Zhu, Xian-Jin; Zhang, Han-Qi; Zhao, Tian-Hong; Li, Jian-Dong; Yin, Hong
2017-10-12
Spatial and temporal variations are important points of focus in ecological research. Analysing their differences improves our understanding on the variations of ecological phenomena. Using data from the Liaoning Statistical Yearbook, we investigated the spatial and temporal variations of cropland carbon transfer (CCT), an important ecological phenomenon in quantifying the regional carbon budget, in particular, the influencing factors and difference. The results showed that, from 1992 to 2014, the average CCT in Liaoning province was 18.56 TgC yr -1 and decreased from northwest to southeast. CCT spatial variation was primarily affected by the ratio of planting area to regional area (RPR) via its effect on the magnitude of carbon transfer (MCT), which depended mainly on fertilizer usage per area (FUA). From 1992 to 2014, CCT exhibited a significantly increasing trend with a rate of 0.48 TgC yr -1 . The inter-annual variation of CCT was dominated by carbon transfer per planting area (CTP) through its effect on MCT, which significantly correlated with FUA but showed no significant correlation with climatic factors. Therefore, the factors affecting the spatial variation of CCT differed from those that affected its inter-annual variation, indicating that the spatial and temporal variations of ecological phenomena were affected by divergent factors.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
NASA Astrophysics Data System (ADS)
Kodama, Taketoshi; Wagawa, Taku; Iguchi, Naoki; Takada, Yoshitake; Takahashi, Takashi; Fukudome, Ken-Ichi; Morimoto, Haruyuki; Goto, Tsuneo
2018-06-01
This study evaluates spatial variations in zooplankton community structure and potential controlling factors along the Japanese coast under the influence of the coastal branch of the Tsushima Warm Current (CBTWC). Variations in the density of morphologically identified zooplankton in the surface layer in May were investigated for a 15-year period. The density of zooplankton (individuals per cubic meter) varied between sampling stations, but there was no consistent west-east trend. Instead, there were different zooplankton community structures in the west and east, with that in Toyama Bay particularly distinct: Corycaeus affinis and Calanus sinicus were dominant in the west and Oithona atlantica was dominant in Toyama Bay. Distance-based redundancy analysis (db-RDA) was used to characterize the variation in zooplankton community structure, and four axes (RD1-4) provided significant explanation. RD2-4 only explained < 4.8 % of variation in the zooplankton community and did not show significant spatial difference; however, RD1, which explained 89.9 % of variation, did vary spatially. Positive and negative species scores on RD1 represent warm- and cold-water species, respectively, and their variation was mainly explained by water column mean temperature, and it is considered to vary spatially with the CBTWC. The CBTWC intrusion to the cold Toyama Bay is weak and occasional due to the submarine canyon structure of the bay. Therefore, the varying bathymetric characteristics along the Japanese coast of the Japan Sea generate the spatial variation in zooplankton community structure, and dominance of warm-water species can be considered an indicator of the CBTWC.
Terán-Hernández, Mónica; Ramis-Prieto, Rebeca; Calderón-Hernández, Jaqueline; Garrocho-Rangel, Carlos Félix; Campos-Alanís, Juan; Ávalos-Lozano, José Antonio; Aguilar-Robledo, Miguel
2016-09-29
Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. The highest risk is concentrated in the southeast, where the Matlapa and Aquismón municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care.
Linked hydrologic and climate variations in British Columbia and Yukon.
Whitfield, P H
2001-01-01
Climatic and hydrologic variations between the decades 1976-1985 and 1986-1995 are examined at 34 climate stations and 275 hydrology stations. The variations in climate are distributed across a broad spatial area. Temperatures were generally warmer in the most recent decade, with many stations showing significant increases during the spring and fall. No significant decreases in temperature were found. Significant increases in temperature were more frequent in the south than in the northern portions of the region. Significant changes in precipitation were also more prevalent in the south. In coastal areas, there were significant decreases in precipitation during the dry season, and significant increases during the wet season. In the BC interior, significant precipitation decreases occurred during the fall, with significant increases during the winter and spring. In the north there were few changes in precipitation. The hydrologic responses to these variations in climate follow six distinctive patterns. The spatial distribution of these patterns suggests that in different ecozones, small variations in climate, particularly temperature, elicit different hydrologic responses.
NASA Astrophysics Data System (ADS)
Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.
2010-09-01
To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.
Kuehnl, Andreas; Salvermoser, Michael; Erk, Alexander; Trenner, Matthias; Schmid, Volker; Eckstein, Hans-Henning
2018-06-01
This study aimed to analyze the spatial distribution and regional variation of the hospital incidence and in hospital mortality of abdominal aortic aneurysms (AAA) in Germany. German DRG statistics (2011-2014) were analysed. Patients with ruptured AAA (rAAA, I71.3, treated or not) and patients with non-ruptured AAA (nrAAA, I71.4, treated by open or endovascular aneurysm repair) were included. Age, sex, and risk standardisation was done using standard statistical procedures. Regional variation was quantified using systematic component of variation. To analyse spatial auto-correlation and spatial pattern, global Moran's I and Getis-Ord Gi* were calculated. A total of 50,702 cases were included. Raw hospital incidence of AAA was 15.7 per 100,000 inhabitants (nrAAA 13.1; all rAAA 2.7; treated rAAA 1.6). The standardised hospital incidence of AAA ranged from 6.3 to 30.3 per 100,000. Systematic component of variation proportion was 96% in nrAAA and 55% in treated rAAA. Incidence rates of all AAA were significantly clustered with above average values in the northwestern parts of Germany and below average values in the south and eastern regions. Standardised mortality of nrAAA ranged from 1.7% to 4.3%, with that of treated rAAA ranging from 28% to 52%. Regional variation and spatial distribution of standardised mortality was not different from random. There was significant regional variation and clustering of the hospital incidence of AAA in Germany, with higher rates in the northwest and lower rates in the southeast. There was no significant variation in standardised (age/sex/risk) mortality between counties. Copyright © 2018. Published by Elsevier B.V.
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; ...
2017-09-28
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
NASA Astrophysics Data System (ADS)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; Crump, Alex R.; Chen, Xingyuan; Hess, Nancy
2017-09-01
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but only in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Combining such an approach with broader knowledge of thresholding behavior - here related to active layer depth - would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452
Xu, Henglong; Jiang, Yong; Xu, Guangjian
2016-11-15
Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contact line motion over substrates with spatially non-uniform properties
NASA Astrophysics Data System (ADS)
Ajaev, Vladimir; Gatapova, Elizaveta; Kabov, Oleg
2017-11-01
We develop mathematical models of moving contact lines over flat solid surfaces with spatial variation of temperature and wetting properties under the conditions when evaporation is significant. The gas phase is assumed to be pure vapor and a lubrication-type framework is employed for describing viscous flow in the liquid. Marangoni stresses at the liquid surface arise as a result of temperature variation in the vapor phase, non-equilibrium effects during evaporation at the interface, and Kelvin effect. The relative importance of these three factors is determined. Variation of wetting properties is modeled through a two-component disjoining pressure, with the main focus on spatially periodic patterns leading to time-periodic variation of the contact line speed.
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques
2014-11-01
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming
2017-04-01
The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.
Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen
2016-03-01
In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
Zulu, Leo C; Kalipeni, Ezekiel; Johannes, Eliza
2014-05-23
Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi's estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across 'sub-epidemics' while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV "hotspots" clustered among eleven southern districts/cities while a "coldspot" captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale.
2014-01-01
Background Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi’s estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Methods Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Results Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across ‘sub-epidemics’ while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV “hotspots” clustered among eleven southern districts/cities while a “coldspot” captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Conclusions Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale. PMID:24886573
Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng
2016-01-01
Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson's correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters can improve the role of remote sensing data as a proxy of plant photosynthesis in semi-empirical Rs models and benefit the acquisition of Rs in cropland ecosystems at large scales.
Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.
2003-01-01
Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.
Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier
2015-01-01
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853
Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor
NASA Astrophysics Data System (ADS)
Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad
2018-03-01
A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
Dobek, Mateusz; Demczuk, Piotr; Nowosad, Marek
2013-06-01
Due to the diversified land relief and presence of numerous gorge dissections intensively used by man largely for recreational purposes, Lublin is a valuable study area in terms of bioclimatology. The results of modelling of the variation of the bioclimatic conditions of Lublin provide information useful e.g. in the economy and spatial planning. The determined features of the city's bioclimate can be a significant element in the selection of locations for new residential and recreational investments. Knowledge on the spatial variation of biometeorological situations positively and negatively influencing the human organism can also find application in activities concerning the improvement of life quality and health protection, as well as in tourism and recreation. The objective of the paper is to present the spatial variation of biometeorological conditions in Lublin based on the example of specified weather scenarios.
Effect of fertility on secondary sex ratio and twinning rate in Sweden, 1749-1870.
Fellman, Johan; Eriksson, Aldur W
2015-02-01
We analyzed the effect of total fertility rate (TFR) and crude birth rate (CBR) on the number of males per 100 females at birth, also called the secondary sex ratio (SR), and on the twinning rate (TWR). Earlier studies have noted regional variations in TWR and racial differences in the SR. Statistical analyses have shown that comparisons between SRs demand large data sets because random fluctuations in moderate data are marked. Consequently, reliable results presuppose national birth data. Here, we analyzed historical demographic data and their regional variations between counties in Sweden. We built spatial models for the TFR in 1860 and the CBR in 1751-1870, and as regressors we used geographical coordinates for the provincial capitals of the counties. For both variables, we obtained significant spatial variations, albeit of different patterns and power. The SR among the live-born in 1749-1869 and the TWR in 1751-1860 showed slight spatial variations. The influence of CBR and TFR on the SR and TWR was examined and statistical significant effects were found.
Modeling spatial variation in avian survival and residency probabilities
Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth
2010-01-01
The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long
2015-02-01
Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.
Distribution of Chironomidae in a semiarid intermittent river of Brazil.
Farias, R L; Carvalho, L K; Medeiros, E S F
2012-12-01
The effects of the intermittency of water flow on habitat structure and substrate composition have been reported to create a patch dynamics for the aquatic fauna, mostly for that associated with the substrate. This study aims to describe the spatial distribution of Chironomidae in an intermittent river of semiarid Brazil and to associate assemblage composition with environmental variables. Benthic invertebrates were sampled during the wet and dry seasons using a D-shaped net (40 cm wide and 250 μm mesh), and the Chironomidae were identified to genus level. The most abundant genera were Tanytarsus, Polypedilum, and Saetheria with important contributions of the genera Procladius, Aedokritus, and Dicrotendipes. Richness and density were not significantly different between the study sites, and multiple regression showed that the variation in richness and density explained by the environmental variables was significant only for substrate composition. The composition of genera showed significant spatial segregation across the study sites. Canonical Correspondence Analysis showed significant correspondence between Chironomidae composition and the environmental variables, with submerged vegetation, elevation, and leaf litter being important predictors of the Chironomidae fauna. This study showed that Chironomidae presented important spatial variation along the river and that this variation was substantially explained by environmental variables associated with the habitat structure and river hierarchy. We suggest that the observed spatial segregation in the fauna results in the high diversity of this group of organisms in intermittent streams.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel
2014-01-01
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
Ozgul, Arpat; Armitage, Kenneth B; Blumstein, Daniel T; Oli, Madan K
2006-04-01
Spatiotemporal variation in age-specific survival rates can profoundly influence population dynamics, but few studies of vertebrates have thoroughly investigated both spatial and temporal variability in age-specific survival rates. We used 28 years (1976-2003) of capture-mark-recapture (CMR) data from 17 locations to parameterize an age-structured Cormack-Jolly-Seber model, and investigated spatial and temporal variation in age-specific annual survival rates of yellow-bellied marmots (Marmota flaviventris). Survival rates varied both spatially and temporally, with survival of younger animals exhibiting the highest degree of variation. Juvenile survival rates varied from 0.52 +/- 0.05 to 0.78 +/- 0.10 among sites and from 0.15 +/- 0.14 to 0.89 +/- 0.06 over time. Adult survival rates varied from 0.62 +/- 0.09 to 0.80 +/- 0.03 among sites, but did not vary significantly over time. We used reverse-time CMR models to estimate the realized population growth rate (lamda), and to investigate the influence of the observed variation in age-specific survival rates on lamda. The realized growth rate of the population closely covaried with, and was significantly influenced by, spatiotemporal variation in juvenile survival rate. High variability in juvenile survival rates over space and time clearly influenced the dynamics of our study population and is also likely to be an important determinant of the spatiotemporal variation in the population dynamics of other mammals with similar life history characteristics.
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Helm, Fabian; Munzert, Jörn; Troje, Nikolaus F
2017-08-01
This study examined the kinematic characteristics of disguised movements by applying linear discriminant (LDA) and dissimilarity analyses to the motion data from 788 disguised and 792 non-disguised 7-m penalty throws performed by novice and expert handball field players. Results of the LDA showed that discrimination between type of throws (disguised vs. non-disguised) was more error-prone when throws were performed by experts (spatial: 4.6%; temporal: 29.6%) compared to novices (spatial: 1.0%; temporal: 20.2%). The dissimilarity analysis revealed significantly smaller spatial dissimilarities and variations between type of throws in experts compared to novices (p<0.001), but also showed that these spatial dissimilarities and variations increased significantly in both groups the closer the throws came to the moment of (predicted) ball release. In contrast, temporal dissimilarities did not differ significantly between groups. Thus, our data clearly demonstrate that expertise in disguising one's own action intentions results in an ability to perform disguised penalty throws that are highly similar to genuine throws. We suggest that this expertise depends mainly on keeping spatial dissimilarities small. However, the attempt to disguise becomes a challenge the closer one gets to the action outcome (i.e., ball release) becoming visible. Copyright © 2017 Elsevier B.V. All rights reserved.
Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion
2012-01-01
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. PMID:22937029
Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua
2012-03-01
Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.
NASA Astrophysics Data System (ADS)
Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.
2013-12-01
This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Simon D. P.
2010-10-01
We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.
Community structure of aquatic insects in the Esparza River, Costa Rica.
Herrera-Vásquez, Jonathan
2009-01-01
This study focused on the structure of the aquatic insect community in spatial and temporal scales in the Esparza River. The river was sampled for one full year throughout 2007. During the dry season low flow months, five sampling points were selected in two different habitats (currents and pools), with five replicates per sample site. During the wet season with peak rain, only the data in the "current habitat" were sampled at each site. Specimens present in the different substrates were collected and preserved in situ. A nested ANOVA was then applied to the data to determine richness and density as the response variables. The variations in temporal and spatial scales were analyzed using width, depth and discharge of the river, and then analyzed using a nested ANOVA. Only a correlation of 51% similarity in richness was found, while in spatial scale, richness showed significant variation between sampling sites, but not between habitats. However, the temporal scale showed significant differences between habitats. Density showed differences between sites and habitats during the dry season in the spatial scale, while in the temporal scale significant variation was found between sampling sites. Width varied between habitats during the dry season, but not between sampling points. Depth showed differences between sampling sites and season. This work studies the importance of community structure of aquatic insects in rivers, and its relevance for the quality of water in rivers and streams.
S. Conor Keitzer; Reuben R. Goforth
2013-01-01
Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...
Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu
2014-01-01
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.
Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu
2014-01-01
Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549
Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S
2012-09-01
Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.
Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.
Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li
2013-03-01
Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. © 2012 Blackwell Publishing Ltd.
Geographic variations of ecosystem service intensity in Fuzhou City, China.
Hu, Xisheng; Hong, Wei; Qiu, Rongzu; Hong, Tao; Chen, Can; Wu, Chengzhen
2015-04-15
Ecosystem services are strongly influenced by the landscape configuration of natural and human systems. So they are heterogeneous across landscapes. However lack of the knowledge of spatial variations of ecosystem services constrains the effective management and conservation of ecosystems. We presented a spatially explicit and quantitative assessment of the geographic variations in ecosystem services for the Fuzhou City in 2009 using exploratory spatial data analysis (ESDA) and semivariance analysis. Results confirmed a significant and positive spatial autocorrelation, and revealed several hot-spots and cold-spots for the spatial distribution of ecosystem service intensity (ESI) in the study area. Also the trend surface analysis indicated that the level of ESI tended to be reduced gradually from north to south and from west to east, with a trough in the urban central area, which was quite in accordance with land-use structure. A more precise cluster map was then developed using the range of lag distance, deriving from semivariance analysis, as neighborhood size instead of default value in the software of ESRI ArcGIS 10.0, and geographical clusters where population growth and land-use pressure varied significantly and positively with ESI across the city were also created by geographically weighted regression (GWR). This study has good policy implications applicable to prioritize areas for conservation or construction, and design ecological corridor to improve ecosystem service delivery to benefiting areas. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suo, Lizhu; Huang, Mingbin; Zhang, Yongkun; Duan, Liangxia; Shan, Yan
2018-07-01
Soil moisture dynamics plays an active role in ecological and hydrological processes, and it depends on a large number of environmental factors, such as topographic attributes, soil properties, land use types, and precipitation. However, studies must still clarify the relative significance of these environmental factors at different soil depths and at different spatial scales. This study aimed: (1) to characterize temporal and spatial variations in soil moisture content (SMC) at four soil layers (0-40, 40-100, 100-200, and 200-500 cm) and three spatial scales (plot, hillslope, and region); and (2) to determine their dominant controls in diverse soil layers at different spatial scales over semiarid and semi-humid areas of the Loess Plateau, China. Given the high co-dependence of environmental factors, partial least squares regression (PLSR) was used to detect relative significance among 15 selected environmental factors that affect SMC. Temporal variation in SMC decreased with increasing soil depth, and vertical changes in the 0-500 cm soil profile were divided into a fast-changing layer (0-40 cm), an active layer (40-100 cm), a sub-active layer (100-200 cm), and a relatively stable layer (200-500 cm). PLSR models simulated SMC accurately in diverse soil layers at different scales; almost all values for variation in response (R2) and goodness of prediction (Q2) were >0.5 and >0.0975, respectively. Upper and lower layer SMCs were the two most important factors that influenced diverse soil layers at three scales, and these SMC variables exhibited the highest importance in projection (VIP) values. The 7-day antecedent precipitation and 7-day antecedent potential evapotranspiration contributed significantly to SMC only at the 0-40 cm soil layer. VIP of soil properties, especially sand and silt content, which influenced SMC strongly, increased significantly after increasing the measured scale. Mean annual precipitation and potential evapotranspiration also influenced SMC at the regional scale significantly. Overall, this study indicated that dominant controls of SMC varied among three spatial scales on the Loess Plateau, and VIP was a function of spatial scale and soil depth.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
Vaughan, Adam S; Kramer, Michael R; Cooper, Hannah L F; Rosenberg, Eli S; Sullivan, Patrick S
2017-02-01
Theory and research on HIV and among men who have sex with men (MSM) have long suggested the importance of non-residential locations in defining structural exposures. Despite this, most studies within these fields define place as a residential context, neglecting the potential influence of non-residential locations on HIV-related outcomes. The concept of activity spaces, defined as a set of locations to which an individual is routinely exposed, represents one theoretical basis for addressing this potential imbalance. Using a one-time online survey to collect demographic, behavioral, and spatial data from MSM, this paper describes activity spaces and examines correlates of this spatial variation. We used latent class analysis to identify categories of activity spaces using spatial data on home, routine, potential sexual risk, and HIV prevention locations. We then assessed individual and area-level covariates for their associations with these categories. Classes were distinguished by the degree of spatial variation in routine and prevention behaviors (which were the same within each class) and in sexual risk behaviors (i.e., sex locations and locations of meeting sex partners). Partner type (e.g. casual or main) represented a key correlate of the activity space. In this early examination of activity spaces in an online sample of MSM, patterns of spatial behavior represent further evidence of significant spatial variation in locations of routine, potential HIV sexual risk, and HIV prevention behaviors among MSM. Although prevention behaviors tend to have similar geographic variation as routine behaviors, locations where men engage in potentially high-risk behaviors may be more spatially focused for some MSM than for others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contrasting patterns of fine-scale herb layer species composition in temperate forests
NASA Astrophysics Data System (ADS)
Chudomelová, Markéta; Zelený, David; Li, Ching-Feng
2017-04-01
Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.
A comparison of small-area hospitalisation rates, estimated morbidity and hospital access.
Shulman, H; Birkin, M; Clarke, G P
2015-11-01
Published data on hospitalisation rates tend to reveal marked spatial variations within a city or region. Such variations may simply reflect corresponding variations in need at the small-area level. However, they might also be a consequence of poorer accessibility to medical facilities for certain communities within the region. To help answer this question it is important to compare these variable hospitalisation rates with small-area estimates of need. This paper first maps hospitalisation rates at the small-area level across the region of Yorkshire in the UK to show the spatial variations present. Then the Health Survey of England is used to explore the characteristics of persons with heart disease, using chi-square and logistic regression analysis. Using the most significant variables from this analysis the authors build a spatial microsimulation model of morbidity for heart disease for the Yorkshire region. We then compare these estimates of need with the patterns of hospitalisation rates seen across the region. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.; ...
2017-11-22
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
Containment and Support: Core and Complexity in Spatial Language Learning
ERIC Educational Resources Information Center
Landau, Barbara; Johannes, Kristen; Skordos, Dimitrios; Papafragou, Anna
2017-01-01
Containment and support have traditionally been assumed to represent universal conceptual foundations for spatial terms. This assumption can be challenged, however: English "in" and "on" are applied across a surprisingly broad range of exemplars, and comparable terms in other languages show significant variation in their…
Craniofacial plasticity in ancient Peru.
Stone, Jessica H; Chew, Kristen; Ross, Ann H; Verano, John W
2015-01-01
Numerous studies have utilized craniometric data to explore the roles of genetic diversity and environment in human cranial shape variation. Peru is a particularly interesting region to examine cranial variation due to the wide variety of high and low altitude ecological zones, which in combination with rugged terrain have created isolated populations with vastly different physiological adaptations. This study examines seven samples from throughout Peru in an effort to understand the contributions of environmental adaptation and genetic relatedness to craniofacial variation at a regional scale. Morphological variation was investigated using a canonical discriminant analysis and Mahalanobis D(2) analysis. Results indicate that all groups are significantly different from one another with the closest relationship between Yauyos and Jahuay, two sites that are located geographically close in central Peru but in very different ecozones. The relationship between latitude/longitude and face shape was also examined with a spatial autocorrelation analysis (Moran's I) using ArcMap and show that there is significant spatial patterning for facial measures and geographic location suggesting that there is an association between biological variation and geographic location.
Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K
2017-08-01
Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sudakin, Daniel L.
2009-01-01
Introduction This investigation utilized spatial scan statistics, geographic information systems and multiple data sources to assess spatial clustering of statewide methamphetamine-related incidents. Temporal and spatial associations with regulatory interventions to reduce access to precursor chemicals (pseudoephedrine) were also explored. Methods Four statewide data sources were utilized including regional poison control center statistics, fatality incidents, methamphetamine laboratory seizures, and hazardous substance releases involving methamphetamine laboratories. Spatial clustering of methamphetamine incidents was assessed using SaTScan™. SaTScan™ was also utilized to assess space-time clustering of methamphetamine laboratory incidents, in relation to the enactment of regulations to reduce access to pseudoephedrine. Results Five counties with a significantly higher relative risk of methamphetamine-related incidents were identified. The county identified as the most likely cluster had a significantly elevated relative risk of methamphetamine laboratories (RR=11.5), hazardous substance releases (RR=8.3), and fatalities relating to methamphetamine (RR=1.4). A significant increase in relative risk of methamphetamine laboratory incidents was apparent in this same geographic area (RR=20.7) during the time period when regulations were enacted in 2004 and 2005, restricting access to pseudoephedrine. Subsequent to the enactment of these regulations, a significantly lower rate of incidents (RR 0.111, p=0.0001) was observed over a large geographic area of the state, including regions that previously had significantly higher rates. Conclusions Spatial and temporal scan statistics can be effectively applied to multiple data sources to assess regional variation in methamphetamine-related incidents, and explore the impact of preventive regulatory interventions. PMID:19225949
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
NASA Astrophysics Data System (ADS)
Divíšek, Jan; Zelený, David; Culek, Martin; Št'astný, Karel
2014-08-01
Studies that explore species-environment relationships at a broad scale are usually limited by the availability of sufficient habitat description, which is often too coarse to differentiate natural habitat patches. Therefore, it is not well understood how the distribution of natural habitats affects broad-scale patterns in the distribution of animal species. In this study, we evaluate the role of field-mapped natural habitats, land-cover types derived from remote sensing and climate on the composition of assemblages of five distinct animal groups, namely non-volant mammals, birds, reptiles, amphibians and butterflies native to the Czech Republic. First, we used variation partitioning based on redundancy analysis to evaluate the extent to which the environmental variables and their spatial structure might underlie the observed spatial patterns in the composition of animal assemblages. Second, we partitioned variations explained by climate, natural habitats and land-cover to compare their relative importance. Finally, we tested the independent effects of each variable in order to evaluate the significance of their contributions to the environmental model. Our results showed that spatial patterns in the composition of assemblages of almost all the considered animal groups may be ascribed mostly to variations in the environment. Although the shared effects of climatic variables, natural habitats and land-cover types explained the largest proportion of variation in each animal group, the variation explained purely by natural habitats was always higher than the variation explained purely by climate or land-cover. We conclude that most spatial variation in the composition of assemblages of almost all animal groups probably arises from biological processes operating within a spatially structured environment and suggest that natural habitats are important to explain observed patterns because they often perform better than habitat descriptions based on remote sensing. This underlines the value of using appropriate habitat data, for which high-resolution and large-area field-mapping projects are necessary.
NASA Astrophysics Data System (ADS)
Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo
2018-03-01
Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
Root, Elisabeth Dowling; Thomas, Deborah S K; Campagna, Elizabeth J; Morrato, Elaine H
2014-08-27
Area-level variation in treatment and outcomes may be a potential source of confounding bias in observational comparative effectiveness studies. This paper demonstrates how to use exploratory spatial data analysis (ESDA) and spatial statistical methods to investigate and control for these potential biases. The case presented compares the effectiveness of two antipsychotic treatment strategies: oral second-generation antipsychotics (SGAs) vs. long-acting paliperiodone palmitate (PP). A new-start cohort study was conducted analyzing patient-level administrative claims data (8/1/2008-4/30/2011) from Missouri Medicaid. ESDA techniques were used to examine spatial patterns of antipsychotic prescriptions and outcomes (hospitalization and emergency department (ED) visits). Likelihood of mental health-related outcomes were compared between patients starting PP (N = 295) and oral SGAs (N = 8,626) using multilevel logistic regression models adjusting for patient composition (demographic and clinical factors) and geographic region. ESDA indicated significant spatial variation in antipsychotic prescription patterns and moderate variation in hospitalization and ED visits thereby indicating possible confounding by geography. In the multilevel models for this antipsychotic case example, patient composition represented a stronger source of confounding than geographic context. Because geographic variation in health care delivery is ubiquitous, it could be a comparative effectiveness research (CER) best practice to test for possible geographic confounding in observational data. Though the magnitude of the area-level geography effects were small in this case, they were still statistically significant and should therefore be examined as part of this observational CER study. More research is needed to better estimate the range of confounding due to geography across different types of observational comparative effectiveness studies and healthcare utilization outcomes.
Geography of breast cancer incidence according to age & birth cohorts.
Gregorio, David I; Ford, Chandler; Samociuk, Holly
2017-06-01
Geographic variation in breast cancer incidence across Connecticut was examined according to age and birth cohort -specific groups. We assigned each of 60,937 incident breast cancer cases diagnosed in Connecticut, 1986-2009, to one of 828 census tracts around the state. Global and local spatial statistics estimated rate variation across the state according to age and birth cohorts. We found the global distribution of incidence rates across places to be more heterogeneous for younger women and later birth cohorts. Concurrently, the spatial scan identified more locations with significantly high rates that pertained to larger proportions of at-risk women within these groups. Geographic variation by age groups was more pronounced than by birth cohorts. Geographic patterns of cancer incidence exhibit differences within and across age and birth cohorts. With the continued insights from descriptive epidemiology, our capacity to effectively limit spatial disparities in cancer will improve. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qin, Jian; Xia, Tianlong; Li, You; Liang, Xue; Wei, Peng; Long, Bingshuang; Lei, Mingzhi; Wei, Xiao; Tang, Xianyan; Zhang, Zhiyong
2017-01-01
The study aims to determine the spatial and temporal variation of a longevous region and explore the correlation between longevity and socioeconomic development. Population data at the township level were obtained from the last four population censuses (1982–2010). Five main lifespan indicators and the Human Development Index (HDI) were calculated. Getis-Ord G*, Gravity modeling, and Pearson’s r between lifespan indicators and HDI were applied. In this study, a stable longevous gathering area was discovered in Hechi during different periods. Under the influence of social and economic development, more longevous areas appeared. However, the effects of genetic and natural environmental factors on longevity were always dominant in this remote and mountainous city. Furthermore, longevity indicators lacked any significant correlation with life expectancy. No significant positive correlation was detected between lifespan indicators and HDI. Thus, we conclude that lifespan indicators can determine the spatial distribution and variation pattern of longevity from multiple dimensions. The geographical scope of longevity in Hechi City is gradually expanding, and significant spatial clustering was detected in southwestern, southern, and eastern parts of Hechi. This study also found that social economic development is likely to have a certain impact on new longevous areas, but their role on extreme longevity is not significant. PMID:28753971
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul
2012-11-01
Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.
NASA Astrophysics Data System (ADS)
Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin
2017-10-01
Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.
Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon
NASA Astrophysics Data System (ADS)
Como, S.; Magni, P.; Van Der Velde, G.; Blok, F. S.; Van De Steeg, M. F. M.
2012-12-01
The analysis of the contribution of a food source to a consumer's diet or the trophic position of a consumer is highly sensitive to the variability of the isotopic values used as input data. However, little is known in coastal lagoons about the spatial variations in the isotopic values of primary consumers considered 'end members' in the isotope mixing models for quantifying the diet of secondary consumers or as a baseline for estimating the trophic position of consumers higher up in the food web. We studied the spatial variations in the δ13C and δ15N values of primary consumers and sedimentary organic matter (SOM) within a selected area of the Cabras lagoon (Sardinia, Italy). Our aim was to assess how much of the spatial variation in isotopic values of primary consumers was due to the spatial variability between sites and how much was due to differences in short distances from the shore. Samples were collected at four stations (50-100 m apart) selected randomly at two sites (1.5-2 km apart) chosen randomly at two distances from the shore (i.e. in proximity of the shore -Nearshore - and about 200 m away from the shore -Offshore). The sampling was repeated in March, May and August 2006 using new sites at the two chosen distances from the shore on each date. The isotopic values of size-fractionated seston and macrophytes were also analyzed as a complementary characterization of the study area. While δ15N did not show any spatial variations, the δ13C values of deposit feeders, Alitta (=Neanthes) succinea, Lekanesphaera hookeri, Hydrobia acuta and Gammarus aequicauda, were more depleted Offshore than Nearshore. For these species, there were significant effects of distance or distance × dates in the mean δ13C values, irrespective of the intrinsic variation between sites. SOM showed similar spatial variations in δ13C values, with Nearshore-Offshore differences up to 6‰. This indicates that the spatial isotopic changes are transferred from the food sources to the deposit feeders studied. In contrast, δ13C and δ15N values of suspension feeders, Ficopomatus enigmaticus and Amphibalanus amphitrite, did not show major variations, either between sites, or between Nearshore and Offshore. These different patterns between deposit feeders and suspension feeders are probably due to a weaker trophic link of the latter with SOM. We suggest that the Nearshore-Offshore gradient might be an important source of isotopic variation that needs to be considered in future web studies in coastal lagoons.
