a laboratory information system (LIMS) with appropriate sequence information.
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
Walia, Rasna R; Caragea, Cornelia; Lewis, Benjamin A; Towfic, Fadi; Terribilini, Michael; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2012-05-10
RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naïve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44 proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors (including those that exploit geometric features) in terms of Matthews Correlation Coefficient (MCC), although the structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be markedly different from that on a protein level. Our experiments show that the classifiers trained on three different non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find that the results are significantly affected by differences in the distance threshold used to define interface residues. Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While structure-based methods that exploit geometric features can yield significant increases in the Specificity of protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple performance measures, and datasets that are constructed based on several alternative definitions of interface residues and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons.
Shen, Hong-Bin; Chou, Kuo-Chen
2005-11-25
The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen.
Bhowmik, Priyanka; Das Gupta, Sujoy K.
2015-01-01
The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences. PMID:26237048
Christensen, Signe; Horowitz, Scott; Bardwell, James C.A.; Olsen, Johan G.; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R.
2017-01-01
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. PMID:27659562
Jowitt, Thomas A; Murdoch, Alan D; Baldock, Clair; Berry, Richard; Day, Joanna M; Hardingham, Timothy E
2010-01-01
Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)-attachment region of human aggrecan (CS-peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS-peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS-peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small-angle X-ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2-G3 construct. The semiordered structure identified in CS-peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20806220
Johansson, Kristoffer E; Tidemand Johansen, Nicolai; Christensen, Signe; Horowitz, Scott; Bardwell, James C A; Olsen, Johan G; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R
2016-10-23
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Loebel, Madlen; Eckey, Maren; Sotzny, Franziska; Hahn, Elisabeth; Bauer, Sandra; Grabowski, Patricia; Zerweck, Johannes; Holenya, Pavlo; Hanitsch, Leif G; Wittke, Kirsten; Borchmann, Peter; Rüffer, Jens-Ulrich; Hiepe, Falk; Ruprecht, Klemens; Behrends, Uta; Meindl, Carola; Volk, Hans-Dieter; Reimer, Ulf; Scheibenbogen, Carmen
2017-01-01
Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.
Delineating slowly and rapidly evolving fractions of the Drosophila genome.
Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S
2008-05-01
Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
Multi-Harmony: detecting functional specificity from sequence alignment
Brandt, Bernd W.; Feenstra, K. Anton; Heringa, Jaap
2010-01-01
Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein–protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww. PMID:20525785
Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie
2016-06-15
Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
A topological approach for protein classification
Cang, Zixuan; Mu, Lin; Wu, Kedi; ...
2015-11-04
Here, protein function and dynamics are closely related to its sequence and structure. However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics.
Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi
2018-04-20
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.
Predicting protein contact map using evolutionary and physical constraints by integer programming.
Wang, Zhiyong; Xu, Jinbo
2013-07-01
Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.
Improvisation in evolution of genes and genomes: whose structure is it anyway?
Shakhnovich, Boris E; Shakhnovich, Eugene I
2008-06-01
Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.
Protein Interaction Profile Sequencing (PIP-seq).
Foley, Shawn W; Gregory, Brian D
2016-10-10
Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng
2009-01-01
As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.
Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B
1986-01-01
A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461
Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso
2014-01-01
The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384
Gaona-López, Carlos; Julián-Sánchez, Adriana
2016-01-01
Background Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. Principal Findings Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. Conclusions/Significance FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes. PMID:27893862
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic damage to international poultry industry. Different strains of NDV express a wide range of virulence that is primarily dependent on the amino acid sequence of the strain’s fusion (F) protein cleavage site. Two c...
Spherical body protein 2 truncated copy 11 as a specific babesia bovis attenuation marker
USDA-ARS?s Scientific Manuscript database
Background: Spherical body protein 2 (SBP-2) truncated copies 7, 9 and 11, gene transcripts in Babesia bovis, were recently reported to be significantly up-regulated in two geographically distinct attenuated B. bovis strains. Results: Sequence comparisons between the sbp2t7, 9 and 11 genes among geo...
Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.
2012-01-01
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562
Mi, Tian; Merlin, Jerlin Camilus; Deverasetty, Sandeep; Gryk, Michael R; Bill, Travis J; Brooks, Andrew W; Lee, Logan Y; Rathnayake, Viraj; Ross, Christian A; Sargeant, David P; Strong, Christy L; Watts, Paula; Rajasekaran, Sanguthevar; Schiller, Martin R
2012-01-01
Minimotif Miner (MnM available at http://minimotifminer.org or http://mnm.engr.uconn.edu) is an online database for identifying new minimotifs in protein queries. Minimotifs are short contiguous peptide sequences that have a known function in at least one protein. Here we report the third release of the MnM database which has now grown 60-fold to approximately 300,000 minimotifs. Since short minimotifs are by their nature not very complex we also summarize a new set of false-positive filters and linear regression scoring that vastly enhance minimotif prediction accuracy on a test data set. This online database can be used to predict new functions in proteins and causes of disease.
Acyl carrier protein structural classification and normal mode analysis
Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J
2012-01-01
All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859
Structure of adenovirus bound to cellular receptor car
Freimuth, Paul I.
2007-01-02
Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.
MIPS: a database for genomes and protein sequences.
Mewes, H W; Heumann, K; Kaps, A; Mayer, K; Pfeiffer, F; Stocker, S; Frishman, D
1999-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried near Munich, Germany, develops and maintains genome oriented databases. It is commonplace that the amount of sequence data available increases rapidly, but not the capacity of qualified manual annotation at the sequence databases. Therefore, our strategy aims to cope with the data stream by the comprehensive application of analysis tools to sequences of complete genomes, the systematic classification of protein sequences and the active support of sequence analysis and functional genomics projects. This report describes the systematic and up-to-date analysis of genomes (PEDANT), a comprehensive database of the yeast genome (MYGD), a database reflecting the progress in sequencing the Arabidopsis thaliana genome (MATD), the database of assembled, annotated human EST clusters (MEST), and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). MIPS provides access through its WWW server (http://www.mips.biochem.mpg.de) to a spectrum of generic databases, including the above mentioned as well as a database of protein families (PROTFAM), the MITOP database, and the all-against-all FASTA database. PMID:9847138
Mitochondrial Genome Sequence of the Legume Vicia faba
Negruk, Valentine
2013-01-01
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cang, Zixuan; Mu, Lin; Wu, Kedi
Here, protein function and dynamics are closely related to its sequence and structure. However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics.
Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes.
Crosslin, James M; Hamm, Philip B; Kirk, William W; Hammond, Rosemarie W
2010-04-01
Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20-25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3' terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.
Understanding protein evolution: from protein physics to Darwinian selection.
Zeldovich, Konstantin B; Shakhnovich, Eugene I
2008-01-01
Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.
Pastor, N; Pardo, L; Weinstein, H
1997-01-01
The binding of the TATA box-binding protein (TBP) to a TATA sequence in DNA is essential for eukaryotic basal transcription. TBP binds in the minor groove of DNA, causing a large distortion of the DNA helix. Given the apparent stereochemical equivalence of AT and TA basepairs in the minor groove, DNA deformability must play a significant role in binding site selection, because not all AT-rich sequences are bound effectively by TBP. To gain insight into the precise role that the properties of the TATA sequence have in determining the specificity of the DNA substrates of TBP, the solution structure and dynamics of seven DNA dodecamers have been studied by using molecular dynamics simulations. The analysis of the structural properties of basepair steps in these TATA sequences suggests a reason for the preference for alternating pyrimidine-purine (YR) sequences, but indicates that these properties cannot be the sole determinant of the sequence specificity of TBP. Rather, recognition depends on the interplay between the inherent deformability of the DNA and steric complementarity at the molecular interface. Images FIGURE 2 PMID:9251783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.