Predictions of avian Plasmodium expansion under climate change.
Loiseau, Claire; Harrigan, Ryan J; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Adám Z; Chastel, Olivier; Sorci, Gabriele
2013-01-01
Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites.
What Matters in Education: A Decomposition of Educational Outcomes with Multiple Measures
ERIC Educational Resources Information Center
Li, Jinjing; Miranti, Riyana; Vidyattama, Yogi
2017-01-01
Significant variations in educational outcomes across both the spatial and socioeconomic spectra in Australia have been widely debated by policymakers in recent years. This paper examines these variations and decomposes educational outcomes into 3 major input factors: availability of school resources, socioeconomic background, and a latent factor…
Rood, Ente J J; Goris, Marga G A; Pijnacker, Roan; Bakker, Mirjam I; Hartskeerl, Rudy A
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995-2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas.
Goris, Marga G. A.; Pijnacker, Roan; Bakker, Mirjam I.; Hartskeerl, Rudy A.
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995–2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas. PMID:29065186
Le, Kim N; Marsik, Matthew; Daegling, David J; Duque, Ana; McGraw, William Scott
2017-03-01
We investigated how heterogeneity in material stiffness affects structural stiffness in the cercopithecid mandibular cortical bone. We assessed (1) whether this effect changes the interpretation of interspecific structural stiffness variation across four primate species, (2) whether the heterogeneity is random, and (3) whether heterogeneity mitigates bending stress in the jaw associated with food processing. The sample consisted of Taï Forest, Cote d'Ivoire, monkeys: Cercocebus atys, Piliocolobus badius, Colobus polykomos, and Cercopithecus diana. Vickers indentation hardness samples estimated elastic moduli throughout the cortical bone area of each coronal section of postcanine corpus. For each section, we calculated maximum area moment of inertia, I max (structural mechanical property), under three models of material heterogeneity, as well as spatial autocorrelation statistics (Moran's I, I MORAN ). When the model considered material stiffness variation and spatial patterning, I max decreased and individual ranks based on structural stiffness changed. Rank changes were not significant across models. All specimens showed positive (nonrandom) spatial autocorrelation. Differences in I MORAN were not significant among species, and there were no discernable patterns of autocorrelation within species. Across species, significant local I MORAN was often attributed to proximity of low moduli in the alveolar process and high moduli in the basal process. While our sample did not demonstrate species differences in the degree of spatial autocorrelation of elastic moduli, there may be mechanical effects of heterogeneity (relative strength and rigidity) that do distinguish at the species or subfamilial level (i.e., colobines vs. cercopithecines). The potential connections of heterogeneity to diet and/or taxonomy remain to be discovered. © 2016 Wiley Periodicals, Inc.
Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping
2016-11-01
Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.
NASA Astrophysics Data System (ADS)
Xi, Min; Kong, Fanlong; Li, Yue; Kong, Fanting
2017-12-01
Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months ( P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76 × 105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (˜90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.
Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José
2017-02-01
The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.
Werner, Annette
2014-11-01
Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Pravosudov, V V; Lavenex, P; Clayton, N S
2002-05-01
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds. Copyright 2002 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2016-03-01
Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.
Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon
NASA Astrophysics Data System (ADS)
Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.
2001-05-01
Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.
Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.
Speakman, John R; Heidari-Bakavoli, Sahar
2016-08-01
Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.
Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A
2014-01-01
Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck
2016-07-01
We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.
Onozuka, Daisuke; Hagihara, Akihito
2016-02-15
Several studies have reported the burden of climate change on extreme heat-related mortality or morbidity. However, few studies have investigated the spatial and temporal variation in emergency transport during periods of extreme heat on a national scale. Daily emergency ambulance dispatch data from 2007 to 2010 were acquired from all 47 prefectures of Japan. The temporal variability in the relationship between heat and morbidity in each prefecture was estimated using Poisson regression combined with a distributed lag non-linear model and adjusted for time trends. The spatial variability in the heat-morbidity relationships between prefectures was estimated using a multivariate meta-analysis. A total of 5,289,660 emergency transports were reported during the summer months (June through September) within the study period. The overall cumulative relative risk (RR) at the 99th percentile vs. the minimum morbidity percentile was 1.292 (95% CI: 1.251-1.333) for all causes, 1.039 (95% CI: 0.989-1.091) for cardiovascular diseases, and 1.287 (95% CI: 1.210-1.368) for respiratory diseases. Temporal variation in the estimated effects indicated a non-linear relationship, and there were differences in the temporal variations between heat and all-cause and cause-specific morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p<0.001; I(2)=45.8%); however, there was no significant spatial heterogeneity for cardiovascular (Cochran Q test, p=0.054; I(2)=15.1%) and respiratory (Cochran Q test, p=0.681; I(2)=1.0%) diseases. Our nationwide study demonstrated differences in the spatial and temporal variations in the relative risk for all-cause and cause-specific emergency transport during periods of extreme heat in Japan between 2007 and 2010. Our results suggest that public health strategies aimed at controlling heat-related morbidity should be tailored according to region-specific weather conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial variations of the Sr I 4607 Å scattering polarization peak
NASA Astrophysics Data System (ADS)
Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.
2018-06-01
Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Mapping the Risk of Soil-Transmitted Helminthic Infections in the Philippines
Leonardo, Lydia; Gray, Darren J.; Carabin, Hélène; Halton, Kate; McManus, Donald P.; Williams, Gail M.; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen T.; Clements, Archie C. A.
2015-01-01
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon. PMID:26368819
Chung, Mi Yoon; Nason, John D; Chung, Myong Gi
2007-07-01
Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.
Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming
2016-12-19
Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.
Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.
2013-01-01
In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.
Brito, Samuel V; Ferreira, Felipe S; Ribeiro, Samuel C; Anjos, Luciano A; Almeida, Waltécio O; Mesquita, Daniel O; Vasconcellos, Alexandre
2014-03-01
Parasites are natural regulators of their host populations. Despite this, little is known about variations in parasite composition (spatially or temporally) in environments subjected to water-related periodic stress such as the arid and semiarid regions. The objective of this study was to evaluate the spatial-temporal variation in endoparasite species' abundance and richness in populations of Neotropical Cnemidophorus ocellifer, Tropidurus hispidus, and Tropidurus semitaeniatus lizards in the semiarid northeast of Brazil. The location influenced the abundance of parasites in all analyzed lizard species, while season (dry and rainy) only influenced the total abundance for T. hispidus. In all seasons, males significantly showed more endoparasites than females in all lizard species, although for T. hispidus, this difference was only found in the dry season. Seasonal variations affect the abundance patterns of parasites. Likely, variables include environmental variations such as humidity and temperature, which influence the development of endoparasite eggs when outside of the host. Further, the activity of the intermediate hosts and the parasites of heteroxenous life cycles could be affected by an environmental condition. The variation in the abundance of parasites between the sampling areas could be a reflection of variations in climate and physiochemical conditions. Also, it could be due to differences in the quality of the environment in which each host population lives.
NASA Astrophysics Data System (ADS)
Engstrom, R.; Ashcroft, E.
2014-12-01
There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to indicators of health and wealth within a developing world city and that the even if the imagery is collected 10 years after the census information, the relationships are still significant.
MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.
2016-01-01
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848
Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation.
Campana, O; Rodríguez, A; Blasco, J
2009-04-01
In risk assessment of aquatic sediments, much attention is paid to the difference between acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) as indicators of metal availability. Ten representative sampling sites were selected along the estuary of the Guadalete River. Surficial sediments were sampled in winter and summer to better understand SEM and AVS spatial and seasonal distributions and to establish priority risk areas. Total SEM concentration (SigmaSEM) ranged from 0.3 to 4.7 micromol g(-1). It was not significantly different between seasons, however, it showed a significant difference between sampling stations. AVS concentrations were much more variable, showing significant spatial and temporal variations. The values ranged from 0.8 to 22.4 micromol g(-1). The SEM/AVS ratio was found to be <1 at all except one station located near the mouth of the estuary. The results provided information on a potential pollution source near the mouth of the estuary, probably associated with vessel-related activities carried out in a local harbor area located near the station.
Mykrä, Heikki; Heino, Jani; Muotka, Timo
2004-09-01
Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.
Kistemann, Thomas; Zimmer, Sonja; Vågsholm, Ivar; Andersson, Yvonne
2004-01-01
This article describes the spatial and temporal distribution of verotoxin-producing Escherichia coli among humans (EHEC) and cattle (VTEC) in Sweden, in order to evaluate relationships between the incidence of EHEC in humans, prevalence of VTEC O157 in livestock and agricultural structure by an ecological study. The spatial patterns of the distribution of human infections were described and compared with spatial patterns of occurrence in cattle, using a Geographic Information System (GIS). The findings implicate a concentration of human infection and cattle prevalence in the southwest of Sweden. The use of probability mapping confirmed unusual patterns of infection rates. The comparison of human and cattle infection indicated a spatial and statistical association. The correlation between variables of the agricultural structure and human EHEC incidence was high, indicating a significant statistical association of cattle and farm density with human infection. The explained variation of a multiple linear regression model was 0.56. PMID:15188718
Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China
Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan
2017-01-01
In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245
Kihal-Talantikite, Wahida; Deguen, Séverine; Padilla, Cindy; Siebert, Muriel; Couchoud, Cécile; Vigneau, Cécile; Bayat, Sahar
2015-02-01
Several studies have investigated the implication of biological and environmental factors on geographic variations of end-stage renal disease (ESRD) incidence at large area scales, but none of them assessed the implication of neighbourhood characteristics (healthcare supply, socio-economic level and urbanization degree) on spatial repartition of ESRD. We evaluated the spatial implications of adjustment for neighbourhood characteristics on the spatial distribution of ESRD incidence at the smallest geographic unit in France. All adult patients living in Bretagne and beginning renal replacement therapy during the 2004-09 period were included. Their residential address was geocoded at the census block level. Each census block was characterized by socio-economic deprivation index, healthcare supply and rural/urban typology. Using a spatial scan statistic, we examined whether there were significant clusters of high risk of ESRD incidence. The ESRD incidence was non-randomly spatially distributed, with a cluster of high risk in the western Bretagne region (relative risk, RR = 1.28, P-value = 0.0003). Adjustment for sex, age and neighbourhood characteristics induced cluster shifts. After these adjustments, a significant cluster (P = 0.013) persisted. Our spatial analysis of ESRD incidence at a fine scale, across a mixed rural/urban area, indicated that, beyond age and sex, neighbourhood characteristics explained a great part of spatial distribution of ESRD incidence. However, to better understand spatial variation of ESRD incidence, it would be necessary to research and adjust for other determinants of ESRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
NASA Astrophysics Data System (ADS)
Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa
2017-09-01
In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.
Mano, Hiroyuki; Tanaka, Yoshinari
2017-12-01
This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.
Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.
2015-01-01
A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216
Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J
2015-11-08
A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.
Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu
2014-01-01
Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949
Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.
2017-01-01
Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.
Spatial Characteristics of Tree Diameter Distributions in a Temperate Old-Growth Forest
Zhao, Xiuhai; von Gadow, Klaus
2013-01-01
This contribution identifies spatial characteristics of tree diameter in a temperate forest in north-eastern China, based on a fully censused observational study area covering 500×600 m. Mark correlation analysis with three null hypothesis models was used to determine departure from expectations at different neighborhood distances. Tree positions are clumped at all investigated scales in all 37 studied species, while the diameters of most species are spatially negatively correlated, especially at short distances. Interestingly, all three cases showing short-distance attraction of dbh marks are associated with light-demanding shrub species. The short-distance attraction of dbh marks indicates spatially aggregated cohorts of stems of similar size. The percentage of species showing significant dbh suppression peaked at a 4 m distance under the heterogeneous Poisson model. At scales exceeding the peak distance, the percentage of species showing significant dbh suppression decreases sharply with increasing distances. The evidence from this large observational study shows that some of the variation of the spatial characteristics of tree diameters is related variations of topography and soil chemistry. However, an obvious interpretation of this result is still lacking. Thus, removing competitors surrounding the target trees is an effective way to avoid neighboring competition effects reducing the growth of valuable target trees in forest management practice. PMID:23527066
Spatial characteristics of tree diameter distributions in a temperate old-growth forest.
Zhang, Chunyu; Wei, Yanbo; Zhao, Xiuhai; von Gadow, Klaus
2013-01-01
This contribution identifies spatial characteristics of tree diameter in a temperate forest in north-eastern China, based on a fully censused observational study area covering 500×600 m. Mark correlation analysis with three null hypothesis models was used to determine departure from expectations at different neighborhood distances. Tree positions are clumped at all investigated scales in all 37 studied species, while the diameters of most species are spatially negatively correlated, especially at short distances. Interestingly, all three cases showing short-distance attraction of dbh marks are associated with light-demanding shrub species. The short-distance attraction of dbh marks indicates spatially aggregated cohorts of stems of similar size. The percentage of species showing significant dbh suppression peaked at a 4 m distance under the heterogeneous Poisson model. At scales exceeding the peak distance, the percentage of species showing significant dbh suppression decreases sharply with increasing distances. The evidence from this large observational study shows that some of the variation of the spatial characteristics of tree diameters is related variations of topography and soil chemistry. However, an obvious interpretation of this result is still lacking. Thus, removing competitors surrounding the target trees is an effective way to avoid neighboring competition effects reducing the growth of valuable target trees in forest management practice.
Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.
Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John
2011-01-01
In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar.
Lehman, Shawn M
2007-01-01
I present data on variations in Eulemur fulvus rufus and Lepilemur mustelinus densities as well as tree characteristics (height, diameter and stem frequency) between edge and interior forest habitats in southeastern Madagascar. Line transect surveys were conducted from June 2003 to November 2005 in edge and interior forest habitats in the Vohibola III Classified Forest. Although E. f. rufus densities were significantly lower in edge habitats than in interior habitats, density estimates for L. mustelinus did not differ significantly between habitats. Trees in edge habitats were significantly shorter, had smaller diameters and had lower stem frequencies (for those >25 cm in diameter) than trees in interior habitats. Spatial characteristics of food abundance and quality may explain lemur density patterns in Vohibola III. Low E. f. rufus densities may reduce seed dispersal in edge habitats, which has important consequences for the long-term viability of forest ecosystems in Madagascar. Copyright (c) 2007 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Spatial and Temporal Patterns of Suspended Sediment Yields in Nested Urban Catchments
NASA Astrophysics Data System (ADS)
Kemper, J. T.; Miller, A. J.; Welty, C.
2017-12-01
In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. Near real-time turbidity and discharge data have been collected continuously for more than four years at five stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Using turbidity-concentration relationships based on sample analyses at the gage site, sediment yields for each station can be quantified for a variety of temporal scales. Sediment yields have been calculated for 60+ different storms across four years. Yields show significant spatial variation, both at equivalent sub-watershed scales and from headwaters to mouth. Yields are higher at the headwater station with older development and virtually no stormwater management (DR5) than at the station with more recent development and more extensive stormwater management (DR2). However, this pattern is reversed for the stations at the next larger scale: yields are lower at DR4, downstream of DR5, than at DR3, downstream of DR2. This suggests spatial variation in the dominant sediment sources within each subwatershed. Additionally, C-Q hysteresis curves display consistent counterclockwise behavior at the DR4 station, in contrast to the consistent clockwise behavior displayed at the DR3 station. This further suggests variation in dominant sediment sources (perhaps distal vs local, respectively). We observe consistent seasonal trends in the relative magnitudes of sediment yield for different subwatersheds (e.g. DR3>DR4 in summer, DR5>DR2 in spring). We also observe significant year-to-year variation in sediment yield at the headwater and intermediate scales, whereas yields at the 14 sq km scale are largely similar across the monitored years. This observation would be consistent with the possibility that internal storage and remobilization tend to modulate downstream yields even with spatial and temporal variation in upstream sources. The fine-scale design of this study represents a unique opportunity to compare and contrast sediment yields across a variety of spatial and temporal scales, and provide insight into sediment transport dynamics within an urbanized watershed.
NASA Astrophysics Data System (ADS)
Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei
2018-01-01
Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.
Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang
2016-01-01
Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.
Wu, Hong Bao; Zhao, Qiang; Qin, Xiao Bo; Gao, Qing Zhu; Lyu, Cheng Wen
2018-05-01
The characteristics of hydrogen and oxygen stable isotopes in river is important for regional hydrologic cycle research. To uncover water supply sources in subtropical agricultural basin from a perspective of stable isotopes, field measurements were conducted in four reaches (S 1 , S 2 , S 3 and S 4 ) of Tuojia River from April to August 2017. We analyzed the spatial and temporal variations in hydrogen and oxygen isotopes and deuterium excess parameters and their relationship with precipitation, altitude and water quality. Results showed that hydrogen and oxygen isotopes and deuterium excess values ranged from -43.17‰ to -26.43‰ (-35.50‰±5.44‰), -7.94‰ to -5.70‰ (-6.86‰±0.74‰), and 16.77‰ to 23.49‰ (19.39‰±1.95‰), respectively. Under the influence of monsoon circulation, hydrogen and oxygen isotopes showed substantial seasonal variation, with spring (δD: -29.88‰±3.31‰; δ 18 O: -6.18‰±0.57‰) > summer (δD: -39.25‰±2.65‰; δ 18 O: -7.32‰±0.42‰). The spatial distribution of hydrogen and oxygen isotopes values increased fluctuantly with the position from the sampling site to the river's source, with δD: S 1 <S 4 <S 3 <S 2 , and δ 18 O: S 1 <S 3 <S 4 <S 2 . The deuterium excess values had no significant temporal variation, while it spatially increased gradually with the river levels. The slope and intercept of water line in this river were smaller than that of the local meteoric water line, suggesting that precipitation was the primary water source for this river. At the seasonal scale, both δD and δ 18 O were significantly negatively correlated with water temperature (δD: r=-0.92; δ 18 O: r=-0.88) and δ 18 O was negatively correlated with altitude (r=-0.96). At spatial scale, δ 18 O had a significantly positive correlation with water temperature. The δD and δ 18 O had negative correlation with precipitation, but being not statistically significant.
Temporal and Spatial Variations in the Twinning Rate in Norway.
Fellman, Johan
2016-08-01
Strong geographical variations have been noted in the twinning rate (TWR). In general, the rate is high among people of African origin, intermediate among Europeans, and low among most Asiatic populations. In Europe, there tends to be a south-north cline, with a progressive increase in the TWR from south to north and a minimum around the Basque provinces. The highest TWRs in Europe have been found among the Nordic populations. Furthermore, within larger populations, small isolated subpopulations have been identified to have extreme, mainly high, TWRs. In the study of the temporal variation of the TWR in Norway, we consider the period from 1900 to 2014. The regional variation of the TWR in Norway is analyzed for the different counties for two periods, 1916-1926 and 1960-1988. Heterogeneity between the regional TWRs in Norway during 1916-1926 was found, but the goodness of fit for the alternative spatial models was only slight. The optimal regression model for the TWR in Norway has the longitude and its square as regressors. According to this model, the spatial variation is distributed in a west-east direction. For 1960-1988, no significant regional variation was observed. One may expect that the environmental and genetic differences between the counties in Norway have disappeared and that the regional TWRs have converged towards a common low level.
Three-dimensional analysis of magnetometer array data
NASA Technical Reports Server (NTRS)
Richmond, A. D.; Baumjohann, W.
1984-01-01
A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.
Pavlik, B M; Enberg, A
2001-08-01
The geysers panic grass [Dichanthelium lanuginosum Spellenberg var. thermale (Bol.) Spellenberg or DILA] is exclusively associated with surface geothermal manifestations in Sonoma County, California, USA (38 degrees 46'N, 122 degrees 38'W). Steam extraction by power plants could alter the subsurface distribution of heat and water to the site, potentially impacting subpopulations of this rare plant. The purpose of this study was to use demographic monitoring to determine: (1) temporal and spatial patterns of soil temperature in relation to the distribution of established DILA individuals at Little Geysers, (2) in situ response of experimental populations of DILA to spatial variations in soil temperature, and (3) habitat requirements of DILA as an indicator of its tolerance to variations in surficial geothermal features. Thermocouple transects and a datalogger provided data for characterizing the spatial and temporal patterns of soil temperature in four microhabitats (fumarole, DILA stand, Andropogon stand, and cleared). Experimental populations were established by precisely sowing and monitoring DILA seeds in these microhabitats. The results indicated that spatial and temporal variations in soil temperature had significant effects on the processes of germination, growth, survivorship, and reproduction, thus producing a readily observed metapopulation patch dynamic in relation to geothermal activity. Seasonal depressions of soil temperature near the fumaroles by cold air and prolonged rainfall events also promoted the emergence and survival of DILA seedlings in a microhabitat that was previously too hot to occupy. Over longer periods of time, DILA metapopulation dynamism reflected climatic and geothermal variation. Drought years inhibited germination for lack of water, but more importantly for the lack of requisite soil temperature depressions in the fumarole microhabitat. Wet years promoted subpopulation expansion into transition areas that were once too hot and dry. There have also been shifts in the underground distribution of steam into areas distant from known geothermal features. The demographic responses of DILA to spatial and temporal variations in soil temperature indicate that heat is an absolutely essential component of the steam resource. In its absence, germination, seeding survivorship, growth, and maturation are significantly inhibited even if soil conditions are favorable and potential competitors are controlled. Ultimately, persistence of the species depends on maintaining the ecosystem dynamic of colonization and extirpation in response to variations in surficial geothermal features over long spatial and temporal scales. This should shift management perspective from its narrow focus on individual plants to a wider focus on monitoring the essential habitat component of steam.
Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.
2015-01-01
Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
Atlas warping for brain morphometry
NASA Astrophysics Data System (ADS)
Machado, Alexei M. C.; Gee, James C.
1998-06-01
In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.
Scribner, Kim T.; Garner, G.W.; Amstrup, Steven C.; Cronin, M.A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.
1997-01-01
A summary of existing population genetics literature is presented for polar bears (Ursus maritimus) and interpreted in the context of the species' life-history characteristics and regional heterogeneity in environmental regimes and movement patterns. Several nongenetic data sets including morphology, contaminant levels, geographic variation in reproductive characteristics, and the location and distribution of open-water foraging habitat suggest some degree of spatial structuring. Eleven populations are recognized by the IUCN Polar Bear Specialist Group. Few genetics studies exist for polar bears. Interpretation and generalizations of regional variation in intra- and interpopulation levels of genetic variability are confounded by the paucity of data from many regions and by the fact that no single informative genetic marker has been employed in multiple regions. Early allozyme studies revealed comparatively low levels of genetic variability and no compelling evidence of spatial structuring. Studies employing mitochondrial DNA (mtDNA) also found low levels of genetic variation, a lack of phylogenetic structure, and no significant evidence for spatial variation in haplotype frequency. In contrast, microsatellite variable number of tandem repeat (VNTR) loci have revealed significant heterogeneity in allele frequency among populations in the Canadian Arctic. These regions are characterized by archipelgic patterns of sea-ice movements. Further studies using highly polymorphic loci are needed in regions characterized by greater polar bear dependency on pelagic sea-ice movements and in regions for which no data currently exist (i.e., Laptev and Novaya Zemlya/Franz Josef).
Arnan, Xavier; Cerdá, Xim; Retana, Javier
2015-01-01
We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.
Spatial and temporal variations of aridity indices in Iraq
NASA Astrophysics Data System (ADS)
Şarlak, Nermin; Mahmood Agha, Omar M. A.
2017-06-01
This study investigates the spatial and temporal variations of the aridity indices to reveal the desertification vulnerability of Iraq region. Relying on temperature and precipitation data taken from 28 meteorological stations for 31 years, the study aims to determine (1) dry land types and their delineating boundaries and (2) temporal change in aridity conditions in Iraq. Lang's aridity (Im), De Martonne's aridity (Am), United Nations Environmental Program (UNEP) aridity (AIu), and Erinç aridity (IE) indices were selected in this study because of the scarcity of the observed data. The analysis of the spatial variation of aridity indices exhibited that the arid and semi-arid regions cover about 97% of the country's areas. As for temporal variations, it was observed that the aridity indices tend to decrease (statistically significant or not) for all stations. The cumulative sum charts (CUSUMs) were applied to detect the year on which the climate pattern of aridity indices had changed from one pattern to another. The abrupt change point was detected around year 1997 for the majority of the stations. Thus, the spatial and temporal aridity characteristics in Iraq were examined for the two periods 1980-1997 and 1998-2011 (before and after the change-point year) to observe the influence of abrupt change point on aridity phenomena. The spatial variation after 1997 was observed from semi-arid (dry sub humid) to arid (semi-arid) especially at the stations located in northern Iraq, while hyper-arid and arid climatic conditions were still dominant over southern and central Iraq. Besides, the negative temporal variations of the two periods 1980-1997 and 1998-2011 were obtained for almost every station. As a result, it was emphasized that Iraq region, like other Middle East regions, has become drier after 1997. The observed reduction in precipitation and increase in temperature for this region seem to make the situation worse in future.
The underlying processes of a soil mite metacommunity on a small scale.
Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.
The underlying processes of a soil mite metacommunity on a small scale
Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906
Goovaerts, Pierre; Jacquez, Geoffrey M
2004-01-01
Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930
NASA Astrophysics Data System (ADS)
Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.
2007-07-01
This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics
Environmental characteristics drive variation in Amazonian understorey bird assemblages
Magnusson, William E.; Anderson, Marti J.; Schlegel, Martin; Pe’er, Guy; Henle, Klaus
2017-01-01
Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species. PMID:28225774
NASA Astrophysics Data System (ADS)
Schirmer, Michael; Harder, Phillip; Pomeroy, John
2016-04-01
The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.
NASA Astrophysics Data System (ADS)
Richardson, A. D.; Reichstein, M.; Piao, S.; Ciais, P.; Luyssaert, S.; Stockli, R.; Friedl, M.; Gobron, N.; Fluxnet Site Pis, 21
2009-04-01
In temperate and boreal ecosystems, phenological transitions (particularly the timing of spring onset and autumn senescence) are thought to represent a major control on spatial and temporal variation in forest carbon sequestration. To investigate these patterns, we analyzed 153 site-years of data from the FLUXNET ‘La Thuile' database. Eddy covariance measurements of surface-atmosphere exchanges of carbon and water from 21 research sites at latitudes from 36°N to 67°N were used in the synthesis. We defined a range of phenological indicators based on the first (spring) and last (autumn) dates of (1) C source/sink transitions (‘carbon uptake period'); (2) measurable photosynthetic uptake (‘physiologically active period'); (3) relative thresholds for latent heat (evapotranspiration) flux; (4) phenological thresholds derived from a range of remote sensing products (JRC fAPAR, MOD12Q2, and the PROGNOSTIC model with MODIS data assimilation); and (5) a climatological metric based on the date where soil temperature equals mean annual air temperature. We then tested whether site-level flux anomalies were significantly correlated with phenological anomalies across these metrics, and whether the slopes of these relationships (representing the sensitivity to phenological variation) differed between deciduous broadleaf (DBF) and evergreen needleleaf (ENF) forests. Within sites, interannual variation in most phenological metrics was about 5-10 d, compared to 10-30 d across sites. Both spatial and temporal phenological variation were consistently larger at ENF, compared to DBF, sites. Averaged across metrics, phenological variability was roughly comparable in spring and autumn, both across (17 d) and within (9 d) sites. However, patterns of interannual variation in fluxes were less well explained by the derived phenological metrics than were patterns of spatial variation in fluxes. Also, the observed pattern strongly depended on the metric used, with flux-derived metrics generally explaining more, and remote sensing-derived metrics generally explaining less, of the variation in flux anomalies. We found that GPP (gross primary productivity) was consistently more sensitive (both in terms of magnitude and statistical significance; ≈3 g C m-2 d-1 for DBF and ≈2 g C m-2 d-1 for ENF) to phenology than was Reco (ecosystem respiration), which meant that NEP (net ecosystem productivity) tended to be increased both by earlier springs and later autumns. Without exception, when the difference between DBF and ENF in the sensitivity to phenological anomalies was statistically significant, DBF sensitivity was always larger in absolute magnitude than ENF sensitivity. Phenology explained a much larger fraction of the variation in fluxes across sites compared to within sites. Across sites, the rate of increase in GPP with an "exta" day in spring (≈10 g C m-2 d-1) was much larger than in autumn (≈3 g C m-2 d-1). Furthermore, a one-day increase in growing season length across sites increased annual NEP by just ≈2 g C m-2 d-1; this resulted from an increase in GPP of ≈6 g C m-2 d-1 being offset by an increase in RE of ≈4 g C m-2 d-1. In general, there was no statistically significant difference between DBF and ENF in the sensitivity to spatial variation in phenology for either NEP or the component fluxes GPP and Reco. In relation to both within- and across-site variation in phenology and fluxes, the results obtained tended to depend on the phenological metric used, i.e. definition of "start" and "end" of growing season, emphasizing the need for improved understanding of the relationships between these different metrics and ecosystem processes. Furthermore, the differences in flux-phenology relationships in the context of spatial and temporal variation in phenology raise questions about using results from either short-term or space-for-time studies to anticipate responses to future climate change.
Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses
Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.
2005-01-01
Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts.
Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence
NASA Astrophysics Data System (ADS)
Miyake, H.
2013-12-01
The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.
NASA Astrophysics Data System (ADS)
Ackerer, Julien; Chabaux, François; Lucas, Yann; Pierret, Marie Claire; Viville, Daniel; Fritz, Bertrand; Clement, Alain; Beaulieu, Emilie; Negrel, Philippe
2017-04-01
Regular analysis of the major element concentrations in waters from springs emerging on the Strengbach catchment is made for more than 20 years (OHGE, Observatoire Hydro-Géochimique de l'Environnement). These data confirm the spatial variability of geochemical characteristics of the Strengbach springs linked, at least partly, to the lithological variability of the substratum (Pierret et al., 2014). The data also indicate that at the first order, the geochemical fluxes exported from each spring are mainly linked to the spring discharges, without significant variations of the relationships linking these two parameters between 1990 and 2010. There is also no observation of significant variations for the dissolved silica and for most of the cationic concentrations with time. Only a significant decrease of the Ca concentrations is observed for the Strengbach springs from 1990 to 2010. Numerical simulations, performed with the KIRMAT hydro-geochemical code, show that such a decrease can be considered as the response in the "bedrock" of the water-rock interactions to the variations of the soil solution chemical compositions recorded over the last 20 years, marked by a significant increase of pH and decrease of Ca concentrations. In particular, the modeling results show that the Ca concentration decrease is controlled by the couple apatite/clays, and that significant modifications of the apatite dissolution rate and clay compositions occurred between 1990 and 2010. This study shows that the temporal evolution of the Strengbach spring chemistry cannot be explained by the only variations of the clay mineral compositions, i.e. a modification of the chemical composition of the precipitated clays or a modification of the ionic exchange capacity of the clay minerals, but that it is definitely the interrelations between the apatite and the clay minerals that are involved.
Oxford, G S; Gunnarsson, B
2006-01-01
The selective significance, if any, of many invertebrate visible polymorphisms is still not fully understood. Here we examine colour- and black spotting-morph frequencies in the spider Enoplognatha ovata in populations on two Swedish archipelagos with respect to different spatial scales and, in one archipelago, against the background of variation at four putative neutral allozyme marker loci. Every population studied was polymorphic for colour and 28 out of 30 contained all three colour morphs--lineata, redimita and ovata. We found no evidence for a breakdown in the traditional colour morph designation previously suggested for other northern European populations of this species. For colour there is no significant heterogeneity at spatial scales greater than between local populations within islands. Black spotting frequencies show a similar lack of pattern over larger spatial scales except that there are significant differences between the Stockholm and Göteborg archipelagos. Measures of population differentiation (theta) within the Stockholm islands for the two visible systems show them to be significantly more differentiated than the neutral markers, suggesting local selection acting on them in a population-specific manner. On the basis of previous observations and the distribution of spotting phenotypes on a European scale, it is argued that thermal selection might operate on black spotting during the juvenile stages favouring more spots in continental climates. It is not clear what selective forces act on colour.
Soil resources and topography shape local tree community structure in tropical forests
Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.
2013-01-01
Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196
Spatially resolved variations in reflectivity across iron oxide thin films
NASA Astrophysics Data System (ADS)
Kelley, Chris S.; Thompson, Sarah M.; Gilks, Daniel; Sizeland, James; Lari, Leonardo; Lazarov, Vlado K.; Matsuzaki, Kosuke; LeFrançois, Stéphane; Cinque, Gianfelice; Dumas, Paul
2017-11-01
The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reliably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chemical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxidised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite.
Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier
2014-01-01
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Cui, Henglin; Yang, Kun; Pagaling, Eulyn
2013-01-01
Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940
NASA Astrophysics Data System (ADS)
Zu, Jiaxing; Zhang, Yangjian; Huang, Ke; Liu, Yaojie; Chen, Ning; Cong, Nan
2018-07-01
Climate change is receiving mounting attentions from various fields and phenology is a commonly used indicator signaling vegetation responses to climate change. Previous phenology studies have mostly focused on vegetation greening-up and its climatic driving factors, while autumn phenology has been barely touched upon. In this study, vegetation phenological metrics were extracted from MODIS NDVI data and their temporal and spatial patterns were explored on the Tibetan Plateau (TP). The results showed that the start of season (SOS) has significantly earlier trend in the first decade, while the end of season (EOS) has slightly (not significant) earlier trend. In the spatial dimension, similar patterns were also identified. The SOS plays a more significant role in regulating vegetation growing season length than EOS does. The EOS and driving effects from each factor exhibited spatially heterogeneous patterns. Biological factor is the dominant factor regulating the spatial pattern of EOS, while climate factors control its inter-annual variation.
Peng, Dai-liang; Huang, Jing-feng; Huete, Alfredo R.; Yang, Tai-ming; Gao, Ping; Chen, Yan-chun; Chen, Hui; Li, Jun; Liu, Zhan-yu
2010-01-01
We developed a sophisticated method to depict the spatial and seasonal characterization of net primary productivity (NPP) and climate variables. The role of climate variability in the seasonal variation of NPP exerts delayed and continuous effects. This study expands on this by mapping the seasonal characterization of NPP and climate variables from space using geographic information system (GIS) technology at the pixel level. Our approach was developed in southeastern China using moderate-resolution imaging spectroradiometer (MODIS) data. The results showed that air temperature, precipitation and sunshine percentage contributed significantly to seasonal variation of NPP. In the northern portion of the study area, a significant positive 32-d lagged correlation was observed between seasonal variation of NPP and climate (P<0.01), and the influences of changing climate on NPP lasted for 48 d or 64 d. In central southeastern China, NPP showed 16-d, 48-d, and 96-d lagged correlation with air temperature, precipitation, and sunshine percentage, respectively (P<0.01); the influences of air temperature and precipitation on NPP lasted for 48 d or 64 d, while sunshine influence on NPP only persisted for 16 d. Due to complex topography and vegetation distribution in the southern part of the study region, the spatial patterns of vegetation-climate relationship became complicated and diversiform, especially for precipitation influences on NPP. In the northern part of the study area, all vegetation NPP had an almost similar response to seasonal variation of air temperature except for broad crops. The impacts of seasonal variation of precipitation and sunshine on broad and cereal crop NPP were slightly different from other vegetation NPP. PMID:20349524
Regional inequalities in premature mortality in Great Britain
Laroze, Denise; Neumayer, Eric
2018-01-01
Premature mortality exhibits strong spatial patterns in Great Britain. Local authorities that are located further North and West, that are more distant from its political centre London and that are more urban tend to have a higher premature mortality rate. Premature mortality also tends to cluster among geographically contiguous and proximate local authorities. We develop a novel analytical research design that relies on spatial pattern recognition to demonstrate that an empirical model that contains only socio-economic variables can eliminate these spatial patterns almost entirely. We demonstrate that socioeconomic factors across local authority districts explain 81 percent of variation in female and 86 percent of variation in male premature mortality in 2012–14. As our findings suggest, policy-makers cannot hope that health policies alone suffice to significantly reduce inequalities in health. Rather, it requires strong efforts to reduce the inequalities in socio-economic factors, or living conditions for short, in order to overcome the spatial disparities in health, of which premature mortality is a clear indication. PMID:29489918
Klompmaker, Jochem O; Montagne, Denise R; Meliefste, Kees; Hoek, Gerard; Brunekreef, Bert
2015-03-01
Recently, short-term monitoring campaigns have been carried out to investigate the spatial variation of air pollutants within cities. Typically, such campaigns are based on short-term measurements at relatively large numbers of locations. It is largely unknown how well these studies capture the spatial variation of long term average concentrations. The aim of this study was to evaluate the within-site temporal and between-site spatial variation of the concentration of ultrafine particles (UFPs) and black carbon (BC) in a short-term monitoring campaign. In Amsterdam and Rotterdam (the Netherlands) measurements of number counts of particles larger than 10nm as a surrogate for UFP and BC were performed at 80 sites per city. Each site was measured in three different seasons of 2013 (winter, spring, summer). Sites were selected from busy urban streets, urban background, regional background and near highways, waterways and green areas, to obtain sufficient spatial contrast. Continuous measurements were performed for 30 min per site between 9 and 16 h to avoid traffic spikes of the rush hour. Concentrations were simultaneously measured at a reference site to correct for temporal variation. We calculated within- and between-site variance components reflecting temporal and spatial variations. Variance ratios were compared with previous campaigns with longer sampling durations per sample (24h to 14 days). The within-site variance was 2.17 and 2.44 times higher than the between-site variance for UFP and BC, respectively. In two previous studies based upon longer sampling duration much smaller variance ratios were found (0.31 and 0.09 for UFP and BC). Correction for temporal variation from a reference site was less effective for the short-term monitoring campaign compared to the campaigns with longer duration. Concentrations of BC and UFP were on average 1.6 and 1.5 times higher at urban street compared to urban background sites. No significant differences between the other site types and urban background were found. The high within to between-site concentration variances may result in the loss of precision and low explained variance when average concentrations from short-term campaigns are used to develop land use regression models. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia
Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu
2011-01-01
Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
Regional variation in diets of breeding Red-shouldered hawks
Strobel, Bradley N.; Boal, Clint W.
2010-01-01
We collected data on breeding season diet composition of Red-shouldered Hawks (Buteo lineatus) in south Texas and compared these data, and those reported from studies elsewhere to examine large scale spatial variation in prey use in eastern North America. Red-shouldered Hawk diets aligned into two significantly different groups, which appear to correlate with latitude. The diets of Red-shouldered Hawks in group 1, which are of more northern latitudes, had significantly more mammalian prey and significantly less amphibian prey than those in group 2, which are at more southerly latitudes. Our meta-analysis demonstrated the dietary flexibility of Red-shouldered Hawks, which likely accounts for their broad distribution by exploiting regional variations in taxon-specific prey availability.
Jones, Mirkka M; Tuomisto, Hanna; Borcard, Daniel; Legendre, Pierre; Clark, David B; Olivas, Paulo C
2008-03-01
The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100-2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.
NASA Astrophysics Data System (ADS)
Sinton, J. M.; Rubin, K. H.
2009-12-01
Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake epicenters during the 1992 Co-Axial and 1996 Gorda eruptions implies migration of stress release during these eruptions, even though vertical transport better explains chemical patterns. The nature of transport for most eruptions is unclear because of lack of systematic chemical patterns; this presentation emphasizes those cases where vertical transport appears to be required.
The spatial patterns of directional phenotypic selection.
Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M
2013-11-01
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.
Valuing water resources in Switzerland using a hedonic price model
NASA Astrophysics Data System (ADS)
van Dijk, Diana; Siber, Rosi; Brouwer, Roy; Logar, Ivana; Sanadgol, Dorsa
2016-05-01
In this paper, linear and spatial hedonic price models are applied to the housing market in Switzerland, covering all 26 cantons in the country over the period 2005-2010. Besides structural house, neighborhood and socioeconomic characteristics, we include a wide variety of new environmental characteristics related to water to examine their role in explaining variation in sales prices. These include water abundance, different types of water bodies, the recreational function of water, and water disamenity. Significant spatial autocorrelation is found in the estimated models, as well as nonlinear effects for distances to the nearest lake and large river. Significant effects are furthermore found for water abundance and the distance to large rivers, but not to small rivers. Although in both linear and spatial models water related variables explain less than 1% of the price variation, the distance to the nearest bathing site has a larger marginal contribution than many neighborhood-related distance variables. The housing market shows to differentiate between different water related resources in terms of relative contribution to house prices, which could help the housing development industry make more geographically targeted planning activities.
NASA Astrophysics Data System (ADS)
Bisht, Mahesh Singh; Rajput, Archana; Srivastava, Kumar Vaibhav
2018-04-01
A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.
Editorial for Journal of Hydrology: Regional Studies
Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.
2014-01-01
Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.
Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality.
Bhuyan, Lakshi Prasad; Borah, Paban; Sabhapondit, Santanu; Gogoi, Ramen; Bhattacharyya, Pradip
2015-12-01
The spatial distribution of theaflavin and thearubigin fractions and their impact on black tea quality were investigated using multivariate and geostatistics techniques. Black tea samples were collected from tea gardens of six geographical regions of Assam and West Bengal, India. Total theaflavin (TF) and its four fractions of upper Assam, south bank and North Bank teas were higher than the other regions. Simple theaflavin showed highest significant correlation with tasters' quality. Low molecular weight thearubigins of south bank and North Bank were significantly higher than other regions. Total thearubigin (TR) and its fractions revealed significant positive correlation with tasters' organoleptic valuations. Tea tasters' parameters were significantly and positively correlated with each other. The semivariogram for quality parameters were best represented by gaussian models. The nugget/sill ratio indicated a strong/moderate spatial dependence of the studied parameters. Spatial variation of tea quality parameters may be used for quality assessment in the tea growing areas of India.
Mesa, Matthew G.; Duke, S.D.; Ward, David L.
1990-01-01
Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.
Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-01-01
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439
Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-11-05
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.
2016-01-01
Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology. PMID:27681937
Using spatial uncertainty to manipulate the size of the attention focus.
Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao
2016-09-01
Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.
Wallmo, Kristy; Lew, Daniel K
2016-09-01
It is generally acknowledged that willingness-to-pay (WTP) estimates for environmental goods exhibit some degree of spatial variation. In a policy context, spatial variation in threatened and endangered species values is important to understand, as the benefit stream from policies affecting threatened and endangered species may vary locally, regionally, or among certain population segments. In this paper we present WTP estimates for eight different threatened and endangered marine species estimated from a stated preference choice experiment. WTP is estimated at two different spatial scales: (a) a random sample of over 5000 U.S. households and (b) geographically embedded samples (relative to the U.S. household sample) of nine U.S. Census regions. We conduct region-to-region and region-to-nation statistical comparisons to determine whether species values differ among regions and between each region and the entire U.S. Our results show limited spatial variation between national values and values estimated from regionally embedded samples, and differences are only found for three of the eight species. More variation exists between regions, and for all species there is a significant difference in at least one region-to-region comparison. Given that policy analyses involving threatened and endangered marine species can often be regional in scope (e.g., ecosystem management) or may disparately affect different regions, our results should be of high interest to the marine management community. Published by Elsevier Ltd.
Giannopoulos, Georgios; Dilaveris, Polychronis; Batchvarov, Velislav; Synetos, Andreas; Hnatkova, Katerina; Gatzoulis, Konstantinos; Malik, Marek; Stefanadis, Christodoulos
2009-01-01
We investigated the predictive value of the spatial QRS-T angle (QRSTA) circadian variation in myocardial infarction (MI) patients. Analyzing 24-hour recordings (SEER MC, GE Marquette) from 151 MI patients (age 63 +/- 12.7), the QRSTA was computed in derived XYZ leads. QRS-T angle values were compared between daytime and night time. The end point was cardiac death or life-threatening ventricular arrhythmia in 1 year. Overall, QRSTA was slightly higher during the day vs. the night (91 degrees vs. 87 degrees, P = .005). However, 33.8% of the patients showed an inverse diurnal QRSTA variation (higher values at night), which was correlated to the outcome (P = .001, odds ratio 6.7). In multivariate analysis, after entering all factors exhibiting univariate trend towards significance, inverse QRSTA circadian pattern remained significant (P = .036). Inverse QRSTA circadian pattern was found to be associated with adverse outcome (22.4%) in MI patients, whereas a normal pattern was associated (96%) with a favorable outcome.
Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa
2015-01-01
The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612
Lin, Yan; Wimberly, Michael C
2017-04-01
The purpose of this study was to examine the geographic variations of late-stage diagnosis in colorectal cancer (CRC) and breast cancer as well as to investigate the effects of 3 neighborhood-level factors-socioeconomic deprivation, urban/rural residence, and spatial accessibility to health care-on the late-stage risks. This study used population-based South Dakota cancer registry data from 2001 to 2012. A total of 4,878 CRC cases and 6,418 breast cancer cases were included in the analyses. Two-level logistic regression models were used to analyze the risk of late-stage CRC and breast cancer. For CRC, there was a small geographic variation across census tracts in late-stage diagnosis, and residing in isolated small rural areas was significantly associated with late-stage risk. However, this association became nonsignificant after adjusting for census-tract level socioeconomic deprivation. Socioeconomic deprivation was an independent predictor of CRC late-stage risk, and it explained the elevated risk among American Indians. No relationship was found between spatial accessibility and CRC late-stage risk. For breast cancer, no geographic variation in the late-stage diagnosis was observed across census tracts, and none of the 3 neighborhood-level factors was significantly associated with late-stage risk. Results suggested that socioeconomic deprivation, rather than spatial accessibility, contributed to CRC late-stage risks in South Dakota as a rural state. CRC intervention programs could be developed to target isolated small rural areas, socioeconomically disadvantaged areas, as well as American Indians residing in these areas. © 2016 National Rural Health Association.
Spatial variation of natural radiation and childhood leukaemia incidence in Great Britain.
Richardson, S; Monfort, C; Green, M; Draper, G; Muirhead, C
This paper describes an analysis of the geographical variation of childhood leukaemia incidence in Great Britain over a 15 year period in relation to natural radiation (gamma and radon). Data at the level of the 459 district level local authorities in England, Wales and regional districts in Scotland are analysed in two complementary ways: first, by Poisson regressions with the inclusion of environmental covariates and a smooth spatial structure; secondly, by a hierarchical Bayesian model in which extra-Poisson variability is modelled explicitly in terms of spatial and non-spatial components. From this analysis, we deduce a strong indication that a main part of the variability is accounted for by a local neighbourhood 'clustering' structure. This structure is furthermore relatively stable over the 15 year period for the lymphocytic leukaemias which make up the majority of observed cases. We found no evidence of a positive association of childhood leukaemia incidence with outdoor or indoor gamma radiation levels. There is no consistent evidence of any association with radon levels. Indeed, in the Poisson regressions, a significant positive association was only observed for one 5-year period, a result which is not compatible with a stable environmental effect. Moreover, this positive association became clearly non-significant when over-dispersion relative to the Poisson distribution was taken into account.
Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming
2015-08-12
Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin'anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin'anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin'anjiang Reservoir.
Representation of vegetation by continental data sets derived from NOAA-AVHRR data
NASA Technical Reports Server (NTRS)
Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.
1991-01-01
Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.
Besser, John M.; Ingersoll, Christopher G.; Giesty, John P.
1996-01-01
Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0–3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6–9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.
NASA Astrophysics Data System (ADS)
Reis-Santos, Patrick; Gillanders, Bronwyn M.; Tanner, Susanne E.; Vasconcelos, Rita P.; Elsdon, Travis S.; Cabral, Henrique N.
2012-10-01
The chemical composition of fish otoliths can provide valuable information for determining the nursery value of estuaries to adult populations of coastal fishes. However, understanding temporal variation in elemental fingerprints at different scales is important as it can potentially confound spatial discrimination among estuaries. Otolith elemental ratios (Li:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca and Pb:Ca) of Platichthys flesus and Dicentrarchus labrax, from several estuaries along the Portuguese coast in two years and three seasons (spring, summer and autumn) within a year, were determined via Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Elemental fingerprints varied significantly among years and seasons within a year but we achieved accurate classifications of juvenile fish to estuarine nursery of origin (77-96% overall cross-validated accuracy). Although elemental fingerprints were year-specific, variation among seasons did not hinder spatial discrimination. Estuarine fingerprints of pooled seasonal data were representative of the entire juvenile year class and attained high discrimination (77% and 80% overall cross-validated accuracy for flounder and sea bass, respectively). Incorporating seasonal variation resulted in up to an 11% increase in correct classification of individual estuaries, in comparison to seasons where accuracies were lowest. Overall, understanding the implications of temporal variations in otolith chemistry for spatial discrimination is key to establish baseline data for connectivity studies.
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Freas, C A; Bingman, K; Ladage, L D; Pravosudov, V V
2013-01-01
Variation in environmental conditions associated with differential selection on spatial memory has been hypothesized to result in evolutionary changes in the morphology of the hippocampus, a brain region involved in spatial memory. At the same time, it is well known that the morphology of the hippocampus might also be directly affected by environmental conditions. Understanding the role of environment-based plasticity is therefore critical when investigating potential adaptive evolutionary changes in the hippocampus associated with environmental variation. We previously demonstrated large elevation-related variation in hippocampus morphology in mountain chickadees over an extremely small spatial scale. We hypothesized that this variation is related to differential selection pressures associated with differences in winter climate severity along an elevation gradient, which make different demands on spatial memory used for food cache retrieval. Here, we tested whether such variation is experience based, generated by potential differences in the environment, by comparing the hippocampus morphology of chickadees from different elevations maintained in a uniform captive environment in a laboratory with those sampled directly from the wild. In addition, we compared hippocampal neuron soma size in chickadees sampled directly from the wild with those maintained in laboratory conditions with restricted and unrestricted spatial memory use via manipulation of food-caching experiences to test whether memory use can affect neuron soma size. There were significant elevation-related differences in hippocampus volume and the total number of hippocampal neurons, but not in neuron soma size, in captive birds. Captive environmental conditions were associated with a large reduction in hippocampus volume and neuron soma size, but not in the total number of neurons or in neuron soma size in other telencephalic regions. Restriction of memory use while in laboratory conditions produced no significant effects on hippocampal neuron soma size. Overall our results showed that captivity has a strong effect on hippocampus volume, which could be due, at least partly, to a reduction in neuron soma size specifically in the hippocampus, but it did not override elevation-related differences in hippocampus volume or in the total number of hippocampal neurons. These data are consistent with the idea of the adaptive nature of the elevation-related differences associated with selection on spatial memory, while at the same time demonstrating additional environment-based plasticity in hippocampus volume, but not in neuron numbers. Our results, however, cannot rule out that the differences between elevations might still be driven by some developmental or early posthatching conditions/experiences. © 2013 S. Karger AG, Basel.
Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J
2015-06-01
Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.
Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying
2010-09-15
The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng
2018-03-01
Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791
Spatial pulses of water inputs in deciduous and hemlock forest stands
NASA Astrophysics Data System (ADS)
Guswa, A. J.; Mussehl, M.; Pecht, A.; Spence, C.
2010-12-01
Trees intercept and redistribute precipitation in time and space. While spatial patterns of throughfall are challenging to link to plant and canopy characteristics, many studies have shown that the spatial patterns persist through time. This persistence leads to wet and dry spots under the trees, creating spatial pulses of moisture that can affect infiltration, transpiration, and biogeochemical processes. In the northeast, the invasive hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga canadensis), and replacement of hemlock forests by other species, such as birch, maple, and oak, has the potential to alter throughfall patterns and hydrologic processes. During the summers of 2009 and 2010, we measured throughfall in both hemlock and deciduous plots to assess its spatial distribution and temporal persistence. From 3 June to 25 July 2009, we measured throughfall in one hemlock and one deciduous plot over fourteen events with rainfall totaling 311 mm. From 8 June through 28 July 2010, we measured throughfall in the same two plots plus an additional hemlock stand and a young black birch stand, and rainfall totaled 148 mm over eight events. Averaged over space and time, throughfall was 81% of open precipitation in the hemlock stands, 88% in the mixed deciduous stand, and 100% in the young black birch stand. On an event basis, spatial coefficients of variation are similar among the stands and range from 11% to 49% for rain events greater than 5 mm. With the exception of very light events, coefficients of variation are insensitive to precipitation amount. Spatial patterns of throughfall persist through time, and seasonal coefficients of variation range from 13% to 33%. All stands indicate localized concentrations of water inputs, and there were individual collectors in the deciduous stands that regularly received more than twice the stand-average throughfall.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
Soares Magalhães, Ricardo J; Langa, Antonio; Pedro, João Mário; Sousa-Figueiredo, José Carlos; Clements, Archie C A; Vaz Nery, Susana
2013-05-01
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.
NASA Astrophysics Data System (ADS)
Saramul, Suriyan; Ezer, Tal
2014-11-01
The study addresses two important issues associated with sea level along the coasts of Thailand: first, the fast sea level rise and its spatial variation, and second, the monsoonal-driven seasonal variations in sea level. Tide gauge data that are more extensive than in past studies were obtained from several different local and global sources, and relative sea level rise (RSLR) rates were obtained from two different methods, linear regressions and non-linear Empirical Mode Decomposition/Hilbert-Huang Transform (EMD/HHT) analysis. The results show extremely large spatial variations in RSLR, with rates varying from ~ 1 mm y-1 to ~ 20 mm y-1; the maximum RSLR is found in the upper Gulf of Thailand (GOT) near Bangkok, where local land subsidence due to groundwater extraction dominates the trend. Furthermore, there are indications that RSLR rates increased significantly in all locations after the 2004 Sumatra-Andaman Earthquake and the Indian Ocean tsunami that followed, so that recent RSLR rates seem to have less spatial differences than in the past, but with high rates of ~ 20-30 mm y-1 almost everywhere. The seasonal sea level cycle was found to be very different between stations in the GOT, which have minimum sea level in June-July, and stations in the Andaman Sea, which have minimum sea level in February. The seasonal sea-level variations in the GOT are driven mostly by large-scale wind-driven set-up/set-down processes associated with the seasonal monsoon and have amplitudes about ten times larger than either typical steric changes at those latitudes or astronomical annual tides.
Haghparast-Bidgoli, Hassan; Rinaldi, Giulia; Shahnavazi, Hossein; Bouraghi, Hamid; Kiadaliri, Aliasghar A
2018-06-14
Suicide is a major global health problem, especially among youth. Suicide is known to be associated with a variety of social, economic, political and religious factors, vary across geographical and cultural regions. The current study aimed to investigate the effects of socioeconomic factors on suicide mortality rate across different regions in Iran. The data on distribution of population and socio-economic factors (such as unemployment rate, divorce rate, urbanization rate, average household expenditure etc.) at province level were obtained from the Statistical Centre of Iran and the National Organization for Civil Registration. The data on the annual number of deaths caused by suicide in each province was extracted from the published reports of the Iranian Forensic Medicine Organization. We used a decomposition model to distinguish between spatial and temporal variation in suicide mortality. The average rate of suicide mortality was 5.5 per 100,000 population over the study period. Across the provinces (spatial variation), suicide mortality rate was positively associated with household expenditure and the proportion of people aged 15-24 and older than 65 years and was negatively associated with the proportion of literate people. Within the provinces (temporal variation), higher divorce rate was associated with higher suicide mortality. By excluding the outlier provinces, the results showed that in addition to the proportion of people aged 15-24 and older than 65, divorce and unemployment rates were also significant predictors of spatial variation in suicide mortality while divorce rate was associated with higher suicide mortality within provinces. The findings indicate that both spatial and temporal variations in suicide mortality rates across the provinces and over time are determined by a number of socio-economic factors. The study provides information that can be of importance in developing preventive strategies.
NASA Astrophysics Data System (ADS)
Cui, Y.; Lin, J.; Huang, B.; Song, C.
2015-12-01
Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.
Saha, Shubhayu; Brock, John W; Vaidyanathan, Ambarish; Easterling, David R; Luber, George
2015-03-04
Predictions of intense heat waves across the United States will lead to localized health impacts, most of which are preventable. There is a need to better understand the spatial variation in the morbidity impacts associated with extreme heat across the country to prevent such adverse health outcomes. Hyperthermia-related emergency department (ED) visits were obtained from the Truven Health MarketScan(®) Research dataset for 2000-2010. Three measures of daily ambient heat were constructed using meteorological observations from the National Climatic Data Center (maximum temperature, heat index) and the Spatial Synoptic Classification. Using a time-stratified case crossover approach, odds ratio of hyperthermia-related ED visit were estimated for the three different heat measures. Random effects meta-analysis was used to combine the odds ratios for 94 Metropolitan Statistical Areas (MSA) to examine the spatial variation by eight latitude categories and nine U.S. climate regions. Examination of lags for all three temperature measures showed that the odds ratio of ED visit was statistically significant and highest on the day of the ED visit. For heat waves lasting two or more days, additional statistically significant association was observed when heat index and synoptic classification was used as the temperature measure. These results were insensitive to the inclusion of air pollution measures. On average, the maximum temperature on the day of an ED visit was 93.4°F in 'South' and 81.9°F in the 'Northwest' climatic regions of United States. The meta-analysis showed higher odds ratios of hyperthermia ED visit in the central and the northern parts of the country compared to the south and southwest. The results showed spatial variation in average temperature on days of ED visit and odds ratio for hyperthermia ED visits associated with extreme heat across United States. This suggests that heat response plans need to be customized for different regions and the potential role of hyperthermia ED visits in syndromic surveillance for extreme heat.
Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu.
Guan, Dong-Xing; Wang, Xingyu; Xu, Huacheng; Chen, Li; Li, Pengfu; Ma, Lena Q
2018-06-26
Cyanobacterial blooms as a global environmental issue are of public health concern. In this study, we investigated the spatial (10 sites) and temporal (June, August and October) variations in: 1) their biomass based on chlorophyll-a (chl-a) concentration, 2) their toxic genotype based on gene copy ratio of mcyJ to cpcBA, and 3) their cpcBA genotype composition of Microcystis during cyanobacterial bloom in Lake Taihu. While spatial-temporal variations were found in chl-a and mcyJ/cpcBA ratio, only spatial variation was observed in cpcBA genotype composition. Samples from northwestern part had a higher chl-a, but mcyJ/cpcBA ratio didn't vary among the sites. High chl-a was observed in August, while mcyJ/cpcBA ratio and genotypic richness increased with time. The spatial variations in chl-a and mcyJ/cpcBA ratio and temporal variation in cpcBA genotype were correlated negatively with dissolved N and positively with dissolved P. Spatial distribution of Microcystis biomass was positively correlated with nitrite and P excluding October, but no correlation was found for spatial distribution of mcyJ/cpcBA ratio and cpcBA genotype. Spatial distribution of toxic and cpcBA genotypes may result from horizontal transport of Microcystis colonies, while spatial variation in Microcystis biomass was probably controlled by both nutrient-mediated growth and horizontal transport of Microcystis. The temporal variation in Microcystis biomass, toxic genotype and cpcBA genotype composition were related to nutrient levels, but cause-and-effect relationships require further study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatial Variations in Vitreous Oxygen Consumption
Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark
2016-01-01
We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M-1s-1 ± 0.708 M-1s-1 (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration. PMID:26930281
Spatial Variations in Vitreous Oxygen Consumption.
Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark
2016-01-01
We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M(-1) s(-1) ± 0.708 M(-1) s(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration.
2011-01-01
Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption. PMID:21356088
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.
Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu
2011-01-01
Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.
Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri
2018-06-04
Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.
Optimizing Experimental Designs: Finding Hidden Treasure.
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
NASA Astrophysics Data System (ADS)
Hu, W.; Si, B. C.
2013-10-01
Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Spatial filter system as an optical relay line
Hunt, John T.; Renard, Paul A.
1979-01-01
A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.
Temporal and spatial variability in thalweg profiles of a gravel-bed river
Madej, Mary Ann
1999-01-01
This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.
USDA-ARS?s Scientific Manuscript database
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...
Spatio-temporal variation of methane over Indian region: Seasonal and inter-annual variation .
NASA Astrophysics Data System (ADS)
M, K.; Nair, P. R.