2005-04-01
The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31more » genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.« less
Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi
2010-01-01
Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614
Diversity of the P2 protein among nontypeable Haemophilus influenzae isolates.
Bell, J; Grass, S; Jeanteur, D; Munson, R S
1994-01-01
The genes for outer membrane protein P2 of four nontypeable Haemophilus influenzae strains were cloned and sequenced. The derived amino acid sequences were compared with the outer membrane protein P2 sequence from H. influenzae type b MinnA and the sequences of P2 from three additional nontypeable H. influenzae strains. The sequences were 76 to 94% identical. The sequences had regions with considerable variability separated by regions which were highly conserved. The variable regions mapped to putative surface-exposed loops of the protein. PMID:8188390
Kimura, M; Kimura, J; Hatakeyama, T
1988-11-21
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).
Odronitz, Florian; Kollmar, Martin
2006-11-29
Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein.
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-12-27
Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.
Sequence repeats and protein structure
NASA Astrophysics Data System (ADS)
Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos
2012-11-01
Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.
Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun
2013-01-01
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870
Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation
Ojha, Sunil; Watson, Douglas S.; Bomar, Martha G.; Galande, Amit K.; Shearer, Alexander G.
2013-01-01
The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation. PMID:24386392
Rapid identification of sequences for orphan enzymes to power accurate protein annotation.
Ramkissoon, Kevin R; Miller, Jennifer K; Ojha, Sunil; Watson, Douglas S; Bomar, Martha G; Galande, Amit K; Shearer, Alexander G
2013-01-01
The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.
Yu, Y X; Béarzotti, M; Vende, P; Ahne, W; Brémont, M
1999-09-01
Iridovirus-like pathogens have been recognized as a cause of serious systemic diseases among feral, cultured and ornamental fish in the recent years. Mortalities of fish due to systemic iridovirus infection reaching 30-100% were observed in Europe, Australia, Japan and Thailand. Up to now, the molecular biology of these important pathogens has been poorly documented. To get better insights on the genomic organization of these piscine iridoviruses, we have constructed a cosmid viral DNA library from the epizootic hematopoietic necrosis virus (EHNV). Two recombinant cosmids (Cos7 and Cos12) have been selected for systematic sequencing. Cos7 and 12 are localized side by side along the genome and cover the 2/3 part of the total EHNV genome which has been estimated to be approximately 101.47 kb in length. Thirty five kilobase pairs (kbps) from Cos7 and 10 kbps from Cos12 have been determined. Sequence analysis revealed open reading frames (ORF) sharing homologies with sequences from the Frog virus 3 such as the p31 and p40 proteins. Among the others identified ORFs, some of them presented homologies with known protein sequences, such as the human eIF2alpha protein, and some did not show any significant homologies with sequences available in the databases. But, none were related to Lymphocystis virus, a member of the Iridoviridae family, for which the full genome nucleotide sequence has been determined.
A comprehensive and scalable database search system for metaproteomics.
Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W
2016-08-16
Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.
Dynamics of domain coverage of the protein sequence universe.
Rekapalli, Bhanu; Wuichet, Kristin; Peterson, Gregory D; Zhulin, Igor B
2012-11-16
The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its "dark matter". Here we suggest that true size of "dark matter" is much larger than stated by current definitions. We propose an approach to reducing the size of "dark matter" by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of "dark matter"; however, its absolute size increases substantially with the growth of sequence data.
Rather, Irshad Ahmad; Awasthi, Praveen; Mahajan, Vidushi; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G
2015-03-01
Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum. Copyright © 2014 Elsevier B.V. All rights reserved.
Template-Based Modeling of Protein-RNA Interactions.
Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong
2016-09-01
Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.
Cheng, Yali; Avis, Tyler J; Bolduc, Sébastien; Zhao, Yingyi; Anguenot, Raphaël; Neveu, Bertrand; Labbé, Caroline; Belzile, François; Bélanger, Richard R
2008-12-01
Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.
Butts, Carter T.; Bierma, Jan C.; Martin, Rachel W.
2016-01-01
In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. PMID:27353064
Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex.
Chow, Keng-See; Wan, Kiew-Lian; Isa, Mohd Noor Mat; Bahari, Azlina; Tan, Siang-Hee; Harikrishna, K; Yeang, Hoong-Yeet
2007-01-01
Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.
2010-01-01
Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily. PMID:20673336
Hoch, Duane A.; Stratton, Jessica J.; Gloss, Lisa M.
2007-01-01
A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, in comparison to fluorophores used in previous NCP FRET studies, they: 1) are smaller and less hydrophobic which should minimize perturbations of histone and NCP structure; and 2) have an R0 of 20 Å, which is much less than the dimensions of the NCP (~50 Å width and ~100 Å diameter). CD and FL equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 artificial positioning DNA sequence. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation as compared to previous studies using weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of each H2A-H2B dimer, confirming cooperativity in dimer dissociation. While cooperativity in the association/dissociation of the H2A-H2B dimers has been suggested previously, these data allow its quantitative description. The protein-protein FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. Comparison of the H2A and H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity for dimer dissociation from H2A.Z NCPs. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer association and dissociation from the NCP. PMID:17597150
Protein 3D Structure Computed from Evolutionary Sequence Variation
Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2011-01-01
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes. PMID:22163331
Modeling repetitive, non‐globular proteins
Basu, Koli; Campbell, Robert L.; Guo, Shuaiqi; Sun, Tianjun
2016-01-01
Abstract While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here. PMID:26914323
Evaluating the protein coding potential of exonized transposable element sequences
Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King
2007-01-01
Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258
Szczyglowski, K; Hamburger, D; Kapranov, P; de Bruijn, F J
1997-01-01
A range of novel expressed sequence tags (ESTs) associated with late developmental events during nodule organogenesis in the legume Lotus japonicus were identified using mRNA differential display; 110 differentially displayed polymerase chain reaction products were cloned and analyzed. Of 88 unique cDNAs obtained, 22 shared significant homology to DNA/protein sequences in the respective databases. This group comprises, among others, a nodule-specific homolog of protein phosphatase 2C, a peptide transporter protein, and a nodule-specific form of cytochrome P450. RNA gel-blot analysis of 16 differentially displayed ESTs confirmed their nodule-specific expression pattern. The kinetics of mRNA accumulation of the majority of the ESTs analyzed were found to resemble the expression pattern observed for the L. japonicus leghemoglobin gene. These results indicate that the newly isolated molecular markers correspond to genes induced during late developmental stages of L. japonicus nodule organogenesis and provide important, novel tools for the study of nodulation. PMID:9276951
Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring.
Göker, Markus; Spring, Stefan; Scheuner, Carmen; Anderson, Iain; Zeytun, Ahmet; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla
2014-06-15
Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Bystrykh, L V; Vonck, J; van Bruggen, E F; van Beeumen, J; Samyn, B; Govorukhina, N I; Arfman, N; Duine, J A; Dijkhuizen, L
1993-01-01
The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry) with estimated molecular masses of 490 to 500 kDa based on their subunit molecular masses of 49 to 50 kDa. Both methanol:NDMA oxidoreductases possess a tightly but noncovalently bound NADP(H) cofactor at an NADPH-to-subunit molar ratio of 0.7. These cofactors are redox active toward alcohol and aldehyde substrates. Both enzymes contain significant amounts of Zn2+ and Mg2+ ions. The primary amino acid sequences of the A. methanolica and M. gastri MB19 methanol:NDMA oxidoreductases share a high degree of identity, as indicated by N-terminal sequence analysis (63% identity among the first 27 N-terminal amino acids), internal peptide sequence analysis, and overall amino acid composition. The amino acid sequence analysis also revealed significant similarity to a decameric methanol dehydrogenase of Bacillus methanolicus C1. Images PMID:8449887
2014-01-01
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393
Rattei, Thomas; Tischler, Patrick; Götz, Stefan; Jehl, Marc-André; Hoser, Jonathan; Arnold, Roland; Conesa, Ana; Mewes, Hans-Werner
2010-01-01
The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).