2015-12-01
Methane (CH4) has an important role in the radiation budget and chemistry in the lower and middle atmosphere as a greenhouse and reactive trace gas. The rapid developments in the agriculture and industry over India have lead to the emission of many pollutants like CO, O3, CH4, CO2, SO2 etc into the atmosphere. However, their sources, sinks and concentration levels are poorly understood because of the lack of systematic sampling and monitoring. The advent of satellite remote sensing has helped to analyze the chemical composition of atmosphere with good spatial coverage especially over tropical region which was poorly sampled with the existing surface network. This work attempts an analysis of spatial distribution, seasonal cycle and inter annual variation of CH4 over Indian region during 2003-2009 using SCIAMACHY data onboard ENVISAT. Column CH4 varies from 1740-1890 ppbv over Indian region with distinct spatial and temporal features. We observed a dependence of seasonal CH4 variation on rice cultivation, convective activities and changes in boundary layer characteristics. The comparative study using satellite, aircraft and surface measurement shown CH4 has non-homogeneity in its distribution and seasonal variation in different layers of atmosphere. A comparative study of CH4 at different hot spot regions over the globe was carried out which showed prominent hemispherical variations. Large spread in column CH4 was observed at India and Chinese region compared to other regions with a significant seasonal variability. This study points to the blending of satellite, aircraft and surface measurements for the realization of regional distribution of CH4.
NASA Astrophysics Data System (ADS)
Martens, William
2005-04-01
Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.
Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique
2012-01-01
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254
Spatial and temporal snowpack variation in the crown of the continent ecosystem
Selkowitz, D.J.; Fagre, D.B.; Reardon, B.A.
2002-01-01
Snowpack related ecosystem changes such as glacier recession and alpine treeline advance have been documented in the Crown of the Continent Ecosystem (CCE) over the course of the previous 150 years. Using data from the Natural Resource Conservation Service's SNOTEL sites and snow course surveys, we examined the spatial and temporal variation in snowpack in the region. SNOTEL data suggest CCE snowpacks are larger and more persistent than in most regions of the Western U.S., and that water year precipitation, rather than mean temperature, is the primary control on April 1 snow water equivalent (SWE). Snow course data indicate a statistically significant downward trend in mean April 1 SWE for the period 1950-2001 but no statistically significant trend in mean May 1 SWE for the longer period 1922-2001. Further analysis reveals that variations in both April 1 and May 1 mean SWE are closely tied to the Pacific Decadal Oscillation, an ENSO-like interdecadal pattern of Pacific Ocean climate variability. Despite no significant trend in mean May 1 SWE between 1922-2001, glaciers in Glacier National Park receded steadily during this period, implying changing climatic conditions crossed a threshold for glacier mass balance maintenace sometime between the Little Ice Age glacial maxima and 1922.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales
Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.
2014-01-01
Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949
Di Giacomo, F; Luca, F; Anagnou, N; Ciavarella, G; Corbo, R M; Cresta, M; Cucci, F; Di Stasi, L; Agostiano, V; Giparaki, M; Loutradis, A; Mammi', C; Michalodimitrakis, E N; Papola, F; Pedicini, G; Plata, E; Terrenato, L; Tofanelli, S; Malaspina, P; Novelletto, A
2003-09-01
We explored the spatial distribution of human Y chromosomal diversity on a microgeographic scale, by typing 30 population samples from closely spaced locations in Italy and Greece for 9 haplogroups and their internal microsatellite variation. We confirm a significant difference in the composition of the Y chromosomal gene pools of the two countries. However, within each country, heterogeneity is not organized along the lines of clinal variation deduced from studies on larger spatial scales. Microsatellite data indicate that local increases of haplogroup frequencies can be often explained by a limited number of founders. We conclude that local founder or drift effects are the main determinants in shaping the microgeographic Y chromosomal diversity.
Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana.
Berens, D G; Braun, C; González-Martínez, S C; Griebeler, E M; Nathan, R; Böhning-Gaese, K
2014-11-01
Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.
Magalhães, Ricardo J Soares; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2015-01-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children < 5 years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized for areas identified to be at high risk but which were under-represented in our dataset. PMID:25128879
Soares Magalhães, Ricardo J; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2014-11-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ⩾20years had significantly higher prevalence of S. japonicum compared with females and children <5years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritised for areas identified to be at high risk but which were under-represented in our dataset. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Spatial pattern characteristics of water footprint for maize production in Northeast China.
Duan, Peili; Qin, Lijie; Wang, Yeqiao; He, Hongshi
2016-01-30
Water footprint (WF) methodology is essential for quantifying total water consumption of crop production and making efficient water management policies. This study calculated the green, blue, grey and total WFs of maize production in Northeast China from 1998 to 2012 and compared the values of the provinces. This study also analyzed the spatial variation and structure characteristics of the WFs at the prefecture level. The annual average WF of maize production was 1029 m(3) per ton, which was 51% green, 21% blue and 28% grey. The WF of maize production was highest in Liaoning Province, moderate in Heilongjiang Province and lowest in Jilin Province. The spatial differences of the WFs calculated for the 36 major maize production prefectures were significant in Northeast China. There was a moderate positive spatial autocorrelation among prefectures that had similar WFs. Local indicator of spatial autocorrelation index (LISA) analysis identified prefectures with higher WFs in the southeast region of Liaoning Province and the southwest region of Heilongjiang Province and prefectures with lower WFs in the middle of Jilin Province. Spatial differences in the WF of maize production were caused mainly by variations in climate conditions, soil quality, irrigation facilities and maize yield. The spatial distribution of WFs can help provide a scientific basis for optimizing maize production distribution and then formulate strategies to reduce the WF of maize production. © 2015 Society of Chemical Industry.
Predictive and postdictive analysis of forage yield trials
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.
Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando
2018-01-01
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.
Spatial and temporal variation in evapotranspiration
USDA-ARS?s Scientific Manuscript database
Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...
Steve J. Petty; Billy L. Fawkes
1997-01-01
Research on Tawny Owls (Strix aluco) in Kielder Forest, northern England, since 1981 demonstrated that field voles (Microtus agrestis) were their most important food. Here, field voles exhibited a 3-4 year cycle of abundance, and mean clutch size in Tawny Owls was significantly related to vole abundance in March. In this analysis...
Spatial and Temporal Temperature trends on Iraq during 1980-2015
NASA Astrophysics Data System (ADS)
Al-Timimi, Yassen K.; Al-Khudhairy, Aws A.
2018-05-01
Monthly Mean surface air temperature at 23 stations in Iraq were analyzed for temporal trends and spatial variation during 1980-2015. Seasonal and annual temperature was analyzed using Mann-Kendall test to detect the significant trend. The results of temporal analysis showed that during winter, spring, summer and Autumn have a positive trend in all the parts of Iraq. A tendency has also been observed towards warmer years, with significantly warmer summer and spring periods and slightly warmer autumn and winter, the highest increase is (3.5)°C in Basrah during the summer. The results of spatial analyze using the ArcGIS showed that the seasonal temperature can be divided into two or three distinct areas with high temperature in the south and decreasing towards north, where the trend of spatial temperature were decreasing from south to the north in all the four seasons.
Telles, Mariana Pires de Campos; Bastos, Rogério Pereira; Soares, Thannya Nascimento; Resende, Lucileide Vilela; Diniz-Filho, José Alexandre Felizola
2006-01-01
Studies about the organization of the genetic variability and population structure in natural populations are used either to understand microevolutionary processes or the effects of isolation by human-inducted landscape modifications. In this paper, we analyzed patterns of genetic population structure using 126 RAPD loci scored for 214 individuals of Physalaemus cuvieri, sampled from 18 local populations. Around 97% of these loci were polymorphic. The among-population variation component (Phi(ST)) obtained by AMOVA was equal to 0.101 and theta B obtained using a Bayesian approach for dominant markers was 0.103. Genetic divergence, analyzed by Mantel spatial correlogram, revealed only a short-distance significant correlation between genetic and geographic distances. This is expected if low levels of population differentiation, due to high abundance buffering the effect of stochastic processes, are combined with low spatially restricted gene flow. Although this may be consistent with the current knowledge of species' biology, the spatial distribution of local populations observed in this study also suggest that, at least in part, recent human occupation and habitat fragmentation may also explain part of the interpopulational component of the genetic variation.
NASA Astrophysics Data System (ADS)
Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.
2016-09-01
Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (<30 min) in an urban community. Based on traffic and particulate matter (PM) source information, we selected 4 neighborhoods to study. The sampling activities utilized real-time monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on proximity to local stationary/mobile sources. Seasonal differences were observed for all four TRAPs, significantly higher in colder months than in warmer months. The coefficients of variation (CVs) in concurrent measurements from two parallel routes were calculated around 0.21 ± 0.17, and variations were attributed by meteorological variation (25%), temporal variability (19%), concentration level (6%), and spatial variability (2%), respectively. Overall study findings suggest this mobile monitoring approach could effectively capture and distinguish spatial/temporal characteristics in TRAP concentrations for communities impacted by heavy motor vehicle traffic and mixed urban air pollution sources.
Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna
NASA Astrophysics Data System (ADS)
Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.
2017-12-01
The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.
Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming
2015-01-01
Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin’anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin’anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin’anjiang Reservoir. PMID:26274970
Edirisinghe, E A N V; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L
2017-12-01
Seasonal and spatial variation in δ 18 O and δ 2 H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.
Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent
2016-01-01
Background Space-for-time substitution—that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations—is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Hypothesis Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Methods Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. Results For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. Significance The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity. PMID:26959363
Liu, Yu; Gao, Peng; Zhang, Liyong; Niu, Xiang; Wang, Bing
2016-10-01
Soil total nitrogen (STN) and total phosphorus (STP) are important indicators of soil nutrients and the important indexes of soil fertility and soil quality evaluation. Using geographic information system (GIS) and geostatistics, the spatial heterogeneity distribution of STN and STP in the Yaoxiang watershed in a hilly area of northern China was studied. The results showed that: (1) The STN and STP contents showed a declining trend with the increase in soil depth; the variation coefficients ( C v ) of STN and STP in the 0- to 10-cm soil layer (42.25% and 14.77%, respectively) were higher than in the 10- to 30-cm soil layer (28.77% and 11.60%, respectively). Moreover, the C v of STN was higher than that of STP. (2) The maximum C 0 /( C 0 + C 1 ) of STN and STP in the soil layers was less than 25%, this indicated that a strong spatial distribution autocorrelation existed for STN and STP; and the STP showed higher intensity and more stable variation than the STN. (3) From the correlation analysis, we concluded that the topographic indexes such as elevation and slope direction all influenced the spatial distribution of STN and STP (correlation coefficients were 0.688 and 0.518, respectively). (4) The overall distribution of STN and STP in the Yaoxiang watershed decreased from the northwest to the southeast. This variation trend was similar to the watershed DEM trend and was significantly influenced by vegetation and topographic factors. These results revealed the spatial heterogeneity distribution of STN and STP, and addressed the influences of forest vegetation coverage, elevation, and other topographic factors on the spatial distribution of STN and STP at the watershed scale.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, Y.; Ju, H.
2017-12-01
The interprovincial terrestrial physical geographical entities are the key areas of regional integrated management. Based on toponomy dictionaries and different thematic maps, the attributes and the spatial extent of the interprovincial terrestrial physical geographical names (ITPGN, including terrain ITPGN and water ITPGN) were extracted. The coefficient of variation and Moran's I were combined together to measure the spatial variation and spatial association of ITPGN. The influencing factors of the distribution of ITPGN and the implications for the regional management were further discussed. The results showed that 11325 ITPGN were extracted, including 7082 terrain ITPGN and 4243 water ITPGN. Hunan Province had the largest number of ITPGN in China, and Shanghai had the smallest number. The spatial variance of the terrain ITPGN was larger than that of the water ITPGN, and the ITPGN showed a significant agglomeration phenomenon in the southern part of China. Further analysis showed that the number of ITPGN was positively related with the relative elevation and the population where the relative elevation was lower than 2000m and the population was less than 50 million. But the number of ITPGN showed a negative relationship with the two factors when their values became larger, indicating a large number of unnamed entities existed in complex terrain areas and a decreasing number of terrestrial physical geographical entities in densely populated area. Based on these analysis, we suggest the government take the ITPGN as management units to realize a balance development between different parts of the entities and strengthen the geographical names census and the nomination of unnamed interprovincial physical geographical entities. This study also demonstrated that the methods of literature survey, coefficient of variation and Moran's I can be combined to enhance the understanding of the spatial pattern of ITPGN.
Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)
NASA Astrophysics Data System (ADS)
Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.
2014-09-01
Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.
Investigating of spatial variations of PM2.5 concentration in Suzhou using remote sensing imagery
NASA Astrophysics Data System (ADS)
Zhang, Shanzheng; Li, Bailiang
2017-04-01
Suzhou is located at the center of Yangtze Delta, suffering the air pollution from construction of mega city, industrial emission and traffic development. Particulate matter not greater than 2.5 micrometers (PM2.5) is now considered as the most important pollutants in the air in East China. For Suzhou city, some studies on PM2.5 temporal variations based on ground measurements have been conducted. However, until now, there is limited remote sensing based research to investigate the spatial pattern of PM2.5 in Suzhou. MODIS is often used to evaluate the spatial variabiilty of air quality, however, due to its low spatial resolution (250m), we have adopted China launched HJ-1 satellite with 30 m resolution of CCD sensor. Following the solar radiation S6 model and dark object atmospheric correction method (Kaufman,et al., 2000), atmospheric optical depth (AOD) was estimated. A statistical relationship has been built up between AOD and PM2.5. We have retrieved the spatial distribution of PM2.5 across Suzhou city in the winter of 2014. Results indicate that PM2.5 has the highest value in Kunshan (East of Suzhou) and Changshu and Taicang (NE of Suzhou) due to the heavy-polluted industry, while in the island of the Taihu Lake, the PM2.5 is significantly lower than other places maybe because of high deposition rate of PM2.5 over water and forest surfaces. The spatial variation also shows that traffic has less contribution to the PM2.5 generation than the industry. We believe this study will be very useful to identify the causes of local PM2.5 pollution. The findings could also benefit local management and policy making.
NASA Astrophysics Data System (ADS)
Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang
2018-04-01
The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning circulation (AMOC) and northward ocean heat transport caused by the accumulated effect of NAO forcing, reasonably well captures the observed multidecadal fluctuations in the AMO. Further analysis using the fully coupled model simulations provides direct modeling evidence that the observed spatial coherence of decadal SST variations across North Atlantic basin can be reproduced only by including the AMOC-related ocean dynamics, and the AMOC acts as a common forcing signal that results in a spatially coherent variation of North Atlantic SST.
NASA Astrophysics Data System (ADS)
Carter, Alex B.; Davies, Campbell R.; Mapstone, Bruce D.; Russ, Garry R.; Tobin, Andrew J.; Williams, Ashley J.
2014-09-01
Batch fecundity of female Plectropomus leopardus, a coral reef fish targeted by commercial and recreational fishing, was compared between reefs open to fishing and reefs within no-take marine reserves within three regions of the Great Barrier Reef (GBR), Australia. Length, weight, and age had positive effects on batch fecundity of spawners from northern and central reefs but negligible effects on spawners from southern reefs. Females were least fecund for a given length, weight, and age in the southern GBR. Batch fecundity of a 500-mm fork length female was 430 % greater on central reefs and 207 % greater on northern reefs than on southern reefs. The effects of length and age on batch fecundity did not differ significantly between reserve and fished reefs in any region, but weight-specific fecundity was 100 % greater for large 2.0 kg females on reserve reefs compared with fished reefs in the central GBR. We hypothesize that regional variation in batch fecundity is likely driven by water temperature and prey availability. Significant regional variation in batch fecundity highlights the need for understanding spatial variation in reproductive output where single conservation or fishery management strategies cover large, potentially diverse, spatial scales.
Spatial and temporal demographic variation drives within-season fluctuations in sexual selection.
Kasumovic, Michael M; Bruce, Matthew J; Andrade, Maydianne C B; Herberstein, Marie E
2008-09-01
Our understanding of selection in nature stems mainly from whole-season and cross-sectional estimates of selection gradients. These estimates suggest that selection is relatively constant within, but fluctuates between seasons. However, the strength of selection depends on demographics, and because demographics can vary within seasons, there is a gap in our understanding regarding the extent to which seasonal fluctuations in demographics may cause variation in selection. Here we use two populations of the golden orb-web spider (Nephila plumipes) that differ in density to examine how demographics change within a season and whether there are correlated shifts in selection. We demonstrate that there is within-season variation in sex ratio and density at multiple spatial and temporal scales. This variation led to changes in the competitive challenges that males encountered at different times of the season and was correlated with significant variation in selection gradients on male size and weight between sampling periods. We highlight the importance of understanding the biology of the organism under study to correctly determine the relevant scale in which to examine selection. We also argue that studies may underestimate the true variation in selection by averaging values, leading to misinterpretation of the effect of selection on phenotypic evolution.
Bray, Signe
2017-05-01
Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Spatial variation in senescence rates in a bird metapopulation.
Holand, H; Kvalnes, T; Gamelon, M; Tufto, J; Jensen, H; Pärn, H; Ringsby, T H; Sæther, B-E
2016-07-01
Investigating factors which affect the decline in survival with age, i.e. actuarial senescence, is important in order to understand how demographic rates vary in wild populations. Although the evidence for the occurrence of actuarial senescence in wild populations is growing, very few studies have compared actuarial senescence rates between wild populations of the same species. We used data from a long-time study of demography of house sparrows (Passer domesticus) to investigate differences in rates of actuarial senescence between habitats and sub-populations. We also investigated whether rates of actuarial senescence differed between males and females. We found that rates of actuarial senescence showed large spatial variation. We also found that the onset of actuarial senescence varied between sub-populations. However, these differences were not significantly explained by a general difference in habitat type. We also found no significant difference in actuarial senescence rates between males and females. This study shows that senescence rates in natural populations may vary significantly between sub-populations and that failing to account for such differences may give a biased estimate of senescence rates of a species.
NASA Astrophysics Data System (ADS)
Tanner, S. E.; Vasconcelos, R. P.; Reis-Santos, P.; Cabral, H. N.; Thorrold, S. R.
2011-01-01
A description of variations in the chemical composition of fish otoliths at different spatial scales and life history stages is a prerequisite for their use as natural tags in fish population connectivity and migration studies. Otolith geochemistry of juvenile common sole ( Solea solea), a marine migrant species collected in six Portuguese estuaries was examined. Elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca, Pb:Ca) were analysed in two zones of the right otolith (corresponding to late larval and juvenile stages) using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Stable carbon and oxygen isotopes (δ 13C and δ 18O) were determined in left otoliths using isotopic ratio monitoring mass spectrometry (irm-MS). Significant differences in otolith geochemical signatures were found among estuaries, among sites within estuaries and between otolith zones. Several elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca and Sr:Ca) showed consistent patterns between otolith zones and were likely influenced by environmental factors and ontogenetic effects associated with physiological changes during metamorphosis. Assignment of individuals to their collection estuary based on the otolith geochemical signatures was more accurate at the site level (81%) than among estuaries (69%). Site temperature was not correlated with any of the elemental or isotope ratios, but salinity was significantly correlated with Ba:Ca, δ 13C and δ 18O. Observed spatial variations among estuaries and sites within estuaries indicate that geochemical signatures in otoliths are accurate natural tags of estuarine habitat in common sole. Nevertheless, the significant variations observed between otolith zones should be taken into account in the design of population connectivity studies.
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
Law, Darin J.; Breshears, David D.; Ebinger, Michael H.; Meyer, Clifton W.; Allen, Craig D.
2012-01-01
Carbon and nitrogen are crucial to semiarid woodlands, determining decomposition, production and redistribution of water and nutrients. Carbon and nitrogen are often greater beneath canopies than intercanopies. Upslope vs. downslope position and ephemeral channels might also cause variation in C and N. Yet, few studies have simultaneously evaluated spatial variation associated with canopy–intercanopy patches and topography. We estimated C and N upslope and downslope in an eroding piñon–juniper woodland for canopies beneath piñons (Pinus edulis) and junipers, (Juniperus monosperma), intercanopies, and ephemeral channels. Soil C and N in the surface and profile beneath canopies exceeded that of intercanopies and channels. Relative to intercanopies, channels had more profile C upslope but less downslope (profile N was not significant). Relative to upslope, profile C downslope for intercanopies was greater and for channels was less (profile N was not significant). Relative to profile, surface soil C and N exhibited less heterogeneity. Although some topographic heterogeneity was detected, results did not collectively support our redistribution hypotheses, and we are unable to distinguish if this heterogeneity is due to in situ or redistribution effects. Nonetheless, results highlight finer topographical spatial variation in addition to predominant canopy and intercanopy variation that is applicable for semiarid woodland management.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.
Gangnon, Ronald E
2012-03-01
The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution
Gangnon, Ronald E.
2011-01-01
Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118
Spatial and temporal characterizations of water quality in Kuwait Bay.
Al-Mutairi, N; Abahussain, A; El-Battay, A
2014-06-15
The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim
2016-01-01
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
Environmental Effects on Affect: Density, Noise and Personality.
ERIC Educational Resources Information Center
Bharucha-Reid, Rodabe; Kivak, H. Asuman
1982-01-01
Research findings are reported of a study (N=88 undergraduate males) of molar crowding in urban centers which involved the simultaneous variation of social density, spatial density, noise, and personality as they effect room affect (physical and psychological). Several main effects proved significant. (Author/DC)
USDA-ARS?s Scientific Manuscript database
Soil-vegetation-atmosphere transfers significantly influence interactions and feedbacks between vegetation and boundary layer in relation with plant phenology and water status. The current study focused on linking micrometeorological conditions to cultural practices at the local and regional scales ...
Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network
Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen
2013-01-01
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...
Spatial-temporal analysis of building surface temperatures in Hung Hom
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shen, Yueqian
2015-12-01
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
Moses, Sara K; Polkinghorne, Christine N; Mattes, William P; Beesley, Kimberly M
2018-01-01
Mercury concentrations were measured in eggs, larvae, and adult spawning-phase sea lampreys (Petromyzon marinus) collected in tributaries of Lake Superior to investigate spatial and ontogenetic variation. There were significant differences in mercury concentrations between all three life stages, with levels highest in adults (mean = 3.01 µg/g), followed by eggs (mean = 0.942 µg/g), and lowest in larvae (mean = 0.455 µg/g). There were no significant differences in mercury concentrations by location for any life stage or by sex in adults. Mercury was not correlated with adult or larval lamprey length or mass. Mercury levels in adult lampreys exceeded U.S. and Canadian federal guidelines for human consumption. Mercury concentrations in all life stages exceeded criteria for the protection of piscivorous wildlife, posing a threat to local fish, birds, and mammals. High mercury levels in adult lampreys combined with their semelparous life history make them a potential source of lake-derived mercury to spawning streams.
NASA Astrophysics Data System (ADS)
Balling, Robert C.; Roy, Shouraseni Sen
2005-06-01
Many scientists have noted that global temperature anomalies were highly correlated with solar irradiance values until sometime in the 1970s, but since that time, the pronounced warming in the near-surface temperature record is not explained by variations or trends in solar receipt. In this investigation, spatial dimensions are explored in the relationship between irradiance and near-surface air temperatures. At the scale of individual 5° by 5° grid cells, the solar control on annual temperature variations is not statistically significant. When the temperature data are aggregated by 5° latitudinal bands, the solar - temperature connect is generally significant, and in every band, there is substantial evidence that a non-solar control has become dominant in recent decades. The buildup of greenhouse gases and/or some other global-scale feedback, such as widespread changes in atmospheric water vapor, emerge as potential explanations for the recent residual warming found in all latitudinal bands.
OSPAR standard method and software for statistical analysis of beach litter data.
Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit
2017-09-15
The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M
2017-12-01
The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
Dai, Dajun; Oyana, Tonny J
2008-01-01
Background High levels of dioxins in soil and higher-than-average body burdens of dioxins in local residents have been found in the city of Midland and the Tittabawassee River floodplain in Michigan. The objective of this study is threefold: (1) to evaluate dioxin levels in soils; (2) to evaluate the spatial variations in breast cancer incidence in Midland, Saginaw, and Bay Counties in Michigan; (3) to evaluate whether breast cancer rates are spatially associated with the dioxin contamination areas. Methods We acquired 532 published soil dioxin data samples collected from 1995 to 2003 and data pertaining to female breast cancer cases (n = 4,604) at ZIP code level in Midland, Saginaw, and Bay Counties for years 1985 through 2002. Descriptive statistics and self-organizing map algorithm were used to evaluate dioxin levels in soils. Geographic information systems techniques, the Kulldorff's spatial and space-time scan statistics, and genetic algorithms were used to explore the variation in the incidence of breast cancer in space and space-time. Odds ratio and their corresponding 95% confidence intervals, with adjustment for age, were used to investigate a spatial association between breast cancer incidence and soil dioxin contamination. Results High levels of dioxin in soils were observed in the city of Midland and the Tittabawassee River 100-year floodplain. After adjusting for age, we observed high breast cancer incidence rates and detected the presence of spatial clusters in the city of Midland, the confluence area of the Tittabawassee, and Saginaw Rivers. After accounting for spatiotemporal variations, we observed a spatial cluster of breast cancer incidence in Midland between 1985 and 1993. The odds ratio further suggests a statistically significant (α = 0.05) increased breast cancer rate as women get older, and a higher disease burden in Midland and the surrounding areas in close proximity to the dioxin contaminated areas. Conclusion These findings suggest that increased breast cancer incidences are spatially associated with soil dioxin contamination. Aging is a substantial factor in the development of breast cancer. Findings can be used for heightened surveillance and education, as well as formulating new study hypotheses for further research. PMID:18939976
Cumulative human impacts on marine predators.
Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P
2013-01-01
Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.
2009-01-01
NDVI , WBI970, Chlorophyll fluorescence, Salinity, Hyperspectral reflectance JC_Naumann, DR_Young, JE_Anderson Virginia Commonwealth University 800...DF=F0m for M. cerifera (r2 = 0.79) and I. frutescens (r2 = 0.72). The normalized difference vegetation index ( NDVI ), the chlorophyll index (CI), and...frutescens, while there were no differences in NDVI during the 2 years. PRI was not significantly related to NDVI , suggesting that the indices are spatially
Recent variations in seasonality of temperature and precipitation in Canada, 1976-95
NASA Astrophysics Data System (ADS)
Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.
2002-11-01
A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.
Landscape controls on total and methyl Hg in the Upper Hudson River basin, New York, USA
Burns, Douglas A.; Riva-Murray, K.; Bradley, P.M.; Aiken, G.R.; Brigham, M.E.
2012-01-01
Approaches are needed to better predict spatial variation in riverine Hg concentrations across heterogeneous landscapes that include mountains, wetlands, and open waters. We applied multivariate linear regression to determine the landscape factors and chemical variables that best account for the spatial variation of total Hg (THg) and methyl Hg (MeHg) concentrations in 27 sub-basins across the 493 km2 upper Hudson River basin in the Adirondack Mountains of New York. THg concentrations varied by sixfold, and those of MeHg by 40-fold in synoptic samples collected at low-to-moderate flow, during spring and summer of 2006 and 2008. Bivariate linear regression relations of THg and MeHg concentrations with either percent wetland area or DOC concentrations were significant but could account for only about 1/3 of the variation in these Hg forms in summer. In contrast, multivariate linear regression relations that included metrics of (1) hydrogeomorphology, (2) riparian/wetland area, and (3) open water, explained about 66% to >90% of spatial variation in each Hg form in spring and summer samples. These metrics reflect the influence of basin morphometry and riparian soils on Hg source and transport, and the role of open water as a Hg sink. Multivariate models based solely on these landscape metrics generally accounted for as much or more of the variation in Hg concentrations than models based on chemical and physical metrics, and show great promise for identifying waters with expected high Hg concentrations in the Adirondack region and similar glaciated riverine ecosystems.
Arcega-Cabrera, F; Garza-Pérez, R; Noreña-Barroso, E; Oceguera-Vargas, I
2015-01-01
This study investigated the influence of geochemical and environmental factors on seasonal variation in metals in Yucatan's Chelem lagoon. Anthropogenic activities discharge non-treated wastewater directly into it with detrimental environmental consequences. Accordingly, this study established the spatial and temporal patterns of fine grain sediments and concentrations of heavy metals. Multivariate analyses showed fine grain facies deposition, transition sites dominated by fine grain transport, and fine grain erosion sites. Spatial and temporal variations of heavy metals concentration were significant for Cd, Cu, Cr, and Pb. As, Cd, and Sn were as much as 12 times higher than SQuiRTs standards (Buchman 2008). The results indicate that aquifer water is bringing metals from relatively far inland and releasing them into the lagoon. Thus, it appears that the contamination of this lagoon is highly complex and must take into account systemic connections with inland anthropogenic activates and pollution, as well as local factors.
Penin, Lucie; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi
2013-06-01
Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.
Stewart, Barclay T.; Gyedu, Adam; Boakye, Godfred; Lewis, Daniel; Hoogerboord, Marius; Mock, Charles
2017-01-01
Background Surgical disease burden falls disproportionately on individuals in low- and middle-income countries. These populations are also the least likely to have access to surgical care. Understanding the barriers to access in these populations is therefore necessary to meet the global surgical need. Methods Using geospatial methods, this study explores the district-level variation of two access barriers in Ghana: poverty and spatial access to care. National survey data were used to estimate the average total household expenditure (THE) in each district. Estimates of the spatial access to essential surgical care were generated from a cost-distance model based on a recent surgical capacity assessment. Correlations were analyzed using regression and displayed cartographically. Results Both THE and spatial access to surgical care were found to have statistically significant regional variation in Ghana (p < 0.001). An inverse relationship was identified between THE and spatial access to essential surgical care (β −5.15 USD, p < 0.001). Poverty and poor spatial access to surgical care were found to co-localize in the northwest of the country. Conclusions Multiple barriers to accessing surgical care can coexist within populations. A careful understanding of all access barriers is necessary to identify and target strategies to address unmet surgical need within a given population. PMID:27766400
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER
The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...
Spatial Variation in Particulate Matter Components over a Large Urban Area
Fruin, Scott; Urman, Robert; Lurmann, Fred; McConnell, Rob; Gauderman, James; Rappaport, Ed; Franklin, Meredith; Gilliland, Frank D.; Shafer, Martin; Gorski, Patrick; Avol, Ed
2014-01-01
To characterize exposures to particulate matter (PM) and its components, we performed a large sampling study of small-scale spatial variation in size-resolved particle mass and composition. PM was collected in size ranges of < 0.2, 0.2-to-2.5, and 2.5-to-10 μm on a scale of 100s to 1000s of meters to capture local sources. Within each of eight Southern California communities, up to 29 locations were sampled for rotating, month-long integrated periods at two different times of the year, six months apart, from Nov 2008 through Dec 2009. Additional sampling was conducted at each community’s regional monitoring station to provide temporal coverage over the sampling campaign duration. Residential sampling locations were selected based on a novel design stratified by high- and low-predicted traffic emissions and locations over- and under-predicted from previous dispersion model and sampling comparisons. Primary vehicle emissions constituents, such as elemental carbon (EC), showed much stronger patterns of association with traffic than pollutants with significant secondary formation, such as PM2.5 or water soluble organic carbon. Associations were also stronger during cooler times of the year (Oct through Mar). Primary pollutants also showed greater within-community spatial variation compared to pollutants with secondary formation contributions. For example, the average cool-season community mean and standard deviation (SD) for EC were 1.1 and 0.17 μg/m3, respectively, giving a coefficient of variation (CV) of 18%. For PM2.5, average mean and SD were 14 and 1.3 μg/m3, respectively, with a CV of 9%. We conclude that within-community spatial differences are important for accurate exposure assessment of traffic-related pollutants. PMID:24578605
NASA Astrophysics Data System (ADS)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Arora, B.; Torn, M. S.
2017-12-01
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO2 and CH4 exchange. Here we test hypotheses in ecosys for topographic controls on CO2 and CH4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO2 influxes and CH4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) than in higher (rims) within LCPs and FCPs. Spatially aggregated CO2 and CH4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52-56 g C m-2 yr-1) and CH4 sources (4-6 g C m-2 yr-1), and higher features as near C neutral (-2-15 g C m-2 yr-1) and CH4 neutral (0.0-0.1 g C m-2 yr-1). Much of the spatial and temporal variations in CO2 and CH4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.
NASA Astrophysics Data System (ADS)
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa
2018-03-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
DiLeo, Michelle F; Siu, Jenna C; Rhodes, Matthew K; López-Villalobos, Adriana; Redwine, Angela; Ksiazek, Kelly; Dyer, Rodney J
2014-08-01
Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.
1991-01-01
The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.
1991-01-01
The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.
The relationship between observational scale and explained variance in benthic communities
Flood, Roger D.; Frisk, Michael G.; Garza, Corey D.; Lopez, Glenn R.; Maher, Nicole P.
2018-01-01
This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present. PMID:29324746
Luo, Ji; Chen, Youchao; Wu, Yanhong; Shi, Peili; She, Jia; Zhou, Peng
2012-01-01
Soil respiration (SR) is an important process in the global carbon cycle. It is difficult to estimate SR emission accurately because of its temporal and spatial variability. Primary forest succession on Glacier forehead provides the ideal environment for examining the temporal-spatial variation and controlling factors of SR. However, relevant studies on SR are relatively scarce, and variations, as well as controlling factors, remain uncertain in this kind of region. In this study, we used a static chamber system to measure SR in six sites which represent different stages of forest succession on forehead of a temperate glacier in Gongga Mountain, China. Our results showed that there was substantial temporal (coefficient of variation (CV) ranged from 39.3% to 73.9%) and spatial (CV ranged from 12.3% to 88.6%) variation in SR. Soil temperature (ST) at 5 cm depth was the major controlling factor of temporal variation in all six sites. Spatial variation in SR was mainly caused by differences in plant biomass and Total N among the six sites. Moreover, soil moisture (SM), microbial biomass carbon (MBC), soil organic carbon (SOC), pH and bulk density could influence SR by directly or indirectly affecting plant biomass and Total N. Q10 values (ranged from 2.1 to 4.7) increased along the forest succession, and the mean value (3.3) was larger than that of temperate ecosystems, which indicated a general tendency towards higher-Q10 in colder ecosystems than in warmer ecosystems. Our findings provided valuable information for understanding temporal-spatial variation and controlling factors of SR. PMID:22879950
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa
2003-01-01
Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and interhemispheric transport in the Indian Ocean.
Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C
2015-11-01
Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation could broaden the scale and scope of studies exploring phenological synchrony between organisms and their environment.
Grundel, R.; Pavlovic, N.B.
2007-01-01
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7–13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9–16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
Governance and Regional Variation of Homicide Rates: Evidence From Cross-National Data.
Cao, Liqun; Zhang, Yan
2017-01-01
Criminological theories of cross-national studies of homicide have underestimated the effects of quality governance of liberal democracy and region. Data sets from several sources are combined and a comprehensive model of homicide is proposed. Results of the spatial regression model, which controls for the effect of spatial autocorrelation, show that quality governance, human development, economic inequality, and ethnic heterogeneity are statistically significant in predicting homicide. In addition, regions of Latin America and non-Muslim Sub-Saharan Africa have significantly higher rates of homicides ceteris paribus while the effects of East Asian countries and Islamic societies are not statistically significant. These findings are consistent with the expectation of the new modernization and regional theories. © The Author(s) 2015.
Temporal and spatial variability of aeolian sand transport: Implications for field measurements
NASA Astrophysics Data System (ADS)
Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang
2012-01-01
Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
Wu, Shaohua; Zhou, Shenglu; Chen, Dongxiang; Wei, Zongqiang; Dai, Liang; Li, Xingong
2014-02-15
Terrestrial net primary production (NPP) is an important measure of global change, and identifying the relative contributions of urbanisation and climate change to NPP is important for understanding the impact of human and natural influences on terrestrial systems and the carbon cycle. The objective of this study was to reveal how urbanisation and climate drive changes in NPP. Satellite-based estimates of NPP collected over a 12-year period (1999-2010) were analysed to identify NPP variations in the Yangtze River Delta. Temporal and spatial analysis methods were used to identify the relationships among NPP, nighttime light urbanisation index values, and climatic factors from pixel to regional scales. The NPP of the entire Yangtze River Delta decreased slightly at a rate of -0.5 g C m(-2)a(-1) from 1999 to 2010, but this change was not significant. However, in the urban region, NPP decreased significantly (p<0.05) at a rate of -4.7 g C m(-2)a(-1) due to urbanisation processes. A spatially explicit method was proposed to partition the relative contributions of urbanisation and climate change to NPP variation. The results revealed that the urbanisation factor is the main driving force for NPP change in high-speed urbanisation areas, and the factor accounted for 47% of the variations. However, in the forest and farm regions, the NPP variation was mainly controlled by climate change and residual factors. Copyright © 2013 Elsevier B.V. All rights reserved.
Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A
2015-01-01
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042
Drivers of protogynous sex change differ across spatial scales.
Taylor, Brett M
2014-01-22
The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.
Piana, Pitágoras A.; Cardoso, Bárbara F.; Dias, Joilson; Gomes, Luiz C.; Agostinho, Angelo A.; Miranda, Leandro E.
2017-01-01
Populations show spatial-temporal fluctuations in abundance, partly due to random processes and partly due to self-regulatory processes. We evaluated the effects of various external factors on the population numerical abundance of curimba Prochilodus lineatus in the upper Paraná River floodplain, Brazil, over a 19-year period. Panel data analysis was applied to examine the structure of temporal and spatial abundance while controlling auto-regressive processes and spatial non-homogeneity variances that often obscure relationships. As sources of population variation, we considered predation, competition, selected abiotic variables, construction of a dam upstream of the study area, water level and flood intensity during the spawning period. We found that biological interactions (predation and competition) were not significantly related to variations in curimba abundance; specific conductance was a space indicator of abundance, apparently linked to the biology of the species; intensity of floods determined inter-annual variation in abundances; Porto Primavera Dam negatively impacted the abundances at sites in the floodplain directly affected by discharges from the dam. Panel data analysis was a powerful tool that identified the need for intense flooding to maintain high abundances of curimba in the upper Paraná River. We believe our results apply to other species with similar life strategy.
Honsey, Andrew E.; Bunnell, David B.; Troy, Cary D.; Fielder, David G.; Thomas, Michael V.; Knight, Carey T.; Chong, Stephen; Hook, Tomas O.
2016-01-01
Population-level reproductive success (recruitment) of many fish populations is characterized by high inter-annual variation and related to annual variation in key environmental factors (e.g., climate). When such environmental factors are annually correlated across broad spatial scales, spatially separated populations may display recruitment synchrony (i.e., the Moran effect). We investigated inter-annual (1966–2008) variation in yellow perch (Perca flavescens, Percidae) recruitment using 16 datasets describing populations located in four of the five Laurentian Great Lakes (Erie, Huron, Michigan, and Ontario) and Lake St. Clair. We indexed relative year class strength using catch-curve residuals for each year-class across 2–4 years and compared relative year-class strength among sampling locations. Results indicate that perch recruitment is positively synchronized across the region. In addition, the spatial scale of this synchrony appears to be broader than previous estimates for both yellow perch and freshwater fish in general. To investigate potential factors influencing relative year-class strength, we related year-class strength to regional indices of annual climatic conditions (spring-summer air temperature, winter air temperature, and spring precipitation) using data from 14 weather stations across the Great Lakes region. We found that mean spring-summer temperature is significantly positively related to recruitment success among Great Lakes yellow perch populations.
Random field assessment of nanoscopic inhomogeneity of bone
Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu
2010-01-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128
NASA Astrophysics Data System (ADS)
Ren, Hongrui; Zhang, Bei
2018-02-01
Clarifying spatiotemporal variations of litter mass and their relationships with climate factors will advance our understanding of ecosystem structure and functioning in grasslands. Our objective is to investigate the spatiotemporal variations of litter mass in the growing season and their relationships with precipitation and temperature in the Xilingol grassland using MOD09A1 data. With widely used STI (simple tillage index), we firstly estimated the litter mass of Xilingol grassland in the growing season from 2000 to 2014. Then we investigated the variations of litter mass in the growing season at regional and site scales. We further explored the spatiotemporal relationships between litter mass and precipitation and temperature at both scales. The litter mass increased with increasing mean annual precipitation and decreasing mean annual temperature at regional scale. The variations of litter mass at given sites followed quadratic function curves in the growing season, and litter mass generally attained maximums between August 1 and September 1. Positive spatial relationship was observed between litter mass variations and precipitation, and negative spatial relationship was found between litter mass variations and temperature in the growing season. There was no significant relationship between inter-annual variations of litter mass and precipitation and temperature at given sites. Results illustrate that precipitation and temperature are important drivers in shaping ecosystem functioning as reflected in litter mass at regional scale in the Xilingol grassland. Our findings also suggest the action of distinct mechanism in controlling litter mass variations at regional and sites scales.
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity
Jackson, Daniel J.; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M.; Fleck, Claudia
2017-01-01
Abstract Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. PMID:28961798
Davison, John; Öpik, Maarja; Zobel, Martin; Vasar, Martti; Metsis, Madis; Moora, Mari
2012-01-01
Despite the important ecosystem role played by arbuscular mycorrhizal fungi (AMF), little is known about spatial and temporal variation in soil AMF communities. We used pyrosequencing to characterise AMF communities in soil samples (n = 44) from a natural forest ecosystem. Fungal taxa were identified by BLAST matching of reads against the MaarjAM database of AMF SSU rRNA gene diversity. Sub-sampling within our dataset and experimental shortening of a set of long reads indicated that our approaches to taxonomic identification and diversity analysis were robust to variations in pyrosequencing read length and numbers of reads per sample. Different forest plots (each 10×10 m and separated from one another by 30 m) contained significantly different soil AMF communities, and the pairwise similarity of communities decreased with distance up to 50 m. However, there were no significant changes in community composition between different time points in the growing season (May-September). Spatial structure in soil AMF communities may be related to the heterogeneous vegetation of the natural forest study system, while the temporal stability of communities suggests that AMF in soil represent a fairly constant local species pool from which mycorrhizae form and disband during the season. PMID:22879900
Intraurban Variation of Fine Particle Elemental Concentrations in New York City.
Ito, Kazuhiko; Johnson, Sarah; Kheirbek, Iyad; Clougherty, Jane; Pezeshki, Grant; Ross, Zev; Eisl, Holger; Matte, Thomas D
2016-07-19
Few past studies have collected and analyzed within-city variation of fine particulate matter (PM2.5) elements. We developed land-use regression (LUR) models to characterize spatial variation of 15 PM2.5 elements collected at 150 street-level locations in New York City during December 2008-November 2009: aluminum, bromine, calcium, copper, iron, potassium, manganese, sodium, nickel, lead, sulfur, silicon, titanium, vanadium, and zinc. Summer- and winter-only data available at 99 locations in the subsequent 3 years, up to November 2012, were analyzed to examine variation of LUR results across years. Spatial variation of each element was modeled in LUR including six major emission indicators: boilers burning residual oil; traffic density; industrial structures; construction/demolition (these four indicators in buffers of 50 to 1000 m), commercial cooking based on a dispersion model; and ship traffic based on inverse distance to navigation path weighted by associated port berth volume. All the elements except sodium were associated with at least one source, with R(2) ranging from 0.2 to 0.8. Strong source-element associations, persistent across years, were found for residual oil burning (nickel, zinc), near-road traffic (copper, iron, and titanium), and ship traffic (vanadium). These emission source indicators were also significant and consistent predictors of PM2.5 concentrations across years.
Storlazzi, Curt D.; Reid, Jane A.; Golden, Nadine E.
2007-01-01
Wind and wave patterns affect many aspects of continental shelves and shorelines geomorphic evolution. Although our understanding of the processes controlling sediment suspension on continental shelves has improved over the past decade, our ability to predict sediment mobility over large spatial and temporal scales remains limited. The deployment of robust operational buoys along the U.S. West Coast in the early 1980s provides large quantities of high-resolution oceanographic and meteorologic data. By 2006, these data sets were long enough to clearly identify long-term trends and compute statistically significant probability estimates of wave and wind behavior during annual and interannual climatic cycles (that is, El Niño and La Niña). Wave-induced sediment mobility on the shelf and upper slope off central California was modeled using synthesized oceanographic and meteorologic data as boundary input for the Delft SWAN model, sea-floor grain-size data provided by the usSEABED database, and regional bathymetry. Differences in waves (heights, periods, and directions) and winds (speeds and directions) between El Niño and La Niña months cause temporal and spatial variations in peak wave-induced bed shear stresses. These variations, in conjunction with spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in predicted sediment mobility widely varying in both time and space. These findings indicate that these factors have significant consequences for both geological and biological processes.
Spatial heterogeneity of within-stream methane concentrations
NASA Astrophysics Data System (ADS)
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-05-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China.
Wang, Rong; Cao, Hongying; Li, Wei; Wang, Wei; Wang, Wentao; Zhang, Liwen; Liu, Jiumeng; Ouyang, Huiling; Tao, Shu
2011-05-01
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air. Copyright © 2011 Elsevier Ltd. All rights reserved.
The effects of oil spills on marine fish: Implications of spatial variation in natural mortality.
Langangen, Ø; Olsen, E; Stige, L C; Ohlberger, J; Yaragina, N A; Vikebø, F B; Bogstad, B; Stenseth, N C; Hjermann, D Ø
2017-06-15
The effects of oil spills on marine biological systems are of great concern, especially in regions with high biological production of harvested resources such as in the Northeastern Atlantic. The scientific studies of the impact of oil spills on fish stocks tend to ignore that spatial patterns of natural mortality may influence the magnitude of the impact over time. Here, we first illustrate how spatial variation in natural mortality may affect the population impact by considering a thought experiment. Second, we consider an empirically based example of Northeast Arctic cod to extend the concept to a realistic setting. Finally, we present a scenario-based investigation of how the degree of spatial variation in natural mortality affects the impact over a gradient of oil spill sizes. Including the effects of spatial variations in natural mortality tends to widen the impact distribution, hence increasing the probability of both high and low impact events. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
MERCURY DEPOSITION AND WATER QUALITY IN THE UPPER MIDWEST, USA
Total wet mercury deposition was monitored weekly at six Upper-Midwest, USA sites for a period of six years, 1990-195, to assess temporal and spatial patterns, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variation...
MERCURY DEPOSITIOIN AND WATER QUALITY TRENDS IN THE UPPER MIDWEST, USA
Total wet mercur deposition was monitored weekly at six Upper-Midwest USA sites for a period of six years, 1990-95, to assess temporal and spatial pattern, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variations b...
Hyporheic exchange in mountain rivers I: Mechanics and environmental effects
Daniele Tonina; John M. Buffington
2009-01-01
Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine...
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Baskan, Oguz; Kosker, Yakup; Erpul, Gunay
2013-12-01
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
NASA Astrophysics Data System (ADS)
Borgohain, Jayanta Madhab; Borah, Kajaljyoti; Biswas, Rajib; Bora, Dipok K.
2018-04-01
Spatial variation of seismic b-value is estimated in the Indo-Myanmar subduction zone of northeast (NE) India using the homogeneous part of earthquake catalogue (1996-2015), recorded by International Seismological Center (ISC), consisting of 895 events of magnitude MW ≥ 3.9. The study region is divided into 1° × 1° square grids and b-values are estimated at each grid by maximum likelihood method. In this study, the b-value varies from 0.75 to 1.54 in the region. Significant variation of low b-value in the respective location may indicate high stress accumulation in that region. Spatial variation reveals intermediate b-value anomalies around the epicenter of the Mw = 6.7 Manipur earthquake which occurred on 3rd January at 23:05 UTC (4 January 2016 at 04:35 IST). The variations of b-values are also estimated with respect to depth. The low b-value associated with the depth range ∼15-55 km, which may imply crustal homogeneity and high stress accumulation in the crust. Since, NE India lies in the seismic zone V of the country; this study can be helpful to understand seismotectonics in the region.
Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd
2014-09-01
The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination
Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-01-01
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.
Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-09-14
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.
2011-01-01
Background This paper analyses the relationship between public perceptions of access to general practitioners (GPs) surgeries and hospitals against health status, car ownership and geographic distance. In so doing it explores the different dimensions associated with facility access and accessibility. Methods Data on difficulties experienced in accessing health services, respondent health status and car ownership were collected through an attitudes survey. Road distances to the nearest service were calculated for each respondent using a GIS. Difficulty was related to geographic distance, health status and car ownership using logistic generalized linear models. A Geographically Weighted Regression (GWR) was used to explore the spatial non-stationarity in the results. Results Respondent long term illness, reported bad health and non-car ownership were found to be significant predictors of difficulty in accessing GPs and hospitals. Geographic distance was not a significant predictor of difficulty in accessing hospitals but was for GPs. GWR identified the spatial (local) variation in these global relationships indicating locations where the predictive strength of the independent variables was higher or lower than the global trend. The impacts of bad health and non-car ownership on the difficulties experienced in accessing health services varied spatially across the study area, whilst the impacts of geographic distance did not. Conclusions Difficulty in accessing different health facilities was found to be significantly related to health status and car ownership, whilst the impact of geographic distance depends on the service in question. GWR showed how these relationships were varied across the study area. This study demonstrates that the notion of access is a multi-dimensional concept, whose composition varies with location, according to the facility being considered and the health and socio-economic status of the individual concerned. PMID:21787394
Detecting significant change in stream benthic macroinvertebrate communities in wilderness areas
Milner, Alexander M.; Woodward, Andrea; Freilich, Jerome E.; Black, Robert W.; Resh, Vincent H.
2016-01-01
Within a region, both MDS analyses typically identified similar years as exceeding reference condition variation, illustrating the utility of the approach for identifying wider spatial scale effects that influence more than one stream. MDS responded to both simulated water temperature stress and a pollutant event, and generally outlying years on MDS plots could be explained by environmental variables, particularly higher precipitation. Multivariate control charts successfully identified whether shifts in community structure identified by MDS were significant and whether the shift represented a press disturbance (long-term change) or a pulse disturbance. We consider a combination of TD and MDS with control charts to be a potentially powerful tool for determining years significantly outside of a reference condition variation.
NASA Astrophysics Data System (ADS)
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2017-01-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach
Viarouge, Arnaud; Hubbard, Edward M.; McCandliss, Bruce D.
2014-01-01
Access to mental representations of smaller vs. larger number symbols is associated with leftward vs. rightward spatial locations, as represented on a number line. The well-replicated SNARC effect (Spatial-Numerical Association of Response Codes) reveals that simple decisions about small numbers are facilitated when stimuli are presented on the left, and large numbers facilitated when on the right. We present novel evidence that the size of the SNARC effect is relatively stable within individuals over time. This enables us to take an individual differences approach to investigate how the SNARC effect is modulated by spatial and numerical cognition. Are number-space associations linked to spatial operations, such that those who have greater facility in spatial computations show the stronger SNARC effects, or are they linked to number semantics, such that those showing stronger influence of magnitude associations on number symbol decisions show stronger SNARC effects? Our results indicate a significant correlation between the SNARC effect and a 2D mental rotation task, suggesting that spatial operations are at play in the expression of this effect. We also uncover a significant correlation between the SNARC effect and the distance effect, suggesting that the SNARC is also related to access to number semantics. A multiple regression analysis reveals that the relative contributions of spatial cognition and distance effects represent significant, yet distinct, contributions in explaining variation in the size of the SNARC effect from one individual to the next. Overall, these results shed new light on how the spatial-numerical associations of response codes are influenced by both number semantics and spatial operations. PMID:24760048
Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi
2013-01-01
Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for, precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784
Temporal and spatial variations of the Chesapeake Bay plume
NASA Technical Reports Server (NTRS)
Ruzecki, E. P.
1981-01-01
Historical records and data obtained during the Superflux experiments are used to describe the temporal and spatial variations of the effluent waters of Chesapeake Bay. The alongshore extent of the plume resulting from variations of freshwater discharge into the Bay and the effects of wind are illustrated. Variations of the cross sectional configuration of the plume over portions of a tidal cycle and results of a rapid underway water sampling system are discussed.
(In) Sensitivity to spatial distortion in natural scenes
Bex, Peter J.
2010-01-01
The perception of object structure in the natural environment is remarkably stable under large variation in image size and projection, especially given our insensitivity to spatial position outside the fovea. Sensitivity to periodic spatial distortions that were introduced into one quadrant of gray-scale natural images was measured in a 4AFC task. Observers were able to detect the presence of distortions in unfamiliar images even though they did not significantly affect the amplitude spectrum. Sensitivity depended on the spatial period of the distortion and on the image structure at the location of the distortion. The results suggest that the detection of distortion involves decisions made in the late stages of image perception and is based on an expectation of the typical structure of natural scenes. PMID:20462324
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation. PMID:26218872
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.
Alcohol outlet density and violence: A geographically weighted regression approach.
Cameron, Michael P; Cochrane, William; Gordon, Craig; Livingston, Michael
2016-05-01
We investigate the relationship between outlet density (of different types) and violence (as measured by police activity) across the North Island of New Zealand, specifically looking at whether the relationships vary spatially. We use New Zealand data at the census area unit (approximately suburb) level, on police-attended violent incidents and outlet density (by type of outlet), controlling for population density and local social deprivation. We employed geographically weighted regression to obtain both global average and locally specific estimates of the relationships between alcohol outlet density and violence. We find that bar and night club density, and licensed club density (e.g. sports clubs) have statistically significant and positive relationships with violence, with an additional bar or night club is associated with nearly 5.3 additional violent events per year, and an additional licensed club associated with 0.8 additional violent events per year. These relationships do not show significant spatial variation. In contrast, the effects of off-licence density and restaurant/café density do exhibit significant spatial variation. However, the non-varying effects of bar and night club density are larger than the locally specific effects of other outlet types. The relationships between outlet density and violence vary significantly across space for off-licences and restaurants/cafés. These results suggest that in order to minimise alcohol-related harms, such as violence, locally specific policy interventions are likely to be necessary. [Cameron MP, Cochrane W, Gordon C, Livingston M. Alcohol outlet density and violence: A geographically weighted regression approach. Drug Alcohol Rev 2016;35:280-288]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Spatial storage effect promotes biodiversity during adaptive radiation.
Tan, Jiaqi; Rattray, Jennifer B; Yang, Xian; Jiang, Lin
2017-07-12
Many ecological communities are enormously diverse. Variation in environmental conditions over time and space provides opportunities for temporal and spatial storage effects to operate, potentially promoting species coexistence and biodiversity. While several studies have provided empirical evidence supporting the significance of the temporal storage effect for coexistence, empirical tests of the role of the spatial storage effect are rare. In particular, we know little about how the spatial storage effect contributes to biodiversity over evolutionary timescales. Here, we report the first experimental study on the role of the spatial storage effect in the maintenance of biodiversity in evolving metacommunities, using the bacterium Pseudomonas fluorescens SBW25 as a laboratory model of adaptive radiation. We found that intercommunity spatial heterogeneity promoted phenotypic diversity of P. fluorescens in the presence of dispersal among local communities, by allowing the spatial storage effect to operate. Mechanistically, greater niche differences among P. fluorescens phenotypes arose in metacommunities with intercommunity spatial heterogeneity, facilitating negative frequency-dependent selection, and thus, the coexistence among P. fluorescens phenotypes. These results highlight the importance of the spatial storage effect for biodiversity over evolutionary timescales. © 2017 The Author(s).
Spatial variation in herbicide leaching from a marine clay soil via subsurface drains
Ulén, Barbro M; Larsbo, Mats; Kreuger, Jenny K; Svanbäck, Annika
2013-01-01
Background Subsurface transport via tile drains can significantly contribute to pesticide contamination of surface waters. The spatial variation in subsurface leaching of normally applied herbicides was examined together with phosphorus losses in 24 experimental plots with water sampled flow-proportionally. The study site was a flat, tile-drained area with 60% marine clay in the topsoil in southeast Sweden. The objectives were to quantify the leaching of frequently used herbicides from a tile drained cracking clay soil and to evaluate the variation in leaching within the experimental area and relate this to topsoil management practices (tillage method and structure liming). Results In summer 2009, 0.14, 0.22 and 1.62%, respectively, of simultaneously applied amounts of MCPA, fluroxypyr and clopyralid were leached by heavy rain five days after spraying. In summer 2011, on average 0.70% of applied bentazone was leached by short bursts of intensive rain 12 days after application. Peak flow concentrations for 50% of the treated area for MCPA and 33% for bentazone exceeded the Swedish no-effect guideline values for aquatic ecosystems. Approximately 0.08% of the glyphosate applied was leached in dissolved form in the winters of 2008/2009 and 2010/2011. Based on measurements of glyphosate in particulate form, total glyphosate losses were twice as high (0.16%) in the second winter. The spatial inter-plot variation was large (72–115%) for all five herbicides studied, despite small variations (25%) in water discharge. Conclusions The study shows the importance of local scale soil transport properties for herbicide leaching in cracking clay soils. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23658148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Harley, Robert A.; Brown, Nancy J.
Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less
Chung, Mi Yoon; Nason, John D; Chung, Myong Gi
2011-12-01
Fine-scale genetic structure (FSGS) in plants is influenced by variation in spatial and temporal demographic processes. To determine how demographic structure and FSGS change with stages of population succession, we studied replicate expanding and senescing populations of the Asian terrestrial orchid Cymbidium goeringii. We used spatial autocorrelation methods (O-ring and kinship statistics) to quantify spatial demographic structure and FSGS in two expanding and two senescing populations, also measuring genetic diversity and inbreeding in each. All populations exhibited significant aggregation of individuals and FSGS at short spatial scales. In expanding populations, this finding was associated with high recruitment rates, suggesting restricted seed dispersal. In senescing populations, recruitment was minimal, suggesting alternative mechanisms of aggregation, perhaps including spatial associations with mycorrhizal fungi. All populations had significant evidence of genetic bottlenecks, and inbreeding levels were consistently high. Our results indicate that different successional stages can generate similar patterns of spatial demographic and genetic structure, but as a consequence of different processes. These results contrast with the only other study of senescence effects on population genetic structure in an herbaceous perennial, which found little to no FSGS in senescing populations. With the exception of populations subject to mass collection by orchid sellers, significant FSGS is characteristic of the 16 terrestrial orchid species examined to date. From a conservation perspective, this result suggests that inference of orchid population history will benefit from analyses of both FSGS and demographic structure in combination with other ecological field data.
Takken, Willem; van Vliet, Arnold J H; Verhulst, Niels O; Jacobs, Frans H H; Gassner, Fedor; Hartemink, Nienke; Mulder, Sara; Sprong, Hein
2017-02-01
A longitudinal investigation on tick populations and their Borrelia infections in the Netherlands was undertaken between 2006 and 2011 with the aim to assess spatial and temporal patterns of the acarological risk in forested sites across the country and to assess variations in Borrelia genospecies diversity. Ticks were collected monthly in 11 sites and nymphs were examined for Borrelia infections. Tick populations expressed strong seasonal variations, with consistent and significant differences in mean tick densities between sites. Borrelia infections were present in all study sites, with a site-specific mean prevalence per month ranging from 7% to 26%. Prevalence was location-dependent and was not associated with tick densities. Mean Borrelia prevalence was lowest in January (4%), gradually increasing to reach a maximum (24%) in August. Borrelia afzelii represented 70% of all infections, with Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia valaisiana represented with 4%, 8%, and 10%, respectively. The density of infected nymphs and the proportional distribution of the four Borrelia genospecies, were significantly different between sites. The results show a consistent and significant spatial and temporal difference in acarological risk across the Netherlands.