O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.
2015-01-01
Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776
A computational framework to empower probabilistic protein design
Fromer, Menachem; Yanover, Chen
2008-01-01
Motivation: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. Results: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future. Contact: fromer@cs.huji.ac.il PMID:18586717
Use of designed sequences in protein structure recognition.
Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran
2018-05-09
Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.
Ferreira, Diogo C; van der Linden, Marx G; de Oliveira, Leandro C; Onuchic, José N; de Araújo, Antônio F Pereira
2016-04-01
Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers L(min) still compatible with correct folding behavior. We obtain L(min) between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L ≥ L(min) from the burial entropy associated to the largest folding-compatible fraction of "superfluous" atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations. © 2016 Wiley Periodicals, Inc.
Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.
Sugimoto, H; Hayashi, H; Yamashita, S
1996-03-29
A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.
Zhao, Panpan; Zhong, Jiayong; Liu, Wanting; Zhao, Jing; Zhang, Gong
2017-12-01
Multiple search engines based on various models have been developed to search MS/MS spectra against a reference database, providing different results for the same data set. How to integrate these results efficiently with minimal compromise on false discoveries is an open question due to the lack of an independent, reliable, and highly sensitive standard. We took the advantage of the translating mRNA sequencing (RNC-seq) result as a standard to evaluate the integration strategies of the protein identifications from various search engines. We used seven mainstream search engines (Andromeda, Mascot, OMSSA, X!Tandem, pFind, InsPecT, and ProVerB) to search the same label-free MS data sets of human cell lines Hep3B, MHCCLM3, and MHCC97H from the Chinese C-HPP Consortium for Chromosomes 1, 8, and 20. As expected, the union of seven engines resulted in a boosted false identification, whereas the intersection of seven engines remarkably decreased the identification power. We found that identifications of at least two out of seven engines resulted in maximizing the protein identification power while minimizing the ratio of suspicious/translation-supported identifications (STR), as monitored by our STR index, based on RNC-Seq. Furthermore, this strategy also significantly improves the peptides coverage of the protein amino acid sequence. In summary, we demonstrated a simple strategy to significantly improve the performance for shotgun mass spectrometry by protein-level integrating multiple search engines, maximizing the utilization of the current MS spectra without additional experimental work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.
2015-10-15
Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less
NASA Technical Reports Server (NTRS)
Gatlin, L. L.
1974-01-01
Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.
The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.
Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig
2007-03-01
Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.
Can natural proteins designed with 'inverted' peptide sequences adopt native-like protein folds?
Sridhar, Settu; Guruprasad, Kunchur
2014-01-01
We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to 'swap' certain short peptide sequences in naturally occurring proteins with their corresponding 'inverted' peptides and generate 'artificial' proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5-12 and 18 amino acid residues. Our analysis illustrates with examples that such 'artificial' proteins may be generated by identifying peptides with 'similar structural environment' and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides.
McAuley, Alexander J.; Torres, Maricela; Plante, Jessica A.; Huang, Claire Y.-H.; Bente, Dennis A.
2016-01-01
ABSTRACT Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, with in vivo pathogenesis often not being correlated with in vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. IMPORTANCE The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses. PMID:26912625
McAuley, Alexander J; Torres, Maricela; Plante, Jessica A; Huang, Claire Y-H; Bente, Dennis A; Beasley, David W C
2016-05-01
Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, within vivo pathogenesis often not being correlated within vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Yang, Tao; Jia, Quanzhang; Guo, Hong; Xu, Jianzhong; Bai, Yun; Yang, Kai; Luo, Fei; Zhang, Zehua; Hou, Tianyong
2012-06-01
To investigate the effects of genetic factors on idiopathic scoliosis (IS) and genetic modes through genetic epidemiological survey on IS in Chongqing City, China, and to determine whether SH3GL1, GADD45B, and FGF22 in the chromosome 19p13.3 are the pathogenic genes of IS through genetic sequence analysis. 214 nuclear families were investigated to analyse the age incidence, familial aggregation, and heritability. SH3GL1, GADD45B, and FGF22 were chosen as candidate genes for mutation screening in 56 IS patients of 214 families. The sequence alignment analysis was performed to determine mutations and predict the protein structure. The average age of onset of 10.8 years suggests that IS is a early onset disease. Incidences of IS in first-, second-, third-degree relatives and the overall incidence in families (5.68%) were also significantly higher than that of the general population (1.04%). The U test indicated a significant difference, suggesting that IS has a familial aggregation. The heritability of first-degree relatives (77.68 ±10.39%), second-degree relatives (69.89 ±3.14%), and third-degree relatives (62.14 ±11.92%) illustrated that genetic factors play an important role in IS pathogenesis. The incidence of first-degree relatives (10.01%), second-degree relatives (2.55%) and third-degree relatives (1.76%) illustrated that IS is not in simple accord with monogenic Mendel's law but manifests as traits of multifactorial hereditary diseases. Sequence alignment of exons of SH3GL1, GADD45B, and FGF22 showed 17 base mutations, of which 16 mutations do not induce open reading frame (ORF) shift or amino acid changes whereas one mutation (C→T)occurred in SH3GL1 results in formation of the termination codon, which induces variation of protein reading frame. Prediction analysis of protein sequence showed that the SH3GL1 mutant encoded a truncated protein, thus affecting the protein structure. IS is a multifactorial genetic disease and SH3GL1 may be one of the pathogenic genes for IS.
Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P; Marians, Kenneth J; Erdjument-Bromage, Hediye
2016-07-01
In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.
De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.
Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A
2014-07-03
There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.
Aranda-Orgillés, Beatriz; Rutschow, Désirée; Zeller, Raphael; Karagiannidis, Antonios I.; Köhler, Andrea; Chen, Changwei; Wilson, Timothy; Krause, Sven; Roepcke, Stefan; Lilley, David; Schneider, Rainer; Schweiger, Susann
2011-01-01
We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells. PMID:21930711
Garcia Lopez, Sebastian; Kim, Philip M.
2014-01-01
Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403
Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2
Xiao, JunFeng
2009-01-01
The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845
Odronitz, Florian; Kollmar, Martin
2006-01-01
Background Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Description Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. Conclusion We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein. PMID:17134497
Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.
Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H
2016-05-01
Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice donor variant that may introduce a deleterious intron retention and result in a noncoding transcript variant. We used whole exome sequencing in BD for the first time and identified 2 rare putative protein-damaging genetic variants associated with this disease. These genetic variants might influence cytoskeletal regulation and DNA repair mechanisms in BD and might provide further insight into increased leukocyte tissue infiltration and the role of oxidative stress in BD. © 2016, American College of Rheumatology.