Cappuccio, Francesco P; Ji, Chen; Donfrancesco, Chiara; Palmieri, Luigi; Ippolito, Renato; Vanuzzo, Diego; Giampaoli, Simona; Strazzullo, Pasquale
2015-01-01
Objectives To assess geographic and socioeconomic gradients in sodium and potassium intake in Italy. Setting Cross-sectional survey in Italy. Participants 3857 men and women, aged 39–79 years, randomly sampled in 20 regions (as part of a National cardiovascular survey of 8714 men and women). Primary outcome measures Participants’ dietary sodium and potassium intakes were measured by 24 h urinary sodium and potassium excretions. 2 indicators measured socioeconomic status: education and occupation. Bayesian geoadditive models were used to assess spatial and socioeconomic patterns of sodium and potassium intakes accounting for sociodemographic, anthropometric and behavioural confounders. Results There was a significant north-south pattern of sodium excretion in Italy. Participants living in southern Italy (eg, Calabria, Basilicata and Puglia >180 mmol/24 h) had a significantly higher sodium excretion than elsewhere (eg, Val d'Aosta and Trentino-Alto Adige <140 mmol/24 h; p<0.001). There was a linear association between occupation and sodium excretion (p<0.001). When compared with occupation I (top managerial), occupations III and IV had a 6.5% higher sodium excretion (coefficients: 0.054 (90% credible levels 0.014, 0.093) and 0.064 (0.024, 0.104), respectively). A similar relationship was found between educational attainment and sodium excretion (p<0.0001). When compared with those with a university degree, participants with primary and junior school education had a 5.9% higher urinary sodium (coefficients: 0.074 (0.031, 0.116) and 0.038 (0.001, 0.075), respectively). The socioeconomic gradient explained the spatial variation. Potassium excretion was higher in central regions and in some southern regions. Those in occupation V (low-skill workers) showed a 3% lower potassium excretion compared with those in occupation I. However, the socioeconomic gradient only partially explained the spatial variation. Conclusions Salt intake in Italy is significantly higher in less advantaged social groups. This gradient is independent of confounders and explains the geographical variation. PMID:26359282
Cappuccio, Francesco P; Ji, Chen; Donfrancesco, Chiara; Palmieri, Luigi; Ippolito, Renato; Vanuzzo, Diego; Giampaoli, Simona; Strazzullo, Pasquale
2015-09-10
To assess geographic and socioeconomic gradients in sodium and potassium intake in Italy. Cross-sectional survey in Italy. 3857 men and women, aged 39-79 years, randomly sampled in 20 regions (as part of a National cardiovascular survey of 8714 men and women). Participants' dietary sodium and potassium intakes were measured by 24 h urinary sodium and potassium excretions. 2 indicators measured socioeconomic status: education and occupation. Bayesian geoadditive models were used to assess spatial and socioeconomic patterns of sodium and potassium intakes accounting for sociodemographic, anthropometric and behavioural confounders. There was a significant north-south pattern of sodium excretion in Italy. Participants living in southern Italy (eg, Calabria, Basilicata and Puglia >180 mmol/24 h) had a significantly higher sodium excretion than elsewhere (eg, Val d'Aosta and Trentino-Alto Adige <140 mmol/24 h; p<0.001). There was a linear association between occupation and sodium excretion (p<0.001). When compared with occupation I (top managerial), occupations III and IV had a 6.5% higher sodium excretion (coefficients: 0.054 (90% credible levels 0.014, 0.093) and 0.064 (0.024, 0.104), respectively). A similar relationship was found between educational attainment and sodium excretion (p<0.0001). When compared with those with a university degree, participants with primary and junior school education had a 5.9% higher urinary sodium (coefficients: 0.074 (0.031, 0.116) and 0.038 (0.001, 0.075), respectively). The socioeconomic gradient explained the spatial variation. Potassium excretion was higher in central regions and in some southern regions. Those in occupation V (low-skill workers) showed a 3% lower potassium excretion compared with those in occupation I. However, the socioeconomic gradient only partially explained the spatial variation. Salt intake in Italy is significantly higher in less advantaged social groups. This gradient is independent of confounders and explains the geographical variation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Labbardi, Hanane; Ettahiri, Omar; Lazar, Said; Massik, Zakia; El Antri, Said
2005-04-01
Our interest is related to the hydrological characteristics of the Moulay Bousselham lagoon. Water samples were taken monthly from July 2001 to June 2002 in 15 stations distributed along the lagoon. The various measured hydrological parameters (temperature, salinity, suspended matter, chlorophyll a) showed significant monthly variations ( p<0.001), whereas spatially among all sampled stations, only the salinity showed significant variations. The variability analysis approached by the analysis of the normalized principal components combined with discriminate analysis showed very small inter-stations variability. Its percentage is 11% and 9% of the total variance during high and low tide, respectively. To cite this article: H. Labbardi et al., C. R. Geoscience 337 (2005).
Spatial correlation of auroral zone geomagnetic variations
NASA Astrophysics Data System (ADS)
Jackel, B. J.; Davalos, A.
2016-12-01
Magnetic field perturbations in the auroral zone are produced by a combination of distant ionospheric and local ground induced currents. Spatial and temporal structure of these currents is scientifically interesting and can also have a significant influence on critical infrastructure.Ground-based magnetometer networks are an essential tool for studying these phenomena, with the existing complement of instruments in Canada providing extended local time coverage. In this study we examine the spatial correlation between magnetic field observations over a range of scale lengths. Principal component and canonical correlation analysis are used to quantify relationships between multiple sites. Results could be used to optimize network configurations, validate computational models, and improve methods for empirical interpolation.
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole
2016-07-01
Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen
2013-08-01
Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.
Subramanian, Dharaneedharan; Ramalingam, Rajkumar; Karuppasamy, Radhakrishnan; Subramanian, Thanga Leela; Chellam, Balasundaram; Rajan, Koilmani Emmanuvel
2012-10-03
In the present study, we observed variations in the expression pattern of proteins isolated from the telencephalon of goldfish (Carassius auratus). The expression of a 28 kDa protein was elevated in the individuals trained in a spatial task when compared with the untrained individuals. The ∼28 kDa protein was analyzed using liquid chromatography and mass spectrometry; further, the data were analyzed using the MASCOT search engine. The analysis showed that the ∼28 kDa protein is a β form of 14-3-3 protein with 35.1% identity. In addition, the semiquantitative PCR confirmed the variation in the expression of 14-3-3 between the trained and the untrained groups. Subsequently, we examined the effect of upregulation of 14-3-3 (β) in the neurotransmitters; that is, serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA). Notably, the level of 5-HT and DA was found to be significantly elevated in the telencephalon of individuals trained in the spatial task than in the untrained individuals. Our results suggest that the spatial learning increases the expression of 14-3-3 (β), which in turn leads to an increase in the level of 5-HT and DA. The upregulated 5-HT and DA may facilitate synapse formation during spatial learning in a novel environment.
Chagas disease vector control and Taylor's law
Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.
2017-01-01
Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728
NASA Astrophysics Data System (ADS)
Dheenan, P. S.; Jha, Dilip Kumar; Vinithkumar, N. V.; Ponmalar, A. Angelin; Venkateshwaran, P.; Kirubagaran, R.
2014-01-01
The purpose of this study was to determine the concentration, distribution of bacteria and physicochemical property of surface seawater in Rangat Bay, Middle Andaman, Andaman Islands (India). The bay experiences tidal variations. Perhaps physicochemical properties of seawater in Rangat Bay were found not to vary significantly. The concentration of faecal streptococci was high (2.2 × 103 CFU/100 mL) at creek and harbour area, whereas total coliforms were high (7.0 × 102 CFU/100 mL) at mangrove area. Similarly, total heterotrophic bacterial concentration was high (5.92 × 104 CFU/100 mL) in mangrove and harbour area. The Vibrio cholerae and Vibrio parahaemolyticus concentration was high (4.2 × 104 CFU/100 mL and 9 × 103 CFU/100 mL) at open sea. Cluster analysis showed grouping of stations in different tidal periods. The spatial maps clearly depicted the bacterial concentration pattern in the bay. The combined approach of multivariate analysis and spatial mapping techniques was proved to be useful in the current study.
Spatial and temporal variations of evapotranspiration, groundwater and precipitation in Amazonia
NASA Astrophysics Data System (ADS)
Niu, J.; Riley, W. J.; Shen, C.; Melack, J. M.; Qiu, H.
2017-12-01
We used wavelet coherence analysis to investigate the effects of precipitation (P) and groundwater dynamics (total water storage anomaly, TWSA) on evapotranspiration (ET) at kilometer, sub-basin, and whole basin scales in the Amazon basin. The Amazon-scale averaged ET, P, and TWSA have about the same annual periodicity. The phase lag between ET and P (ΦET-P) is 1 to 3 months, and between ET and TWSA (ΦET-TWSA) is 3 to 7 months. The phase patterns have a south-north divide due to significant variation in climatic conditions. The correlation between ΦET-P and ΦET-TWSA is affected by the aridity index (the ratio between potential ET (PET) and P, PET / P), of each sub-basin, as determined using the Budyko framework at the sub-basin level. The spatial structure of ΦET-P is negatively correlated with the spatial structure of annual ET. At Amazon-scale during a drought year (e.g., 2010), both phases decreased, while in the subsequent years, ΦET-TWSA increased, indicating strong groundwater effects on ET immediately following dry years Amazon-wide.
Han, Guilin; Lv, Pin; Tang, Yang; Song, Zhaoliang
2018-05-01
Ratios of stable isotopes of hydrogen and oxygen ( 2 H/ 1 H and 18 O/ 16 O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ 2 H and δ 18 O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ 18 O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2 H and 18 O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
NASA Astrophysics Data System (ADS)
Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika
2018-05-01
Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI captured variation in vascular LAI better than in moss biomass, but while this difference was significant with late season NDVI, it was minimal with early season NDVI. For this reason, soil attributes associated with moss mass were better captured by early season NDVI. Topographic attributes were related to LAI and many soil attributes, but not to moss biomass and could not increase the amount of spatial variation explained in plant and soil attributes above that achieved by NDVI. The LCT map we produced had low to moderate uncertainty in predictions for plant and soil properties except for moss biomass and bare soil and lichen tundra LCTs. Our results illustrate a typical tundra ecosystem with great fine-scale spatial variation in both plant and soil attributes. Mosses dominate plant biomass and control many soil attributes, including OM % and temperature, but variation in moss biomass is difficult to capture by remote sensing reflectance, topography or a LCT map. Despite the general accuracy of landscape level predictions in our LCT approach, this indicates challenges in the spatial extrapolation of some of those vegetation and soil attributes that are relevant for the regional ecosystem and global climate models.
Li, Tao; Hao, Xinmei; Kang, Shaozhong
2016-01-01
There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692
Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván
2014-01-01
Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114
Spreading speeds for plant populations in landscapes with low environmental variation.
Gilbert, Mark A; Gaffney, Eamonn A; Bullock, James M; White, Steven M
2014-12-21
Characterising the spread of biological populations is crucial in responding to both biological invasions and the shifting of habitat under climate change. Spreading speeds can be studied through mathematical models such as the discrete-time integro-difference equation (IDE) framework. The usual approach in implementing IDE models has been to ignore spatial variation in the demographic and dispersal parameters and to assume that these are spatially homogeneous. On the other hand, real landscapes are rarely spatially uniform with environmental variation being very important in determining biological spread. This raises the question of under what circumstances spatial structure need not be modelled explicitly. Recent work has shown that spatial variation can be ignored for the specific case where the scale of landscape variation is much smaller than the spreading population׳s dispersal scale. We consider more general types of landscape, where the spatial scales of environmental variation are arbitrarily large, but the maximum change in environmental parameters is relatively small. We find that the difference between the wave-speeds of populations spreading in a spatially structured periodic landscape and its homogenisation is, in general, proportional to ϵ(2), where ϵ governs the degree of environmental variation. For stochastically generated landscapes we numerically demonstrate that the error decays faster than ϵ. In both cases, this means that for sufficiently small ϵ, the homogeneous approximation is better than might be expected. Hence, in many situations, the precise details of the landscape can be ignored in favour of spatially homogeneous parameters. This means that field ecologists can use the homogeneous IDE as a relatively simple modelling tool--in terms of both measuring parameter values and doing the modelling itself. However, as ϵ increases, this homogeneous approximation loses its accuracy. The change in wave-speed due to the extrinsic (landscape) variation can be positive or negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal with the loss of accuracy as ϵ increases, we formulate a second-order approximation to the wave-speed for periodic landscapes and compare both approximations against the results of numerical simulation and show that they are both accurate for the range of landscapes considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bruce, James F.
2002-01-01
The Fountain Creek Basin in and around Colorado Springs, Colorado, is affected by various land- and water-use activities. Biological, hydrological, water-quality, and land-use data were collected at 10 sites in the Fountain Creek Basin from April 1998 through April 2001 to provide a baseline characterization of macroinvertebrate communities and habitat conditions for comparison in subsequent studies; and to assess variation in macroinvertebrate community structure relative to habitat quality. Analysis of variance results indicated that instream and riparian variables were not affected by season, but significant differences were found among sites. Nine metrics were used to describe and evaluate macroinvertebrate community structure. Statistical analysis indicated that for six of the nine metrics, significant variability occurred between spring and fall seasons for 60 percent of the sites. Cluster analysis (unweighted pair group method average) using macroinvertebrate presence-absence data showed a well-defined separation between spring and fall samples. Six of the nine metrics had significant spatial variation. Cluster analysis using Sorenson?s Coefficient of Community values computed from macroinvertebrate density (number of organisms per square meter) data showed that macroinvertebrate community structure was more similar among tributary sites than main-stem sites. Canonical correspondence analysis identified a substrate particle-size gradient from site-specific species-abundance data and environmental correlates that decreased the 10 sites to 5 site clusters and their associated taxa.
John Nowak; Kier Klepzig; D R Coyle; William Carothers; Kamal J K Gandhi
2015-01-01
EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. The southern pine beetle (SPB) is a major disturbance in pine forests throughout the range of southern yellow pines, and is a significant influence on forests throughout several Central Hardwood Region (CHR) ecoregions...
USDA-ARS?s Scientific Manuscript database
Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.
2005-08-01
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.
NASA Astrophysics Data System (ADS)
Messaoudi, Akila; Laouami, Nasser; Mezouar, Nourredine
2017-07-01
During the May 21, 2003 M w 6.8 Boumerdes earthquake, in the "Cité des 102 Logements" built on a hilltop, in Corso, heavy damages were observed: near the crest, a four-story RC building collapsed while others experienced severe structural damage and far from the crest, slight damage was observed. In the present paper, we perform a 2D slope topography seismic analysis and investigate its effects on the response at the plateau as well as the correlation with the observed damage distribution. A site-specific seismic scenario is used involving seismological, geological, and geotechnical data. 2D finite element numerical seismic study of the idealized Corso site subjected to vertical SV wave propagation is carried out by the universal code FLUSH. The results highlighted the main factors that explain the causes of block collapse, located 8-26 m far from the crest. These are as follows: (i) a significant spatial variation of ground response along the plateau due to the topographic effect, (ii) this spatial variation presents high loss of coherence, (iii) the seismic ground responses (PGA and response spectra) reach their maxima, and (iv) the fundamental frequency of the collapsed blocks coincides with the frequency content of the topographic component. For distances far from the crest where slight damages were observed, the topographic contribution is found negligible. On the basis of these results, it is important to take into account the topographic effect and the induced spatial variability in the seismic design of structures sited near the crest of slope.
Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen
2016-08-01
The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.
Temple, Andrew J; Tregenza, Nick; Amir, Omar A; Jiddawi, Narriman; Berggren, Per
2016-01-01
Understanding temporal patterns in distribution, occurrence and behaviour is vital for the effective conservation of cetaceans. This study used cetacean click detectors (C-PODs) to investigate spatial and temporal variation in occurrence and foraging activity of the Indo-Pacific bottlenose (Tursiops aduncus) and Indian Ocean humpback (Sousa plumbea) dolphins resident in the Menai Bay Conservation Area (MBCA), Zanzibar, Tanzania. Occurrence was measured using detection positive minutes. Inter-click intervals were used to identify terminal buzz vocalisations, allowing for analysis of foraging activity. Data were analysed in relation to spatial (location) and temporal (monsoon season, diel phase and tidal phase) variables. Results showed significantly increased occurrence and foraging activity of dolphins in southern areas and during hours of darkness. Higher occurrence at night was not explained by diel variation in echolocation rate and so were considered representative of occurrence patterns. Both tidal phase and monsoon season influenced occurrence but results varied among sites, with no general patterns found. Foraging activity was greatest during hours of darkness, High water and Flood tidal phases. Comparisons of echolocation data among sites suggested differences in the broadband click spectra of MBCA dolphins, possibly indicative of species differences. These dolphin populations are threatened by unsustainable fisheries bycatch and tourism activities. The spatial and temporal patterns identified in this study have implications for future conservation and management actions with regards to these two threats. Further, the results indicate future potential for using passive acoustics to identify and monitor the occurrence of these two species in areas where they co-exist.
Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli
2013-01-01
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.
Divergent and nonuniform gene expression patterns in mouse brain
Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.
2010-01-01
Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311
Parametric Dielectric Model of Comet Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.
2012-12-01
In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.
Brehony, C; Cullinan, J; Cormican, M; Morris, D
2018-10-01
Shiga toxigenic Escherichia coli (STEC) are pathogenic E. coli that cause infectious diarrhoea. In some cases infection may be complicated by renal failure and death. The incidence of human infection with STEC in Ireland is the highest in Europe. The objective of the study was to examine the spatial incidence of human STEC infection in a region of Ireland with significantly higher rates of STEC incidence than the national average and to identify possible risk factors of STEC incidence at area level. Anonymised laboratory records (n = 379) from 2009 to 2015 were obtained from laboratories serving three counties in the West of Ireland. Data included location and sample date. Population and electoral division (ED) data were obtained from the Irish 2011 Census of Population. STEC incidence was calculated for each ED (n = 498) and used to map hotspots/coldspots using the Getis-Ord Gi* spatial statistic and significant spatial clustering using the Anselin's Local Moran's I statistic. Multivariable regression analysis was used to consider the importance of a number of potential predictors of STEC incidence. Incidence rates for the seven-year period ranged from 0 to 10.9 cases per 1000. A number of areas with significant local clustering of STEC incidence as well as variation in the spatial distribution of the two main serogroups associated with disease in the region i.e. O26 and O157 were identified. Cattle density was found to be a statistically significant predictor of STEC in the region. GIS analysis of routine data indicates that cattle density is associated STEC infection in this high incidence region. This finding points to the importance of agricultural practices for human health and the importance of a "one-health" approach to public policy in relation to agriculture, health and environment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Yong; Sui, Jixing; Yang, Mei; Sun, Yue; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin
2017-09-01
To detect large, temporal- and spatial-scale variations in the macrofaunal community in the southern Yellow Sea, data collected along the western, middle and eastern regions of the southern Yellow Sea from 1958 to 2014 were organized and analyzed. Statistical methods such as cluster analysis, non-metric multidimensional scaling ordination (nMDS), permutational multivariate analysis of variance (PERMANOVA), redundancy analysis (RDA) and canonical correspondence analysis (CCA) were applied. The abundance of polychaetes increased in the western region but decreased in the eastern region from 1958 to 2014, whereas the abundance of echinoderms showed an opposite trend. For the entire macrofaunal community, Margalef's richness (d), the Shannon-Wiener index (H‧) and Pielou's evenness (J‧) were significantly lower in the eastern region when compared with the other two regions. No significant temporal differences were found for d and H‧, but there were significantly lower values of J‧ in 2014. Considerable variation in the macrofaunal community structure over the past several decades and among the geographical regions at the species, genus and family levels were observed. The species, genera and families that contributed to the temporal variation in each region were also identified. The most conspicuous pattern was the increase in the species Ophiura sarsii vadicola in the eastern region. In the western region, five polychaetes (Ninoe palmata, Notomastus latericeus, Paralacydonia paradoxa, Paraprionospio pinnata and Sternaspis scutata) increased consistently from 1958 to 2014. The dominance curves showed that both the species diversity and the dominance patterns were relatively stable in the western and middle regions. Environmental parameters such as depth, temperature and salinity could only partially explain the observed biological variation in the southern Yellow Sea. Anthropogenic activities such as demersal fishing and other unmeasured environmental variables may be more responsible for the long-term changes in the macrofaunal community.
Spatial heterogeneity of within-stream methane concentrations
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-01-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær
2018-06-08
Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-05-20
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-01-01
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.
Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia
2017-11-01
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu
2014-05-01
A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.
Harvey, E; Miller, T E
1996-11-01
A survey of the abundances of species that inhabit the water-bearing leaves of the pitcher plant Sarracenia purpurea was conducted at several different spatial scales in northern Florida. Individual leaves are hosts to communities of inquiline species, including mosquitoes, midges, mites, copepods, cladocerans, and a diverse bacterial assemblage. Inquiline communities were quantified from four pitchers per plant, three plants per subpopulation, two subpopulations per population, and three populations. Species varied in abundance at different spatial scales. Variation in the abundances of mosquitoes and copepods was not significantly associated with any spatial scale. Midges varied in abundance at the level of populations; one population contained significantly more midges than the other two. Cladocerans varied at the level of the subpopulation, whereas mites varied at the level of the individual plants. Bacterial communities were described by means of Biolog plates, which quantify the types of carbon media used by the bacteria in each pitcher. Bacterial communities were found to vary significantly in composition among individual plants but not among populations or subpopulations. These results suggest that independent factors determining the abundances of individual species are important in determining community patterns in pitcher-plant inquilines.
Dalecky, Ambroise; Renucci, Marielle; Tirard, Alain; Debout, Gabriel; Roux, Maurice; Kjellberg, Finn; Provost, Erick
2007-09-01
In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used to infer population history and to provide null expectations under the neutrality hypothesis. Genetic data suggest a recent southward range expansion of this ant species. Furthermore, there is a decline southward in the numbers of queens present in mature colonies. Here, we contrast the pattern of biochemical variation against genetic, social and spatial parameters. We thus provide the first estimates of the relative contribution of neutral and selective processes on variation of ant cuticular profile. Populations in migration-drift disequilibrium showed reduction of within-population variation for genetic markers as well as for cuticular profiles. In these populations, the cuticular profile became biased towards a limited number of high molecular weight molecules. Within- and among-population biochemical variation was explained by both genetic and social variation and by the spatial distribution of populations. We therefore propose that during range expansion of P. phylax, the composition of epicuticular compounds has been affected by a combination of neutral processes - genetic drift and spatially limited dispersal - and spatially varying selection, social organization and environmental effects.
Identifying Preserved Storm Events on Beaches from Trenches and Cores
NASA Astrophysics Data System (ADS)
Wadman, H. M.; Gallagher, E. L.; McNinch, J.; Reniers, A.; Koktas, M.
2014-12-01
Recent research suggests that even small scale variations in grain size in the shallow stratigraphy of sandy beaches can significantly influence large-scale morphology change. However, few quantitative studies of variations in shallow stratigraphic layers, as differentiated by variations in mean grain size, have been conducted, in no small part due to the difficulty of collecting undisturbed sediment cores in the energetic lower beach and swash zone. Due to this lack of quantitative stratigraphic grain size data, most coastal morphology models assume that uniform grain sizes dominate sandy beaches, allowing for little to no temporal or spatial variations in grain size heterogeneity. In a first-order attempt to quantify small-scale, temporal and spatial variations in beach stratigraphy, thirty-five vibracores were collected at the USACE Field Research Facility (FRF), Duck, NC, in March-April of 2014 using the FRF's Coastal Research and Amphibious Buggy (CRAB). Vibracores were collected at set locations along a cross-shore profile from the toe of the dune to a water depth of ~1m in the surf zone. Vibracores were repeatedly collected from the same locations throughout a tidal cycle, as well as pre- and post a nor'easter event. In addition, two ~1.5m deep trenches were dug in the cross-shore and along-shore directions (each ~14m in length) after coring was completed to allow better interpretation of the stratigraphic sequences observed in the vibracores. The elevations of coherent stratigraphic layers, as revealed in vibracore-based fence diagrams and trench data, are used to relate specific observed stratigraphic sequences to individual storm events observed at the FRF. These data provide a first-order, quantitative examination of the small-scale temporal and spatial variability of shallow grain size along an open, sandy coastline. The data will be used to refine morphological model predictions to include variations in grain size and associated shallow stratigraphy.
Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Spatial and temporal variation of body size among early Homo.
Will, Manuel; Stock, Jay T
2015-05-01
The estimation of body size among the earliest members of the genus Homo (2.4-1.5Myr [millions of years ago]) is central to interpretations of their biology. It is widely accepted that Homo ergaster possessed increased body size compared with Homo habilis and Homo rudolfensis, and that this may have been a factor involved with the dispersal of Homo out of Africa. The study of taxonomic differences in body size, however, is problematic. Postcranial remains are rarely associated with craniodental fossils, and taxonomic attributions frequently rest upon the size of skeletal elements. Previous body size estimates have been based upon well-preserved specimens with a more reliable species assessment. Since these samples are small (n < 5) and disparate in space and time, little is known about geographical and chronological variation in body size within early Homo. We investigate temporal and spatial variation in body size among fossils of early Homo using a 'taxon-free' approach, considering evidence for size variation from isolated and fragmentary postcranial remains (n = 39). To render the size of disparate fossil elements comparable, we derived new regression equations for common parameters of body size from a globally representative sample of hunter-gatherers and applied them to available postcranial measurements from the fossils. The results demonstrate chronological and spatial variation but no simple temporal or geographical trends for the evolution of body size among early Homo. Pronounced body size increases within Africa take place only after hominin populations were established at Dmanisi, suggesting that migrations into Eurasia were not contingent on larger body sizes. The primary evidence for these marked changes among early Homo is based upon material from Koobi Fora after 1.7Myr, indicating regional size variation. The significant body size differences between specimens from Koobi Fora and Olduvai support the cranial evidence for at least two co-existing morphotypes in the Early Pleistocene of eastern Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aragón, Pedro; Fitze, Patrick S.
2014-01-01
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025
Separating temperature from other factors in phenological measurements
NASA Astrophysics Data System (ADS)
Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang
2014-09-01
Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.
The scale dependence of optical diversity in a prairie ecosystem
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.
2015-12-01
Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.
Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H
2010-08-01
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Quantifying Diurnal and Seasonal Variation in On-road CO2 Emissions Across the Northeastern U.S.
NASA Astrophysics Data System (ADS)
Gately, C.; Hutyra, L.
2014-12-01
On-road emissions comprised 29% of U.S. fossil fuel carbon dioxide emissions in 2012, with 64% of those emissions occurring in urban areas. Understanding the social, economic and technological factors that influence urban emissions requires the development of emissions inventories that are resolved at fine spatial and temporal scales. As city governments are increasingly at the forefront of developing policies to mitigate greenhouse gas emissions from vehicles, high-resolution, bottom-up inventories will support local and regional emissions benchmarking, as well as the monitoring, reporting, and verification of trends in emissions across time and space. To that end, we combine a large regional dataset of hourly traffic counts with the 1km gridded estimates of on-road CO2 emissions from the Database of Road Transportation Emissions (DARTE) to develop hourly CO2 emissions estimates for the year 2012 that cover 12 northeastern states. The inventory scope covers several large metropolitan regions as well as many small- and medium-sized urban, suburban and exurban population centers, altogether representing 20% of urban and 17% of total U.S. on-road CO2 emissions in 2012. We identify significant variation in the time structure of vehicle emissions across the urban-suburban gradients of the Boston, New York, and Washington, D.C. metropolitan areas. In particular we note considerable spatial variation between morning and evening peak periods, both within and between cities, as well as variations in the duration of peak periods, depending on time of year and spatial location. We also examine the relationship between the temporal and spatial structure of morning and evening peak period emissions and the spatial distribution of population and employment density across urban to rural gradients. Finally we utilize data on minute-by-minute vehicle speeds to quantify the effect of traffic congestion on vehicle CO2 emission rates across the Boston metro area, and we highlight the sensitivity of congestion to small sub-hourly variations in traffic flows at key periods of the morning and evening rush hours. Results from our analysis demonstrate the potential for reducing vehicle emissions through time-sensitive toll pricing or commuter incentive schemes targeting peak period vehicle use on urban freeways.
Relationship between sugarcane rust severity and soil properties in louisiana.
Johnson, Richard M; Grisham, Michael P; Richard, Edward P
2007-06-01
ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.
Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto
2017-01-01
Metacommunity patterns and underlying processes in aquatic organisms have typically been studied within a drainage basin. We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas within-basin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian-type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.
Propagation of low energy solar electrons
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.
1981-01-01
Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Gangnus, Sergei V.; Matcher, Stephen J.
2005-08-01
Polarization-sensitive optical coherence tomography has been used to spatially map the birefringence of equine articular cartilage. Images obtained in the vicinity of visible osteoarthritic lesions display a characteristic disruption of the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. ×2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We suggest that whilst some of this variation may be due to changes in the intrinsic birefringence of the tissue, the 3-D orientation of the collagen fibers relative to the plane of the joint surface should also be taken into account. We propose a method based on multiple angles of illumination to determine the polar angle of the collagen fibers.
Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter
Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan
2014-01-01
The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.
Ling, Juan; Zhang, Yan-Ying; Dong, Jun-De; Wang, You-Shao; Feng, Jing-Bing; Zhou, Wei-Hua
2015-10-01
Bacteria play important roles in the structure and function of marine food webs by utilizing nutrients and degrading the pollutants, and their distribution are determined by surrounding water chemistry to a certain extent. It is vital to investigate the bacterial community's structure and identifying the significant factors by controlling the bacterial distribution in the paper. Flow cytometry showed that the total bacterial abundance ranged from 5.27 × 10(5) to 3.77 × 10(6) cells/mL. Molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing has been employed to investigate the bacterial community composition. The results were then interpreted through multivariate statistical analysis and tended to explain its relationship to the environmental factors. A total of 270 bands at 83 different positions were detected in DGGE profiles and 29 distinct DGGE bands were sequenced. The predominant bacteria were related to Phyla Protebacteria species (31 %, nine sequences), Cyanobacteria (37.9 %, eleven sequences) and Actinobacteria (17.2 %, five sequences). Other phylogenetic groups identified including Firmicutes (6.9 %, two sequences), Bacteroidetes (3.5 %, one sequences) and Verrucomicrobia (3.5 %, one sequences). Conical correspondence analysis was used to elucidate the relationships between the bacterial community compositions and environmental factors. The results showed that the spatial variations in the bacterial community composition was significantly related to phosphate (P = 0.002, P < 0.01), dissolved organic carbon (P = 0.004, P < 0.01), chemical oxygen demand (P = 0.010, P < 0.05) and nitrite (P = 0.016, P < 0.05). This study revealed the spatial variations of bacterial community and significant environmental factors driving the bacterial composition shift. These results may be valuable for further investigation on the functional microbial structure and expression quantitatively under the polluted environments in the world.
Recruitment variation of eastern Bering Sea crabs: Climate-forcing or top-down effects?
NASA Astrophysics Data System (ADS)
Zheng, Jie; Kruse, Gordon H.
2006-02-01
During the last three decades, population abundances of eastern Bering Sea (EBS) crab stocks fluctuated greatly, driven by highly variable recruitment. In recent years, abundances of these stocks have been very low compared to historical levels. This study aims to understand recruitment variation of six stocks of red king ( Paralithodes camtschaticus), blue king ( P. platypus), Tanner ( Chionoecetes bairdi), and snow ( C. opilio) crabs in the EBS. Most crab recruitment time series are not significantly correlated with each other. Spatial distributions of three broadly distributed crab stocks (EBS snow and Tanner crabs and Bristol Bay red king crab) have changed considerably over time, possibly related in part to the regime shift in climate and physical oceanography in 1976-1977. Three climate-forcing hypotheses on larval survival have been proposed to explain crab recruitment variation of Bristol Bay red king crab and EBS Tanner and snow crabs. Some empirical evidence supports speculation that groundfish predation may play an important role in crab recruitment success in the EBS. However, spatial dynamics in the geographic distributions of groundfish and crabs over time make it difficult to relate crab recruitment strength to groundfish biomass. Comprehensive field and spatially explicit modeling studies are needed to test the hypotheses and better understand the relative importance and compound effects of bottom-up and top-down controls on crab recruitment.
Random field assessment of nanoscopic inhomogeneity of bone.
Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu
2010-12-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.
Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui
2018-05-23
The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa
2018-01-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Tello, J. Sebastián; Myers, Jonathan A.; Macía, Manuel J.; Fuentes, Alfredo F.; Cayola, Leslie; Arellano, Gabriel; Loza, M. Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B.; Jørgensen, Peter M.
2015-01-01
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity. PMID:25803846
Crustal deformation at the terminal stage before earthquake occurrence
NASA Astrophysics Data System (ADS)
Chen, C. H.; Meng, G.; Su, X.
2016-12-01
GPS data retrieved from 300 stations in China are used in this work to study stressed areas during earthquake preparation periods. Surface deformation data are derived by using the standard method and are smoothed by a temporal moving to mitigate influence from noise. A statistical method is used to distinguish significant variations from the smoothed data. The spatial distributions comprised of those significant variations show that a diameter of a stressed area preparing earthquakes is about 3500 km for a M6 event. The deformation deduced from the significant variations is highly related with the slip direction of the fault plane determined through the focal mechanism solution of earthquakes. Although the causal mechanism of such large stressed areas with rapid changes is not fully understood, the analytical results suggest that the earthquake preparation would be one of the factors dominating the common mode error in GPS studies. Mechanisms and/or numerical models of some pre-earthquake anomalous phenomena would be reconsidered based on this novel observation.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
NASA Astrophysics Data System (ADS)
Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash
2013-01-01
Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.
2017-08-01
Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.
Examining the influence of heterogeneous porosity fields on conservative solute transport
Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong
2009-01-01
It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.
LaDage, Lara D.; Roth, Timothy C.; Downs, Cynthia J.; Sinervo, Barry; Pravosudov, Vladimir V.
2017-01-01
Variation in an animal's spatial environment can induce variation in the hippocampus, an area of the brain involved in spatial cognitive processing. Specifically, increased spatial area use is correlated with increased hippocampal attributes, such as volume and neurogenesis. In the side-blotched lizard (Uta stansburiana), males demonstrate alternative reproductive tactics and are either territorial—defending large, clearly defined spatial boundaries—or non-territorial—traversing home ranges that are smaller than the territorial males' territories. Our previous work demonstrated cortical volume (reptilian hippocampal homolog) correlates with these spatial niches. We found that territorial holders have larger medial cortices than non-territory holders, yet these differences in the neural architecture demonstrated some degree of plasticity as well. Although we have demonstrated a link among territoriality, spatial use, and brain plasticity, the mechanisms that underlie this relationship are unclear. Previous studies found that higher testosterone levels can induce increased use of the spatial area and can cause an upregulation in hippocampal attributes. Thus, testosterone may be the mechanistic link between spatial area use and the brain. What remains unclear, however, is if testosterone can affect the cortices independent of spatial experiences and whether testosterone differentially interacts with territorial status to produce the resultant cortical phenotype. In this study, we compared neurogenesis as measured by the total number of doublecortin-positive cells and cortical volume between territorial and non-territorial males supplemented with testosterone. We found no significant differences in the number of doublecortin-positive cells or cortical volume among control territorial, control non-territorial, and testosterone-supplemented non-territorial males, while testosterone-supplemented territorial males had smaller medial cortices containing fewer doublecortin-positive cells. These results demonstrate that testosterone can modulate medial cortical attributes outside of differential spatial processing experiences but that territorial males appear to be more sensitive to alterations in testosterone levels compared with non-territorial males. PMID:28298883
Environment-dependent variation in selection on life history across small spatial scales.
Lange, Rolanda; Monro, Keyne; J Marshall, Dustin
2016-10-01
Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Demographic controls of aboveground forest biomass across North America.
Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W
2016-04-01
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.
Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L
2014-02-01
Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.
Gallego, Sergi; Márquez, Andrés; Méndez, David; Ortuño, Manuel; Neipp, Cristian; Fernández, Elena; Pascual, Inmaculada; Beléndez, Augusto
2008-05-10
One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg's angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.
Zhaohua Dai; Carl Trettin; Changsheng Li; Harbin Li; Ge Sun; Devendra Amatya
2011-01-01
Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO 2 and CH 4 exchange. In this paper, we test hypotheses in ecosys for topographic controls on CO 2 and CH 4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO 2 influxes and CH 4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) thanmore » in higher (rims) within LCPs and FCPs. Spatially aggregated CO 2 and CH 4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52–56 g C m -2 yr -1) and CH 4 sources (4–6 g C m -2 yr -1), and higher features as near C neutral (-2–15 g C m -2 yr -1) and CH 4 neutral (0.0–0.1 g C m -2 yr -1). Much of the spatial and temporal variations in CO 2 and CH 4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O 2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH 4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Finally, small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.« less
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...
2017-11-17
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO 2 and CH 4 exchange. In this paper, we test hypotheses in ecosys for topographic controls on CO 2 and CH 4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO 2 influxes and CH 4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) thanmore » in higher (rims) within LCPs and FCPs. Spatially aggregated CO 2 and CH 4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52–56 g C m -2 yr -1) and CH 4 sources (4–6 g C m -2 yr -1), and higher features as near C neutral (-2–15 g C m -2 yr -1) and CH 4 neutral (0.0–0.1 g C m -2 yr -1). Much of the spatial and temporal variations in CO 2 and CH 4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O 2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH 4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Finally, small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.« less
NASA Astrophysics Data System (ADS)
Pye, K.; Blott, S. J.
2008-12-01
Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However, preliminary analysis has indicated only a modest relationship between dune erosion/accretion rates and the North Atlantic Oscillation index.
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Zou, Xinqing; Cao, Liguo; Yao, Yulong; Fu, Guanghe
2017-07-01
This study investigated the spatial-temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960-2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman-Monteith model, Mann-Kendall (M-K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.
NASA Astrophysics Data System (ADS)
Hang, F.; Wang, X.; Yu, Z.
2017-12-01
The Yellow-Bohai Sea is a semi-closed marginal sea in the east of China, affected much by human activities, especially the Bohai Sea. The present study evaluates spatial and seasonal variations of surface particulate organic carbon (POC) that was derived from MODIS month-average data for the period of July 2002-December 2016. Our analyses show that POC concentrations are significantly higher in the Bohai Sea (314.7-587.9 mg m-3) than in the Yellow Sea (181.3-492.2 mg m-3). In general, POC concentrations were higher in the nearshore waters than in the offshore. There are strong seasonal to interannual variations in POC. Mean POC was highest in spring in both Bohai Sea and Yellow Sea; the lowest POC was found in summer in the Yellow Sea, but in winter in the Bohai Sea. The elevated POC from summer to fall indicates that there was allochthonous source of POC. Overall, there was a decreasing trend in POC prior to year 2012, followed by a strong upward trend until the end of 2015. The interannual variability in POC was significantly correlated with NPGO, PDO and ENSO in the Yellow Sea, but only with NPGO in the Bohai Sea. Our analyses point out that both climate variability and human activity may impacts the carbon cycle in the Yellow-Bohai Sea.
Implications of Spatial Data Variations for Protected Areas Management: An Example from East Africa
NASA Astrophysics Data System (ADS)
Dowhaniuk, Nicholas; Hartter, Joel; Ryan, Sadie J.
2014-09-01
Geographic information systems and remote sensing technologies have become an important tool for visualizing conservation management and developing solutions to problems associated with conservation. When multiple organizations separately develop spatial data representations of protected areas, implicit error arises due to variation between data sets. We used boundary data produced by three conservation organizations (International Union for the Conservation of Nature, World Resource Institute, and Uganda Wildlife Authority), for seven Ugandan parks, to study variation in the size represented and the location of boundaries. We found variation in the extent of overlapping total area encompassed by the three data sources, ranging from miniscule (0.4 %) differences to quite large ones (9.0 %). To underscore how protected area boundary discrepancies may have implications to protected area management, we used a landcover classification, defining crop, shrub, forest, savanna, and grassland. The total area in the different landcover classes varied most in smaller protected areas (those less than 329 km2), with forest and cropland area estimates varying up to 65 %. The discrepancies introduced by boundary errors could, in this hypothetical case, generate erroneous findings and could have a significant impact on conservation, such as local-scale management for encroachment and larger-scale assessments of deforestation.
Implications of spatial data variations for protected areas management: an example from East Africa.
Dowhaniuk, Nicholas; Hartter, Joel; Ryan, Sadie J
2014-09-01
Geographic information systems and remote sensing technologies have become an important tool for visualizing conservation management and developing solutions to problems associated with conservation. When multiple organizations separately develop spatial data representations of protected areas, implicit error arises due to variation between data sets. We used boundary data produced by three conservation organizations (International Union for the Conservation of Nature, World Resource Institute, and Uganda Wildlife Authority), for seven Ugandan parks, to study variation in the size represented and the location of boundaries. We found variation in the extent of overlapping total area encompassed by the three data sources, ranging from miniscule (0.4 %) differences to quite large ones (9.0 %). To underscore how protected area boundary discrepancies may have implications to protected area management, we used a landcover classification, defining crop, shrub, forest, savanna, and grassland. The total area in the different landcover classes varied most in smaller protected areas (those less than 329 km(2)), with forest and cropland area estimates varying up to 65 %. The discrepancies introduced by boundary errors could, in this hypothetical case, generate erroneous findings and could have a significant impact on conservation, such as local-scale management for encroachment and larger-scale assessments of deforestation.
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477
Sedinger, James S.; Chelgren, Nathan; Lindberg, Mark S.; Obritchkewitch, Tim; Kirk, Morgan T.; Martin, Philip D.; Anderson, Betty A.; Ward, David H.
2002-01-01
We used capture-recapture methods to estimate adult survival rates for adult female Black Brant (Branta bernicla nigricans; hereafter “brant”) from three colonies in Alaska, two on the Yukon-Kuskokwim Delta, and one on Alaska's Arctic coast. Costs of migration and reproductive effort varied among those colonies, enabling us to examine variation in survival in relation to variation in these other variables. We used the Barker model in program MARK to estimate true annual survival for brant from the three colonies. Models allowing for spatial variation in survival were among the most parsimonious models but were indistinguishable from a model with no spatial variation. Point estimates of annual survival were slightly higher for brant from the Arctic (0.90 ± 0.036) than for brant from either Tutakoke River (0.85 ± 0.004) or Kokechik Bay (0.86 ± 0.011). Thus, our survival estimates do not support a hypothesis that the cost of longer migrations or harvest experienced by brant from the Arctic reduced their annual survival relative to brant from the Yukon-Kuskokwim Delta. Spatial variation in survival provides weak support for life-history theory because brant from the region with lower reproductive investment had slightly higher survival.
Spatiotemporal Variations and Driving Factors of Air Pollution in China.
Zhan, Dongsheng; Kwan, Mei-Po; Zhang, Wenzhong; Wang, Shaojian; Yu, Jianhui
2017-12-08
In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP) witness the strongest and most significant positive effects on air pollution ratio.
Spatiotemporal Variations and Driving Factors of Air Pollution in China
Zhan, Dongsheng; Zhang, Wenzhong; Wang, Shaojian; Yu, Jianhui
2017-01-01
In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP) witness the strongest and most significant positive effects on air pollution ratio. PMID:29292783
NASA Astrophysics Data System (ADS)
Chen, Yingjun; Zheng, Mei; Edgerton, Eric S.; Ke, Lin; Sheng, Guoying; Fu, Jiamo
2012-04-01
The seasonal and spatial variations of source contributions of 112 composite fine particulate matter (PM2.5) samples collected in the Southeastern Aerosol Research and Characterization Study (SEARCH) monitoring network during 2001-2005 using molecular marker-based chemical mass balance (CMB-MM) model were determined. The lowest PM2.5 concentration occurs in January with higher values in warm months (maxima in July at four inland sites versus October at the coastal sites). Sulfate shows a similar pattern and plays a primary role in PM2.5 seasonality. Carbonaceous material (organic matter plus EC) exhibits less seasonality, but more spatial variations between the inland and coastal sites. Compared with the data at coastal sites, source attributions of diesel exhaust, gasoline exhaust, other organic matter (other OM), secondary sulfate, nitrate, and ammonium in PM2.5 mass at inland sites are higher. The difference in source attributions of wood combustion, meat cooking, vegetative detritus, and road dust among the eight sites is not significant. Contributions of eight primary sources to fine OC are wood burning (17 ± 19%), diesel exhaust (9 ± 4%), gasoline exhaust (5 ± 7%), meat cooking (5 ± 5%), road dust (2 ± 3%), vegetative detritus (2 ± 2%), cigarette smoke (2 ± 2% at four urban sites), and coke production (2 ± 1% only at BHM). Primary and secondary sources explain 82-100% of measured PM2.5 mass at the eight sites, including secondary ionic species (SO42-, NH4+, and NO3-; 41.4 ± 5.7%), identified OM (24.9 ± 11.3%), "other OM" (unexplained OM, 23.3 ± 10.3%), and "other mass" (11.4 ± 9.6%). Vehicle exhaust from both diesel and gasoline contributes the lowest fraction to PM2.5 mass in July and higher fractions at BHM and JST than other sites. Wood combustion, in contrast, contributes significantly to a larger fraction in winter than in summer. Road dust shows relatively high levels in July and April across the eight sites, while minor sources such as meat cooking and other sources (e.g., vegetative detritus, coke production, and cigarette smoke) show relatively small seasonal and spatial variations in the SEARCH monitoring network.
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui
2016-07-01
Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.
Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions
NASA Astrophysics Data System (ADS)
Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.
2018-04-01
We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.
NASA Astrophysics Data System (ADS)
Feng, Yongjiu; Cui, Li; Chen, Xinjun; Liu, Yu
2017-06-01
We examined spatially clustered distribution of jumbo flying squid ( Dosidicus gigas) in the offshore waters of Peru bounded by 78°-86°W and 8°-20°S under 0.5°×0.5° fishing grid. The study is based on the catch-per-unit-effort (CPUE) and fishing effort from Chinese mainland squid jigging fleet in 2003-2004 and 2006-2013. The data for all years as well as the eight years (excluding El Niño events) were studied to examine the effect of climate variation on the spatial distribution of D. gigas. Five spatial clusters reflecting the spatial distribution were computed using K-means and Getis-Ord Gi* for a detailed comparative study. Our results showed that clusters identified by the two methods were quite different in terms of their spatial patterns, and K-means was not as accurate as Getis-Ord Gi*, as inferred from the agreement degree and receiver operating characteristic. There were more areas of hot and cold spots in years without the impact of El Niño, suggesting that such large-scale climate variations could reduce the clustering level of D. gigas. The catches also showed that warm El Niño conditions and high water temperature were less favorable for D. gigas offshore Peru. The results suggested that the use of K-means is preferable if the aim is to discover the spatial distribution of each sub-region (cluster) of the study area, while Getis-Ord Gi* is preferable if the aim is to identify statistically significant hot spots that may indicate the central fishing ground.
Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel
2017-04-01
This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian
2017-11-01
Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
There is more to pollinator-mediated selection than pollen limitation.
Sletvold, Nina; Agren, Jon
2014-07-01
Spatial variation in pollinator-mediated selection (Δβpoll ) is a major driver of floral diversification, but we lack a quantitative understanding of its link to pollen limitation (PL) and net selection on floral traits. For 2-5 years, we quantified Δβpoll on floral traits in two populations each of two orchid species differing in PL. In both species, spatiotemporal variation in Δβpoll explained much of the variation in net selection. Selection was consistently stronger and the proportion that was pollinator-mediated was higher in the severely pollen-limited deceptive species than in the rewarding species. Within species, variation in PL could not explain variation in Δβpoll for any trait, indicating that factors influencing the functional relationship between trait variation and pollination success govern a major part of the observed variation in Δβpoll . Separating the effects of variation in mean interaction intensity and in the functional significance of traits will be necessary to understand spatiotemporal variation in selection exerted by the biotic environment. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
An aquatic macroinvertebrate monitoring program is suggested for 'early warning' detection of toxic discharges to streams in oil shale development areas. Changes in stream biota are used to signal need for increasing levels of chemical analyses to identify and quantify toxic poll...
Climate change and watershed mercury export in a Coastal Plain watershed
Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley
2016-01-01
Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.
Landsat analysis of tropical forest succession employing a terrain model
NASA Technical Reports Server (NTRS)
Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.
1980-01-01
Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.
Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas
2012-07-31
Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
NASA Astrophysics Data System (ADS)
Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric
2016-06-01
Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related to ice dynamics or hydrology, may lead to the observed differences. This highlights the need for further evaluation of modeled processes at regional and seasonal scales, and further study of ice sheet processes not accounted for, such as the role of subglacial hydrology in variations in glacial flow.
Lessard-Therrien, Malie; Davies, T Jonathan; Bolmgren, Kjell
2014-05-01
Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.
Peterman, W E; Semlitsch, R D
2014-10-01
Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.
This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...
Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.
2014-01-01
An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only. PMID:21751583
NASA Astrophysics Data System (ADS)
Manikandan, M.; Tamilmani, D.
2015-09-01
The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.
Mark C. Gabriel; Randy Kolka; Trent Wickman; Ed Nater; Laurel. Woodruff
2009-01-01
The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue...
NASA Astrophysics Data System (ADS)
Black, Alice A. (Jill)
Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34%, indicating that the non-majors tested exhibited many Earth science misconceptions and conceptual difficulties. A number of significant results were found when independent t-tests and correlations were conducted among test scores and demographic variables. The number of previous university Earth science courses was significantly related to ESC scores. Preservice elementary/middle majors differed significantly in several ways from other non-majors, and several earlier results were not supported. Results of this study indicate that an important opportunity may exist to improve Earth science conceptual understanding by focusing on spatial ability, a cognitive ability that has heretofore not been directly addressed in schools.
NASA Astrophysics Data System (ADS)
Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.
2010-11-01
The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.
NASA Astrophysics Data System (ADS)
Luo, Kai; Li, Runkui; Li, Wenjing; Wang, Zongshuang; Ma, Xinming; Zhang, Ruiming; Fang, Xin; Wu, Zhenglai; Cao, Yang; Xu, Qun
2016-12-01
The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33-2.45%], 2.07% (95% CI: 1.23-2.91%) and 1.95% (95% CI: 1.16-2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.
Wörheide, Gert; Solé-Cava, Antonio M; Hooper, John N A
2005-04-01
Marine sponges are an ecologically important and highly diverse component of marine benthic communities, found in all the world's oceans, at all depths. Although their commercial potential and evolutionary importance is increasingly recognized, many pivotal aspects of their basic biology remain enigmatic. Knowledge of historical biogeographic affinities and biodiversity patterns is rudimentary, and there are still few data about genetic variation among sponge populations and spatial patterns of this variation. Biodiversity analyses of tropical Australasian sponges revealed spatial trends not universally reflected in the distributions of other marine phyla within the Indo-West Pacific region. At smaller spatial scales sponges frequently form heterogeneous, spatially patchy assemblages, with some empirical evidence suggesting that environmental variables such as light and/or turbidity strongly contribute to local distributions. There are no apparent latitudinal diversity gradients at larger spatial scales but stochastic processes, such as changing current patterns, the presence or absence of major carbonate platforms and historical biogeography, may determine modern day distributions. Studies on Caribbean oceanic reefs have revealed similar patterns, only weakly correlated with environmental factors. However, several questions remain where molecular approaches promise great potential, e.g., concerning connectivity and biogeographic relationships. Studies to date have helped to reveal that sponge populations are genetically highly structured and that historical processes might play an important role in determining such structure. Increasingly sophisticated molecular tools are now being applied, with results contributing significantly to a better understanding of poriferan microevolutionary processes and molecular ecology.
Classification of Farmland Landscape Structure in Multiple Scales
NASA Astrophysics Data System (ADS)
Jiang, P.; Cheng, Q.; Li, M.
2017-12-01
Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.
Spatial variation in the climatic predictors of species compositional turnover and endemism.
Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G
2014-08-01
Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.
NASA Astrophysics Data System (ADS)
Kendall, C.; Bemis, B. E.; Wankel, S. D.; Rawlik, P. S.; Lange, T.; Krabbenhoft, D. P.
2002-05-01
A clear understanding of the aquatic food web is essential for determining the entry points and subsequent biomagnification pathways of contaminants such as methyl-mercury (MeHg) in the Everglades. Anthropogenic changes in nutrients can significantly affect the entry points of MeHg by changing food web structure from one dominated by algal productivity to one dominated by macrophytes and associated microbial activity. These changes in the base of the food web can also influence the distribution of animals within the ecosystem, and subsequently the bioaccumulation of MeHg up the food chain. As part of several collaborations with local and other federal agencies, more than 7000 Everglades samples were collected in 1995-99, and analysed for d13C and d15N. Many organisms were also analysed for d34S, gut contents, total Hg, and MeHg. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. Many organisms show significant (5-12%) spatial and temporal differences in d13C and d15N values across the Everglades. These differences may reflect site and season-specific differences in the relative importance of algae vs. macrophyte debris to the food web. However, there is a lack of evidence that these sites otherwise differ in food chain length (as determined by d15N values). This conclusion is generally supported by gut contents and mercury data. Furthermore, there are no statistically significant differences between the Delta d15N (predator-algae) values at pristine marsh, nutrient-impacted marsh, or canal sites. The main conclusions from this preliminary comparison of gut contents, stable isotope, and Hg data are: (1) there is little evidence for spatial variations in food chain length - hence, this does not appear to be the dominant explanation for spatial variations in Hg in predators, (2) the poor correlation of d15N and Hg for many organisms, reflective of the heterogeneous and dynamic nature of the ecosystem, makes it difficult to account for changes in Hg with trophic position, and (3) seasonal and spatial variations in hydrology and nutrient conditions, which are often reflected in changes in the base of the food web, appear to be the dominant controls on the isotopic compositions of organisms in the Everglades. Hence, biota isotopes provide a tool for monitoring how future ecosystem changes affect the distribution of algae vs. macrophyte-dominated food webs across the Everglades.
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
Su, Rina; Cheng, Junhui; Chen, Dima; Bai, Yongfei; Jin, Hua; Chao, Lumengqiqige; Wang, Zhijun; Li, Junqing
2017-02-28
Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Separating spatial search and efficiency rates as components of predation risk
DeCesare, Nicholas J.
2012-01-01
Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk. PMID:22977145
Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc
2014-12-01
Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.
Detecting changes in the spatial distribution of nitrate contamination in ground water
Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.
1997-01-01
Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.
Modeling evapotranspiration over China's landmass from 1979-2012 using three surface models
NASA Astrophysics Data System (ADS)
Sun, Shaobo; Chen, Baozhang; Zhang, Huifang; Lin, Xiaofeng
2017-04-01
Land surface models (LSMs) are useful tools to estimate land evapotranspiration at a grid scale and for a long-term applications. Here, the Community Land Model 4.0 (CLM4.0), Dynamic Land Model (DLM) and Variable Infiltration Capacity (VIC) model were driven with observation-based forcing data sets, and a multiple LSM ensemble-averaged evapotranspiration (ET) product (LSMs-ET) was developed and its spatial-temporal variations were analyzed for the China landmass over the period 1979-2012. Evaluations against measurements from nine flux towers at site scale and surface water budget based ET at regional scale showed that the LSMs-ET had good performance in most areas of China's landmass. The inter-comparisons between the ET estimates and the independent ET products from remote sensing and upscaling methods suggested that there were a fairly consistent patterns between each data sets. The LSMs-ET produced a mean annual ET of 351.24±10.7 mm yr-1 over 1979-2012, and its spatial-temporal variation analyses showed that (i) there was an overall significant ET increasing trend, with a value of 0.72 mm yr-1 (p < 0.01); (ii) 36.01% of Chinese land had significant increasing trends, ranging from 1 to 9 mm yr-1, while only 6.41% of the area showed significant decreasing trends, ranging from -6.28 to -0.08 mm yr-1. Analyses of ET variations in each climate region clearly showed that the Tibetan Plateau areas were the main contributors to the overall increasing ET trends of China.
Gao, Yongnian; Gao, Junfeng; Chen, Jiongfeng
2011-01-01
The study presented in this paper attempts to evaluate the spatial pattern of soil available phosphorus, as well as the relation between soil available phosphorus and environment factors including elevation, slope, precipitation, percentage of cultivated land, percentage of forest land, percentage of construction land and NDVI using statistical methods and GIS spatial analysis techniques. The results showed that the Spline Tension method performed the best in the prediction of soil available phosphorus in the Chaohu Lake watershed. The spatial variation of surface soil available phosphorus was high in Chaohu Lake watershed and the upstream regions around Chaohu Lake, including the west of Chaohu lake (e.g., southwest of Feixi county, east of Shucheng county and north of Lujiang county) and to the north of Chaohu Lake (e.g., south of Hefei city, south of Feidong county, southwest of Juchao district), had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the elevation or slope increased. The cultivated land comprised 60.11% of the watershed and of that land 65.63% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the watershed and a potential source of phosphorus to Chaohu Lake resulting in eutrophication. Among the land use types, paddy fields have some of the highest maximum values and variation of coefficients. Subwatershed scale soil available phosphorus was significantly affected by elevation, slope, precipitation, percentage of cultivated land and percentage of forest land and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application. PMID:21909308
Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.
2010-01-01
Background The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI. PMID:21124927
Spatial Variations of DOM Compositions in the River with Multi-functional Weir
NASA Astrophysics Data System (ADS)
Yoon, S. M.; Choi, J. H.
2017-12-01
With the global trend to construct artificial impoundments over the last decades, there was a Large River Restoration Project conducted in South Korea from 2010 to 2011. The project included enlargement of river channel capacity and construction of multi-functional weirs, which can alter the hydrological flow of the river and cause spatial variations of water quality indicators, especially DOM (Dissolved Organic Matter) compositions. In order to analyze the spatial variations of organic matter, water samples were collected longitudinally (5 points upstream from the weir), horizontally (left, center, right at each point) and vertically (1m interval at each point). The specific UV-visible absorbance (SUVA) and fluorescence excitation-emission matrices (EEMs) have been used as rapid and non-destructive analytical methods for DOM compositions. In addition, parallel factor analysis (PARAFAC) has adopted for extracting a set of representative fluorescence components from EEMs. It was assumed that autochthonous DOM would be dominant near the weir due to the stagnation of hydrological flow. However, the results showed that the values of fluorescence index (FI) were 1.29-1.47, less than 2, indicating DOM of allochthonous origin dominated in the water near the weir. PARAFAC analysis also showed the peak at 450 nm of emission and < 250 nm of excitation which represented the humic substances group with terrestrial origins. There was no significant difference in the values of Biological index (BIX), however, values of humification index (HIX) spatially increased toward the weir. From the results of the water sample analysis, the river with multi-functional weir is influenced by the allochthonous DOM instead of autochthonous DOM and seems to accumulate humic substances near the weir.
Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.; Reed, P.
2010-12-01
The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).
Characterizing Climate Controls on Vegetation Seasonality in the North American Southwest
NASA Astrophysics Data System (ADS)
Fish, M. A.; Cook, B.; Smerdon, J. E.; Seager, R.; Williams, P.
2014-12-01
The North American Southwest, which extends from Colorado to southern Mexico and California to eastern Texas, encompasses a diversity of climates, elevations, and ecosystems. This region is expected to experience significant climatic change, and associated impacts, in the coming decades. To better understand the spatiotemporal variability of vegetation in the Southwest and the expected climatic controls on timing and spatial extend of vegetation growth, we compared GIMMS normalized difference vegetation index (NDVI, 1981-2011) against temperature and precipitation data. Spatial variations in vegetation seasonality and the timing of peak NDVI are linked to spatial variability in the precipitation regimes across the Southwest. Regions with spring NDVI peaks are dominated by winter precipitation, while late summer and fall peaks are in regions with significant summer precipitation driven by the North American Monsoon. Inter-annual variability in peak NDVI is positively correlated with precipitation and negatively correlated with temperature, with the largest correlation coefficients at one-month lags. The only significant long-term trends in NDVI are for northern Mexico, where agricultural productivity has been increasing over the last 30 years.
Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard
2018-04-01
The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G
2018-01-01
Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.
Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil
2010-03-01
The acid secretion mechanism can be studied by measuring a series of metabolic markers and neurotransmitters from in vitro isolated tissue. A microelectrode array was used to monitor proton concentration and histamine levels from isolated guinea pig stomach tissue. The device was partially modified using iridium oxide to form a series of pH sensors, whereas unmodified gold microelectrodes were used to measure the level of histamine in the gut. Real-time measurements in the presence of the H2-receptor antagonist ranitidine produced significant decreases in the overall Delta pH response, as expected. Also, a significant variation in the Delta pH response in between pH sensors was observed in the presence of pharmacological treatment due to structural features of the tissue. No significant differences in Delta i(H) were detected in the presence of ranitidine as expected. More significantly, clear variations in Delta pH responses between animals in control conditions and those in the presence of ranitidine was observed highlighting possible variation in parietal cell density and/or variations in tissue activity. These results identify great possibilities in applying these multi-sensing devices as a long-term stable personalised diagnostic tool for pharmacological screening and disease status.
Congdon, Peter
2017-09-07
There is much ongoing research about the effect of the urban environment as compared with individual behaviour on growing obesity levels, including food environment, settlement patterns (e.g., sprawl, walkability, commuting patterns), and activity access. This paper considers obesity variations between US counties, and delineates the main dimensions of geographic variation in obesity between counties: by urban-rural status, by region, by area poverty status, and by majority ethnic group. Available measures of activity access, food environment, and settlement patterns are then assessed in terms of how far they can account for geographic variation. A county level regression analysis uses a Bayesian methodology that controls for spatial correlation in unmeasured area risk factors. It is found that environmental measures do play a significant role in explaining geographic contrasts in obesity.
2017-01-01
There is much ongoing research about the effect of the urban environment as compared with individual behaviour on growing obesity levels, including food environment, settlement patterns (e.g., sprawl, walkability, commuting patterns), and activity access. This paper considers obesity variations between US counties, and delineates the main dimensions of geographic variation in obesity between counties: by urban-rural status, by region, by area poverty status, and by majority ethnic group. Available measures of activity access, food environment, and settlement patterns are then assessed in terms of how far they can account for geographic variation. A county level regression analysis uses a Bayesian methodology that controls for spatial correlation in unmeasured area risk factors. It is found that environmental measures do play a significant role in explaining geographic contrasts in obesity. PMID:28880209
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries
Tan, Liangcheng; An, Zhisheng; Huh, Chih-An; Cai, Yanjun; Shen, Chuan-Chou; Shiau, Liang-Jian; Yan, Libin; Cheng, Hai; Edwards, R. Lawrence
2014-01-01
Precipitation variation on the Loess Plateau (LP) of China is not only important for rain-fed agriculture in this environmentally sensitive region, but also critical for the water and life securities over the whole Yellow River basin. Here we reconstruct high resolution precipitation variation on the western LP during the past 370 years by using two replicated, annually-laminated stalagmites. Spatial analysis suggests that the reconstruction can be also representative for the whole LP region. The precipitation variations show a significant quasi-50 year periodicity during the last 370 years, and have an important role in determining the runoff of the middle Yellow River. The main factor controlling the decadal scale variations and long-term trend in precipitation over this region is southerly water vapour transport associated with the Asian summer monsoon. The Pacific Decadal Oscillation is also an important influence on precipitation variation in this region, as it can affect the East Asian summer monsoon and the West Pacific Subtropical High. PMID:25223372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Yasmin; Thomas, C David L.; Clement, John G
2013-04-09
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within themore » femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm 3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.« less
Water quality modeling in the dead end sections of drinking water distribution networks.
Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim
2016-02-01
Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive microwave remote sensing of soil moisture - Results from HAPEX, FIFE and MONSOON 90
NASA Technical Reports Server (NTRS)
Schmugge, T.; Jackson, T. J.; Kustas, W. P.; Wang, J. R.
1992-01-01
HAPEX (Hydrologic Atmospheric Pilot Experiment), FIFE (First ISLSCP Field Experiment) and MONSOON 90 which used an imaging microwave radiometer operating at a frequency of 1.42 GHz are reported. For FIFE and MONSOON 90, a wide range of moisture conditions were present and it was possible to observe the drydown of the soil following heavy rain and to map its spatial variation. The quantitative agreement of microwave observations and ground measurements was very good. In HAPEX there were no significant rains and conditions were generally rather dry, however, moisture variations due to irrigation were observed.
Passive microwave remote sensing of soil moisture: Results from HAPEX, FIFE, and MONSOON 90
NASA Technical Reports Server (NTRS)
Schmugge, Thomas; Jackson, T. J.; Wang, J. R.
1991-01-01
HAPEX (Hydrologic Atmospheric Pilot Experiment), FIFE (First ISLSCP Field Experiment) and MONSOON 90 which used an imaging microwave radiometer operating at a frequency of 1.42 GHz are reported. For FIFE and MONSOON 90, a wide range of moisture conditions were present and it was possible to observe the drydown of the soil following heavy rain and to map its spatial variation. The quantitive agreement of microwave observations and ground measurements was very good. In HAPEX there were no significant rains and conditions were generally rather dry, however, moisture variations due to irrigation were observed.
On the atmospheric photochemistry of nitric acid
NASA Technical Reports Server (NTRS)
Austin, J.; Garcia, R. R.; Russell, J. M., III; Solomon, S.; Tuck, A. F.
1986-01-01
Measurements of the temporal and spatial variations in HNO3, particularly those from the Nimbus 7 limb IR monitor of the stratosphere (LIMS) satellite experiment, are compared to both a two-dimensional chemical/dynamical model and to chemistry/parcel trajectory analyses. Significant discrepancies are found between the observed and modeled variations in the winter season, especially in the polar night region. The study of the evolution of HNO3 suggests that an important source exists for this species in the high-latitude winter stratosphere that is not included in presently accepted photochemical schemes. Possible reactions to account for this discrepancy are explored.
A class of parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit
NASA Astrophysics Data System (ADS)
Boynton, R.; Balikhin, M. A.; Walker, S. N.
2017-12-01
The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.
Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman
2016-05-15
This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States
NASA Astrophysics Data System (ADS)
Pang, Ming; Nummedal, Dag
1995-02-01
The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.
Isotropy of the early universe from CMB anisotropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donoghue, Evan P.; University of Notre Dame, Notre Dame, Indiana 46556; Donoghue, John F.
The acoustic peak in the cosmic microwave background power spectrum is sensitive to causal processes and cosmological parameters in the early universe up to the time of last scattering. We provide limits on correlated spatial variations of the peak height and peak position and interpret these as constraints on the spatial variation of the cosmological parameters (baryon density, cold dark matter density, and cosmological constant as well as the amplitude and tilt of the original fluctuations). We utilize recent work of Hansen, Banday, and Gorski who have studied the spatial isotropy of the power spectrum as measured by WMAP bymore » performing the power spectrum analysis on smaller patches of the sky. We find that there is no statistically significant correlated asymmetry of the peak. Hansen, Banday, and Gorski have also provided preliminary indications of a preferred direction in the lower angular momentum range (l{approx}2-40) and we show how possible explanations of this asymmetry are severely constrained by the data on the acoustic peak. Finally we show a possible non-Gaussian feature in the data, associated with a difference in the northern and southern galactic hemispheres.« less
Spatial scan statistics for detection of multiple clusters with arbitrary shapes.
Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray
2016-12-01
In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.
Price, Weather, and `Acreage Abandonment' in Western Great Plains Wheat Culture.
NASA Astrophysics Data System (ADS)
Michaels, Patrick J.
1983-07-01
Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with lowest average yields. This is one of the more agroclimatically marginal environments in the United States, with wide interannual fluctuations in both climate and profitability.We developed a multiple regression model to determine the relative roles of weather and expected price in the decision not to harvest. The overall model explained 77% of the spatial and temporal variation in abandonment. The 36.5% of the non-spatial variation was explained by two simple transformations of climatic data from three monthly aggregates-September-October, November-February and March-April. Price factors, expressed as indexed future delivery quotations,were barely significant, with only between 3 and 5% of the non-spatial variation explained, depending upon the model.The model was based upon weather, climate and price data from 1932 through 1975. It was tested by sequentially withholding three-year blocks of data, and using the respecified regression coefficients, along with observed weather and price, to estimate abandonment in the withheld years. Error analyses indicate no loss of model fidelity in the test mode. Also, prediction errors in the 1970-75 period, characterized by widely fluctuating prices, were not different from those in the rest of the model.The overall results suggest that the perceived quality of the crop, as influenced by weather, is a much more important determinant of the abandonment decision than are expected returns based upon price considerations.
NASA Astrophysics Data System (ADS)
Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong
2018-01-01
Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.
Uncertainties in mapping forest carbon in urban ecosystems.
Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K
2017-02-01
Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA
NASA Astrophysics Data System (ADS)
Song, B.; Lisa, J.; Tobias, C. R.
2016-02-01
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.
Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga
2016-04-15
Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.
Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.
Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C
2016-07-01
Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.
Johns, R C; Boone, J; Leggo, J J; Smith, S; Carleton, D; Quiring, D T
2012-06-01
Herbivorous insects are often exposed to broad temporal and spatial variations in microclimate conditions within their host plants and have adapted a variety of behaviors, such as avoidance or basking, to either offset or benefit from such variation. Field experiments were carried out to investigate the influence of daily and intratree variations in microclimate on the behaviors (feeding, resting, dispersal, and hiding) and associated performance of late-instar larvae of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae) within crowns of 1.25-1.5 m tall black spruce (Picea mariana [Miller] Britton Sterns Poggenburg); late instars feed on developing shoots of young spruce and are often exposed to microclimatic extremes with unknown effects on performance. Larvae fed diurnally from just after dawn (0800 h) until dusk (2000 h) and rested throughout the night, with brief periods of dispersal occurring in the morning and evening. Neither larval behavior nor abiotic conditions differed significantly between the upper and lower crowns of trees. Temperature, humidity, and solar insolation all explained >90% of variation in feeding; however, sunrise and sunset were the most likely cues influencing diurnal behavior. Most larvae (94%) fed on the bottom, shaded side of shoots, and field experiments indicated that this behavior is adaptive with respect to microclimate, probably reducing hygrothermal stress. Thus, behavioral adaptations by P. alaskensis to daily and within-shoot microclimatic variation may reduce the risk of hygrothermal stress during dispersal or feeding, while still allowing larvae to feed on the preferred and highly nutritious upper crown foliage of young spruce.
Scale-dependent variation in forest structures in naturally dynamic boreal forest landscapes
NASA Astrophysics Data System (ADS)
Kulha, Niko; Pasanen, Leena; De Grandpré, Louis; Kuuluvainen, Timo; Aakala, Tuomas
2017-04-01
Natural forest structures vary at multiple spatial scales. This variation reflects the occurrence of driving factors, such as disturbances and variation in soil or topography. To explore and understand the linkages of forest structural characteristics and factors driving their variation, we need to recognize how the structural characteristics vary in relation to spatial scale. This can be achieved by identifying scale-dependent features in forest structure within unmanaged forest landscapes. By identifying these features and examining their relationship with potential driving factors, we can better understand the dynamics of forest structural development. Here, we examine the spatial variation in forest structures at multiple spatial scales, utilizing data from old-growth boreal forests in two regions with contrasting disturbance regimes: northern Finland and north-eastern Québec, Canada ( 67° 45'N, 29° 36'E, 49° 39'N, 67° 55'W, respectively). The three landscapes (4 km2 each) in Finland are dominated by Pinus sylvestris and Picea abies, whereas the two landscapes in Québec are dominated by Abies balsamea and Picea mariana. Québec's forests are a subject to cyclic outbreaks of the eastern spruce budworm, causing extensive mortality especially in A. balsamea-dominated stands. In the Finnish landscapes, gap- to patch-scale disturbances due to tree senescence, fungi and wind, as well as infrequent surface fires in areas dominated by P. sylvestris, prevail. Owing to the differences in the species compositions and the disturbance regimes, we expect differing scales of variation between the landscapes. To quantify patterns of variation, we visually interpret stereopairs of recent aerial photographs. From the photographs, we collect information on forest canopy coverage, species composition and dead wood. For the interpretation, each 4 km2 plot is divided into 0.1ha square cells (4096 per plot). Interpretations are validated against field observations and compiled to raster maps. We analyze the raster maps with Bayesian scale space approach (iBSiZer), which aims in capturing credible variations at different spatial scales. As a result, we can detect structural entities (e.g. patches with higher canopy cover), which deviate credibly from their surroundings. The detected entities can further be linked to specific drivers. Our results show that the role of a particular driving factor varies in relation to spatial scale. For example, in the Finnish landscapes, topoedaphic factors exerted a stronger control on broad-scale forest structural characteristics, whereas recent disturbances (quantified as the amount of dead wood) appeared to play an important role in explaining the smaller scale variation of forest structures. Here, we showcase the methodology used in the detection of scale-dependent forest structural entities and present the results of our analysis of the spatial scales of variation in the natural boreal forest structures.
Tang, Hongliang; Li, Xiaoqing; Zu, Chao; Zhang, Fusuo; Shen, Jianbo
2013-09-15
Acid phosphatases (APases) play a key role in phosphorus (P) acquisition and recycling in plants. White lupin (Lupinus albus L.) forms cluster roots (CRs) and produces large amounts of APases under P deficiency. However, the relationships between the activity of intracellular and extracellular APases (EC 3.1.3.2) and CR development are not fully understood. Here, comparative studies were conducted to examine the spatial variation pattern of APase activity during CR development using the enzyme-labelled fluorescence-97 (ELF-97) and the p-nitrophenyl phosphate methods. The activity of intracellular and extracellular APases was significantly enhanced under P deficiency in the non-CRs and CRs at different developmental stages. These two APases exhibited different spatial distribution patterns during CR development, and these distribution patterns were highly modified by P deficiency. The activity of extracellular APase increased steadily with CR development from meristematic, juvenile, mature to senescent stages under P deficiency. In comparison, P deficiency-induced increase in the activity of intracellular APase remained relatively constant during CR development. Increased activity of intracellular and extracellular APases was associated with enhanced expression of LaSAP1 encoding intracellular APase and LaSAP2 encoding extracellular APase. The expression levels of these two genes were significantly higher at transcriptional level in both mature and senescent CRs. Taken together, these findings demonstrate that both activity and gene expression of intracellular or extracellular APases exhibit a differential response pattern during CR development, depending on root types, CR developmental stages and P supply. Simultaneous in situ determination of intracellular and extracellular APase activity has proved to be an effective approach for studying spatial variation of APases during CR development. Copyright © 2013 Elsevier GmbH. All rights reserved.
Parsons, Tom
2007-01-01
The power law distribution of earthquake magnitudes and frequencies is a fundamental scaling relationship used for forecasting. However, can its slope (b value) be used on individual faults as a stress indicator? Some have concluded that b values drop just before large shocks. Others suggested that temporally stable low b value zones identify future large-earthquake locations. This study assesses the frequency of b value anomalies portending M ≥ 4.0 shocks versus how often they do not. I investigated M ≥ 4.0 Calaveras fault earthquakes because there have been 25 over the 37-year duration of the instrumental catalog on the most active southern half of the fault. With that relatively large sample, I conducted retrospective time and space earthquake forecasts. I calculated temporal b value changes in 5-km-radius cylindrical volumes of crust that were significant at 90% confidence, but these changes were poor forecasters of M ≥ 4.0 earthquakes. M ≥ 4.0 events were as likely to happen at times of high b values as they were at low ones. However, I could not rule out a hypothesis that spatial b value anomalies portend M ≥ 4.0 events; of 20 M ≥ 4 shocks that could be studied, 6 to 8 (depending on calculation method) occurred where b values were significantly less than the spatial mean, 1 to 2 happened above the mean, and 10 to 13 occurred within 90% confidence intervals of the mean and were thus inconclusive. Thus spatial b value variation might be a useful forecast tool, but resolution is poor, even on seismically active faults.
NASA Astrophysics Data System (ADS)
Green, David N.
2015-04-01
The spatial coherence structure of 30 infrasound array detections, with source-to-receiver ranges of 25-6500 km, has been measured within the 0.25-1 Hz passband. The data were recorded at International Monitoring System (IMS) microbarograph arrays with apertures of between 1 and 4 km. Such array detections are of interest for Comprehensive Nuclear-Test-Ban Treaty monitoring. The majority of array detections (e.g. 80 per cent of recordings in the third-octave passband centred on 0.63 Hz) exhibit spatial coherence loss anisotropy that is consistent with previous lower frequency atmospheric acoustic studies; coherence loss is more rapid perpendicular to the acoustic propagation direction than parallel to it. The thirty array detections display significant interdetection variation in the magnitude of spatial coherence loss. The measurements can be explained by the simultaneous arrival of wave fronts at the recording array with angular beamwidths of between 0.4 and 7° and velocity bandwidths of between 2 and 40 m s-1. There is a statistically significant positive correlation between source-to-receiver range and the magnitude of coherence loss. Acoustic multipathing generated by interactions with fine-scale wind and temperature gradients along stratospheric propagation paths is qualitatively consistent with the observations. In addition, the study indicates that to isolate coherence loss generated by propagation effects, analysis of signals exhibiting high signal-to-noise ratios (SNR) is required (SNR2 > 11 in this study). The rapid temporal variations in infrasonic noise observed in recordings at IMS arrays indicates that correcting measured coherence values for the effect of noise, using pre-signal estimates of noise power, is ineffective.
Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya
NASA Astrophysics Data System (ADS)
Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.
2015-12-01
Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
Jin, Xiao-gang; Zhang, Ming-jun; Wang, Sheng-jie; Zhu, Xiao-fan; Dong, Lei; Ren, Zheng-guo; Chen, Fen-li
2015-04-01
Based on stable isotopes in 409 precipitation samples provided by GNIP and meteorological records at the eight stations in Loess Plateau from January 1985 to December 2004, as well as the trajectory model of HYSPLIT 4.9, the spatial and temporal variations of d-excess and Δ18O were analyzed. The spatial distribution of secondary evaporation rate and the impact of meteorological factors on below-cloud secondary evaporation were also discussed. The result showed that: (1) During summer and winter monsoon periods, Δ18O showed an uptrend variation and d-excess showed a downtrend variation from south to north in Loess Plateau. From east to west, Δ180 showed an uptrend variation only in summer monsoon period and a downtrend variation in winter monsoon period. The value of d-excess also showed a downtrend variation. Amplitude of variation Δ18O and d-excess could indicate the routes of monsoon. (2) Secondary evaporation existed on an annual basis, and it was relatively significant during the summer monsoon period, with ranges from 1.51% to 5.88% and an average rate of 3.87%. While winter monsoon became lower, the rates ranged from 1.06% to 5.46%, and the average rate dropped to 3.03%. Monsoon had larger influence on secondary evaporation in margin area of the plateau, while the influence on the central stations was little. (3) Temperature had the highest contribution to secondary evaporation, followed by precipitation amount and water vapor pressure, and relative humidity had a small contribution. Moreover, the influence of wind speed and altitude on secondary evaporation was weak.
Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei
2016-09-01
The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.
Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.
Cox, Christian L; Davis Rabosky, Alison R
2013-08-01
Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.
Dental Workforce Availability and Dental Services Utilization in Appalachia: A Geospatial Analysis
Feng, Xue; Sambamoorthi, Usha; Wiener, R. Constance
2016-01-01
Objectives There is considerable variation in dental services utilization across Appalachian counties, and a plausible explanation is that individuals in some geographical areas do not utilize dental care due to dental workforce shortage. We conducted an ecological study on dental workforce availability and dental services utilization in Appalachia. Methods We derived county-level (n = 364) data on demographic, socio-economic characteristics and dental services utilization in Appalachia from the 2010 Behavioral Risk Factor Surveillance System (BRFSS) using person-level data. We obtained county-level dental workforce availability and physician-to-population ratio estimates from Area Health Resource File, and linked them to the county-level BRFSS data. The dependent variable was the proportion using dental services within the last year in each county (ranging from 16.6% to 91.0%). We described the association between dental workforce availability and dental services utilization using ordinary least squares regression and spatial regression techniques. Spatial analyses consisted of bivariate Local Indicators of Spatial Association (LISA) and geographically weighted regression (GWR). Results Bivariate LISA showed that counties in the central and southern Appalachian regions had significant (p < .05) low-low spatial clusters (low dental workforce availability, low percent dental services utilization). GWR revealed considerable local variations in the association between dental utilization and dental workforce availability. In the multivariate GWR models, 8.5% (t-statistics >1.96) and 13.45% (t-statistics >1.96) of counties showed positive and statistically significant relationships between the dental services utilization and workforce availability of dentists and dental hygienists, respectively. Conclusions Dental workforce availability was associated with dental services utilization in the Appalachian region; however, this association was not statistically significant in all counties. The findings suggest that program and policy efforts to improve dental services utilization need to focus on factors other than increasing the dental workforce availability for many counties in Appalachia. PMID:27957773
NASA Astrophysics Data System (ADS)
Sim, Sunhui
2017-10-01
The purpose of the article is evaluating spatial patterns of social vulnerability to heat in Greater Atlanta in 2015. The social vulnerability to heat is an index of socioeconomic status, household composition, land surface temperature and normalized differential vegetation index (NDVI). Land surface temperature and NDVI were derived from the red, NIR and thermal infrared (TIR) of a Landsat OLI/TIRS images collected on September 14, 2015. The research focus is on the variation of heat vulnerability in Greater Atlanta. The study found that heat vulnerability is highly clustered spatially, resulting in "hot spots" and "cool spots". The results show significant health disparities. The hotspots of social vulnerability to heat occurred in neighborhoods with lower socioeconomic status as measured by low education, low income and more poverty, greater proportion of elderly people and young children. The findings of this study are important for identifying clusters of heat vulnerability and the relationships with social factors. These significant results provide a basis for heat intervention services.
Storm Surge Measurement with an Airborne Scanning Radar Altimeter
NASA Technical Reports Server (NTRS)
Wright, C. W.; Walsh, E. J.; Krabill, W. B.; Shaffer, W. A.; Baig, S. R.; Peng, M.; Pietrafesa, L. J.; Garcia, A. W.; Marks, F. D., Jr.; Black, P. G.;
2008-01-01
Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.
Chen, Xiu-Duan; Lu, Xin-Wei; Yang, Guang
2013-03-01
The magnetic susceptibility and the concentrations of Co, Cr, Cu, Pb, Sn, Sr and Ba in topsoil samples from Xi'an City were measured to study their spatial distribution and their correlation in this study. The results show that the concentrations of all measured heavy metals are higher than their background values in Cinnamon topsoil, which is the main soil type of Xi'an City. The heavy metals concentrations and the magnetic susceptibility of the studied samples display moderate variance. Co, Cr, Cu, Pb, Sn, Sr and Ba are significantly positively correlated with low-frequency magnetic susceptibility, while are significantly negatively correlated with frequency susceptibility. The spatial distribution of low-frequency magnetic susceptibility is identical with the concentrations of Pb and Cu. However, the spatial variation of frequency magnetic susceptibility is different from the concentrations of Co, Cr and Ba. The pollution assessment results show that the heavy metal pollution in topsoil of Xi'an City is moderate. The spatial contribution of the pollution load index was significantly correlated with the magnetic susceptibility of topsoil in Xi'an City. Therefore, soil magnetic susceptibility can be used as an effective monitoring means for heavy metal pollution in urban soil.
Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire Granier
2006-01-01
Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and temporal variations, as well as the magnitude of these biogenic isoprene emissions, are expected to change. This paper presents...
T. L. Swetnam; A. M. Lynch; D. A. Falk; S. R. Yool; D. P. Guertin
2015-01-01
Discriminating amongst spatial configurations and climax size of trees in forests along varying physical gradients from time since last disturbance is a significant component of applied forest management. Understanding what has led to the existing vegetationâs structure has important implications for monitoring succession and eco-hydrological interactions within the...
NASA Astrophysics Data System (ADS)
Sugg, Margaret M.; Fuhrmann, Christopher M.; Runkle, Jennifer D.
2018-05-01
Excessive ambient temperature exposure can result in significant morbidity and mortality, especially among vulnerable occupational groups like outdoor workers. Average temperatures in the USA are projected to increase in frequency and intensity, placing future worker populations at greater risk for unhealthy levels of exposure. Unlike previous research focused on aggregate-level temperature exposures from in situ weather station data, this study will measure location-based personal ambient temperatures (PAT) at the individual-level by piloting the use of wearable sensor technology. A total of 66 outdoor workers in three geographically and climatologically diverse regions in the Southeast USA were continuously sampled during the workday for a 1-week period throughout July 11 to August 8 2016. Results indicate significant worker variation in temperature exposure within and between study locations; with PAT characterized by less pronounced variability as workers moved between indoor and outdoor environments. Developed land covers, a factor often associated with higher temperatures, were poorly correlated with PAT. Future analysis should focus on a worker's physiological response to PAT and mapping of spatial patterns of PAT for a larger worker population to produce innovative and targeted heat prevention programs.
Saijuntha, Weerachai; Tantrawatpan, Chairat; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N
2011-05-01
A total of 314 individual Echinostoma revolutum were collected at different locations and times from domestic ducks from Khon Kaen Province, Thailand and Vientiane Province, the Lao People's Democratic Republic (PDR). Genetic variation of these parasites was analyzed using multilocus enzyme electrophoresis at three polymorphic loci namely, glucose-6-phosphate dehydrogenase (G6pd), malic enzyme (Me) and peptidase valine-leucine (PepA). High levels of genetic variability were found within and between populations. Significant heterozygote deficiencies compared with the predictions under Hardy-Weinberg equilibrium were detected in populations from Thailand and the Lao PDR for all loci except G6pd-1. Significant genetic differentiation was observed between spatially separated populations from Thailand and the Lao PDR. This as also true for some samples collected at different times in Thailand. The variability found may be consistent with a Wahlund effect, genetic drift and/or other factors such as the population structure of snail hosts. Our data provide further insight into the process of genetic divergence within and among geographically and temporally isolated populations of E. revolutum, and potentially other medically important echinostomes in Southeast Asia. Copyright © 2011 Elsevier B.V. All rights reserved.
The limits to equivalent living conditions: regional disparities in premature mortality in Germany.
Plümper, Thomas; Laroze, Denise; Neumayer, Eric
2018-01-01
Despite the country's explicit political goal to establish equivalent living conditions across Germany, significant inequality continues to exist. We argue that premature mortality is an excellent proxy variable for testing the claim of equivalent living conditions since the root causes of premature death are socioeconomic. We analyse variation in premature mortality across Germany's 402 districts and cities in 2014. Premature mortality spatially clusters among geographically contiguous and proximate districts/cities and is higher in more urban places as well as in districts/cities located further north and in former East Germany. We demonstrate that, first, socioeconomic factors account for 62% of the cross-sectional variation in years of potential life lost and 70% of the variation in the premature mortality rate. Second, we show that these socioeconomic factors either entirely or almost fully eliminate the systematic spatial patterns that exist in premature mortality. On its own, fiscal redistribution, the centrepiece of how Germany aspires to establish its political goal, cannot generate equivalent living conditions in the absence of a comprehensive set of economic and social policies at all levels of political administration, tackling the disparities in socioeconomic factors that collectively result in highly unequal living conditions.
A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh
Taylor, Richard G.; Chandler, Richard E.
2015-01-01
Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Grillet, M E; Basáñez, M G; Vivas-Martínez, S; Villamizar, N; Frontado, H; Cortez, J; Coronel, P; Botto, C
2001-07-01
We investigated some entomological factors underlying altitudinal prevalence variation in the Venezuelan Amazonia human onchocerciasis focus. Spatial and temporal variation in relative abundance, daily biting rate, proportion of parous flies, and monthly parous biting rate were studied for the three main simuliid vectors (based on their vectorial competence: Simulium oyapockense s.l. Floch & Abonnenc approximately = S. incrustatum Lutz < S. guianense s.l. Wise). Yanomami villages were selected among sentinel communities of the ivermectin control program, representing hypo- to hyperendemicity conditions of infection. Spatial variation was explored via increasing village altitude on two river systems (A: Ocamo-Putaco and B: Orinoco-Orinoquito). Temporal variation was studied between 1995 and 1999 by sampling the biting population during dry and rainy mouths. Environmental variables included monthly rainfall and maximum river height. Simuliid species composition itself varied along the altitudinal and prevalence gradient. S. oyapockense s.l. prevailed below 150 m. Above this altitude and up to 240 m, S. incrustatum and S. guianense s.l. became more frequently and evenly collected along A but not along B, where S. incrustatum remained absent. The daily biting rate of S. oyapockense s.l. was higher during the dry season along A, whereas the converse took place along B. Daily biting rate of S. incrustatum was lowest during early rains. By contrast, the daily biting rate of S. guianense s.l. was highest during this period. There was a significant negative cross-correlation between proportion of parous of S. oyapockense s.l. and river height (2 and 3 mo lagged), whereas this variable (1 and 2 mo lagged) was positively correlated with the proportion of parous flies for S. incrustatum. Monthly parous biting rate values suggest that the months contributing most to onchocerciasis transmission in the area are likely to be the dry season and the transition periods between seasons.
NASA Astrophysics Data System (ADS)
Olson, E. J.; Dodd, J. P.; Rivera, M. A.
2016-12-01
Arid regions are extremely sensitive to variations hydroclimate. However, our understanding of past hydroclimate variations in these regions is often limited by a paucity of spatially resolved proxy data. The Atacama Desert of northern Chile is one of the driest regions on Earth, and hydroclimatic processes in the Atacama Desert may be a useful proxy for understanding the implications of expanding global aridity. In order to assess the ability of tree-ring isotope studies to record changes in hydrology and terrestrial climate in the Atacama Desert, oxygen (δ18O), carbon (δ13C) and hydrogen (δ2H) isotope values in tree rings of Prosopis tamarugo are analyzed for the modern period (1954-2014) when anthropogenic change to regional groundwater levels have been most notable. Samples of wood cellulose were collected throughout the Pampa del Tamarugal basin from 14 individuals and used to create an interpolated surface of isotope variations. The isotope data were then compared to groundwater depth from well monitoring data provided by the Dirección de General de Agua of Chile. There is a significant correlation between groundwater level and isotope values with best agreement occurring during the past two decades for δ18O (r = 0.58), δ13C (r = 0.55), and δ2H (r = 0.66) values. This spatial correlation analysis reveals that tree ring a-cellulose isotope values are a suitable proxy for reconstructing groundwater depth in the Pampa del Tamarugal Basin. A stepwise multiregression analysis between δ18O values of cellulose and several other environmental variables including groundwater level, relative humidity, and temperature suggest that groundwater depth is the dominate control of variation in the modern δ18O tree ring record. The response of tree cellulose to the hydroclimate in this region suggests that tree ring isotope variations may be used to reconstruct past hydroclimate conditions in arid regions throughout the globe.
Fire drives transcontinental variation in tree birch defense against browsing by snowshoe hares
John P. Bryant; Thomas P. Clausen; Robert K. Swihart; Simon M. Landhäusser; Michael T. Stevens; Christopher D. B. Hawkins; Suzanne Carrière; Andrei P. Kirilenko; Alasdair M. Veitch; Richard A. Popko; David T. Cleland; Joseph H. Williams; Walter J. Jakubas; Michael R. Carlson; Karin Lehmkuhl Bodony; Merben Cebrian; Thomas F. Paragi; Peter M. Picone; Jeffery E. Moore; Edmond C. Packee; Thomas Malone
2009-01-01
Fire has been the dominant disturbance in boreal America since the Pleistocene, resulting in a spatial mosaic in which the most fire occurs in the continental northwest. Spatial variation in snowshoe hare (Lepus americanus) density reflects the fire mosaic. Because fire initiates secondary forest succession, a fire mosaic creates...
Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index
Taehee Hwang; Conghe Song; James Vose; Lawrence Band
2011-01-01
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology...
NASA Technical Reports Server (NTRS)
Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas
1996-01-01
The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.
The spatial and metabolic basis of colony size variation.
Chacón, Jeremy M; Möbius, Wolfram; Harcombe, William R
2018-03-01
Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is therefore important to quantitatively understand how spatial proximity affects interactions in different environments. We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit, genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative importance of different competitors changed through time. Further, the effect of location increased when colonies took up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the importance of location was smaller than expected for experiments with S. enterica growing on glucose. The accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size. Our work provides an experimentally and theoretically grounded understanding of how location interacts with metabolism and diffusion to influence microbial interactions.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Boutton, T. W.; Wu, X. B.
2016-12-01
Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.
NASA Astrophysics Data System (ADS)
Ward, John; Kaczan, David
2014-11-01
Water poverty in the Niger River Basin is a function of physical constraints affecting access and supply, and institutional arrangements affecting the ability to utilise the water resource. This distinction reflects the complexity of water poverty and points to the need to look beyond technical and financial means alone to reduce its prevalence and severity. Policy decisions affecting water resources are generally made at a state or national level. Hydrological and socio-economic evaluations at these levels, or at the basin level, cannot be presumed to be concordant with the differentiation of poverty or livelihood vulnerability at more local levels. We focus on three objectives: first, the initial mapping of observed poverty, using two health metrics and a household assets metric; second, the estimation of factors which potentially influence the observed poverty patterns; and third, a consideration of spatial non-stationarity, which identifies spatial correlates of poverty in the places where their effects appear most severe. We quantify the extent to which different levels of analysis influence these results. Comparative analysis of correlates of poverty at basin, national and local levels shows limited congruence. Variation in water quantity, and the presence of irrigation and dams had either limited or no significant correlation with observed variation in poverty measures across levels. Education and access to improved water quality were the only variables consistently significant and spatially stable across the entire basin. At all levels, education is the most consistent non-water correlate of poverty while access to protected water sources is the strongest water related correlate. The analysis indicates that landscape and scale matter for understanding water-poverty linkages and for devising policy concerned with alleviating water poverty. Interactions between environmental, social and institutional factors are complex and consequently a comprehensive understanding of poverty and its causes requires analysis at multiple spatial resolutions.