A large-scale evaluation of computational protein function prediction
Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-01-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650
Arneth, Borros
2012-10-01
As possible mechanisms to explain the emergence of autoimmune diseases, the current author has suggested in earlier papers two new pathways: the "protein localization hypothesis" and the "protein traffic hypothesis". The "protein localization hypothesis" states that an autoimmune disease develops if a protein accumulates in a previously unoccupied compartment, that did not previously contain that protein. Similarly, the "protein traffic hypothesis" states that a sudden error within the transport of a certain protein leads to the emergence of an autoimmune disease. The current article discusses the usefulness of the different commercially available transgenic murine models of diabetes mellitus type 1 to confirm the aforementioned hypotheses. This discussion shows that several transgenic murine models of diabetes mellitus type 1 are in-line and confirm the aforementioned hypotheses. Furthermore, these hypotheses are additionally inline with the occurrence of several newly discovered protein sequences, the so-called trepitope sequences. These sequences modulate the immune response to certain proteins. The current study analyzed to what extent the hypotheses are supported by the occurrence of these new sequences. Thereby the occurrence of the trepitope sequences provides additional evidence supporting the aforementioned hypotheses. Both the "protein localization hypothesis" and the "protein traffic hypothesis" have the potential to lead to new causal therapy concepts. The "protein localization hypothesis" and the "protein traffic hypothesis" provide conceptional explanations for the diabetes mouse models as well as for the newly discovered trepitope sequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dynamics of domain coverage of the protein sequence universe
2012-01-01
Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data. PMID:23157439
Rational Protein Engineering Guided by Deep Mutational Scanning
Shin, HyeonSeok; Cho, Byung-Kwan
2015-01-01
Sequence–function relationship in a protein is commonly determined by the three-dimensional protein structure followed by various biochemical experiments. However, with the explosive increase in the number of genome sequences, facilitated by recent advances in sequencing technology, the gap between protein sequences available and three-dimensional structures is rapidly widening. A recently developed method termed deep mutational scanning explores the functional phenotype of thousands of mutants via massive sequencing. Coupled with a highly efficient screening system, this approach assesses the phenotypic changes made by the substitution of each amino acid sequence that constitutes a protein. Such an informational resource provides the functional role of each amino acid sequence, thereby providing sufficient rationale for selecting target residues for protein engineering. Here, we discuss the current applications of deep mutational scanning and consider experimental design. PMID:26404267
Chameleon sequences in neurodegenerative diseases.
Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali
2016-03-25
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Chameleon sequences in neurodegenerative diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramali, Golnaz; Goliaei, Bahram, E-mail: goliaei@ut.ac.ir; Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir
2016-03-25
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix tomore » coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.« less
Comparative analysis of ribosomal protein L5 sequences from bacteria of the genus Thermus.
Jahn, O; Hartmann, R K; Boeckh, T; Erdmann, V A
1991-06-01
The genes for the ribosomal 5S rRNA binding protein L5 have been cloned from three extremely thermophilic eubacteria, Thermus flavus, Thermus thermophilus HB8 and Thermus aquaticus (Jahn et al, submitted). Genes for protein L5 from the three Thermus strains display 95% G/C in third positions of codons. Amino acid sequences deduced from the DNA sequence were shown to be identical for T flavus and T thermophilus, although the corresponding DNA sequences differed by two T to C transitions in the T thermophilus gene. Protein L5 sequences from T flavus and T thermophilus are 95% homologous to L5 from T aquaticus and 56.5% homologous to the corresponding E coli sequence. The lowest degrees of homology were found between the T flavus/T thermophilus L5 proteins and those of yeast L16 (27.5%), Halobacterium marismortui (34.0%) and Methanococcus vannielii (36.6%). From sequence comparison it becomes clear that thermostability of Thermus L5 proteins is achieved by an increase in hydrophobic interactions and/or by restriction of steric flexibility due to the introduction of amino acids with branched aliphatic side chains such as leucine. Alignment of the nine protein sequences equivalent to Thermus L5 proteins led to identification of a conserved internal segment, rich in acidic amino acids, which shows homology to subsequences of E coli L18 and L25. The occurrence of conserved sequence elements in 5S rRNA binding proteins and ribosomal proteins in general is discussed in terms of evolution and function.
Possenti, Andrea; Vendruscolo, Michele; Camilloni, Carlo; Tiana, Guido
2018-05-23
Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.
El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Nagano, Yukio; Furuhashi, Hirofumi; Inaba, Takehito; Sasaki, Yukiko
2001-01-01
Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x2-H-x11-C-x2-C-x(4–5)-C-x2-C-x(3–7)-H-x2-H and C-x2-C-x(10–11)-C-x3-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with 65ZnCl2 showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression. PMID:11600698
Jessen, Leon Eyrich; Hoof, Ilka; Lund, Ole; Nielsen, Morten
2013-07-01
Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.
Gupta, Anamika; Pal, Sudhir K; Pandey, Divya; Fakir, Najneen A; Rathod, Sunita; Sinha, Dhiraj; SivaKumar, S; Sinha, Pallavi; Periera, Mycal; Balgam, Shilpa; Sekar, Gomathi; UmaDevi, K R; Anupurba, Shampa; Nema, Vijay
2017-08-18
The Mycobacterium tuberculosis (M.tb) protein kinase B (PknB) which is now proved to be essential for the growth and survival of M.tb, is a transmembrane protein with a potential to be a good drug target. However it is not known if this target remains conserved in otherwise resistant isolates from clinical origin. The present study describes the conservation analysis of sequences covering the inhibitor binding domain of PknB to assess if it remains conserved in susceptible and resistant clinical strains of mycobacteria picked from three different geographical areas of India. A total of 116 isolates from North, South and West India were used in the study with a variable profile of their susceptibilities towards streptomycin, isoniazid, rifampicin, ethambutol and ofloxacin. Isolates were also spoligotyped in order to find if the conservation pattern of pknB gene remain consistent or differ with different spoligotypes. The impact of variation as found in the study was analyzed using Molecular dynamics simulations. The sequencing results with 115/116 isolates revealed the conserved nature of pknB sequences irrespective of their susceptibility status and spoligotypes. The only variation found was in one strains wherein pnkB sequence had G to A mutation at 664 position translating into a change of amino acid, Valine to Isoleucine. After analyzing the impact of this sequence variation using Molecular dynamics simulations, it was observed that the variation is causing no significant change in protein structure or the inhibitor binding. Hence, the study endorses that PknB is an ideal target for drug development and there is no pre-existing or induced resistance with respect to the sequences involved in inhibitor binding. Also if the mutation that we are reporting for the first time is found again in subsequent work, it should be checked with phenotypic profile before drawing the conclusion that it would affect the activity in any way. Bioinformatics analysis in our study says that it has no significant effect on the binding and hence the activity of the protein.
Sevy, Alexander M.; Jacobs, Tim M.; Crowe, James E.; Meiler, Jens
2015-01-01
Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales
Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.
2016-01-01
Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003
Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H
1989-01-01
The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252
Duan, Zhigui; Cao, Rui; Jiang, Liping; Liang, Songping
2013-01-14
In past years, spider venoms have attracted increasing attention due to their extraordinary chemical and pharmacological diversity. The recently popularized proteomic method highly improved our ability to analyze the proteins in the venom. However, the lack of information about isolated venom proteins sequences dramatically limits the ability to confidently identify venom proteins. In the present paper, the venom from Araneus ventricosus was analyzed using two complementary approaches: 2-DE/Shotgun-LC-MS/MS coupled to MASCOT search and 2-DE/Shotgun-LC-MS/MS coupled to manual de novo sequencing followed by local venom protein database (LVPD) search. The LVPD was constructed with toxin-like protein sequences obtained from the analysis of cDNA library from A. ventricosus venom glands. Our results indicate that a total of 130 toxin-like protein sequences were unambiguously identified by manual de novo sequencing coupled to LVPD search, accounting for 86.67% of all toxin-like proteins in LVPD. Thus manual de novo sequencing coupled to LVPD search was proved an extremely effective approach for the analysis of venom proteins. In addition, the approach displays impeccable advantage in validating mutant positions of isoforms from the same toxin-like family. Intriguingly, methyl esterifcation of glutamic acid was discovered for the first time in animal venom proteins by manual de novo sequencing. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Palinski, Rachel M; Mitra, Namita; Hause, Ben M
2016-08-01
Parvoviruses are a diverse group of viruses containing some of the smallest known species that are capable of infecting a wide range of animals. Metagenomic sequencing of pooled rectal swabs from adult pigs identified a 4103-bp contig consisting of two major open reading frames encoding proteins of 672 and 469 amino acids (aa) in length. BLASTP analysis of the 672-aa protein found 42.4 % identity to fruit bat (Eidolon helvum) parvovirus 2 (EhPV2) and 37.9 % to turkey parvovirus (TuPV) TP1-2012/HUN NS1 proteins. The 469-aa protein had no significant similarity to known proteins. Genetic and phylogenetic analyses suggest that PPV7, EhPV2, and TuPV represent a novel genus in the family Parvoviridae. Quantitative PCR screening of 182 porcine diagnostic samples found a total of 16 positives (8.6 %). Together, these data suggest that PPV7 is a highly divergent novel parvovirus prevalent within the US swine.
Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V
2010-07-13
Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.
Hazes, Bart
2014-02-28
Protein-coding DNA sequences and their corresponding amino acid sequences are routinely used to study relationships between sequence, structure, function, and evolution. The rapidly growing size of sequence databases increases the power of such comparative analyses but it makes it more challenging to prepare high quality sequence data sets with control over redundancy, quality, completeness, formatting, and labeling. Software tools for some individual steps in this process exist but manual intervention remains a common and time consuming necessity. CDSbank is a database that stores both the protein-coding DNA sequence (CDS) and amino acid sequence for each protein annotated in Genbank. CDSbank also stores Genbank feature annotation, a flag to indicate incomplete 5' and 3' ends, full taxonomic data, and a heuristic to rank the scientific interest of each species. This rich information allows fully automated data set preparation with a level of sophistication that aims to meet or exceed manual processing. Defaults ensure ease of use for typical scenarios while allowing great flexibility when needed. Access is via a free web server at http://hazeslab.med.ualberta.ca/CDSbank/. CDSbank presents a user-friendly web server to download, filter, format, and name large sequence data sets. Common usage scenarios can be accessed via pre-programmed default choices, while optional sections give full control over the processing pipeline. Particular strengths are: extract protein-coding DNA sequences just as easily as amino acid sequences, full access to taxonomy for labeling and filtering, awareness of incomplete sequences, and the ability to take one protein sequence and extract all synonymous CDS or identical protein sequences in other species. Finally, CDSbank can also create labeled property files to, for instance, annotate or re-label phylogenetic trees.
Assigning protein functions by comparative genome analysis protein phylogenetic profiles
Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.
2003-05-13
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.
Higgins, Sean A; Savage, David F
2018-01-09
A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.
Flexible DNA binding of the BTB/POZ-domain protein FBI-1.
Pessler, Frank; Hernandez, Nouria
2003-08-01
POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.
New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma
Shair, Kathy H. Y.; Reddy, Akhil
2018-01-01
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV) oncogenic protein that has no intrinsic enzymatic activity or sequence homology to cellular or viral proteins. The oncogenic potential of LMP1 has been ascribed to pleiotropic signaling properties initiated through protein-protein interactions in cytosolic membrane compartments, but the effects of LMP1 extend to nuclear and extracellular processes. Although LMP1 is one of the latent genes required for EBV-immortalization of B cells, the biology of LMP1 in the pathogenesis of the epithelial cancer nasopharyngeal carcinoma (NPC) is more complex. NPC is prevalent in specific regions of the world with high incidence in southeast China. The epidemiology and time interval from seroconversion to NPC onset in adults would suggest the involvement of multiple risk factors that complement the establishment of a latent and persistent EBV infection. The contribution of LMP1 to EBV pathogenesis in polarized epithelia has only recently begun to be elucidated. Furthermore, the LMP1 gene has emerged as one of the most divergent sequences in the EBV genome. This review will discuss the significance of recent advances in NPC research from elucidating LMP1 function in epithelial cells and lessons that could be learned from mining LMP1 sequence diversity. PMID:29561768
Lalev, A I; Abeyrathne, P D; Nazar, R N
2000-09-08
The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed. Copyright 2000 Academic Press.
You, M; Chan, Y; Lacap-Bugler, D C; Huo, Y-B; Gao, W; Leung, W K; Watt, R M
2017-12-01
Treponema denticola and other species (phylotypes) of oral spirochetes are widely considered to play important etiological roles in periodontitis and other oral infections. The major surface protein (Msp) of T. denticola is directly implicated in several pathological mechanisms. Here, we have analyzed msp sequence diversity across 68 strains of oral phylogroup 1 and 2 treponemes; including reference strains of T. denticola, Treponema putidum, Treponema medium, 'Treponema vincentii', and 'Treponema sinensis'. All encoded Msp proteins contained highly conserved, taxon-specific signal peptides, and shared a predicted 'three-domain' structure. A clone-based strategy employing 'msp-specific' polymerase chain reaction primers was used to analyze msp gene sequence diversity present in subgingival plaque samples collected from a group of individuals with chronic periodontitis (n=10), vs periodontitis-free controls (n=10). We obtained 626 clinical msp gene sequences, which were assigned to 21 distinct 'clinical msp genotypes' (95% sequence identity cut-off). The most frequently detected clinical msp genotype corresponded to T. denticola ATCC 35405 T , but this was not correlated to disease status. UniFrac and libshuff analysis revealed that individuals with periodontitis and periodontitis-free controls harbored significantly different communities of treponeme clinical msp genotypes (P<.001). Patients with periodontitis had higher levels of clinical msp genotype diversity than periodontitis-free controls (Mann-Whitney U-test, P<.05). The relative proportions of 'T. vincentii' clinical msp genotypes were significantly higher in the control group than in the periodontitis group (P=.018). In conclusion, our data clearly show that both healthy and diseased individuals commonly harbor a wide diversity of Treponema clinical msp genotypes within their subgingival niches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Illingworth, Christopher J R; Parkes, Kevin E; Snell, Christopher R; Mullineaux, Philip M; Reynolds, Christopher A
2008-03-01
Methods to determine periodicity in protein sequences are useful for inferring function. Fourier transformation is one approach but care is required to ensure the periodicity is genuine. Here we have shown that empirically-derived statistical tables can be used as a measure of significance. Genuine protein sequences data rather than randomly generated sequences were used as the statistical backdrop. The method has been applied to G-protein coupled receptor (GPCR) sequences, by Fourier transformation of hydrophobicity values, codon frequencies and the extent of over-representation of codon pairs; the latter being related to translational step times. Genuine periodicity was observed in the hydrophobicity whereas the apparent periodicity (as inferred from previously reported measures) in the translation step times was not validated statistically. GCR2 has recently been proposed as the plant GPCR receptor for the hormone abscisic acid. It has homology to the Lanthionine synthetase C-like family of proteins, an observation confirmed by fold recognition. Application of the Fourier transform algorithm to the GCR2 family revealed strongly predicted seven fold periodicity in hydrophobicity, suggesting why GCR2 has been reported to be a GPCR, despite negative indications in most transmembrane prediction algorithms. The underlying multiple sequence alignment, also required for the Fourier transform analysis of periodicity, indicated that the hydrophobic regions around the 7 GXXG motifs commence near the C-terminal end of each of the 7 inner helices of the alpha-toroid and continue to the N-terminal region of the helix. The results clearly explain why GCR2 has been understandably but erroneously predicted to be a GPCR.
Duda, Anja; Stange, Annett; Lüftenegger, Daniel; Stanke, Nicole; Westphal, Dana; Pietschmann, Thomas; Eastman, Scott W; Linial, Maxine L; Rethwilm, Axel; Lindemann, Dirk
2004-12-01
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.
Computational analysis of sequence selection mechanisms.
Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron
2004-04-01
Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.
Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens
2015-08-25
There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.
Integrating linear optimization with structural modeling to increase HIV neutralization breadth.
Sevy, Alexander M; Panda, Swetasudha; Crowe, James E; Meiler, Jens; Vorobeychik, Yevgeniy
2018-02-01
Computational protein design has been successful in modeling fixed backbone proteins in a single conformation. However, when modeling large ensembles of flexible proteins, current methods in protein design have been insufficient. Large barriers in the energy landscape are difficult to traverse while redesigning a protein sequence, and as a result current design methods only sample a fraction of available sequence space. We propose a new computational approach that combines traditional structure-based modeling using the Rosetta software suite with machine learning and integer linear programming to overcome limitations in the Rosetta sampling methods. We demonstrate the effectiveness of this method, which we call BROAD, by benchmarking the performance on increasing predicted breadth of anti-HIV antibodies. We use this novel method to increase predicted breadth of naturally-occurring antibody VRC23 against a panel of 180 divergent HIV viral strains and achieve 100% predicted binding against the panel. In addition, we compare the performance of this method to state-of-the-art multistate design in Rosetta and show that we can outperform the existing method significantly. We further demonstrate that sequences recovered by this method recover known binding motifs of broadly neutralizing anti-HIV antibodies. Finally, our approach is general and can be extended easily to other protein systems. Although our modeled antibodies were not tested in vitro, we predict that these variants would have greatly increased breadth compared to the wild-type antibody.
Axelsen, Jacob Bock; Yan, Koon-Kiu; Maslov, Sergei
2007-01-01
Background The evolution of the full repertoire of proteins encoded in a given genome is mostly driven by gene duplications, deletions, and sequence modifications of existing proteins. Indirect information about relative rates and other intrinsic parameters of these three basic processes is contained in the proteome-wide distribution of sequence identities of pairs of paralogous proteins. Results We introduce a simple mathematical framework based on a stochastic birth-and-death model that allows one to extract some of this information and apply it to the set of all pairs of paralogous proteins in H. pylori, E. coli, S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens. It was found that the histogram of sequence identities p generated by an all-to-all alignment of all protein sequences encoded in a genome is well fitted with a power-law form ~ p-γ with the value of the exponent γ around 4 for the majority of organisms used in this study. This implies that the intra-protein variability of substitution rates is best described by the Gamma-distribution with the exponent α ≈ 0.33. Different features of the shape of such histograms allow us to quantify the ratio between the genome-wide average deletion/duplication rates and the amino-acid substitution rate. Conclusion We separately measure the short-term ("raw") duplication and deletion rates rdup∗, rdel∗ which include gene copies that will be removed soon after the duplication event and their dramatically reduced long-term counterparts rdup, rdel. High deletion rate among recently duplicated proteins is consistent with a scenario in which they didn't have enough time to significantly change their functional roles and thus are to a large degree disposable. Systematic trends of each of the four duplication/deletion rates with the total number of genes in the genome were analyzed. All but the deletion rate of recent duplicates rdel∗ were shown to systematically increase with Ngenes. Abnormally flat shapes of sequence identity histograms observed for yeast and human are consistent with lineages leading to these organisms undergoing one or more whole-genome duplications. This interpretation is corroborated by our analysis of the genome of Paramecium tetraurelia where the p-4 profile of the histogram is gradually restored by the successive removal of paralogs generated in its four known whole-genome duplication events. PMID:18039386
Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A
2018-05-08
The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Brabant, Magali; Baux, Ludwig; Casimir, Richard; Briand, Jean Paul; Chaloin, Olivier; Porceddu, Mathieu; Buron, Nelly; Chauvier, David; Lassalle, Myriam; Lecoeur, Hervé; Langonné, Alain; Dupont, Sylvie; Déas, Olivier; Brenner, Catherine; Rebouillat, Dominique; Muller, Sylviane; Borgne-Sanchez, Annie; Jacotot, Etienne
2009-10-01
Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.
Goonesekere, Nalin Cw
2009-01-01
The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.
Sequencing proteins with transverse ionic transport in nanochannels.
Boynton, Paul; Di Ventra, Massimiliano
2016-05-03
De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms and all sequence modifications that occur after a protein has been constructed from its corresponding DNA code. By obtaining the order of the amino acids that compose a given protein one can then determine both its secondary and tertiary structures through structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Here, we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel. We find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.
Application of 2D graphic representation of protein sequence based on Huffman tree method.
Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling
2012-05-01
Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Roles of JnRAP2.6-like from the transition zone of black walnut in hormone signaling
Zhonglian Huang; Peng Zhao; Jose Medina; Richard Meilan; Keith Woeste
2013-01-01
An EST sequence, designated JnRAP2-like, was isolated from tissue at the heartwood/sapwood transition zone (TZ) in black walnut (Juglans nigra L). The deduced amino acid sequence of JnRAP2-like protein consists of a single AP2- containing domain with significant similarity to conserved AP2/ERF DNA-binding domains in other...
Sumi, S; Tsuneyoshi, T; Furutani, H
1993-09-01
Rod-shaped flexuous viruses were partially purified from garlic plants (Allium sativum) showing typical mosaic symptoms. The genome was shown to be composed of RNA with a poly(A) tail of an estimated size of 10 kb as shown by denaturing agarose gel electrophoresis. We constructed cDNA libraries and screened four independent clones, which were designated GV-A, GV-B, GV-C and GV-D, using Northern and Southern blot hybridization. Nucleotide sequence determination of the cDNAs, two of which correspond to nearly one-third of the virus genomic RNA, shows that all of these viruses possess an identical genomic structure and that also at least four proteins are encoded in the viral cDNA, their M(r)s being estimated to be 15K, 27K, 40K and 11K. The 15K open reading frame (ORF) encodes the core-like sequence of a zinc finger protein preceded by a cluster of basic amino acid residues. The 27K ORF probably encodes the viral coat protein (CP), based on both the existence of some conserved sequences observed in many other rod-shaped or flexuous virus CPs and an overall amino acid sequence similarity to potexvirus and carlavirus CPs. The 11K ORF shows significant amino acid sequence similarities to the corresponding 12K proteins of the potexviruses and carlaviruses. On the other hand, the 40K ORF product does not resemble any other plant virus gene products reported so far. The genomic organization in the 3' region of the garlic viruses resembles, but clearly differs from, that of carlaviruses. Phylogenetic analysis based upon the amino acid sequence of the viral capsid protein also indicates that the garlic viruses have a unique and distinct domain different from those of the potexvirus and carlavirus groups. The results suggest that the garlic viruses described here belong to an unclassified and new virus group closely related to the carlaviruses.
Metagenomic Analysis of Viral Communities in (Hado)Pelagic Sediments
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 106 to 1011 viruses/cm3 of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24−30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10−3 in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95−99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses. PMID:23468952
Metagenomic analysis of viral communities in (hado)pelagic sediments.
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 10(6) to 10(11) viruses/cm(3) of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24-30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10(-3) in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95-99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses.
Putaporntip, Chaturong; Hughes, Austin L.; Jongwutiwes, Somchai
2013-01-01
Background The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Methodology/Principal Findings Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. Conclusion/Significance The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus. PMID:23536840
Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun
2015-01-01
There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.
The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion
Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.
2014-01-01
Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881
Predicting Amyloidogenic Proteins in the Proteomes of Plants.
Antonets, Kirill S; Nizhnikov, Anton A
2017-10-16
Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals, it is currently clear that amyloids also represent a functionally important form of protein structure implicated in a variety of biological processes in organisms ranging from archaea and bacteria to fungi and animals. Despite their social significance, plants remain the most poorly studied group of organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time, we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than 2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in plant proteomes. We found that such proteins are overrepresented among membrane as well as DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where formation of amyloids might be functionally important.
Yama, Tomonari; Ochi, Arisa; Suto, Takuro; Hirasaka, Katsuya; Teshima-Kondo, Shigetada; Okumura, Yuushi; Oarada, Motoko; Choi, Inho; Mukai, Rie; Terao, Junji
2013-01-01
Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA), IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice. PMID:23762056
Lorenzo, J Ramiro; Alonso, Leonardo G; Sánchez, Ignacio E
2015-01-01
Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage "Protein and nucleic acid structure and sequence analysis".
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts
Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun
2012-01-01
Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272
Specific minor groove solvation is a crucial determinant of DNA binding site recognition
Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.
2014-01-01
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976
MIPS: a database for protein sequences and complete genomes.
Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D
1998-01-01
The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795
Nakano, Shogo; Asano, Yasuhisa
2015-02-03
Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.
NASA Astrophysics Data System (ADS)
Nakano, Shogo; Asano, Yasuhisa
2015-02-01
Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.
Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard
2009-05-01
The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.
Rapid and reliable protein structure determination via chemical shift threading.
Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S
2018-01-01
Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)-with an average TM-score performance of 0.68 (vs. 0.50-0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .
Chopra, V S; Metzler, M; Rasper, D M; Engqvist-Goldstein, A E; Singaraja, R; Gan, L; Fichter, K M; McCutcheon, K; Drubin, D; Nicholson, D W; Hayden, M R
2000-11-01
Huntingtin-interacting protein I (HIP1) is a membrane-associated protein that interacts with huntingtin, the protein altered in Huntington disease. HIP1 shows homology to Sla2p, a protein essential for the assembly and function of the cytoskeleton and endocytosis in Saccharomyces cerevisiae. We have determined that the HIP1 gene comprises 32 exons spanning approximately 215 kb of genomic DNA and gives rise to two alternate splice forms termed HIP1-1 and HIP1-2. Additionally, we have identified a novel protein termed HIP12 with significant sequence and biochemical similarities to HIP1 and high sequence similarity to Sla2p. HIP12 differs from HIP1 in its pattern of expression both at the mRNA and protein level. However, HIP1 and HIP12 are both found within the brain and show a similar subcellular distribution pattern. In contrast to HIP1, which is toxic in cell culture, HIP12 does not confer toxicity in the same assay systems. Interestingly, HIP12 does not interact with huntingtin but can interact with HIP1. suggesting a potential interaction in vivo that may influence the function of each respective protein.
Chiusano, M L; D'Onofrio, G; Alvarez-Valin, F; Jabbari, K; Colonna, G; Bernardi, G
1999-09-30
We investigated the relationships between the nucleotide substitution rates and the predicted secondary structures in the three states representation (alpha-helix, beta-sheet, and coil). The analysis was carried out on 34 alignments, each of which comprised sequences belonging to at least four different mammalian orders. The rates of synonymous substitution were found to be significantly different in regions predicted to be alpha-helix, beta-sheet, or coil. Likewise, the nonsynonymous rates also differ, although expectedly at a lower extent, in the three types of secondary structure, suggesting that different selective constraints associated with the different structures are affecting in a similar way the synonymous and nonsynonymous rates. Moreover, the base composition of the third codon positions is different in coding sequence regions corresponding to different secondary structures of proteins.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Zhu, Haisheng; Liu, Jianting; Wen, Qingfang; Chen, Mindong; Wang, Bin; Zhang, Qianrong; Xue, Zhuzheng
2017-01-01
Fresh-cut luffa (Luffa cylindrica) fruits commonly undergo browning. However, little is known about the molecular mechanisms regulating this process. We used the RNA-seq technique to analyze the transcriptomic changes occurring during the browning of fresh-cut fruits from luffa cultivar 'Fusi-3'. Over 90 million high-quality reads were assembled into 58,073 Unigenes, and 60.86% of these were annotated based on sequences in four public databases. We detected 35,282 Unigenes with significant hits to sequences in the NCBInr database, and 24,427 Unigenes encoded proteins with sequences that were similar to those of known proteins in the Swiss-Prot database. Additionally, 20,546 and 13,021 Unigenes were similar to existing sequences in the Eukaryotic Orthologous Groups of proteins and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Furthermore, 27,301 Unigenes were differentially expressed during the browning of fresh-cut luffa fruits (i.e., after 1-6 h). Moreover, 11 genes from five gene families (i.e., PPO, PAL, POD, CAT, and SOD) identified as potentially associated with enzymatic browning as well as four WRKY transcription factors were observed to be differentially regulated in fresh-cut luffa fruits. With the assistance of rapid amplification of cDNA ends technology, we obtained the full-length sequences of the 15 Unigenes. We also confirmed these Unigenes were expressed by quantitative real-time polymerase chain reaction analysis. This study provides a comprehensive transcriptome sequence resource, and may facilitate further studies aimed at identifying genes affecting luffa fruit browning for the exploitation of the underlying mechanism.
Tripathi, Prabhanshu; Nair, Smitha; Singh, B P; Arora, Naveen
2011-03-01
Serine protease from numerous sources have been identified and characterized as major allergens. The present study aimed to clone, express and characterize a serine protease from Curvularia lunata. cDNA library screening identified partial protease clones. A clone showed significant homology to subtilisin like serine proteases from Aspergillus and Penicillium species. Full length sequence was generated by RACE PCR, subcloned in pET vector, protein expressed in Escherichia coli and purified from inclusion bodies yielding 0.5 mg/L of culture. Bioinformatic analysis identified serine protease motifs of subtilase family, catalytic triad and N-glycosylation sites on the primary sequence. The protein resolved at 54-kDa on SDS-PAGE and was recognized as a major allergen on immunoblot with 13/16 C. lunata sensitive patients' sera in ELISA and immunoblot. Recombinant protein reacted with rabbit polyclonal antibodies against alkaline serine proteases from C. lunata. Recombinant protein required 50-56 ng of same protein for 50% inhibition of IgE binding in competitive ELISA. In addition, 13 of 16 patients' samples showed significant basophil histamine release upon stimulation with purified recombinant protein. In conclusion, a 54 kDa major allergen of C. lunata was cloned, expressed, characterized and showed biological activity. It has potential to be used in molecule based approach for allergy diagnosis and therapy. Copyright © 2010 Elsevier GmbH. All rights reserved.
A Novel Cylindrical Representation for Characterizing Intrinsic Properties of Protein Sequences.
Yu, Jia-Feng; Dou, Xiang-Hua; Wang, Hong-Bo; Sun, Xiao; Zhao, Hui-Ying; Wang, Ji-Hua
2015-06-22
The composition and sequence order of amino acid residues are the two most important characteristics to describe a protein sequence. Graphical representations facilitate visualization of biological sequences and produce biologically useful numerical descriptors. In this paper, we propose a novel cylindrical representation by placing the 20 amino acid residue types in a circle and sequence positions along the z axis. This representation allows visualization of the composition and sequence order of amino acids at the same time. Ten numerical descriptors and one weighted numerical descriptor have been developed to quantitatively describe intrinsic properties of protein sequences on the basis of the cylindrical model. Their applications to similarity/dissimilarity analysis of nine ND5 proteins indicated that these numerical descriptors are more effective than several classical numerical matrices. Thus, the cylindrical representation obtained here provides a new useful tool for visualizing and charactering protein sequences. An online server is available at http://biophy.dzu.edu.cn:8080/CNumD/input.jsp .
Charles, Jermilia; Firth, Andrew E; Loroño-Pino, Maria A; Garcia-Rejon, Julian E; Farfan-Ale, Jose A; Lipkin, W Ian; Blitvich, Bradley J; Briese, Thomas
2016-04-01
Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.
Discovering Sequence Motifs with Arbitrary Insertions and Deletions
Frith, Martin C.; Saunders, Neil F. W.; Kobe, Bostjan; Bailey, Timothy L.
2008-01-01
Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2. PMID:18437229
Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun
2013-01-01
Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing. PMID:23555891
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification.
Sinclair, Robert M; Ravantti, Janne J; Bamford, Dennis H
2017-04-15
Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. Copyright © 2017 Sinclair et al.
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification
Sinclair, Robert M.; Ravantti, Janne J.
2017-01-01
ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. PMID:28122979
Peterson, Thomas A; Nehrt, Nathan L; Park, DoHwan
2012-01-01
Background and objective With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of disease mutation clusters on protein domains by incorporating domain functional annotations to assist in the functional characterization of novel variants. Methods Disease mutations aggregated from multiple databases were mapped to domains, and were classified as either cancer- or non-cancer-related. The statistical method for identifying significantly disease-associated domain positions was applied to both sets of mutations and to randomly generated mutation sets for comparison. To leverage the known function of protein domain regions, the method optionally distributes significant scores to associated functional feature positions. Results Most disease mutations are localized within protein domains and display a tendency to cluster at individual domain positions. The method identified significant disease mutation hotspots in both the cancer and non-cancer datasets. The domain significance scores (DS-scores) for cancer form a bimodal distribution with hotspots in oncogenes forming a second peak at higher DS-scores than non-cancer, and hotspots in tumor suppressors have scores more similar to non-cancers. In addition, on an independent mutation benchmarking set, the DS-score method identified mutations known to alter protein function with very high precision. Conclusion By aggregating mutations with known disease association at the domain level, the method was able to discover domain positions enriched with multiple occurrences of deleterious mutations while incorporating relevant functional annotations. The method can be incorporated into translational bioinformatics tools to characterize rare and novel variants within large-scale sequencing studies. PMID:22319177
Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis
Silverman, Heather G.; Roberto, Francisco F.
2006-01-17
The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.
Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry
Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.
1971-01-01
Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904
HMPAS: Human Membrane Protein Analysis System
2013-01-01
Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858
Kizaki, Seiichiro; Chandran, Anandhakumar; Sugiyama, Hiroshi
2016-03-02
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the highly selective oxidation sites. In this study, we used high-throughput sequencing to investigate the sequence specificity of mC oxidation by Tet1. A 6.6×10(4) -member mC-containing random DNA-sequence library was constructed. The library was subjected to Tet-reactive pulldown followed by high-throughput sequencing. Analysis of the obtained sequence data identified the Tet1-reactive sequences. We identified mCpG as a highly reactive sequence of Tet1 protein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grandi, Paola; Dang, Tam; Pané, Nelly; Shevchenko, Andrej; Mann, Matthias; Forbes, Douglass; Hurt, Ed
1997-01-01
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates. PMID:9348540
Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M
1991-06-01
Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.
NASA Technical Reports Server (NTRS)
Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)
1992-01-01
The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.
HomPPI: a class of sequence homology based protein-protein interface prediction methods
2011-01-01
Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/. Conclusions Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners. PMID:21682895
Qu, Cheng; Fu, Ningning; Xu, Yihua
2016-01-01
The sycamore lace bug, Corythucha ciliata (Hemiptera: Tingidae), is an invasive forestry pest rapidly expanding in many countries. This pest poses a considerable threat to the urban forestry ecosystem, especially to Platanus spp. However, its molecular biology and biochemistry are poorly understood. This study reports the first C. ciliata transcriptome, encompassing three different life stages (Nymphs, adults female (AF) and adults male (AM)). In total, 26.53 GB of clean data and 60,879 unigenes were obtained from three RNA-seq libraries. These unigenes were annotated and classified by Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Ortholog database). After all pairwise comparisons between these three different samples, a large number of differentially expressed genes were revealed. The dramatic differences in global gene expression profiles were found between distinct life stages (nymphs and AF, nymphs and AM) and sex difference (AF and AM), with some of the significantly differentially expressed genes (DEGs) being related to metamorphosis, digestion, immune and sex difference. The different express of unigenes were validated through quantitative Real-Time PCR (qRT-PCR) for 16 randomly selected unigenes. In addition, 17,462 potential simple sequence repeat molecular markers were identified in these transcriptome resources. These comprehensive C. ciliata transcriptomic information can be utilized to promote the development of environmentally friendly methodologies to disrupt the processes of metamorphosis, digestion, immune and sex differences. PMID:27494615
Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.
Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi
2017-04-01
High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.
Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein.
Bellachioma, G; Stirling, J L; Orlacchio, A; Beccari, T
1993-01-01
A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr). Images Figure 1 PMID:7689829
Darville, Lancia N F; Merchant, Mark E; Maccha, Venkata; Siddavarapu, Vivekananda Reddy; Hasan, Azeem; Murray, Kermit K
2012-02-01
Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35kDa protein was ~98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Emergence of novel domains in proteins
2013-01-01
Background Proteins are composed of a combination of discrete, well-defined, sequence domains, associated with specific functions that have arisen at different times during evolutionary history. The emergence of novel domains is related to protein functional diversification and adaptation. But currently little is known about how novel domains arise and how they subsequently evolve. Results To gain insights into the impact of recently emerged domains in protein evolution we have identified all human young protein domains that have emerged in approximately the past 550 million years. We have classified them into vertebrate-specific and mammalian-specific groups, and compared them to older domains. We have found 426 different annotated young domains, totalling 995 domain occurrences, which represent about 12.3% of all human domains. We have observed that 61.3% of them arose in newly formed genes, while the remaining 38.7% are found combined with older domains, and have very likely emerged in the context of a previously existing protein. Young domains are preferentially located at the N-terminus of the protein, indicating that, at least in vertebrates, novel functional sequences often emerge there. Furthermore, young domains show significantly higher non-synonymous to synonymous substitution rates than older domains using human and mouse orthologous sequence comparisons. This is also true when we compare young and old domains located in the same protein, suggesting that recently arisen domains tend to evolve in a less constrained manner than older domains. Conclusions We conclude that proteins tend to gain domains over time, becoming progressively longer. We show that many proteins are made of domains of different age, and that the fastest evolving parts correspond to the domains that have been acquired more recently. PMID:23425224
Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.
2014-01-01
A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551
A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches
Apgar, James; Ross, Mary; Zuo, Xiao; Dohle, Sarah; Sturtevant, Derek; Shen, Binzhang; de la Vega, Humberto; Lessard, Philip; Lazar, Gabor; Raab, R. Michael
2012-01-01
Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch. PMID:22649521
Evolution of New Function in the GTP Cyclohydrolase II Proteins of Streptomyces coelicolor†
Spoonamore, James E.; Dahlgran, Annie L.; Jacobsen, Neil E.; Bandarian, Vahe
2009-01-01
The genome sequence of Streptomyces coelicolor contains three open reading frames (sco1441, sco2687, and sco6655) that encode proteins with significant (>40%) amino acid identity to GTP cyclohydrolase II (GCH II), which catalyzes the committed step in the biosynthesis of riboflavin. The physiological significance of the redundancy of these proteins in S. coelicolor is not known. However, the gene contexts of the three proteins are different, suggesting that they may serve alternate biological niches. Each of the three proteins was overexpressed in Escherichia coli and characterized to determine if their functions are biologically overlapping. As purified, each protein contains 1 molar equiv of zinc/ mol of protein and utilizes guanosine 5′-triphosphate (GTP) as substrate. Two of these proteins (SCO 1441 and SCO 2687) produce the canonical product of GCH II, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate (APy). Remarkably, however, one of the three proteins (SCO 6655) converts GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate (FAPy), as shown by UV-visible spectrophotometry, mass spectrometry, and NMR. This activity has been reported for a GTP cyclohydrolase III protein from Methanocaldococcus jannaschii [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074–15084], which has no amino acid sequence homology to SCO 6655. Comparison of the sequences of these proteins and mapping onto the structure of the E. coli GCH II protein [Ren, J., Kotaka, M., Lockyer, M., Lamb, H. K., Hawkins, A. R., and Stammers, D. K. (2005) J. Biol. Chem. 280, 36912–36919] allowed identification of a switch residue, Met120, which appears to be responsible for the altered fate of GTP observed with SCO 6655; a Tyr is found in the analogous position of all proteins that have been shown to catalyze the conversion of GTP to APy. The Met120Tyr variant of SCO 6655 acquires the ability to catalyze the conversion of GTP to APy, suggesting a role for Tyr120 in the late phase of the reaction. Our data are consistent with duplication of GCH II in S. coelicolor promoting evolution of a new function. The physiological role(s) of the gene clusters that house GCH II homologues will be discussed. PMID:17002314
Reiz, Bela; Li, Liang
2010-09-01
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Comparative analysis of the prion protein gene sequences in African lion.
Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming
2006-10-01
The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.